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ABSTRACT

Viability and performance of RF source localization using autocorrelation-based

fingerprinting

by

Joseph L. Ipson, Master of Science

Utah State University, 2023

Major Professor: Todd K. Moon
Department: Electrical and Computer Engineering

Identifying the location of a radio-frequency (RF) transmitter is a useful capability for

many civilian, industrial, and military applications. This problem is made more challenging

when done “Blind,” or when the transmitter is noncooperative, and relatively little informa-

tion is available about the signal beforehand. Typical methods for this operation utilize the

time, phase, power, and frequency viewable from received signals. These features all behave

less predictably in indoor and urban environments, where signals undergo transformation

from multiple interactions with the environment. These interactions imprint structure onto

the received signal which is dependent on the transmission path, and therefore the initial

location. Using a received signal, a signal autocorrelation can be computed which will

largely be shaped by this information. In this research, RF source localization using fin-

gerprinting with signal autocorrelations is explored. A Gaussian-process-based method for

autocorrelation-based fingerprinting is proposed. Performance of this method is evaluated

using a ray-tracing-based simulation of an indoor environment.

(183 pages)
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PUBLIC ABSTRACT

Viability and performance of RF source localization using autocorrelation-based

fingerprinting

Joseph L. Ipson

Finding the source location of a radio-frequency (RF) transmission is a useful capa-

bility for many civilian, industrial, and military applications. This problem is particularly

challenging when done “Blind,” or when the transmitter was not designed with finding

its location in mind, and relatively little information is available about the signal before-

hand. Typical methods for this operation utilize the time, phase, power, and frequency

viewable from received signals. These features are all less predictable in indoor and ur-

ban environments, where signals undergo transformation from multiple interactions with

the environment. These interactions imprint structure onto the received signal which is

dependent on the transmission path, and therefore the initial location. Using a received

signal, a signal characteristic known as the autocorrelation can be computed which will

largely be shaped by this information. In this research, RF source localization using finger-

printing (a technique involving matching to a known database) with signal autocorrelations

is explored. A Gaussian-process-based method for autocorrelation-based fingerprinting is

proposed. Performance of this method is evaluated using a ray-tracing-based simulation of

an indoor environment.
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CHAPTER 1

Introduction and Literature Review

1.1 Source Localization methods and challenges

The problem of “where is that signal coming from?” for radio frequency (RF) signals is

well known, and has only become more important as wireless infrastructure has continued

to develop. The problem of RF source localization (also referred to by the related term, RF

geolocation) is the problem of identifying the location from which a particular RF signal

is emitted. This problem is of practical interest whenever the location of some object is

needed and that object is emitting an RF signal. This may include something that has

been lost, such as a crashed vehicle or company asset. It might also be needed to locate and

silence a signal which is interfering with the operation of another system. It is also relevant

to many military situations, where it may be important to know the location of both allied

and adversarial entities. In these differing situations, the resources and effectiveness of

particular methods may vary substantially, motivating the use of a range of approaches.

One such situation is depicted in Figure 1.1, where a single receiver is used to identify the

position of a transmitter in an indoor environment.

1.1.1 Traditional localization methods

A wide variety of methods exist to perform source localization. These methods have

different receiver requirements, and rely on different properties of the transmitted signal.

Some of the most common methods are described by So [1] and Li et al. [2]. One of most

basic methods, known as received signal strength (RSS), relies on measured signal power,

utilizing the simple fact that signal power declines with distance in a regular fashion. This

method is cheap and easy to implement, but generally fails to give high location precision.

Another common method, called time-of-arrival (TOA) is by measuring the time taken to
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Transmitter
(unknown location)

Receiver
(known location)

Figure 1.1: An illustration of a particular RF localization problem, where the signal at a
single receiver of known location is used to attempt to identify the position of a transmitter
at an unknown location in an indoor environment. This is the primary localization scenario
discussed in this research.

reach the receiving antennas. This method can give very precise position estimates, but

relies on time synchronization and adequate signal bandwidth, which are more difficult

to achieve. Similarly, time-difference-of-arrival (TDOA) uses the difference between signal

arrival times at multiple receiving antennas. It is similar to TOA, with the advantage of not

requiring transmitter-to-receiver timing synchronization, but the disadvantage of requiring

more receivers which must themselves still be synchronized with each other. A third method

that is frequently employed is angle-of-arrival (AOA), which looks at phase differences at

multiple nearby antenna to identify the direction of the source signal. When multiple arrays

are used, this method also produces good precision, but requires more advanced antenna

arrays which are suited for the frequency range of interest. A summary of the most common

localization methods are given in Table 1.1. While these three methods are most prevalent

in RF source localization, other methods, like those using signal frequency changes and

those using channel information have also been developed.

1.1.2 Localization methods for unknown signals

In some situations the RF signal is designed with time stamps or other information
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Table 1.1: Some common methods for RF source localization, derived from So [1]

Method Advantages Disadvantages

Received
signal strength

(RSS)

• Easy to implement

• Inexpensive hardware

• Usable in many situa-
tions

• Low precision

• Performance degrades in some
environments

Time-of-arrival
(TOA)

• High precision

• Requires transmitter-to-
receiver time synchronization

• Dependent on signal band-
width

Time-
difference-of-

arrival
(TDOA)

• High precision

• Requires time-synchronized re-
ceivers

• Requires more receivers than
TOA

• Dependent on signal band-
width

Angle-of-
arrival
(AOA)

• Medium precision

• Can be effectively com-
bined with other meth-
ods

• Requires multiple or array of
receivers

• Receiver array must be time
and phase synchronized

• Antenna configuration re-
quired depends on frequency
of signal

which can be leveraged by the receivers to locate the source. In many circumstances,

however, the source signal is not known beforehand, and does not contain extractable timing

information. This is often the case when the RF source of interest is hostile or was simply

not designed with localization in mind. Under these conditions, the RSS method requires

adjustment to use power differences, becoming differential received signal strength (DRSS).
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Methods for DRSS localization are explored in work by Whiting et al. [3] and also included as

modifications of RSS methods, as in Martin et al. in [4]. Likewise TDOA methods must be

used instead of TOA, since transmitter-to-receiver synchronization is generally not possible.

Techniques for TDOA are discussed in many publications, such as the work by Comsa [5]

and Li et al. [2]. Similarly, some less common method types, such as channel or frequency

methods, are more difficult, but still viable for unknown signals. For example the work by

Hall et al. [6], can be used without knowing the transmitted signal beforehand. Angle-of-

arrival methods do not necessarily rely on prior signal information, and can therefore be

used with little or no modification in most cases.

1.1.3 Localization in indoor/multipath environments

Another challenge within RF source localization is coping with the effects of reflections

and multiple signal paths, particularly in indoor environments. Localization in an indoor

environment is depicted in Figure 1.1. The multiple arrivals often constructively and de-

structively interfere with each other, leading to changes in received signal power in different

locations, an effect known as fading. Fading can reduce RSS/DRSS based location estimate

accuracy. The multiple arrivals also make it difficult to precisely identify time-delays in

TOA and TDOA, which can distort distance estimates. Likewise, AOA methods will detect

the reflected paths’ arrival directions as well, which may obscure the actual direction to

the signal source. These timing and angle errors are particularly severe when the shortest

path (called the direct path) is weaker than a reflected path. This is especially true un-

der no-line-of-sight (NLOS) conditions, where the direct path is not detected at all by the

receiver. In contrast to these more traditional methods, channel based methods actually

leverage multiple arrivals to improve localization ability. A significant amount of research

effort continues to be performed in addressing multipath problems in source localization.

Pahlavan et al. provide a good summary of the challenges in this area in [7], though this

work emphasizes cooperative localization systems. Some research focuses on using identify-

ing and mitigating multipath and NLOS conditions on traditional methods, such as Saeed

et al. [8–10].
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1.1.4 Single receiver or unsyncronized receivers

A third major challenge in localization is limitations in available receiver hardware.

Whether due to budgetary constraints, space limitations or other restrictions, extensive re-

ceiver systems are not always practical. The time-syncronized systems required for TOA/T-

DOA are significantly more expensive and difficult to set up. In some circumstances it may

be desirable to perform localization with only a single receiver. None of the more traditional

approaches discussed can uniquely resolve a position in this case, unless a hybrid method

is used. Unlike these methods, channel information may be sufficiently rich to uniquely

identify position from a single receiver measurement. Research for such single receiver lo-

calization systems has been carried out by Hall et al. in [6, 11] and O’connor et al. [12],

which both use channel information.

1.2 Channel based localization methods

In signal processing, a channel describes the interface between an original source signal

and what is collected by the receiver. In RF propagation situations, this becomes the total of

all effects and changes which an RF signal undergoes as it is passed through a transmission

system, through an environment, and finally through a receiver system. This can include

a variety of effects, but can be modeled primarily as a linear system with additive noise.

The linear system can be fully described by its response to an impulse function, which is

known as the channel impulse response (CIR). The impulse response (and correspondingly

the linear system) is directly related to the environmental features between a transmitter

and receiver. To leverage the properties of the channel for localization, it is necessary to be

able to estimate this linear system or some of its properties from what is measured by the

receiver system. At this point, statistics or prior data can be used with the identified linear

system to estimate the position of the RF source.

1.2.1 Utilizing channel information in received signals

If appropriate conditions are met, the linear system describing the channel can be es-

timated from what is measured by the receiver system. If the signal is known beforehand,



6

the channel can be estimated directly through deconvolution with the source signal. When

source signal is not known, this becomes the more difficult problem of blind channel esti-

mation. In this case, a variety of methods may be applied, depending on the type of signal

and available receiver configuration. Many of these methods rely on multiple receivers, and

can become more difficult if the receivers are not synchronized. A good summary of blind

channel identification methods can be found by Tong and Perreau in [13]. Some methods

even exist for estimation of the channel from a single receiver (see Darsena et al. [14]), but

these methods often rely on other assumptions about the signal of interest. All channel

identification methods are also limited to some degree by the bandwidth of the transmitted

signal, which effects how the linear channel system and signal interact.

Channel information is utilized in a variety of methods to perform localization. In some

cases the transmitted signal is used to estimate this information, as is done by Zhao et al.

in [15]. Other cases perform blind channel identification, such as Hall et al. [6], and Rose

et al. [16]. Another example using channel information for source localization is Nerguizian

et al. [17], which focused on mitigating variation in channel parameters over time, another

challenge in channel localization methods.

The effects of the linear channel are also embedded in the received signal power spec-

trum, or similarly, the signal autocorrelation. If the shape of the source signal spectrum is

fairly flat in frequency, the received signal power spectrum will be similar to the spectral

shape of the linear system. If only one received signal is available, this can be used in place

of the linear system itself, missing only phase information. Channel identification is still

possible by using the autocorrelation function and performing phase reconstruction, which

is done by Baykal in [18]. Related methods for phase reconstruction are also summarized

by Jaganathan et al. [19].Phase construction is often a difficult problem, so this approach

may not always be effective. This received power spectral density (PSD), or equivalently

the received signal autocorrelation function does not contain as much information as the

full linear channel, but may in some cases still be usable for localization.
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1.2.2 Estimating position from channel information

The traditional source localization methods rely on directly estimating a distance or

direction relationship, possibly with the assistance of a statistical model. Channel meth-

ods do not have that luxury, as the relationship between the linear channel model and the

source location is much more complicated and environment dependent. As pointed out by

Qi et al. in [20], channel information is not necessarily useful without a model or addi-

tional environmental information. Some statistical models provide a statistical relationship

between distance and paths, but this relationship is complicated and may only have weak

relationship. For example the statistical channel model by Pahlavan in [21] allows for the

potential of distance estimation from channel information, but the illustrative plots suggest

only a weak relationship. The author does not even suggest this as a possible use for the

model. Qi does describe how statistical models of NLOS components for an environment

may be used [20], but again this requires more environmental information. This weakness

motivates more data-driven and machine learning methods, for estimation source location

from the channel.

1.2.3 Data-driven methods and fingerprinting

Because of the difficulty of fitting a relationship between the linear channel model or

power spectrum and the source location, data-driven methods such as machine learning or

fingerprinting are employed. Each of these methods involves producing a set of data which

contains the channel information coupled with a corresponding source location. From this

dataset, one can try to train a function which maps channel information to a position

estimate. Alternatively, if the dataset contains positions throughout the region of interest

for source localization, one can simply compare received channel information from a signal

of interest to the dataset, choosing the location which matches the CIR most closely. This

method is referred to as fingerprinting. Note however, that both of these methods are not

actually very different, as fingerprinting is simply a way of creating a channel-to-position

function.
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1.2.4 Neural nets and current developments in fingerprinting methods

Some of the more recent work in the field of RF source localization is the use of deep

learning or artificial neural networks (ANN). These may by applied using received signal

strength as with as Nerguizian et al. [22], o they may use channel information like that

of Wang et al. [23]. Deep learning still relies on collection of reference measurements and

can still be considered a form of fingerprinting approach. Other methods continue to stick

to standard machine learning methods, such a weighted K-nearest neighbor used by Hall

et al. [6] or Zhao et al. [15]. The most comparable work to this research is likely that of

Hall et al. in [11] and [6], which also pursues localization in a noncooperative context using

fingerprinting and a single receiver. These methods however rely on a vector sensor, which

provides for increased richness of available channel data.

1.3 Thesis topic and objectives

The goal of this research is to investigate RF source localization by using fingerprinting

on received signal autocorrelations, particularly for signals with relatively limited band-

width. The objectives of this thesis are as follows.

1. Outline the basic theory required to understand and carry out RF source localization

using autocorrelation-based fingerprinting.

2. Develop more algorithms which can be used to perform RF source localization using

autocorrelation-based fingerprinting.

3. Characterize the performance of the developed localization algorithms using simulated

data.

4. Evaluate what bandwidth, frequency, and other requirements must be met for the use

of these localization methods.

5. Demonstrate viability of methods by implementing them with physical hardware.
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1.3.1 Thesis structure

The remaining thesis content will be proceed as follows. This method is used to gen-

erate some of the results of this thesis. Chapter 2 explains the basics of fingerprinting for

source localization. Chapter 3 discusses methods and algorithms for using fingerprinting on

autocorrelation functions. Chapter 4 describes the performance of these localization meth-

ods under different conditions. The primary results of this thesis are contained in Chapter 3

and Chapter 4. Chapter 5 will describe the appropriate RF system and propagation theory

which underlies indoor propagation modelling used in this work. Chapter 6 describes a

basic ray-tracing method using the theory developed in Chapter 5. Results and conclusions

are summarized in Chapter 7. Finally, additional supplementary material are also available

in Appendix A and code listings are included in Appendix B.



CHAPTER 2

Overview of Fingerprinting-Based Source Localization

2.1 Introduction and background

In source localization, fingerprinting is the process of identifying a source location by

matching a received signal’s features with a reference database which links known features

to respective source locations. This name follows from the forensics practice of matching

biometric information found at a crime scene (namely, a fingerprint) and comparing it to a

database of that same biometric information to match individuals to a crime.

This differs from more traditional source localization methods, where certain properties

of the received data (such as the time-of-arrival, or received signal strength) which have

knwown relationships to position are used. In fingerprinting, the features of the signal,

also called the “signature”, can be any combination of calculable signal properties that has

information pertaining to position. This could include these same traditional measurements,

like received signal strength, time-of-arrival, and angle-of-arrival, possibly in combination.

It is also possible to utilize signal characteristics which can be otherwise difficult to use in

estimating position, such as an estimated CIR, as done by Sousa et al. in [24]. Similarly,

it is possible to use signal autocorrelation for fingerprinting; this method in particular will

be discussed in detail in this thesis.

As localization is essentially trying to find a function that takes “received data” as

input and produces “location” as output, fingerprinting can also be consiered a machine

learning method. It creates the localization function by using the reference measurements

as “training data” to produce a position from the calculated signature.

2.1.1 Advantages of fingerprinting methods

Fingerprinting is generally more complicated than traditional approaches for source
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localization, such as typical RSS, TOA/TDOA, and AOA approaches. The need to produce

a reference map can be a tedious step which is unnecessary for these other approaches, and

location estimation is not necessarily faster. With that in mind, there are three primary

motivations for which one would favor a fingerprinting approach. These are: (1) more fully

accounting for environmental effects, (2) employing signal properties which are not otherwise

easily used in localization, and (3) being able to accomplish the previous advantages with

only a few unsycronized receivers or even a single receiver.

First, a fingerprinting approach can account directly for variations in an environment

that could only be modeled statistically in other approaches. For example, in RSS source

localization, most environmental fading is just modelled as an unknown statistical error on

the power measurement or corresponding loss coefficient, which can introduce significant

localization error. When fingerprinting is used, environmental fading effects are included

within the reference map itself, so these effects may not lead to the same error.

Second, fingerprinting can be used on signal properties which do not have a simple

relationship to position, such as the CIR. Fingerprinting using signal autocorrelation, the

primary topic of this thesis, fits into this category. While some statistical models suggest

a relation between multipath components and transmitter-to-receiver distance, it is more

accepted that utilizing these components without environmental knowledge is not effective

(see Qi et al. [20]). Such relationships also assume multipath components can be estimated

from the autocorrelation or CIR, which is likewise a difficult problem. However, usage of

CIR or autocorrelation in fingerprinting can be done directly using the methods described

in this chapter and Chapter 3.

Third, localization using this fingerprinting fundamentally only needs one receiver, and

can use receivers which are not time-syncronized when multiple receivers are used. While

it may not always be possible to successfully identify a transmitter’s position using a single

receiver, the method does not fundamentally require multiple receivers to function. If more

receivers are needed, these receivers only need coarse time-synchronation, possibly on the

order of hundreds of milliseconds, compared to the nanosecond synchronation required for
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TOA/TDOA methods. How many receivers are required will depend on the bandwidth and

other factors (see results in Chapter 4), but the lack of need for synchronized systems may

offer substantial savings in system cost.

2.1.2 Summary of fingerprinting process

The fingerprinting process can be divided into two phases: a preliminary, offline data

collection phase, and an online localization phase. The first phase, the offline data collection

or training phase, is where data is collected from the target environment and preparatory

processes are performed. Fingerprinting source-localization relies upon a set of reference

measurements where signal features are associated with a source position. This map can

be represented as an array of M tuples of the form (rm,xm) where rm is the signature

calculated from a signal which is received by a transmission from a known location xm.

Note that rm can be either a scalar or vector quantity.

The second phase, the online localization phase, is where a transmitter can be localized

by leveraging the resources obtained in the offline phase. In this phase, a signal-of-interest

ysoi(n) will be processed to identify its source location z. Upon receiving this signal, the

signature will be calculated and preprocessing steps will be performed on this signal in

the same manner that the reference measurements were processed. After this is done, a

score value (such as a distance or likelihood) is calculated for each of a set of candidate

transmitter positions. Finally, the location with the optimal score is chosen as the estimated

transmitted location.

These steps can be summarized as:

1. Offline training phase

a. Collect measurements of signals from set of locations {xm|m = 0 . . .M − 1},

signatures are calculated, processed and stored as {rm|m = 0 . . .M − 1}

b. Perform any additional processing to prepare for online phase, such as fitting

ditributions (Section 2.3).

2. Online localization phase
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a. Process measurement and calculate signature rrec for signal-of-interest.

b. Calculate score for each candidate location z, by using information from reference

measurements

c. Estimated location is given by candidate point which maximizes score (or mini-

mizes error)

This process is depicted in Figure 2.1. More details regarding these two phases will be

discused in the following sections.

New measurement

Estimated location

Reference measurements

Signature

Signature Location

Closest

(1, 1)

(1, 2)

(2, 1)

(2, 2)
(2, 1)

Figure 2.1: Summary of fingerprinting algorithm. Localization is performed by comparing
a measured signature with a set of reference measurements, which are each associated with
a source location. The “closest” signature is found, and the estimated source location is
given by that associated reference location.

2.2 Offline training phase - collecting reference measurements

The signature (such as the channel impulse response or autocorrelation) for each mea-

surement is calculated. Any necessary preprocessing steps are performed such as those
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discussed in 3.1. This may include normalization, feature extraction, etc. Additional pro-

cessing steps may be performed to prepare for localization, such as the creation of a posterior

distribution, as done in the Gaussian processes method described in Section 3.2.

2.2.1 Reference measurements and signature properties

Being able to produce a set of reference measurements is necessary for a fingerprinting

method. This is typically done by transmitting test signals (often a known white noise

signal) from a set of locations x0, . . . ,xM−1 throughout the region of interest, calculating

the relevant signature rm, and recording this signature for each position. Alternatively, a

model of the environment can be used to simulate this process, and received signatures may

be generated for each position instead.

It is neither necessary, nor possible for this set of reference measurements, or reference

map, to contain every possible emitter position. However is important to produce a map

that has enough points to resolve emitter locations in the region of interest. The necessary

resolution depends on the behavior of the signature, and is discussed further in Section

2.2.3.

When using simulation, if the environment is not modeled with enough fidelity, the

generated map will not be effective. Ray-tracing or other propagation modeling may be

sufficient to be useful, but modeling accuracies could cause map defects which then hurt

performance. With some methods, using simulated data to supplement physically collected

data may be an option, as done by Sousa et al. [24].

On the other hand, if the map is created through physical testing, it is necesary to

take an emitter with known location, and repeatedly sample the signature for that emitter

at the receiver at different at each map location. Creating the map this way requires free

movement within the region of interest and mobile emitter hardware. The process can also

be time intensive, particularly if the region is large, and if high map resolution is necessary.

If these difficulties can be dealt with, this method should produce better fingerprinting

performance than using simulation-produced measurements.
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2.2.2 Signature properties

In order for a signal property to be a useful signature for fingerprinting it must fore-

most have some natural relationship with transmitter position. In the case of RSS and

TOA/TDOA, the relationship between transmitter position and the signal property can

often be expressed as a direct relationship to distance. For channel information approaches,

the relationship is not as easily stated, but it is intuitive that the shape of these functions

will vary to some extent with transmitter position. This section further describes some

other properties which can affect fingerprinting performance.
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Figure 2.2: (Left) A representation of a reference map with good smoothness and unique-
ness. The axes represent the physical location and the colors represent signature value. In
this figure, the signature and position are smoothly related. (Right) A simple distance-
based score is shown, which compares an arbitrary point’s signature with the particular
point denoted with an x in the left image. Here the score is highest around the correct
point, a property which means that even imperfect localization will still yield a nearly the
correct location.

2.2.3 Smoothness

Smoothness is the propensity of a signature from one transmit location to be “similar”

to a signature from a transmit location nearby. An illustration of reference maps with and

without good smoothness are shown in Figure 2.2 and Figure 2.3 respectively.

Signature smoothness has a direct effect on the reference map resolution needed to

perform effective estimation. This can only be ensured for any potential transmit location
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Figure 2.3: (Left) A representation of a reference map with lower smoothness. The axes
represent the physical location and the colors represent signature value. In this figure,
the signature and position are well related, but sometimes abrupt changes. (Right) A
simple distance-based score is shown, which compares an arbitrary point’s signature with
the particular point denoted with an x in the left image. Here the score is still high around
the correct point, but the score can be significantly changed with a slight change in position,
possibly leading to localization errors.

with a sufficiently fine resolution map. This can be viewed as a form of spatial Nyquist

criterion, where the rate of variation in physical space effects the degree of sampling neces-

sary. If a signature does not have a sufficient quality of smoothness, fingerprinting will not

be effective.

2.2.4 Uniqueness

Uniqueness is the property of a signature to only obtain a particular value in a single

location. This is contradicted when the signature looks highly similar in two locations which

are not close to each other. This is illustrated in Figure 2.4.

While arguably less critical then smoothness, uniqueness issues can still cause large

location errors, as an optimal score can occur for a transmit position and reference position

which are far apart. Uniqueness is closely related to the dimensionality or “richness” of

nonredundant information within a typical signature. Uniqueness can be improved by ob-

taining more informative measurements (for example by using a receiver with directionality

or polarization information), or by obtaining more measurements. This can be done either

by using multiple receivers or, in the case of a moving transmitter, multiple measurements



17

10 20 30

10

20

30
10 20 30

10

20

30

Figure 2.4: (Left) A representation of a reference map with poor uniqueness properties.
The axes represent the physical location and the colors represent signature value. In this
figure, the signature varies smoothly, but similar signatures occur in highly varying loca-
tions. (Right) A simple distance-based score is shown, which compares an arbitrary point’s
signature with the particular point denoted with an x in the left image. Here the score is
still high at the correct point and in a region surrounding it, but there are multiple regions
with a high score, leading to an inability to fully resolve the location by using this score.

taken over time. Severe uniqueness problems can lead to high distance errors in localization,

and must be addressed for effective fingerprinting.

2.2.5 Time-stationarity and reproducibility

A major concern for fingerprinting approaches pertains to whether signals transmitted

from the same position at different times produce essentially the same signature. In prac-

tice, all propagation environments are time-varying to some degree. This may be due to

the physical motion of people or objects, building renovations, or any other changes in envi-

ronment over time. Most useful localization signatures will be influenced by these changes,

even if only slightly. This effect is in many ways analagous to smoothness, except that it is

instead sensitivity to slight environmental changes over time rather than position.

If signatures are affected too severely by a time-varying environment, reliable finger-

printing may not be possible. If the time-varying effects are sufficiently slow, then they may

be solved by producing a new reference map periodically. This is not desirable in general,

due to previously mentioned difficulties in producing reference maps. Alternatively, if the

initial set of reference measurements includes redundant measurements taken during differ-
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ent times or conditions, these additional measurements may be usable to make the system

more robust to such changes. An approach like this is used by Nerguizian et al. [17]. It may

also be possible to design systems which are capable of a degree of updating the reference

map while live, but this may require additional hardware and is beyond the scope of this

research.

2.3 Online localization phase — basic fingerprinting

The most straightforward method of fingerprinting is to choose the position correspond-

ing to the reference measurement that is the “best match” for the signal-of-interest. This

can be likened to a one-nearest-neighbor approach in machine learning. First, in order to

be fairly compared to the reference measurements, the signal-of-interest must undergo the

same method of calculation and preprocessing as the reference measurements. Then it is

necessary to calculate some form of “score” for how closely matched the signal-of-interest

is with any particular reference measurement. This score can either be based on a simple

vector distance or it can be developed probabilistically as a likelihood. With xopt as the

optimal estimated position, xm as the position from the set of reference measurements with

index m, rrec as the signature from the signal being localized, and rm as the reference

measurement with index m, this can be written as

xopt = xm∗ , where m∗ = arg min
m

d(rrec, rm), (2.1)

where d(ri, rj) is a metric which mathematically expresses “closeness” for the signature

used. A simple example would be an L2 norm distance, so d(ri, rj) = ‖ri− rj‖2. However,

since the selection of metric can directly affect fingerprinting performance, this may not

necessarily be the right choice.

If a single location estimate is desired, one simply selects the location with the highest

final score. In most cases, this is simply a matter of searching over the entirety of the

reference map for the minimum. Alternatively, a spread of likely positions can be given as

the final output, depending on the final system to be used. Particularly, if a likelihood or
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posterior probability is used as a score, this information can be naturally integrated into

an algorithm using multiple sensors or methods. Such a method also allows for the target

to be tracked over time using a particle filter, hidden Markov model, or similar Bayesian

tracking method. For an example of the use of a particle filter for a similar system see Ferris

et al. [25].

Maximum-likelihood estimation

Due to being more interpretable and more convenient for integrating with other meth-

ods, a likelihood is often the preferable function for use as a score. The likelihood func-

tion describes the probability some set of observations could occur, if a particular model

and model parameters had produced it. Thus maximum-likelihood estimation attempts to

choose a model, or more typically, model parameters, such that the observation is most

likely to have been produced by the model. In the maximum-likelihood formulation of

source localization based on a signal signature can be written as

x∗ = arg max
x

p(rrec|z = x), (2.2)

which is analogous to the previous (2.1). This formulation requires using a statistical model.

A reasonable model using Gaussian methods is described in Section 3.2. However a simpler

method can be found by fitting a simple distribution to the L2 distance associated with an

accurate position match. That is, let r be the signature associated with a transmit location

x, then let xε be the signature associated with some position xε which is withine some small

distance ε of x (so ‖x− xε‖ < ε). Then one can model the distance in signature associated

with these two points d(r, rε) as a random variable Dε. If a distribution is fit or chosen for

Dε, one can express the probability in (2.1) as

p(rrec|z = xm) = p(Dε = d(rm, rrec)) (2.3)

noting that if z = x then ‖z − x‖ < ε, so the error distribution applies. To select a
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distribution for the error Dε, one can look at the signature distance within the reference

measurements d(ri, rj) with respect to the physical distance ‖xi − xj‖. A histogram for

this signature distance for reference measurements in close proximity is shown in Figure

2.5.
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Figure 2.5: Histogram of l2 distance between signatures for positions within 1.2 m, using
128MHz bandwidth

An exponential distribution (or any other distribution which fits the data in Figure

2.5) can be used as the distribution for Dε.

Posterior distribution

In some cases it can be useful to go from a likelihood to a posterior distribution. This

can be done in a fairly straightforward manner by using Bayes rule:

From this, a posterior distribution can be set up on grid of reference points using Bayes

rule, giving

p(z = xm|rrec) =
p(rrec|z = xm)p(z = xm)∑M
m=0 p(rrec|z = xm)p(z = xm)

(2.4)

If no prior emitter location information is available, assuming a uniform distribution gives

simply the probability distribution:

p(z = xm|rrec) =
p(rrec|z = xm)∑M
m=0 p(rrec|z = xm)

(2.5)
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2.3.1 Multiple receivers

When multiple detectors are used, these multiple measurements can be used as vector

components in a single signature, or the results of multiple fingerprinting estimations can be

combined. To combine vector measurements into a single signature, one can simply create

a new signature vector

r̃ =



rRX0

rRX1

...

rRXN−1


(2.6)

where rRXn is the signature from the nth receiver. The typical procedure would be used in

the offline training and online localization phases, except using this augmented signature

instead of the individual one. Alternatively, the signatures from each receiver can be handled

separately, and only combined when calculating a score in the localization phase. In this

case, the fingerprinting process is duplicated and handled individually for each receiver, but

during localization a combined score is calculated using each individual score. This is most

easily done if a maximum-likelihood approach is used, and signature information is assumed

to be independent for each receiver. In this case the joint score (likelihood) is simply the

product of the individual likelihoods

p(z = xm|{rrecRXn}N−1
n=0 ) =

N−1∏
n=0

p(z = xm|rrecRXn). (2.7)

If a likelihood approach is taken, this is often preferred to using an augmented signature

vector, as it will typically be less computationally expensive.

2.3.2 Fingerprinting and deep learning

Fingerprinting is inherently a data-driven approach, and is thus closely related to ma-

chine learning methods. The reference measurements can be viewed as a site-specific set

of training data, with the signatures rm as the system input and associated locations as

the output. This means that many of the typical machine-learning tools, including deep
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learning, can be applied. These methods can either be applied to the localization problem

as a whole, or it can be applied to specific parts of the problem (as in how autoencoders

are used for feature extraction by Hall et. al in [11]). This research is not focused on

deep learning approaches, so they will not be explored in detail here. It is worth noting

that the applicability of deep learning depends on the availibility of sufficientlly rich data,

and so these will be better suited to cases where larger sets of reference measurements are

available. Additionally, many of the principles discussed in this section are still relevant

to fingerprinting performance, regardless of whether ANNs or other deep learning methods

are applied.

2.4 Tracking a moving source

If the emitter is moving, sequential Bayesian approaches can be applied. In the case

of a discrete fingerprinting approach, this can be done by treating the moving emitter as a

hidden Markov model. In this model, the emitter is modelled to move randomly to nearby

positions at set time intervals. The emitter location constitutes the state of the Markov

model. The autocorrelation is estimated over these distinct time intervals, and corresponds

to the measured Markov model output.

2.4.1 Hidden Markov model

For a good resource on the basics of hidden Markov models, consult Rabiner [26], from

which this summary is adapted. Further discussions and derivations can be found in Moon

and Stirling [27].

A hidden Markov model consists of the following predetermined elements:

• a discrete set of M system states {li}Mi=1;

• A number T of discrete-time steps;

• Initial state probabilities {πi}Mi=1, with πi = p(q0 = li);

• State transition probabilites {aij}M,M
i=1,j=1, with aij = p(qt+1 = lj |qt = li);
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• A likelihood function for the observed system output, given a particular state bi(t) =

p(yi|qt = li);

Additionally, these properties will be produced by the operation of the model:

• A sequence of T states the system takes on q0, . . . , qT−1;

• A sequence of T observable outputs produced by the system y0, . . . , yT−1;

Using the predetermined elements, these properties are produce using the following

operation of a hidden Markov model:

1. Initial state: The Markov model begins at an initial state q0 = lm0 where m0 is chosen

randomly with probabilities given by p(q0 = li) = πi

2. Initial output: An output y0 is generated based on the state q0 such that p(yi|qt =

li) = bi(t).

3. State transition: A new state for t + 1 is randomly selected based on the previous

state t, with probabilities p(qt+1 = lj |qt = li) = aij

4. Next output: A new output for t+ 1 is generated satisfying p(yi|qt+1 = li) = bi(t+ 1)

based on the updated state qt+1

5. Repeat: Steps 3-4 are repeated until all states and outputs are generated for t =

0, . . . , T − 1

Note that this process describes the operation of a hidden Markov model, not how

estimation is performed on such a model. This is the underlying structure that the data is

assumed to follow, from which optimal estimation can be performed. In most cases, esti-

mation is performed under the assumption that the observable system outputs y0, . . . , yT−1

are known, while the system states q0, . . . , qT−1 are not known. In order to perform esti-

mation it is also necessary to have predetermined hidden Markov model elements on hand.

These can be estimated (this is discussed in Rabiner [26]), but model parameters can also

be chosen based on knowledge of the specific application.
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2.4.2 States — transmitter position

In this application the states qt are used to represent the location of the transmitter-of-

interest at a given time t. As there are only a finite set of M states, a set of representative

positions are selected throughout the region in which localization is to be performed. Note

that this limits locations where a transmitter can be tracked, but this is actually already

a limitation for fingerprinting-based localization systems, so this is not a large issue in this

case. The state sequence represents the position over time, thus state transitions represent

transmitter motion.

2.4.3 Transition probabilities — motion model

The motion model in this construction reflects how likely it is for an emitter in one

location to move to an emitter in another location. This model reflects the fact that an

emitter is unlikely to move great distances in a short period of time. A simple model can

be constructed in the following manner:

aij = p(qt+1 = lj |qt = li) =
exp(−d(li,lj)

2σd
)∑

j exp(−d(li,lj)
2σd

)
, (2.8)

with d(li, lj) as the physical distance between two emitter positions li and lj , and a parameter

σd which indicates scale. Note that this is simply a gaussian kernel fit to the distance, which

is then normalized to be a probability distribution over the discrete set of locations lj .

Performance can be improved if the distance d(li, lj) is adjusted to account for an

inability for an emitter to move through walls, or if the realism of the motion model is

otherwise improved. It is also possible to enhance the set of states to include motion

in different directions, but this comes at a computational price. Non-discrete movement

models are outside the capacity of a basic hidden Markov model. Such models may be more

effective, but are not investigated in this work.

2.4.4 Likelihood probabilities - fingerprinting posterior

The likelihood probabilities reflect the information provided by the received signal
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signature. These come from the likelihood of a particular position based on the signature,

as discussed in Section 2.3:

bi(t) = p(rrec(t)|z(t) = xi), (2.9)

Forward and backward probabilities

As an intermittent step in estimating states using a hidden Markov model, it is neces-

sary to compute values known as forward and backward probabilities. Forward probabilites

represent information from past states that can be used to predict future states and are

written as αi(t). Backware probabilites likewise represent information from later states that

can be used to predict past states and are written as βi(t). They are defined and calculated

iteratively as shown below.

Forward Probabilites:

1. Definition:

αi(t) = p(y0, . . . yt, qt = li), t = 0, . . . T − 1 (2.10)

2. Initialization:

αi(0) = πibi(y0), i = 1 . . .M (2.11)

3. Induction:

αj(t+ 1) =

[ M∑
i=1

αi(t)aij

]
bi(yt+1), j = 1 . . .M (2.12)

Backward Probabilites:

1. Definition:

βi(t) = p(yt+1, . . . yT |qt = li), t = 0, . . . T − 1 (2.13)

2. Initialization:

βi(T − 1) = 1, i = 1 . . .M (2.14)

3. Induction:

βi(t− 1) =

M∑
j=1

βj(t)aijbj(yt), i = 1 . . .M (2.15)
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2.4.5 Heatmap-over-time

Using the hidden Markov model a range of plausible locations and their probabilities

can be found, which is often more useful than knowing the single most likely path. In this

case one can calculate the posterior probability that the emitter was in location li at time

t using the formula

p(qt = li|y0, . . . yT−1) =
αi(t)βi(t)∑
i=1 αi(t)βi(t)

, (2.16)

where α and β are the forward and backward probabilities discussed in Section 2.4.4. Note

that this method does not indicate path probabilities, but rather individual state probabil-

ities, which may be less ideal for some applications. The algorithm to calculate the most

likely complete path of states is given by Rabiner [26], and resembles the Viterbi alogorithm

used in communications systems.



CHAPTER 3

Channel Vector Fingerprinting Methods

The methods discussed in this section here have been previously published by Ipson

and Moon [28], they are included here with substantially more detail and illustration.

3.1 Vector preprocessing

Before performing localization using a signal autocorrelation or channel impulse re-

sponse, it is necessary to perform some adjustments to make the resulting vectors suitable

for fingerprinting localization. This typically includes some form of normalization to remove

scaling effects, and may also include windowing. If the channel has complex values, it may

be necessary to convert the vector to a real valued form, depending on the fingerprinting

processing method. Finally, some methods may benefit from applying a transformation

that produces a vector of features, rather than using the original vectors.

3.1.1 Isolating signal and calculating autocorrelation

Upon receiving a signal (either for offline reference data or during localization), some

initial processing may need done to isolate the signal of interest and frequency shift the signal

to baseband, as discussed in Chapter 5. After these steps are performed, the autocorrelation

of the signal can be calculated as

ry(k) =
1

N − k

N−1∑
n=0

y(n)y∗(n− k). (3.1)

This autocorrelation function ry(k) will then be adjusted as described in the remainder of

this section. As the autocorrelation is conjugate symmetric, it is only necessary to use half

of the autocorrelation function with either positive or negative indices. It is practical to
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represent this as a finite vector, or

ry =

[
ry(0) ry(1) · · · ry(K)

]
(3.2)

for some integer K, chosen such that elements of ry(k) are negligible when k ≥ K.

3.1.2 Noise term removal

Another effect of taking the autocorrelation is that it concentrates receiver noise at

k = 0 in the autocorrelation. By simply truncating the vector at this index (removing the

zero-index element), a significant part of the effects of receiver noise can be removed. This

noise will still contribute to the variance of the autocorrelation estimate when using a finite

number of samples. However, the relevance of this effect diminishes as the number of samples

used to calculate the autocorrelation increases. With this addition, the autocorrelation

vector expression can be updated to

r+ =

[
ry(1) ry(2) · · · ry(K)

]
, (3.3)

which excludes ry(0).

3.1.3 Normalization and windowing

It is often necessary to normalize channel vectors to avoid vector features being ob-

scured by the scale or magnitude of the vector elements. While the relative scale between

elements within the autocorrelation vector contains important information, the shared scale

of elements of the vector as a whole is primarily a function of the received signal power.

While received signal power is often useful in localization methods, it can entirely obscure

the other channel vector features which are being compared for fingerprinting. Removing

this power allows fingerprinting to focus on the channel “shape,” which can be quite in-

formative for position. If signal power is also being utilized for localization (a good idea

wherever feasible) then the signal power can be incorporated in a different method, such as
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by using separate fingerprinting on the signal power and multiplying the final likelihoods

from power and channel information. For more information on considerations for using

Gaussian processes, see Aravecchia and Messelodi [29] and Ferris et al. [25]. Normalization

is done by dividing every element of the vector by a scaling value, usually the l2 norm of

this vector. This gives the normalized vector

rN =
1

‖r+‖
r+, (3.4)

Additionally, since the autocorrelation estimate has higher variance with higher index

values k, it is good practice to apply a window to this autocorrelation to diminish the

influence of these values. For a causal discrete-time sequence with N nonzero elements,

N − k samples will be available to compute the kth autocorrelation term, as reflected in

(3.1). This means that higher indices of k will be computed with less samples, increasing

variance. Since the ideal values (as would be computed from an infinite sample) in the

autocorrelation are typically small in magnitude, the estimated values can be dominated by

the estimation variance. Hence, applying a window function to diminish the contribution

of these values can avoid possible errors due to this variance. To address this, a triangle

window is applied to limit effects of noisy estimates of the autocorrelation tails, so

rW =

[
K
K rN (1) K−1

K rN (2) · · · K−k
K rN (k) · · · K−K+1

K rN (K)

]
. (3.5)

3.1.4 Treatment of complex-valued vectors

Autocorrelation vectors are, in general, complex valued. Many approaches can be

generalized in a way that supports complex values, such as by using the complex version

of the l2 norm. Alternatively, the imaginary part can be concatenated to form an extended

real vector, leading to increased vector length, but otherwise no algorithm change. Another

approach is to use the Fourier transform of the autocorrelation, which real valued from

the autocorrelation symmetry. Another a simple method to address this, one can simply

take the magnitude of each element. This last approach is used in this research, due to
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its simplicity, and as preliminary testing did not suggest any performance benefit from the

other methods. For a comparison on performance of some of these methods, see the results

in Section 4.2.9. With this the preprocessed autocorrelation vectors become

r =

[
K
K |rN (1)| K−1

K |rN (2)| · · · K−k
K |rN (k)| · · · K−K+1

K |rN (K)|
]
. (3.6)

This form of the autocorrelation vector will be used for both reference measurement vectors

rm and vectors for a signal-of-interest rrec.

3.1.5 Feature extraction

While many algorithms can be performed directly on the autocorrelation vector pro-

duced by the preprocessing steps discussed previously, it is often preferrable to calculate

statistics or features from these vectors and use these instead. The method of extracting

these features can be chosen to have more favorable properties for a given algorithm. Fea-

ture extraction can be seen as a mapping F from a raw data vector which is received through

measurement to a feature vector which may be better suited for further use, expressed as

F : r 7→ q. (3.7)

It is desirable to choose F such that the features q have particular properties. This may

include, but is not limited to, fitting a particular model, being more interpretable, not con-

taining irrelevant information, being of lower dimension, and being statistically independent.

While in general F may or may not be a linear mapping, restricting this to a linear operator

greatly simplifies finding a suitable value for it. In this research, the reference measurements

will be used to produce a suitable linear operator for F .

In the case of the Gaussian process model used in section 3.2, ideal features would

be approximately independent, follow a Gaussian model and eliminate information which

did not relate to position. However, determining ideal features is not an easy problem,

so features attainable through a principal-component-analysis-like method are used in this
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research.

An alternative method for feature extraction is posed by Nerguizian et al. [30]. This

method may produce better features, but it has not been explored in combination with

this research. As another option, features are extracted using an autoencoder by Hall et

al. [6]. In this work features were produced using an singular-vector-based method similar

to principal component analysis, due to it being straightforward and due to the approximate

independence it gives, as described in Section 3.1.7.

3.1.6 Singular vector features

Principal components analysis is a method to separate out important, uncorrelated

information from a data matrix. The first principal components are projected components

of the original data vectors which optimally retain variance from the original vectors. These

principal components are used in a variety of settings for producing features for machine

learning (see Géron [31]). In this work, a method similar to Principal component analysis

is used, where singular vectors from the reference measurements are used to select suitable

linear features.

To obtain the features, one first removes the componentwise sample mean from the set

of reference measurements, that is

r̃i = ri −
1

M

M−1∑
m=0

ri (3.8)

One can then form the resulting mean removed data matrix, and form its singular value

decomposition.

R =

[
r̃0 r̃1 · · · r̃M−1

]
= UΣV > (3.9)

Letting U =

[
u1 u2 · · · uL

]
, An individual feature at a location xm is computed ac-

cording to

ql(xm) = u>l r̃m, l = 1, 2, . . . , L∗, (3.10)

where L∗ is the number of used features, which can be chosen based on the singular values
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as described later. This notation is used to describe the lth feature, parameterized by a

location vector. This is done to facilitate describing these features as a sample from one of

L∗ random fields, as will be done in Section 3.2. Examples of features from autocorrelations

in this thesis are given in Figure 3.1.
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Figure 3.1: Example u vectors, which are the forms projected onto to get features. Thus
these resemble the “shapes” of the features selected from the autocorrelation vectors.

These features can be grouped into a feature vector for a given reference location as

qm =



q0(xm)

q1(xm)

...

qL∗(xm)


. (3.11)

Where it is needed to convert a full signature vector to a vector of features, the matrix F

can be used. One can construct F using the first L∗ columns of U and taking the transpose

F =



u>0

u>1
...

u>L∗


(3.12)
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Using this definition, one can convert the matrix of reference measurements R into a matrix

of reference features Q =

[
q0 q1 · · · qM−1

]
using

Q = FR. (3.13)

To see why this works, and to motivate selection of the variable L∗, let V =

[
v0 v1 · · · vL−1

]
,

and note that Σ =


σ0

...

. . . 0 · · ·

σL−1
...

. Using these, a data vector r̃i can be written

as

Rei = r̃i =
L−1∑
l=0

ul(σlv
>
l ei) (3.14)

with the elementary vector ei (which has elements equal to zero except for the ith element

equal to one). Using ei in this manner extracts the ith column from the left multiplied

matrix.

In this expression, the v>l ei portion can be thought of how much of component l is

contained in data vector i. Since ul, vl, and ei are all unit vectors, this term will be between

zero and one, with σ carrying the general magnitude information for that component. By

construction of the singular value decomposition, the σ values are ordered from largest to

smallest, making the l = 0 term to be the largest in magnitude overall, then l = 1 and so

forth. The separated portion (σlv
>
l ei) for the lowest values of l can be considered the most

significant components of the data vector ri.

The ul vector describes the “shape” of the particular component in the original data

matrix, and when taken with the other components, allows reconstruction of the original

data vectors. Using an incomplete selection of l terms still leads to an approximate recon-

struction of the data matrix, and if later σl terms are small, the approximation can be quite

accurate. In this research it is chosen to use the first L∗ terms, such that σl is small for

l ≥ L∗ (relative to the earlier σl terms), effectively reducing the size of the data vectors

without real loss of information. where L∗ is selected such that for the singular values σn,
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n=1 σn < 0.99 Tr(Σ). These ql(xm) are considered to be samples of a random field, ql(x).

The particular choice of F given in (3.12) is a simple means to extract the selected

features. The ul vectors are orthonormal, so u>i uj = δij , so applying u>j to the summation

in (3.14) will give the ul term for l = j, while other terms will become zero. The rows of F

thus extract the different feature components of the data matrix on different rows.

3.1.7 Singular vector component feature independence

Another advantage of this choice of features is that they are made to be uncorrelated,

giving a level of approximate independence. To see this, consider the estimated covariance

matrix from the original data.

Σ̂r̃ =

M−1∑
m=0

r̃mr̃
>
m = RR> (3.15)

Now consider the corresponding covariance of the feature data matrix instead, and the

(3.12),

Σ̂q =

M−1∑
m=0

qmq
>
m = QQ> = (FR)(FR)> (3.16)

= FRR>F> (3.17)

Then using (3.9),

FRR>F> = FUΣV >V Σ>U>F> (3.18)
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and using the fact that u and v vectors are orthonormal sets, and that F is likewise a

submatrix of U ,

FUΣV >V Σ>U>F> = FUΣIΣ>U>F> (3.19)

=

[
Il 0

]
ΣΣ>

IL∗
0

 (3.20)

= Σ2
0:L∗−1 (3.21)

Where Σ2
0:L∗−1 =


σ2

0

. . .

σ2
k−1

. The sample covariance matrix for these components

is diagonal, indicating uncorrelated components. If the components were in fact Gaus-

sian in distribution, this would imply that the components were (at least approximately)

independent, though this is of course not true in the general case.

3.2 Gaussian processes approach

A powerful approach for fingerprinting localization is to model the problem using Gaus-

sian processes. In Section 2.3, a likelihood was obtained by the fitting a model to the L2

distance to particular references measurements. While useful, this likelihood reduces the

signature information to what is contained in these error values. It is preferable to use

a model which more comprehensively uses all available signature infomation. This can be

achieved by using a Gaussian random process model. Here, the signature is decomposed into

“features” (as discussed previously in section 3.1.5) which are then modelled individually

as independent Gaussian random processes (or equivalently as a form of vector Gaussian

random process). The reference measurements taken during the offline training phase can

be used to estimate feature components and model parameters. These parameters and mea-

surements can then be used to produce a final distribution which will produce a likelihood

for any location from a fingerprinting signature.
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The Gaussian processes model, while more complicated, offers an impressive number

of benefits, which are listed below.

1. The model automatically compensates for covariance between signature measurements

taken in close proximity of each other.

2. The model naturally works with any distribution of reference measurements in three-

dimensional space, not requiring an evenly sampled grid.

3. When coupled with an appropriate feature extraction method, GP automatically

weights components of the fingerprint based on their spatial behavior, emphasizing

the most useful information.

4. The model directly provides a likelihood for particular measurement positions, even

when those positions are not found in the reference measurements

5. After an initial processing step, GP can be quite computationally efficient for local-

ization.

3.2.1 Gaussian Processes Model

In this fingerprinting method, autocorrelation or channel features are modeled over the

localization region as set of independent Gaussian random processes.A Gaussian process is

a random processes for which every finite set of samples of the process are jointly Gaussian

distributed (as explained in Rasmussen and Williams [32]).

Let the features ql(x) be samples from a Gaussian random process Ql. From this, each

ql(x) will be a sample from a Gaussian random variable Ql(x). The set of reference features

will then be samples from the random variables of the form Ql(xm), which will be jointly

Gaussian or



37



Ql(x0)

Ql(x1)

...

Ql(xL−1)


∼ N (µl,Σl), (3.22)

for some mean µ and covariance Σl for each feature l. Some further constraints are then

applied to make the model fitting process more tractable.

The Gaussian random processes are restricted to have the following attributes.

1. Features share an underlying mean across the region, or E[Ql(x)] = E[Ql(y)] ∀ x,y

in region of interest.

2. Features are independent, that is Qi(x)⊥⊥Qj(y) for all i 6= j and any x and y.

Though some degree of interdependent features can be handled, this assumption makes

estimation and processing much simpler. Appropriate feature selection/extraction can

help this assumption to at least approximately hold.

3. Covariance between a feature at two different positions depends only on a simple

function of the distance between them, that is Cov(Ql(x), Ql(y)) = f(‖x− y‖). More

specifically, the Gaussian kernel function is used, which is γl exp (−‖x−y‖
2

2d2l
).

4. Samples of features have some additional independent measurement noise with vari-

ance σ2
l .

With these in place the distribution from (3.22) becomes



Ql(x0)

Ql(x1)

...

Ql(xL−1)


∼ N (µl1, σ

2
l I + γlKl), (3.23)

where [Kl]i,j = exp (−‖xi−xj‖
2d2l

).
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The parameters σ2
l , γl, and dl characterize the Gaussian processes behavior on feature

l. These parameters can be estimated from the reference data.

3.2.2 Gaussian process model parameter estimation

In order to use the Gaussian process model for localization, it is necessary to find

suitable model parameters using the available reference data. As the features are assumed

to be independent, the model parameters are individual to each feature, and will each be

estimated independently. That is, for each feature l, the parameters µl, σ
2
l , γl, and dl will

be found by solving an optimization based on the measurements of that feature extracted

from the original reference measurements.

For brevity, the collection of features obtained from the full set of reference measure-

ments is denoted as Q, so Q = {ql(xm) | l = 0 . . . L∗ − 1, m = 0 . . .M − 1}.

3.2.3 Maximum likelihood parameter estimation

As explained by Ferris et al. in [25], Gaussian process model parameters can be esti-

mated using a maximum likelihood approach.

In this approach the parameters are found as the solution to the optimization problem

max
µl.σ

2
l ,γl,dl

((2π)−
d
2 |Σl

−1
|) exp [−1

2
(q − µl1)>Σ−1

l (q − µl1)], (3.24)

where

• µl is the mean of the feature over the relevant space

• σ2
l is the noise variance associated with an individual feature measurement

• γl is the variance associated which is shared locally over physical distance

• dl is a scale parameter describing the distance over which distance related covariance

varies.

• ql =

[
ql(x0) · · · ql(xm−1)

]>
is a vector containing measured features
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• Σl = σ2
l I + γlKl is the covariance matrix, which also contains distance information.

It is likewise recommended by Ferris et al. that a conjugate gradient descent method be

used to solve this optimization problem. In this research a simple gradient descent solver

was implemented for this optimization problem to investigate the feasibilty of solving this

problem. While this method seems to yield accurate results, it is fairly time consuming to

run and did not ultimately scale well enough to use for much of this work. The high compu-

tational cost comes primarily from the difficulty of performing the large matrix operations

involving the inverse of the covariance matrix, which are necessary to calculate gradients

for the descent method. The difficulties in solving this problem efficiently are the subject

or other research, such as by Ambikasaran et al. [33] and Das et al. [34].

Still, where computational resources allow, solving the maximum-likelihood problem is

likely to produce the best model parameters, and as this step is only needed in the offline

training phase, such an approach may still be appropriate in many systems. Due to these

difficulties, and the need to solve this problem a large number of times for testing purposes,

an alternative least-squares approach was developed.

3.2.4 Modified least-squares parameter estimation

As an alternative to the maximum-likelihood approach, the following constrained least-

squares approach was developed for use in this research, due to its significantly lower com-

putational complexity. This method chooses parameters which minimize the difference

between the model-produced covariance matrix, and a covariance estimate obtained from

the data.

In this approach, instead of maximizing the likelihood function directly, the parameters

are optimized against a less constrained maximum-likelihood estimate.

First, an approximation for the mean of a particular layer is used as

µ̂l =
1

M

M−1∑
m=0

ql(xm−1) (3.25)
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This is equal to the maximum-likelihood estimate for a mean when the covariance matrix is a

multiple of an identity matrix (or the variables are indepentent and identically distributed).

The covariance is not an identity for this model, but in general will not lead to a significantly

different mean estimate than the more correct estimate.

The proper maximum-likelihood estimate for the mean is given by

µ̂l =
1>Σ−1

l q

1>Σ−1
l 1

=

∑M−1
m=0 [Σ−1

l q]m∑M−1
i=0

∑M−1
j=0 [Σ−1

l ]ij
(3.26)

However, this requires the use of the covariance matrix, which has not yet been estimated.

This can still be used in an iterative method, by alternating estimating the mean using

a covariance estimate and the covariance using this estimated mean, but this was not

performed in this research.

Using ql =

[
ql(x0) · · · ql(xm−1)

]>
as before, the maximum likelihood for estimation

of the covariance of a general Gaussian random vector set is simply the rank one matrix

given by

Σ̂ML = (ql − µ̂l1)(ql − µ̂l1)>. (3.27)

The objective function then fits the parameters against this in a least squares sense

min
σ2
l ,γl,dl

‖Σ̂ML − (Kl + σ2
l I)‖2

subject to σ2
l > 0

γl > 0

dl > 0.

(3.28)
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Using sML = vec( ˆΣML), δ = vec(I), and κ(dl) = vec(Kl), this can be expressed as the

vectorized problem

min
σ2
l ,γl,dl

‖sML −
[
δ κ(dl)

]σ2
l

γl

‖2
subject to σ2

l > 0

γl > 0

dl > 0.

(3.29)

If dl is known and the positivity constraints on σ2
l and γl are ignored, then the problem

becomes linear in σ2
l and γl and can be solved directly by

σ2
l

γl

 =

M2 δ>κ

δ>κ κ>κ


−1 δ>sML

κ>sML

 . (3.30)

Here, if a negative value is given for σ2
l or γl, then that variable can be set to zero, and the

other one can be found using one of

γl =
κ>sML

κ>κ
or σ2

l =
δ>sML

M2
. (3.31)

Since dl is not known, one can select several feasible values for dl and identify the corre-

sponding optimal σ2
l , γl, and error values associated with each value. While this method is

not likely to produce model parameters which are as well fit to the data as the maximum-

likelihood parameter estimation method, this method still seemed to produce reasonably

suitable model parameters, which performed adequately for localization.

Sensible limits for the range of this variable can be drawn from prior knowledge. The

variable dl sets a scale at one location’s measurement is similar to another location’s mea-

surement in the environment. To set bounds for this, it seems reasonable that if dl was so

small that only 1% of the kernel term remained at the distance between measurements, it

is not useful for localization because it would be very small unless a transmission occured
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right where a measurement was taken. Likewise, if dl was so large that 99% of the kernel

term remained at the distance between measurements, then the feature likely varied so little

that it would not be useful in distinguishing between locations in the environment. This

reasoning gives the dl bounds

dl,bound =

√
dref

−2 ln(pcritical)
(3.32)

For example, if dref = 1m, and pcritical was 0.01 and 0.99 for the lower and upper bound

respectively, the corresponding dl,bound values would be 0.3295m and 7.0533m.

Potential values for dl in such a range can then be evaluated according the the objective

function in (3.29), giving a plot, such as that shown in Figure 3.2. As illustrated there, it
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Figure 3.2: The objective function from (3.29) evaluated with different values for dl (using
the computed optimal values for other model parameters)

is also possible to interpolate to find a better minimum point without further evaluations.

Even as few as 5 to 15 evaluations gave fairly effective results. Specifically evaluation was

done in this work using 6 possible dl values and pcritical values of 0.001 and 0.999. Rather

than using linear spacing for these points, it is better to use logarithmic or other spacing, as

the objective function often has more variation at the lower end. This improves optimality

of the dl selection with fewer evaluated points.

It is also worth noting that if γl is zero, then this suggests that a feature does not
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Figure 3.3: Selected dl values for all features when different numbers of dl values are tested.
Larger values produce values closer to the optimum, but parameters change relatively little
past using 18 points.

have shared information between nearby measurements, and is not likely to be useful for

localization. One can manually drop this feature from final likelihood equations, though

fortunately the resulting zeros in the relevant covariance matrices will lead that feature to

have no impact on the final likelihood estimate (though it will still waste computational

resources).

3.2.5 Final adjustments

With either method, the optimum result can give parameters which are not ideal for

estimation. Particularly an exceptionally small value of σ2
l can cause computational prob-

lems, and also can give excessive confidence in measurements for that feature. To avoid

these issues, σ2
l is increased to 0.1γl if it is below that value, that is

σl,adjusted =


σl, σl ≥ 0.1γl

0.1γl, otherwise

. (3.33)

This avoids putting excessive confidence in individual measurements, which may also help

to compensate for slight environmental changes after reference measurements are collected

or other factors limiting the reliability of individual measurements.
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3.2.6 Localization using the Gaussian random process model

The ultimate goal of the model is to obtain an expression for the likelihood of a trans-

mitter being in a given location, based on its signature and the available reference measure-

ments.

After features are obtained from a received signal of interest (by computing autocor-

relation, performing preprocessing steps and performing feature extraction), the likelihood

associated with that signal originating form an arbitrary location is desired. That is, for

some vector of features from a received signal q, what is the likelihood that q was produced

from a transmitter located at zk, and using reference information Q. For each individual

feature, this can be written as a pdf on Ql(zk) conditioned on the available reference infor-

mation Q, given as fQl(zk)|Q(ql). Leveraging the fact that the features are independent, one

can find the overall probability using all of the features as the product of the probabilities

of each individual feature, as in

fQ(zk)|Q(q) =

L∗∏
l=1

fQl(zk)|Q(ql). (3.34)

To obtain the distribution on individual features at different locations, one can use the

fact that these features are modelled as Gaussian. One can use the property that conditional

Gaussian random variables are also Gaussian with mean and standard deviation given by

µX|Y=y = µX + ΣXY Σ−1
Y Y (y − µY ) (3.35)

ΣX|Y=y = ΣXX − ΣXY Σ−1
Y Y ΣY X . (3.36)

The model described in Gaussian model given in (3.23) is used with these equations

to find the conditional mean and covariance, by conditioning on the available reference

measurements. From this model the conditional features are Gaussian distributed for any

particular candidate location zk as Ql(z)|Q ∼ N (µQl(zk)|Q,ΣQl(zk)|Q), with
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µl(z) = µl + k(z)>Σ−1
l (ql − µl1) (3.37)

σ2
l (z) = σ2

l − k(z)>Σ−1
l k(z) (3.38)

where

k(z) =


exp (−‖z−x0‖

2d2l
)

...

exp (−‖z−xM−1‖
2d2l

)

 (3.39)

and Σl = σ2
l I + γlKl as determined by the estimated model parameters on the reference

measurements.

This conditional mean and variance can be calculated for an array of positions zk

in the region of interest for each layer l. The mean and variance for one such feature is

depicted in Figure 3.4, and summarizes the posterior distribution on this feature for all

candidate locations in the region of interest. Note that variance increases in regions with

fewer measurements, as there is less information constraining these points. This can also

be viewed as an array of Gaussian random variables, with a mean and variance for each

point. When localization is performed, a likelihood can be calculated for each of these

random variables. Depictions of additional means and features are provided and discussed

in Section 4.1.2.
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Figure 3.4: (Left) The mean for the Gaussian process fit to a single feature, and (Right)
the variance for the same feature.



46

With the mean and variance calculated, the distribution for a particular feature at an

arbitrary candidate point is known. A final likelihood can be calculated for each candidate

position zk by using the Gaussian pdf:

fQ(zk)|Q(q) =
L∗∏
l=1

fQl(zk)|Q(ql) =

L∗∏
l=1

(
√

2πσ2
l (z))−1 exp [− 1

2σ2
l (z)
‖ql − µl(z)‖2], (3.40)

where µl(z) and σ2
l (z) are the conditional mean and variance given in (3.37) and (3.38).

In practice it is best to instead calculate the log of the terms of these equations and take

their sum, rather than product, and finally take the exponential of the final result to avoid

issues with limitations of numerical floating point operations.

Using (3.40), a likelihood for a transmitted signal-of-interest can be calculated for each

candidate location zk. As discussed in Section 2.3, the position with the highest likelihood

becomes the estimated transmitter position.



CHAPTER 4

Considerations and Performance of Autocorrelation-Based Fingerprinting

The results in this section are essentially the same as those previously published by

Ipson and Moon [28], though some minor code adjustments and slightly different parameters

have produced slightly different results.

4.1 Relationship between autocorrelation and position changes

While the full relationship of position to autocorrelation is not tractable, analysis of

simple case with one reflector can provide useful insights into this relationship.

Received signal autocorrelation functions stem from the underlying structure of path

delays and amplitudes produced by the propagation environment. In general, slight changes

in emitter position will give slight changes in the lengths of these paths, leading to slight

changes in the delays and amplitudes leading to a smooth change in the autocorrelation

function. If a small motion results in a path being obstructed, that can lead to more

abrupt autocorrelation changes, which does cause a negative but tolerable effect on signature

smoothness. The scale of these changes is influenced by the emitter bandwidth, which is

discussed some in Section 4.1.3.

4.1.1 Spatial behavior of channel in single mirror environment

As previously noted, it is not practical to fully model how the channel varies with

small changes in position in a complex environment, one can gain important intuition by

investigating a simplified situation. Consider the scenario of a single transmitter and a

single receiver with one infinite reflective wall. In a real reflector, reflectivity changes based

on surface angle, however this effect is ignored in the following results to maintain simplicity.

In the discussion here, the receiver position is fixed and the transmitter position effect is

varied, though the analysis is identical if these are reversed.
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The most important factor defining the channel properties in this environment is the

difference between the direct path-length and the reflected path-length. The path-length

difference corresponds to a time delay and phase difference which may be identifiable at the

receiver. Path-length also plays a role in the power of the received signal, though this is

less sensitive to slight changes than the path-length difference. The direct path length and

reflected path length are given by

ddirect =
√
x2 + (y1 − y2)2 (4.1)

dreflected =
√
x2 + (y1 + y2)2. (4.2)

Using this relationship, one can view the difference in path length with respect to the

relative position of the transmitter/receiver. This is shown in Figure 4.1 (top left).

Observe from Figure 4.1 (Top left) that the path-length-difference ranges from zero

to twice the distance between the receiver and the wall for a single reflection, functionally

limiting the possible relative time-delay. Paths with multiple reflections could of course

still be larger, but will also be weaker. It is also apparent that the path-length-distance is

constant along lines extending from the transmitter. This is also visible in Figure 4.1 (Top

right), where the relative phase is depicted for the wavelength λ = 1m (or fc = 300MHz).

Note that the phase is constant alongs these lines, and changes at different rates in the

tangential direction. It can be shown from (4.1) and (4.2) that the width of these bands

ranges from approximately from xλ
2y along the wall to

λ
√
y22−y21
2y1

far from the wall, and λ
2

when y2 is smaller than y1 and x is small.

In Figure 4.1 (Bottom left), the power of sinusoid (again with λ = 1m or f = 300MHz)

is depicted with a constant reflection coefficient of R = 0.8. This shows how the phase

difference in Figure 4.1 (Top right) will apply when the time-difference of these paths is

small relative to the inverse of the signal bandwidth. Overall change may be slower since

net phase effect, shown in Figure 4.1, doesn’t change as quickly as the relative phase of the

two paths.
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Figure 4.1: (Top left) Path-length difference for receiver at different transmitter positions,
(Top right) phase-difference at different transmitter positions for wavelength of λ = 1m,
(Bottom left) approximate amplitude of a sinusoid with wavelength of λ = 1m at different
transmitter positions. (Bottom right) phase change due at receiver due to reflected path

The phase and time-difference changes are ultimately what determine the ultimate

effect of the channel which is observable in the autocorrelation. For a particular reflector,

like that depicted here, that does not change at all along the lines radiating from the source

in Figure 4.1. In this direction, the channel does not change as much due to that particular

component.

The combination of multiple reflectors, reflections, and occlusion may lead to much

more complicated phenomena, however it seems likely that channel behavior will still show

elements of this behavior. When a path becomes obstructed by an obstacle, it may cause a

more substantial change which is more abrupt. Still, this provides at least a starting idea of
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the scale over which the channel is likely to vary significantly. Encouragingly, this suggests

that even with smaller wavelengths, there is likely to be some stability over physical space in

some regions. Unfortunately this still suggests that in some regions will have variation over

a distance scale of half a wavelength, which would require a map test point every quarter

wavelength (to reach nyquist spacially), a daunting task for even a 1m wavelength signal!

4.1.2 Spatial behavior of autocorrelation features from simulation, and Gaus-

sian process model

The Gaussian process method described in Chapter 3 produces features associated with

each reference measurement location. These are depicted graphically in Figures 4.2 — 4.5,

along with the Gaussian process mean produced for that feature. The Gaussian process

mean offers some insight into regional trends produced by the more individually varied

features.
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Figure 4.2: (Left) First feature derived from reference measurements over region at a lower
bandwidth of 32 MHz. (Right) the Gaussian process model means derived from these
features.

4.1.3 Relationship between autocorrelation and bandwidth

The identifiable time-of-arrival information is closely related to the bandwidth of a

signal. This can be mathematically understood simply by the established Fourier transform

property:

F−1{H(f)} = h(t) =⇒ F−1{H(f/w)} = h(w · t), (4.3)
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Figure 4.3: (Left) First feature derived from reference measurements over region at a band-
width of 64 MHz. (Right) the Gaussian process model means derived from these features.
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Figure 4.4: (Left) Second feature derived from reference measurements over region at a
bandwidth of 64 MHz. (Right) the Gaussian process model means derived from these
features. Note that in this case the chosen Gaussian process model does not have significant
spatial correlation; this feature will not significantly contribute to localization.

where h(t) is some signal as a function of time t (or equivalently a channel impulse response),

F is the continuous-time Fourier transform, and w is some scaling constant. From this rela-

tionship, it can be seen that if a signal is “widened” in the frequency domain by increasing w

(thus increasing the signal bandwidth), its corresponding form in the time-domain becomes

more narrow. Very abrupt or high-speed changes make identifying the corresponding time

of this change easier, which will occur for high values of w, corresponding to a widened

version of H(F ).

To see how this effect manifests in autocorrelation functions, consider a basebanded

signal which is bandlimited to a bandwidth of B. This is equivalent to passing the signal

through an ideal lowpass filter, which is equivalent to convolution with sinc( tB ). Note that

this function broadens as B decreases. The effect of bandlimiting a signal correspondingly

affects the autocorrelation, which is tied to the transfer function. If the signal is bandlim-
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Figure 4.5: (Left) Third feature derived from reference measurements over region at a
bandwidth of 64 MHz. (Right) the Gaussian process model means derived from these
features.

ited, the apparent transfer function will likewise be limited. If one considers in the frequency

domain a received signal Y (f), transfer function H(f), and original signal X(f), then it

is given that Y (f) = H(f)X(f). As such, X(f) = 0 implies Y (f) = 0, and nothing can

be inferred about H(f) from Y (f). Any Identified information about H(f) will thus be

bandlimited as well. The autocorrelation path information will likewise obscured as band-

width decreases, as it is derived from the transfer function information. This is illustrated

in Figure 4.6
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Figure 4.6: Channel impulse response at 256 MHz, 128 MHz, and 64 MHz bandwidth
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Finally, a Cramer-Rao lower bound on the time-delay estimation variance is given by

Wang et al. [35] as

σ2
τ =

1

SNR · β2
0

(4.4)

where β2
0 is the mean square bandwidth, given by

β2
0 =

(2π)2
∫ +∞
−∞ f2|s(f)|2df∫ +∞
−∞ |s(f)|2df

(4.5)

Mean square bandwidth is a form of bandwidth measure, and it can be seen here that

time-delay estimation variance increases as bandwidth decreases, further establishing the

importance of bandwidth in estimating time-relevant features.

4.1.4 Coherence bandwidth

As discussed, the bandwidth plays a significant role in the degree to which timing

resolution is possible. This timing resolution in turn translates to resolution of path-lengths

in the propagation environment. However, not all environments are created equally, and

differences between direct-path lengths and indirect-path lengths are dependent on physical

distances between reflective features in the environment. While full analysis of the effects

of different environments is beyond the scope of this research, it is worth one metric which

can be used to compare different environments.

Coherence bandwidth is a measure describing the scale over which the frequency re-

sponse in an environment can be considered “flat”. As given in Pahlavan and Levesque [36],

it is calculated from the RMS delay spread, which is given for a particular channel by

τrms =

√
τ̄2 − (τ̄1)2, (4.6)

where

τ̄n =

∑
i τ

n
i |αi|2∑
i |αi|2

, (4.7)
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with complex path gains αi and path delays τi relative to the shortest delay (so τ0 = 0) for

a particular channel.

The coherence bandwidth can then be calculated for a particular path as

βcoh =
1

τrms
. (4.8)

Pahlavan and Levesque also remark that some sources use the mean delay spread τ̄1 instead

of the RMS delay spread for calculating coherence bandwidth, but the RMS version is used

here.

The coherence bandwidth for a particular receiver location is depicted in Figure 4.7.
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Figure 4.7: Root-mean-square coherence bandwidth associated with the transfer function
between the indicated point and a grid of points throughout the environment. Bandwidth
is given in MHz.
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If the average value is taken for all points depicted in Figure 4.7, a value of 17.058 MHz

is obtained. This does not take into account all possible receiver locations for the given

environment, but is likely still useful for describing the test environment used in this thesis.

4.2 Evaluation of performance

To evaluate the performance of this localization approach, tests were performed using

channels generated using the ray-tracing methods discussed in Chapter 6. A variety of

comparisons and tests at different bandwidths were performed, the methods used and final

results are presented in this section.

4.2.1 Simulation setup

The ray-tracing simulation was run on a simplified model of a lab environment, with no

furniture or other smaller features modelled. Positions were selected for simulated receivers

along with a grid of transmitter points across the area, spaced every half meter. A subgrid

of transmitters with one-meter spacing was assigned for use as reference measurements for

training offline localization, with a subset of the remaining points used as test points for

evaluating localization performance. While the Gaussian processes approach can use an

arbitrary candidate grid which is independent from the actual positions where reference

measurements are taken, the candidate position grid here is chosen to be the same positions

as the reference measurements. This is done so that it can use the same candidate grid

as the L2 one-nearest-neighbor approach it is being compared to, allowing for a more fair

comparison. The simulation environment and receiver and transmitter positions are shown

in Figure 4.8, where the blue points represent reference positions {x0, . . . ,xM−1}, the red

points are used as test locations {z0, . . . ,zT−1}, and the black circles indicate receiver

locations.

Reflection and transmission coefficients were used base on Table 5.3 using metallicized

glass, and are depicted in Figure 4.9.
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Figure 4.8: Map of simulation test environment with receiver and transmitter locations
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Figure 4.9: Reflection and transmission coefficients used for wall interactions in simulation,
corresponding to a slab of metallicized glass using values from Table 5.3

4.2.2 Evaluation method

After generating the channel impulse responses for each receiver-transmitter pair, the

channels were used to test a variety of scenarios and variations. The autocorrelation was

calculated using these channel impulse responses and fingerprinting was performed using the

assigned reference measurements and testing with each test point. Since the autocorrelation

used is calculated directly from the channel impulse response in this manner, it is equivalent

to using a band-limited white noise signal for both the reference measurements and test

measurements. Tests were performed with each receiver independently, with results for

each single-receiver system depicted as a separate data point in Figures 4.10 — 4.16. A 1.5
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meter margin was used to establish “correctness” of a location estimate, corresponding with

a small neighborhood of reference measurements.

Unless otherwise specified, the autocorrelation vectors were preprocessed as described

in Section 3.1. Each test point was applied to the localization system, which returns a

likelihood associated with every candidate point. Afterwards, a final localization estimate

is chosen as the position with the highest likelihood of all candidate points, or

ẑt = xm∗ , (4.9)

where

m∗ = arg min
m

‖rzt − rm‖ (4.10)

for the L2 one-nearest neighbor method, and

m∗ = arg max
m

fq(xm)|Q(qzt) (4.11)

for the Gaussian random process method. Thus a single location estimate is produced for

each test point.

A final performance score is then calculated by the proportion of test points localized

correctly within the chosen margin of 1.5 meters. That is,

P =
1

T

T−1∑
t=0

Id<1.5m(‖x̂t − xt‖), (4.12)

where

Id<1.5m(d) =


1, d ≤ 1.5 m

0, d > 1.5 m

(4.13)

This score increases as more location estimates are close to the corresponding test points.

This value ranges from zero, when no points are localized correctly, to a value of one where

all location estimates are within 1.5 meters of the corresponding test points. In all of tests

discussed in this section, the data was produced with a sample rate which is double the
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specified bandwidth, giving a 50% bandwidth utilization. Except for the results in 4.10, the

Gaussian process method was used to evaluate fingerprinting performance.

Figures 4.10 — 4.16 illustrate fingerprinting performance in the environment described,

under various scenarios and conditions. In these figures, the dashed black line indicates a

baseline performance which would be obtained if grid points were selected at random from

a uniform distribution (as even a random guess would lead to some proportion of accurate

localizations). The x’s in these plots represent performance for individual receiver locations,

with the median performance of all receiver locations denoted by a line.

4.2.3 Gaussian process method compared to L2 one-nearest-neighbor approach

In Figure 4.10 The Gaussian process localization performance (in blue) is compared to

that of a simple L2 one-nearest-neighbor approach, where the transmitter location estimate

is simply the position corresponding to the reference autocorrelation which is closest in L2

distance to the test autocorrelation.

At low bandwidths, only the L2 one-nearest-neighbor method seems to have any benefit

above baseline, and neither method improves significantly with bandwidth until a certain

threshold is reached. This suggests that autocorrelation features only become informative

once a minimum bandwidth is reached. As bandwidth increases and shape features become

more intricate, the benefits of the Gaussian random process method begin to manifest.

Until that point, a naive nearest neighbor approach is actually preferable, though it could

be argued that the gains in this area are still too low to warrant usage. Ultimately the

proportion of localizations that is accurate is relatively small, even at higher bandwidths.

This suggests that the position can not be uniquely localized from one receiver in most

situations. Since this is unacceptable to the requirements of most localization systems, it

is recommended that multiple receivers be used, or that multiple measurements over time

are leveraged (in the case of a moving transmitter).

4.2.4 Autocorrelation compared to channel impulse response

When the autocorrelation is used in place the full channel impulse response, the phase
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Figure 4.10: Performance comparison of Gaussian process and nearest-L2 method

information about the original channel in the frequency domain is lost. This loss of infor-

mation leads to a loss in performance, which can be observed in Figure 4.11, where the

performance of fingerprinting using autocorrelation is compared to the performance using

the channel impulse response. Here, the channel impulse response element magnitudes are

used, to keep them real-valued. The reduction in performance from channel impulse re-

sponse to autocorrelation is expected, and it is encouraging that a significant amount of

performance is retained while using autocorrelation. If a system can estimate the channel

impulse response, that definitely seems preferrable, but autocorrelation may be a viable

alternative if channel estimation is not feasible.

4.2.5 Performance with different quantities of reference measurements

An important consideration when performing any fingerprinting method is the question

of how much data is needed. In a grid situation, this often translates to the decision on the
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Figure 4.11: Performance comparison using autocorrelation versus the channel impulse
response

spacing between reference measurements in this grid.

Figure 4.12 depicts the localization performance of the test system with the grid of

reference measurements containing more points at different spacings (0.5 m, 2 m) along with

the original 1 meter spacing results. In these other cases the candidate grid points were

kept at the original 1 meter spacing of the original grid. Unsurprisingly, the performance

of the system improves with more spatially-dense reference measurement sampling.

There is also something of an analog to the nyquist criterion, in that any changes

which happen too quickly over distance will not only be lost with insufficient sampling,

but will actually alias and obscure detectable, slower-changing phenomenon. As discussed

in Section 4.1, there is likely to be some variation on the order of the signal wavelength

or faster, particularly when moving axially around the receiver. This is not necessarily a

strict a rule, as performance does not change radically as the wavelength changes even with
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Figure 4.12: Localization performance with different reference measurement densities

a constant grid size. Unfortunately a more complete exploration into the question of how

reference measuring sampling effects performance is beyond the scope of this research.

4.2.6 Performance with noise and limited measurements

The figures in other sections here are evaluated using autocorrelations which would be

obtained if an infinitely long sample was used to calculate the autocorrelation. In practice,

only limited amounts of data are available to calculate an autocorrelation for fingerprinting,

and this autocorrelation is also influenced by receiver noise. This limitation is especially

significant when the target signal is intermittent, or changing. In Figure 4.13, performance

was evaluated as before, except that test autocorrelations are have errors as if they were

calculated from a finite set of samples with noise. More specifically, the plot is simulating

performance when 200,000 or two million samples are used, and with a median signal-

to-noise ratio of 20dB and 40dB (SNR varies based on proximity to receiver, this SNR
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Figure 4.13: Localization performance with several combinations of data length and signal-
to-noise ratio

is calculated as the median of this set of values). For details on how this is done, see

Appendix A.2. As can be seen, performance improves as the SNR increases, and as the

number of samples available decreases. These can be seen to significantly effect performance,

so autocorrelation fingerprinting may not be appropriate if insufficient samples are available.

4.2.7 Performance with nonwhite localization signal

Other tests assume that the transmitted signals are spectrally white. While this can be

controlled for the reference measurements, in an actual localization scenario, the signal is

unlikely to be truly white. Many signals have a pulse shaping filter, which in turn influences

the shape of the autocorrelation. In Figure 4.14 the results are shown for tests in which the

test signal has been modified by a pulse shape like that which could result from a typical

transmitted signal. These signals are chosen as a simple gaussian pulse shape and a square-

root-raised cosine with 25% excess bandwidth. In these tests the reference signal is still
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Figure 4.14: Localization performance with initial signal having a simple, but not ideal,
autocorrelation pulse shape. Reference measurements remain based upon ideal source

assumed to have originated from a white noise reference, causing a discrepancy between

the training measurements and test values. Even though performance degrades under these

conditions, the method still provides some localization capability. Note that there is also

a functional reduction in bandwidth caused by the change in pulse width, so that may be

a contributor to the overall reduction in performance as well. It seems probable that if

a signal was far enough from being spectrally white that it might not be localizable from

autocorrelation fingerprinting. Signals which have time-varying autocorrelation functions

could also cause difficulties for these methods.

4.2.8 Role of center frequency

The center frequency of the transmitted signal plays a major role in the relative phase

of all received paths, as described in Section 4.1. This consequently effects the shape
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of the channel impulse response and corresponding autocorrelation. The performance of

fingerprinting at various center frequencies and bandwidths is shown in Figure 4.15. While
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Figure 4.15: Performance of fingerprinting with regard to different center frequencies

performance is reduced at higher frequencies, this trend is much less significant than the

corresponding trend for signal bandwidth. Note also that it is necessary for the reference

measurements to be taken at approximately the same center frequency as the signal to be

localized, or fingerprinting will not be effective.

4.2.9 Methods of handling complex phase

As discussed in Section 3.1.4, there are several ways of reducing a complex vector into a

single real vector. In Figure 4.16 the performance of several of these options was compared.

The methods depicted here include taking the magnitude of each element, concatenating

a vector of the imaginary part to the real part, and taking the Fourier transform of the
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Figure 4.16: Performance of fingerprinting with different treatment of complex phase of
elements

autocorrelation vector. The Fourier transform of the autocorrelation is the power spectral

density, and is real and positively valued from the autocorrelation symmetry. Somewhat

surprisingly, the augmentation and spectral density do not add any value of simply tak-

ing the magnitude of each element. This performance motivated the decision to use this

treatment of complex phase throughout this research.



CHAPTER 5

Signal Propagation in an Indoor Environment

Source localization ultimately relies on the relationships between the transmitted signal,

the received signal, and the environment. This section describes some fundamentals of

these relationships. This includes some expected properties of a transmitted signal, the

physical behavior of electromagnetic signals as they propagate through the environment,

and additional effects of the receiver system. The overall process is summarized in Figure

5.1.

Original Signal

modulation to
transmission

frequency

antenna
transmission

interactions with
environment

receiver antenna

de-modulation

anti-aliasing filter

sampling

Figure 5.1: Description of transmitter-to-receiver relationship
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5.1 Transmitted signal

Source localization may be desired for all kinds of RF signals. The effectiveness of

various methods depends upon on differing assumptions about the signal of interest, and the

available resources for localization. For example, some methods require prior information

about the signal power. Some methods may even expect the transmitted signal to be

known at the receiver. Autocorrelation-based fingerprinting, the topic of this thesis is a

“blind” localization method, meaning that the original signal s(t) need not be known by

the localization system. That does not mean, however, that these methods are universal. As

with all localization methods, autocorrelation-based fingerprinting relies on particular signal

properties to function. The signal properties necessary to perform autocorrelation-based

fingerprinting are discussed in this section along with relevant common properties of RF

signals. Note that while many properties discussed are fairly common, some assumptions

(particularly the spectral shape and bandwidth assumptions) will only apply to more specific

situations. The effects of various stages of the complete transmitter-receiver system are

summarized in Table 5.1 in a complex-valued form. While the complex-valued form is

generally more practical, an alternative real-valued, vector-based form for most of these

same equations is given in Table 5.2.

5.1.1 Separability

In order to effectively analyze a signal, it is necessary to be able to separate a signal

from other signals. In many real-world RF systems, signals are designed with properties that

allow for the separation of individual signals of interest. One common mechanism is utilizing

different frequency regions for each signal. In this case, the basic processing of the receiver

will adequately remove other signals. A particular signal of interest may also be the only

one with significant power in a particular frequency region, such as when the transmitted

signal is in an area where RF transmission is restricted. In other cases separating the signal

may be more difficult, requiring more specialized methods. If interfering signals can not be

completely removed, these signals will also contribute to noise at the receiver, negatively

affecting performance. In this research, it is assumed that no interfering signals are present
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in sufficient strength to cause noteworthy interference with the signal of interest, or that

other signals have already been adequately removed.

5.1.2 Bandwidth and bandlimited signals

The bandwidth of a signal refers to the range of frequencies in which a signal has a

nonnegligible amount of energy. Typical RF signals are functionally bandlimited in the

electromagnetic frequency spectrum, meaning that their signal power is constrained to a

particular set of frequencies f ∈ [fmin, fmax].

This is bandlimitedness either by design, or just a natural result of the generation pro-

cess. Since signal frequency affects physical propagation characteristics, many RF systems

are designed to produce signals in particular frequency ranges. This is often achieved by

mixing signals with a carrier frequency in a process called heterodyning (see Section 5.1.4).

Even incidental RF signals are likely to have bandlimited characteristics, as any generated

signals will follow frequencies naturally found in a system. Many electronic and physical

interactions also have bandlimiting effects, simply by their tendency to pass some frequen-

cies better than others. If signals are modelled as a random process, then bandlimitedness

represents a statistical property of the signal. A final important factor is that even if a

signal is not effectively bandlimited, the receiver processes perform filtering that will reject

some frequencies of the signal, leading to a functionally bandlimited signal.

The effective bandwidth of a signal has a substantial effect on how much information it

reveals about its environment, and correspondingly, the location of its source. These effects

will ultimately affect system performance, and are observable in the results in Chapter 4.

The bandwidth is also related to the timescale of the system, as discussed in Section 4.1.3.

It is assumed here that the source signal is bandlimited and that the frequency region it

covers is known, or can easily be estimated.

5.1.3 Autocorrelation shape

A signal which is bandlimited will likewise have a bandlimited autocorrelation function,

which limits the shapes it can take. In this work, the shape of the autocorrelation function
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estimated at the receiver is used to extract environment effects. It is not in general possible

to separate structure found in the original signal autocorrelation function from the structure

introduced by environmental effects. It is therefore assumed that the signal autocorrelation

comes from a signal that is approximately spectrally white. This is likely to be at least

approximately true if the signal is from a spectrally efficient communication system, and

some signals are otherwise naturally spectrally white. These methods should also work if

the environmental time scale is much larger than the time scale of the signal-of-interest, as

illustrated in Figure 5.2. It may also be possible to estimate proper autocorrelation pulse

shape if enough information is available at the receiver, but this is not explored.
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Figure 5.2: The autocorrelation of a short timescale (high bandwidth) input signal (top),
compared to the autocorrelation of a long timescale (low bandwidth) channel impulse re-
sponse (middle), compared to the autocorrelation of a the previous two convolved (bottom).
Note that while the high bandwidth signal had a significant effect, the patterns in the long
timescale channel contribution are still fairly visible. While this is not always the outcome,
it is worth considering that environmental information may still be viewable in some cases.

5.1.4 Frequency and mixing

Signals are often generated by mixing a lower frequency, bandlimited signal with a

sinusoidal signal at a higher frequency. This construction is typical of many digital commu-

nication systems (see Rice [37]). The signals are typically constructed by multiplying a pair
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of signals (known as the in-phase and quadrature signals) with a carrier sinusoid. Letting

si(t) and sq(t) be the in-phase and quadrature signals, the the mixed signal is given by

smix(t) = si(t) cos(2πfct)− sq(t) sin(2πfct) (5.1)

.

This mixed signal is then be transmitted to the environment, where it will ultimately

be captured in some form by the receiver. The base signal pair can also interpreted as a

single complex signal, sbaseband(t) = si(t) − jsq(t) which is what is typically referred to as

the complex baseband signal. If the complex interpretation is used, then the mixed signal

in (5.1) is equivalent to the real part of the signal multiplied by a complex exponential as

smix(t) = <[sbaseband(t)ej2πfct] = <[(si + jsq)e
j2πfct]. (5.2)

Using the definition of the baseband signal (sbaseband(t) = si(t)− jsq(t)) and expanding out

the < operation, this can also be expressed as

smix(t) =
1

2
sbaseband(t)ej2πfct +

1

2
sbaseband

∗(t)e−j2πfct. (5.3)

Even if a signal is not constructed this way, it can still be expressed as a modulated

baseband signal. A bandlimited signal on any particular frequency range f ∈ [fmin, fmax]

can be expressed as a bandwidth range centered around a center frequency. Or written

symbolically, f ∈ [fc − β
2 , fc −

β
2 ], where fc = fmin+fmax

2 , and β = fmax − fmin. This is

spectrally equivalent to some signal with f ∈ [−β
2 ,−

β
2 ], which is multiplied by the carrier

e−j2πfct. Since it is possible to interpret any bandlimited signal as a modulated baseband

signal, every further source signal as some baseband signal modulated around a set carrier

frequency fc. As noted in Section 5.1.2, frequency affects propagation characteristics. In

further sections, many assumptions and properties rely on “high frequency” signals. Usage

of this term can vary between subject areas, but in this work “high frequency” refers to

frequencies of at least 100 MHz, and typically greater than 300 MHz.
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5.2 Receiver system

After a transmitted signal is produced, it propagates through the environment and

passes through several processes at the receiver system. These effects must also be accounted

for to understand the final received signal. The receiver system which includes an antenna,

which can effect gain and may have a directional variation. Receiver systems are also

influenced by receiver noise, distorting the received signal. After reception on the antenna,

additional processing affects the signal. High frequency signals are typically mixed down

to lower frequencies for further processing. Finally, digital receivers will have anti-aliasing

filtering, quantization, and sampling effects as the continuous received signal is converted

to a digital one.

5.2.1 Transmission through physical channel

As a signal propagates through an environment from a transmitter to receiver it can

undergo a variety off effects. These interactions are the subject of Section 5.3, but in sum-

mary, signals are transferred through multiple paths, which are each affected by changes in

amplitude, phase, and propagation time. At the receiver a linear combination of transmit-

ted signals is received, at these differing amplitudes, phases and time delays. Additionally,

there will be noise present in the receiver, as described in Section 5.2.2. If relevant en-

vironmental phase effects are incorporated into the complex amplitude, this can written

as

y(t) =
M−1∑
m=0

αmsmix(t− τm) + w(t), (5.4)

where y(t) is the received signal, αm is a complex amplitude, smix(t) is the originally trans-

mitted signal, τm is a propagation delay, w(t) is a Gaussian white noise process, and M is

the total number of received paths.

5.2.2 Receiver noise

At the receiver, the measured signal will include components produced by effects other

than the received signal of interest. Receiver noise most commonly occurs due to heat in
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the receiver. If other interfering signals are present at the receiver these signals will also

contribute to the total noise. Fortunately, this noise is effectively white, meaning that its

effects between times are uncorrelated. This property reduces some of the adverse effects

of the noise.

5.2.3 Heterodyne or mixing

When signals of a high frequency are processed, they are typically mixed with a sinusoid

to allow themm to be processed at lower frequencies. This is necessary to make sampling

feasible for high frequency signals.

The received signal is mixed down by multiplying with a sinusoid, which ideally will

allow for the recovery of a complex baseband signal, similar to what is often transmitted

by RF systems. Ideally, the mixing frequency would match the original center frequency of

the transmitted signal fc. Since the receiver does not know fc precisely (and it may even be

slightly different due to doppler effects), it will mix with an approximate center frequency

fr which differs from fc by some quantity ∆f , related as

fr = fc −∆f

Mixing is then carried out by multiplying the corresponding complex sinusoid exp [−j2πfr + φ0],

where φ0 is some unknown phase offset, and other variables are as described previously.

Doing this for one term of the sum in (5.4) (applying the time delay τm), and expanding

smix(t) as in (5.3) yields

sde−mixed(t) =
1

2
sbaseband(t−τm)ej2π(fc−fr)t−j2πfcτm+jφ0)+

1

2
s∗baseband(t−τm)e−j2π(fc+fr)t+j2πfcτm+jφ0).

(5.5)

This is then rearranged in two ways. First, a substitution is performed using ∆f = fc− fr.

Second, an zero-sum term j2πfrτm − j2πfrτm = 0 is added to exponent on the first term.

This lets the −j2πfcτm term be combined as −j2πfcτm + j2πfrτm = −j2π∆fτm, which
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can then be combined with the j2π∆f term, giving

sde−mixed(t) =
1

2
sbaseband(t−τm)ej2π∆f(t−τm)−j(2πfrτm+φ0)+

1

2
s∗baseband(t−τm)e−j2π(fc+fr)t+2j(πfcτm+jφ0).

(5.6)

This leads to a complete equation of

y(t) =
∑
m

[αm
1

2
sbb(t− τm)ej2π∆f(t−τm)e−j(2πfrτm+φ0)] + e−j(2πfrt−φ0)w(t) + s̃hf(t), (5.7)

where some higher frequency terms are grouped together as s̃hf(t), noting that this compo-

nent (which is modulated at fc + fr) will later be removed through filtering.

5.2.4 Anti-aliasing filtering

After the received signal has been mixed down, it is typically passed through a low-pass

filter to eliminate the high frequency terms from mixing, and avoid aliasing effects in the

later sampling stage for discrete systems. For simplicity, it is assumed that high frequency

components are eliminated entirely. These aliasing effects occur if the signal is not sampled

fast enough to meet the Nyquist criterion (fs ≥ fmax

2 ), which will cause signal distortion

due to aliasing will occur. Typically the anti-aliasing filter will eliminate higher frequency

components which would cause this criterion to be violated.

The anti-aliasing filter can be expressed using convolution as

yfiltered(t) = hAAF(t) ∗
∑
m

[αm
1

2
sbb(t− τm)ej2π∆f(t−τm)e−j(2πfrτm+φ0)] + e−j(2πfrt−φ0)w̃(t),

(5.8)

where hAAF(t) is the impulse response of a low-pass anti-aliasing filter.

Note that in real systems, an additional intermittent mixing and filtering stage may be

applied, however these will be a functionally equivalent to a single stage mixing and filtering

system up to the effects of such systems that are within the scope of this discussion. Thus

any effects of an intermittent stage are assumed here to have occurred as part of the later

mixing and filtering steps.
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By distributing the convolution over this sum, moving the time delay to the anti-

aliasing filter, delay using properties of convolution, and letting α̃m = αme
−j2πfrτm+φ0 this

can be expressed as

yfiltered(t) = [
∑
m

α̃mhAAF(t− τm)] ∗ ej2π∆ftsbaseband(t) + w(t) (5.9)

5.2.5 Discrete-time digital systems

This work focuses on digital receiver systems. In these systems, the signals must

ultimately be translated to sequences of discrete values. This digitization has several effects.

First the continous waveform yfiltered(t) is sampled at discrete points, with a sampling

period T between measurements. This is indicated by letting t = nT in yfiltered(t). When

the noise term is sampled, it becomes a discrete-time noise process, which is also white.

yfiltered(n) = [
∑
m

α̃mhAAF(nT − τm)] ∗ ej2π∆fnT · sbaseband(nT ) + w(n) (5.10)

In addition to becoming a discrete-time signal, the values of the signal are quantized

to digital representations, losing some precision. This quantization effect can be viewed as

additional, uncorrelated system noise, and can often be simply interpreted as part of the

receiver noise.

5.2.6 Final discrete linear model of channel

The final discrete system can be modeled as

yfiltered(n) = hsys(n) ∗ [ej2π∆fnT · sbaseband(nT )] + w(n), (5.11)

where

hsys(n) =
∑
m

α̃mhAAF(nT − τm)

= ejφ0
∑
m

αme
−j2πfrτmhAAF(nT − τm). (5.12)
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Thus the effects of the transmission processed can be described by a sampling of the source

signal sbaseband(t) at t = nT , multiplication by sinusoid based on the transmitter-receiver

frequency difference ∆f , convolution with an environment transfer function hsys(n), and

addition of a white noise signal w(n). There is also a static phase offset ejφ0 , though this

is not important to the work considered here.

5.2.7 Discrete autocorrelation

The autocorrelation of a signal is calculated as

ry(k) =
1

N − k

N−1∑
n=0

y(n)y∗(n− k). (5.13)

If the scaling factor 1
N−k is removed, then this can be expressed as the convolution

r̃y(k) = y(n) ∗ y(−n). (5.14)

Using (5.14) with the received signal from (5.11) and expanding terms gives

ry(k) = [hsys(n) ∗ hsys(−n)] ∗ [sbb(n)ej2π∆fnT ∗ sbb(−n)e−j2π∆fnT ]

+[hsys(n) ∗ sbb(n)ej2π∆fnT ] ∗ w(−n)

+w(n) ∗ [hsys(−n) ∗ sbb(−n)e−j2π∆fnT ]

+w(n) ∗ w(−n). (5.15)

This can be written as

ry(k) = [ej2π∆fkT rsys(k)] ∗ rsig(k) + [rcross(k) + rcross
∗(−k)] + rw(k), (5.16)
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with

rsys(k) = hsys(n) ∗ hsys(−n) (5.17)

rsig(k) = sbb(n) ∗ sbb(−n) (5.18)

rcross(k) = [hsys(n) ∗ sbb(n)] ∗ w(−n) (5.19)

rw(k) = w(n) ∗ w(−n). (5.20)

Note that the modulation factor ej2π∆fnT ends up modulating the autocorrelation as

ej2π∆fkT , and if ∆f is small this will have only a small effect. If enough samples are used

(length of convolution is sufficiently large), then rcross(k) will approach zero as the signal

and noise terms should be uncorrelated, and rw(k) will approach N2
0 δ(k). Similarly, rsig(k)

will approach the statistical autocorrelation of the transmitted baseband signal. If this sig-

nal is spectrally white, this term will approach rsys, leaving only the channel information.

These lead to an unscaled autocorrelation of the form

ry(k) = rsys(k) +N2
0 δ(k). (5.21)

The form found in (5.21) is used as the base equation for the autocorrelation fingerprinting

in this thesis.
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5.3 Electromagnetic wave propagation and ray model

The properties of electromagnetic signal propagation can be described fundamentally

by Maxwell’s equations, which form the basis of classical electromagnetics. The solutions to

these equations describe the full interaction of a transmitting antenna on an environment

and ultimately a receiving antenna. In general cases, solving these equations directly is

analytically intractable, and therefore requires numerical solutions or alternative methods.

When dealing with radio transmissions at sufficiently high frequencies, one can model

the wave propagation as rays emitted radially from the transmitter. The rays interact with

surfaces and, when incident on a receiver antenna, lead to a measured received signal. This

model leads to the ray-tracing or ray-casting method of simulating an electromagnetic envi-

ronment. This method is generally more computationally tractable than solving Maxwell’s

equations directly, particularly for complex environments, and can still produce accurate

descriptions of environmental effects on the signal. Ray-tracing is a method used to model

radio-wave propagation, particularly in urban and indoor environments.

5.3.1 Transmitter-to-receiver interaction

When ray-tracing is used to model of the environment, the behavior of these rays

follows from the behavior and properties of electromagnetic waves. Typical waves will

reflect, refract, and diffract in response to walls and other surfaces, and rays likewise inherit

these behaviors. To model the relationship between a transmitter and receiver, the paths of

rays are drawn from the transmitter, and followed through a series of these wall interactions

until they reach the receiver. The signal from the transmitter will follow each of these paths,

which will have a different path length, and also have a different associated attenuation and

arrival phase. The combination of the signal due to each of the paths appears at the receiver

as

y(t) =
M−1∑
m=0

αms(t− τm), (5.22)

where y(t) is the pre-noise received signal, s(t) is the transmitted signal, and αm and τm
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Figure 5.3: Ray-tracing model interprets elecromagnetic wave propagation using rays

are the path amplitudes and delays for a given path m. The previous equation 5.4 follows

fairly directly from this (except with added noise).

It is worth noting that y(t), s(t), and αm can be interpreted as either real-valued or

complex-valued. If these quantities are viewed directly in terms of the electromagnetic

field strength or current over time, they are real quantities. However most RF systems use

signals which are modulated to higher frequencies (see Section 5.1.4). The structure of such

a signal allows for a complex interpretation, which is often more practical. When complex

signals are used, the complex phase of coefficients α is given by phase, discussed in Section

5.3.3
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5.3.2 Antenna gains

The antenna plays a role at both the transmitter, and receiver. The transmission an-

tenna dictates the polarization of the transmitted signals, which influences how it interacts

with the environment, and ultimately the receiver antenna. Antennas have an associated

gain value, given as GT for a transmitting antenna and GR for a receiving antenna. Addi-

tionally, antennas can have differing gains at different frequencies. This can apply a different

gain/attenuation profile at different frequency components of the received signal, distorting

the signal. Finally, many antennas have direction-dependent gains for either transmission

or reception. This will influence the gains for different paths, as paths will typically be

transmitted or received at different angles. For the purposes of this research, it is assumed

that these effects are negligible, a value of one is used for GR and GT . In practice, the im-

portance of these effects will depend on the antennas and frequencies involved in a particular

setting.

5.3.3 Signal phase

As noted previously, modulated signals have structure which lead to a complex inter-

pretation. This is perhaps most easily seen in the case of a sinusoid, which have a clear

phase at any point in time and space. However phase also applies to signals which are mod-

ulated around a center frequency, as discussed in Section 5.1.4. When such a signal arrives

at a transmitter, the resultant phase is a function of both the original transmission time,

and the time required to propagate through the environment. Under multipath conditions,

the signals are transmitted as one coherent signal, but the differing path lengths lead to

different travelling times and therefore the signals arrive with different phases. The phase

effects of the paths are related to path distance by:

φ(t) = exp j2πfc(t−
d

c
), (5.23)

which follows simply from the time delay of transmission. Note how this depends on the

center frequency. For sinusoids this center frequency is simply the frequency of the sinusoid
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itself. In other signals, a modulated structure may influence the role that signal phase has

on a system, which can be seen throughout the equations in Section 5.1 and Section 5.2.

5.3.4 Signal polarization

Another characteristic of RF wave propagation is the wave polarization. This refers

to the configuration of the electric and magnetic fields within the propagating wave. In

most cases, this reduces simply to the physical orientation of the electric and magnetic

field. These polarizations are typically described by the orientation of the electric field with

regard to a relevant ground plane, as vertical or horizontal polarization, or with regard to

its orientation to a surface it is interacting with, as “p” (parallel) or “s” (perpendicular)

polarization.

Note that in RF scenarios, vertical and horizontal polarization often follow the general

orientation of the transmitting antenna, hence vertical for antennas oriented vertically, and

horizontal for antennas oriented horizontally. Note that it is possible for signals to contain

multiple wave polarizations, as occurs in blackbody radiation due to material temperature.

Polarization tends to be less mixed when emitted from an RF antenna, however.

Interactions between waves and walls are affected by wave polarization, as described

in Section 5.3.6. Note that interactions with an ideal, vertical wall do not change the

polarization of light, though they do attenuate different polarizations differently. Still,

interactions with rough surfaces and compex objects at diffent angles will ultimately affect

the polarization of a signal as it propagates through a real environment.

5.3.5 Path loss

As signals propagate through space, the signal spreads and decreases in power density.

This is most simply modelled by the Friis Transmission Equation, which models this loss as

Preceived = GTGR(
λ

2πdγ/2
)2. (5.24)

In this equation, Preceived is the received power, λ is the signal wavelength, d is the distance
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travelled by the signal between transmitter and receiver, γ is the loss coefficient, and GT ,

GR are the antenna gains for the transmitter and receiver, respectively. For free space, γ

has a value of two. This can be adjusted to model propagation in different environments.

This γ value should only be adjusted for environmental properties that aren’t otherwise

modelled, so when the environment is fully modelled, an γ of two is still appropriate. The

antenna gains are dependent on the involved antennas, as discussed in Section 5.3.2.

5.3.6 Wall interaction

When a signal is inciedent upon an interface between two media, such as between the

air and a building material, it can undergo reflection, refraction, and/or diffraction. This

is depicted in Figure 5.4. In many cases, the object will be thin relative to the scale of

the environment, and may contain multiple layers of different materials. With minimal loss

of accuracy, one can assume that the non-air surfaces will be of negligible thickness, with

a simple reflection/refraction profile. The reflection/refraction profile can be generated to

characterize more complicated/multi-layer substances as well as noted in Section 5.3.7.

Dielectric properties

The wall materials used have a significant effect on how rays interact with them. These

materials have various properties affecting different aspects of these interactions. The num-

ber of parameters needed to characterize a materials behavior depends on the types of

materials used (for example metal walls, versus glass windows), and the accuracy to which

they are modelled. While full analysis of electomagnetic properties of materials are beyond

the scope of this research, some typical properties include the following:

• µ - Magnetic permeability, describes material response to magnetic fields

• ε - Electric permittivity, describes material response to electric fields

• σ - Conductivity, describes electron/current mobility

• ρ - Ruggosity, describes surface roughness
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Figure 5.4: The interaction between an electromagnetic “ray” and a wall made of some
other media

• η - Intrinsic impedance, given by η =
√

jωµ
σ+jωε , or η =

√
µ
ε for lossless materials

(materials are approximately lossless when σ � ωε, where ω is angular frequency of

the signal.)

Some of these values are used in the basic equations regarding wall interactions, which

will be used in later sections. Identifying proper values for these functions is the subject

of investigation and research (such as by Regmi [38]). Some of these properties also have

some dependence on frequency. It is assumed here that this variation will not be substantial

within the frequency range of a particular signal, though it is necessary to select parameters

which apply to a frequency near to the center frequency of the signal of interest. Some values

of these parameters for common building materials is included in Table 5.3.
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Table 5.3: Parameters for common wall materials

Parameter Concrete floor/ceiling MDF wall

µ∗ 4π · 10−7 H ·m−1 4π · 10−7 H ·m−1

ε† 6.9ε0 60ε0

σ† 0.0138 S ·m−1 0.02 S ·m−1

ρ‡ 0.8 0.8

ηlossless 143.4 Ω 48.6 Ω

∗ Typical value for most common materials which are not ferromagnetic

† From Navarro et al. [39]

ε0 is the permittivity of free space, equal to 8.854 · 10−12F ·m−2

‡ Generic value for walls given by Pahlavan and Levesque [36]

Reflection

An electromagnetic wave incident on a surface produces a reflection at the same angle

of incidence, as described by Snell’s law of reflection:

θincident = θreflected. (5.25)

The reflected signal is also attenuated from the original signal by a factor R (known as the

reflection coefficient) according to:

αreflected = ρR∗αincident, (5.26)

where αincident is the amplitude of the incident signal, αreflected is the amplitude of the

received signal, ρ is the surface ruggosity, and R∗ = R⊥or R‖ depending on the wave

polarization. These are given by

R⊥ =
η2 cos θi − η1 cos θt
η2 cos θi + η1 cos θt

, (5.27)

R‖ =
−η1 cos θi + η2 cos θt
η1 cos θi + η2 cos θt

(5.28)

where R⊥ corresponds to perpendicular or s-polarized waves, and R‖ corresponds to parallel
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or p-polarized waves, θi and θt are the incident and transmitted angles (the transmitted

angle is given by (5.29)), and η1 and η2 as the intrinsic impedances of the two media. They

are known as reflection coefficients. In ray tracing, an additional reduction to reflected

signals occurs because surfaces are not perfectly smooth. This loss is modelled simply as

a constant multiplier ρ known as ruggosity. It can be convenient to absorb the ruggosity

factor into the reflection coefficient as Rfull = ρR∗.

Depending on the materials and orientations of environmental surfaces, the interaction

may have different phase effects. In cases where the antenna is vertically polarized in

a building and interacting with vertical walls, where the the signal frequencies are high

enough, it is generally suitable to assume that the phase change is simply a 180◦ phase

change or sign flip. This is discussed further in Pahlavan and Levesque [36], and Balanis [40].

An example of final reflection and transmission coefficients for a slab of glass is depicted

in Figure 5.5. Note that in the case of a slab, the equations must be used for both entering

and exiting the slab media, with a differing angle of incidence inside the media. This profile

also includes contributions from paths that reflect several times internally before leaving

the media.

Transmission and Refraction

In addition to the reflected signal, a portion of the signal will continue through the

media with the angle changed according to Snell’s law of refraction:

β1 sin θincident = β2 sin θtransmitted, (5.29)

where β is the phase constant, given by β = ω
√
µε
√

1
2 [
√

1 + ( σωε)
2 + 1], or β = ω

√
µε for

lossless media.

The transmitted signal amplitude is also modified according to a transmission coeffe-

cient T as:

αtransmitted = T∗αincident, (5.30)
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Figure 5.5: Reflection coefficients (Left) and transmission coefficients (Right) for a slab of
glassεr = 1.52.
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where αincident is the amplitude of the incident signal, αtransmitted is the amplitude of the

signal transmitted past the medium, and T∗ = T⊥or T‖ depending on the wave polarization,

as before. These are given by

T⊥ =
2η2 cos θi

η2 cos θi + η1 cos θt
(5.31)

T‖ =
2η2 cos θi

η1 cos θt + η2 cos θt
(5.32)

For interaction with a wall, the signal will return to the original media (air) after

passing through all layers. This results in a distance offset as shown in Figure 5.4, but will

return to the original propagation angle. If the wall of this distance is thin, it is small and

may be neglected

When dealing with the wall as whole, the gain for the transmitted signal can also be

found from the reflected power as

T∗ =
√

1 +R2
∗. (5.33)

This equation follows from conservation of energy, though this does assume no loss of power

in the wall medium, which is a reasonable assumption in many, but not all cases. More

details are discussed in Pahlavan and Levesque [36].

5.3.7 Multi-layer interfaces and overall modelling

When a medium has multiple layers, a combination of reflections and transmissions

with the various layers occurs at every interface. These can all be modelled seperately, but

it is common to combine the total reflection effect into a single reflection coefficient, and

likewise for the transmission coefficient. Such models are often called slab models; these

models are not used here, but equations for using them can be found in [36].

More complex methods of computing transmission and reflection coefficients can be

also be performed without necessarily affecting the performance of ray-tracing simulations

(like in Chapter 6). This is true as long as the coefficients can be distilled into a single
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function of interaction angle.

Diffraction

Unlike reflection and refraction, diffraction occurs on corners and edges of media. As

frequency increases, effects due to diffraction become increasingly negligible. The effects of

signal diffraction were assumed to be minimal and were not accounted for in this research,

though they are considered in some research (such as Navarro et al. [39]). If localization is

being performed using lower frequency signals, then these effects should be considered more

carefully. Alves et al. [41] and Pahlavan and Levesque [36] include equations describing

diffraction, these can be referenced if needed for modeling propagation environment.



91

CHAPTER 6

Ray-tracing algorithm

6.1 Overview and variables

With the ideas developed from the previous section, an algorithm for modeling propa-

gation in an environment using ray-tracing (also called “ray-casting”) can be given.

This algorithm consists of two primary steps. The first is the simulation of rays prop-

agating out from a receiver throughout a walled environment. The second step is the

comparison of these ray paths to receiver locations to identify interactions. These two steps

produce a list of path lengths and associated gains between a transmitter and any number

of receivers. The algorithm is summarized in Algorithm 6.1 and Algorithm 6.2.

6.1.1 Comparison to other implementations

Note that there are a number of variations of this ray-tracing approach in handling

rays, wall-interactions, etc. This section is meant to both provide an elementary example

of ray-tracing, and document the ray-tracing methods used to generate the results provided

in Chapter 4. Many other ray-tracing algorithms exist, such as by Hosseinzadeh [42].

The development of increasingly accurate and efficient ray-tracing algorithms is an area of

ongoing area of research (such as by Geok et al. [43] and Navarro et al. [39]), though it is

not a focus of this thesis.

6.1.2 Variables overview

In this implementation, geometric rays are given by {x+ vt | t ≥ 0} with the variable

parameters x as the source vertex, v as a vector giving the ray propagation direction, and

t as parameter for a position on the resulting ray. Wall segments are likewise described as

{su0 +(1−s)u1 | 0 ≤ s ≤ 1}, or the set of points along a line segment between two vertices



92

u0 and u1.

Paths are stored as a sequence of position vertices {x[p]
n }, along with a vector giving

the propagation direction {v[p]
n }, a wall collision sequence {ω[p]

n }, and a sequence of path

gains {g[p]
n }. For each ray n an initial propagation step p0 is given which indicates what

propagation step a particular ray was introduced.

The number of rays doubles at each propagation iteration, so the initial size N0 must

be set so that the final ray count N = N0 · 2P will not exceed memory constraints. Higher

values of N and P increase model fidelity and therefore accuracy, though they give dimin-

ishing returns and increase computation time. The lookup table size L is fairly flexible,

though a value of 90 is likely sufficient for most cases. The total number of walls W is

mostly dependent on the environment complexity, with more walls coming at increased

computational cost. A receiver collision radius drx must also be set, which determines how

closely a ray must pass by a receiver to be registered. Higher values can lead to spurious

receptions and increased computation time, but decrease the chance that real paths may

be missed. In general, this value can be set smaller when N is larger.

The variables R(θ) and T (θ) are lookup tables for the gain of a given reflection/trans-

mission, and are discussed further in Section 6.1.3. A complete list of variables are given in

Table 6.1.

6.1.3 Wall reflection and transmission profile

In order to evaluate the effect of a wall interaction on the amplitude/gain of a particular

ray, it is necessary to have some function relating the interaction coefficient with the angle

for any paricular wall. This can be done using the theory discussed in Section 5.3.6. It is

useful to precalculate this function for a useful range of angles as a lookup table. These

lookup tables are denoted R(θ) and T (θ). It is assumed here that every environment wall

has the same profile, however, if a building contains distinct wall types (for example, both

glass and painted drywall) lookup tables can be created for each wall type. Also note that

R(θ) and T (θ) should be defined in terms of path amplitude, not path power, a detail which

is easy to overlook.
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Algorithm 6.1 Ray-tracing algorithm - propagate signal vectors

Input:
Wall vectors {u0,u1}Ww=1,
Transmitter location ltx,
Number of initial vectors N ,
Number of ray propagation steps P
Reflection/Transmission tables R(θ) and T (θ)

Output:

Propagated ray parameters, Θ
[p]
n = {x,v, g, ω, tmax}

Begin

Create N0 initial rays with x[0] = ltx, v[0] = [cos 2πn
N0

sin 2πn
N0

], p0 = 0, and g[0] = 1

For p = 0 . . . P − 1
For n = 0 . . . N − 1

For w = 1 . . .W
Calculate t, s for ray n and wall w using (6.2) and (6.1)
If 0 < t and 0 ≤ s ≤ 1, then record collision distance t

End

Find smallest t among valid interactions, store t
[p]
max,n = t, ω

[p]
n = w

Calculate collision angle for this wall using (6.3)

Update ray segment x
[p+1]
n = x

[p]
n + v

[p]
n t

[p]
max,n

Update transmitted ray direction v
[p+1]
n = v

[p]
n

Update transmitted ray gain g
[p+1]
n = T (θ)g

[p]
n

Create reflected ray and clone transmitted ray Θ
[0:p]
ñ = Θ

[0:p]
n

Update reflected ray direction using (6.4)

Update reflected ray gain g
[p+1]
ñ = R(θ)g

[p]
ñ

Update reflected ray sequence ω
[p]
ñ = −w

End
Update vector count N = 2 ·N

End
End



94

Table 6.1: Ray-tracing algorithm variable listing

Variable Dimensions Description

p0,n N × 1 Ray start index

x
[p]
n 2×N × P Ray vertex location

v
[p]
n 2×N × P Ray propagation direction

t
[p]
max,n N × P Ray index of wall interaction

g
[p]
n N × P Ray gain from interactions

ω
[p]
n N × P Index of wall interacted with

u0,u1 2×W Start and end point for wall segments

R(θ) L× 1 Lookup table for reflection coefficient

T (θ) L× 1 Lookup table for transmission coefficient

6.2 Ray propagation

Rays are propagated over a number propagation steps. In each step, the rays advance

according to their individual ray direction vector v. These paths will continue to be prop-

agated forward until they intersect with a wall, at which point they will split into multiple

rays representing the reflections and transmissions. These new rays will then be propagated,

and this process is repeated for a number of iterations (denoted here as P ), or alternatively,

until some stopping criterion is met.

6.2.1 Initialize rays

Before propagation, the rays need to be initialized. These rays are initialized with their

first vertex as the location of the transmitter, x[0] = ltx. The transmission directions are

then distributed radially, or x
[0]
n = [cos 2πn

N0
sin 2πn

N0
]>. Gain values g

[0]
n are set to one, or

some value representing antenna transmission gain. Also, p0 is set to zero for initial rays.

6.2.2 Identifiying next wall interaction

For each live path, the ray is checked against the list of wall segments. First, the

collision point of the ray and the line made by the wall is identified. After this is done, this

collision point is checked to verify that the intersection occurs in the forward portion of the

ray (0 < t), and along the wall segment (0 ≤ s ≤ 1). The collision point can be found by
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equating the ray and vectors and solving for t and s. Letting r = u1 − u0, (see Appendix

A.1) this leads to

s =
v>⊥(x− u0)

v>⊥r
(6.1)

t = −
r>⊥(x− u0)

v>⊥r
, (6.2)

where v⊥ = [v2 − v1]> and r⊥ = [r2 − r1]>, which are the vectors v and r rotated 90◦ to

the right. Further discussion is found in Appendix A.1. At this point if t < 0, s > 1, or

s < 0 then the intersection point does not fall on the wall segment, or is behind the ray,

indicating that the ray does not interact with the tested wall. Otherwise, the value t is

recorded for that ray. After all wall comparisons have been made, the interaction with the

smallest (nonnegative) t is chosen and saved as tmax,n. As this interaction occurs first, all

other interactions for this ray are discarded.

6.2.3 Creating transmitted and reflected rays

Once the first wall collision is identified, the collision angle is calculated using

θ = cos−1(
v>r⊥
‖v‖‖r⊥‖

). (6.3)

This will be used to calculate the gains for the reflected and transmitted paths. At this

point it is necessary to consider both the transmitted ray and reflected ray, which will be

treated differently. The transmitted ray will just be stored as a continuation of the original

ray, while a new ray will be created to accomodate the reflected ray. The previous states of

the original ray will be duplicated for the new ray, so Θ
[0:p]
reflected = Θ

[0:p]
transmitted, for all of x,

v, g, ω, and tmax. Since this will began at the next propagation step, p0,n should be set to

the current propagation step value plus one, or p+ 1. The next vertex of the original path

x
[p+1]
n is placed at the collision point x+vtmax. The remaining parameters differ somewhat

between transmitted and received vectors.
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Transmitted vectors

The propagation direction for the transmitted vector remains unchanged, so v
[p+1]
n =

v
[p]
n . The next gain g[p+1] is obtained using the interaction angle θ as g[p+1] = T (θ)g[p]. The

wall interaction sequence is updated as ω
[p+1]
n = w, where w is an index identifying the wall

with which the interaction occured.

Reflected vectors

The propagation direction for the next step of the reflected vector v
[p+1]
n is given by

vreflected = v − 2(projr⊥v) = v − 2v>r⊥
||r⊥||2

r⊥. (6.4)

The next reflected vector gain g[p+1], like the transmitted vector, is found using the inter-

action angle θ as g[p+1] = R(θ)g[p]. Note that R(θ) typically contains a sign flip, which

represents a 180◦ phase change often caused in a reflection. The wall interaction sequence

is updated almost identically to the transmitted vector as ω
[p+1]
n = −w, with the only dif-

ference as using a negative value to indicate a reflected path. Note that this is an optional

shortcut, it is simply a convenient way to store if an event was a transmission or reflection.

This also relies on wall indices starting at one. Depending on implementation details, it

may be easier to store this as a separate boolean.

6.3 Identify received paths

After all paths out from the transmitter are calculated, one can use these to determine

which paths connect to the receiver. The algorithm proceeds by looping over each ray at

each propagation step, over which the ray takes the form of a line segment. Only rays for

which the starting step p0 is greater than the currently checked step p are investigated. This

prevents multiple rays which follow the same initial path from being processed additional

times.

In each propagation step, all ray segments are compared to the location of each receiver,

and if the segment passes close enough, it is recorded. An additional step is then performed
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to eliminate duplicate paths which follow the same reflection/transmission sequence. Once

this is done, the distance and power of each path reaching a particular receiver will be

recorded.

Algorithm 6.2 Ray-tracing algorithm - compute received paths (one receiver)

Input:
Receiver location(s) {lrx},
Propagated ray parameters, Θ

[p]
n = {x,v, g, ω, tmax}

Output:
Received path distances, {d}
Received path gains, {α}

Begin
For p = 0 . . . P − 1

For n = 0 . . . N − 1
Find closest point on ray using (6.5), then xclosest = x+ vt
Calculate ray-point distance dline−to−rx using (6.6)
If 0 < t ≤ tmax and dline−to−rx ≤ drx, then add p to list of possible receives

End

if ω
[p]
i = ω

[p]
j for any i 6= j in possible receive list, then

Discard receive with higher dline−to−rx

Record received path distance d from (6.7) and gain α from (6.8)
End

End

6.3.1 Find receiver intersections

To check if a path crosses a receiver, the closest position on the line segment is found

by first identifying a position index t using

t =
v>(lrx − x)

‖v‖
. (6.5)

Then the closest point on the line segment can be identified as xclosest = x + vt. This

closest point is checked to verify it does not extend past the edge of the line segment. If

0 ≤ t ≤ tmax, then the point is within the bounds of the ray segment, and the point-line
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distance is checked. Otherwise (if t < 0 or t > tmax), the point does not fall on the line

segment, and no interaction is recorded. If the closest point lies on the ray segment, the

point-line distance is calculated as

dline−to−rx = ‖lrx − (x+ vt)‖. (6.6)

If the receiver falls within a previously determined distance drx of the ray, it is recorded as

a receive.

6.3.2 Removing duplicate paths

In practice, multiple rays following the what is essentially the same path may fall within

the radius set for the receiver. For each path received at a receiver, the sequence of walls

that that ray interacted with up to that point ω[0:p−1] is compared to the other received

paths. Note that two paths i and j are only considered equivalent if ω
[k]
i = ω

[k]
j for every

element k ∈ (0 . . . p− 1). If a set of paths have the same wall sequence, that suggests that

they should be the same path (at least as observed by this receiver). The dline−to−rx value

for each of these paths is then compared, and the path with the minimum value is kept,

and other equivalent paths are discarded. After all duplicate paths have been removed, the

gain and delay for each received path is computed.

6.3.3 Calculating received path gain and time delay

After accounting for matching paths, the distance travelled by the ray until it reaches

the point on the line-segment which the receiver projects onto is recorded as a receiver path

distance. This is found by summing the lengths of distances up to the current propagation

step, then adding the distance from the last vertex to the receiver location as

d =

( p−1∑
k=0

‖x[k+1]
n − x[k]

n ‖
)

+ ‖x[p]
n − lrx‖. (6.7)
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The received path gain is found by combining the path loss with the gain calculated

from wall interactions. This can be expressed as

α =
1

d (γ/2)
· g[p−1]
n , (6.8)

where γ is the loss coefficient discussed in Section 5.3.5, but typically has a value of 2. This

formula assumes that distances are in meters. The final output of the receive process is the

set of every registered received path distance and gain values {d ,α} for each receiver.
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Figure 6.1: A sample of ray-tracing results. Darker paths indicate higher received power.
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6.3.4 Generating an impulse response function

Once ray tracing is completed, the continuous channel between the transmitter and a

receiver k is described by the impulse response:

h(t) =
N−1∑
i=0

αiδ(t− τi), (6.9)

where d = d
c (with c as the speed of light in meters per second).

For simulating a discrete system, this must be adjusted as described in Section 5.1

and Section 5.2. The discrete system channel impulse response is given by (5.12), which

incorporates the various of effects of anti-aliasing, sampling and mixing.

6.3.5 Other considerations

Some ray-tracing algorithms (like that in [36]) model rays with a cone structure rather

than a particular radius. Since the reflection and transmission coefficients are different

for different polarizations, if multiple polarizations are considered these must be treated

separately, though paths will be not be changed, so gains associated with each polarization

can be calculated simultaneously without substantial additional cost.

Ray-tracing can be performed in two or three dimensions, with an increase in accuracy

and computational cost in the three-dimensional case. This algorithm is described in two

dimensions. Extending this algorithms to three dimensions is relatively straightforward

(rays become three-dimensional and walls become planes), though computational cost and

polarization considerations may require more attention.

6.3.6 Reversibility

It is also worth noting that receivers and transmitters can often be interchanged. This

follows from the principle of reversibility, which states that when there is no absorption in

materials, radiated waves will take the same path moving between two points regardless of

direction (see Hecht [44]). It is also clear that since entry and exit angles for walls are the

same from both directions, the gain for the path in each direction will also be equivalent.
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This allows the results for the multipath between two points to be interpreted with either

endpoint as either the transmitter or receiver.



CHAPTER 7

Conclusion and Final Femarks

7.1 Project contributions and discussion

In this thesis, a Gaussian-process-based method for autocorrelation based fingerprinting

have been proposed, along with analysis of its performance. In this thesis, the possibility

of RF source localization by utilizing signal autocorrelations to perform fingerprinting was

explored. A Gaussian-process-based method was proposed, including a strategy to estimate

model parameters efficiently. The performance of this method was then analyzed using a

ray-tracing simulation environment.

7.1.1 Performance and applicability of autocorrelation-based fingerprinting

Ultimately, this research demonstrates that, at least in simulated scenarios, autocorrelation-

based fingerprinting can be used for performing RF-source localization. The results here

(such as those depicted in Section 4.10) still suggest that a significant amount of bandwidth

(on the order of 8MHz or higher) is really necessary to get reasonable performance, and even

then multiple receivers are likely necessary. Still, the localization capability may still be

nonnegligible even in the lower end of these cases, so this information may be useful when

included in other power, phase, or timing based solutions. Autocorrelation fingerprinting

has the advantage of possibly being added to many simple, unsynchronized software-defined

radio localization systems without any additional hardware. This is perhaps the application

of this research which is most likely to be useful, especially since received-signal-strength

systems can already effectively utilize a Gaussian procees model, as described in Aravecchia

and Messelodi [29] and Ferris et al. [25]. Of course fingerprinting will still require the data

collected from the environment-of-interest, but if other fingerprinting on RSS is already

being performed, this may not add much additional work.
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The methods described in this thesis fall in a broader category of methods which rely

on channel information to estimate the position of a noncooperative transmitter. While the

autocorrelation has the advantage of being leverageable without much additional informa-

tion, in practice it may be preferable to make try to estimate and leverage signal structure,

such as pulse-shape (which clearly has an effect as seen in Figure 4.14). The Gaussian

process method could also be used on other forms of channel information such as channel

state information, as done by Zhao et al. in [15].

7.1.2 The Gaussian process model for fingerprinting

The Gaussian process model used seems reasonably functional, and has many advan-

tages over a more naive approach, but may still be far from the best model for this particular

application. Other developed methods, such as that developed by Hall in [6] and [11], may

already outperform this method, though comparison of these methods was unfortunately

beyond what was possible with this thesis. A comparison of the methods in this work,

those from Hall et al., and any other similar work might help guide future efforts to develop

fingerprinting methods.

It is also quite possible that a more capable variant of the Gaussian random process

model used here could be produced by changing some of its assumptions or construction.

The particular variance kernel could have been modified. Additionally, the physical dis-

tance d could have been replaced by a distance which reflects more information about the

environment, such as by artificially increasing d for points which were not in the same room

or otherwise separated by an obstruction. An example of this might be a d value based on

the shortest non-obstructed floor path between two points, as if “walking” between the two

points was required by the transmission. The kernel used for the covariance could also be

changed from the Gaussian kernel, as this was chosen based on convenience and precedent

rather than chosen to suit the scenario. Alternatively, perhaps another form of random

process would better model some of the less smooth effects of position on autocorrelation

and its features.
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7.1.3 Gaussian process parameter estimation

The least squares parameter estimation method described in Section 3.2.4 adequately

met the needs of this research for quick and reliable Gaussian process parameter estimation.

It is possible that this method could be useful in other similar applications of Gaussian

processes, or as a method of producing initial values for a maximum-likelihood descent

method. Alternatively, it is possible also that better methods already exist for this step,

and these methods could be used to perform localization performance in this application.

There were also instances where the estimated parameters for the Gaussian process had

a lower likelihood than a “no information” parameter set obtainable using true maximum

likelihood. This suggests that performance may be improvable by more optimal parameter

selection, though it is the opinion of the author that these improvements would likely be

fairly modest.

7.2 Other areas of further work

While reasonable effort was invested in making an effective simulation, the simula-

tion still ignored many real-world factors, such as interference from other signals, three-

dimensional environments, mobile and immobile reflective objects, and signal diffraction.

It would be useful to perform analysis and testing which accounts for all of these. It would

also be preferrable to perform testing with data collected using real hardware.

7.3 Final remarks

The primary success of this research is likely the evidence that autocorrelation-based

fingerprinting may offer real information about transmitter location in the particular sce-

narios it can be used. It does not seem like in most cases this is an optimal approach, but

may still be a helpful tool in the niche situations where a noncooperative transmitter must

be located in a controlled environment.
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APPENDIX A

Additional Content

A.1 Ray intersection points

This section describes the basic geometry governing the ray-wall intersections, ray

reflections, and point-ray interations relevant to the ray-tracing algorithm described in

Chapter 6.

It should be noted that there are multiple possible mathematical representations of

rays and line segments, and this can effect the form of these calculations.

Certain forms may be more or less convenient depending on how data is handled, and

whether the simulation has two or three dimensions.

Ray-wall Intersections

With the ray described as {x+vt|t > 0} and the wall described as {u0(s)+u1(1−s)},

as given in Section 6.1.2, let r = u1−u0. One can then find the point in both of these sets
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(the intersection point) by equating them:

x+ vt = u0 + rs (A.1)

=⇒ x− u0 = rs− vt =

[
r v

]s
t

 (A.2)

=⇒

s
t

 =

[
r v

]−1

(x− u0) (A.3)

= (
1

v>⊥r
)

 v>⊥
−r>⊥

 (x− u0) (A.4)

=⇒ s = v>⊥(x− u0)/(v>⊥r) (A.5)

=⇒ t = −r>⊥(x− u0)/(v>⊥r). (A.6)

This results in the equations given in Section 6.2.2.

Ray Reflections

As shown in Figure A.1, the reflected direction vector is unchanged in the axis parallel to

the wall surface. The only change is that the vector is inverted along the axis perpendicular

to the surface. This can be achieved by substracting twice that projection from the original

vector. This gives (6.4).

It can also be seen that the angle of incidence is simply the angle between v and r⊥,

which is found using the standard formula for the angle between two vectors, resulting in

(6.3).

A.2 Simulating nonideal autocorrelation estimates

To produce properly simulated autocorrelation, it is necessary to account for the effects

of estimating the statistical signal autocorrelation from a limited, noisy sample. One method

for this is to generate a test signal sbaseband(n), convolve it with the channel impulse response

hsys(n), add the noise w(n), and calculate the autocorrelation as in (5.13). However, if
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v

vreflected

r

projrv

projrv −projr⊥v

projr⊥v

u0

u1

Figure A.1: The vector for a reflected ray vreflected is the vector for the initial ray v, except
with the sign of the component in the perpendicular wall direction r⊥ inverted.

the number of data points N used becomes long, this can begin to be computationally

expensive. If a large number of simulated autocorrelations is needed this complexity can

become prohibitive.

As an alternative that can produce nearly equivalent results at a practical computa-

tional cost, the simulated autocorrelation was instead produced by simulating the individual

autocorrelation components in found in (5.16), repeated here for convenience:

ry(k) = [ej2π∆fkT rsys(k)] ∗ rsig(k) + [rcross(k) + rcross
∗(−k)] + rw(k). (A.7)

For this process rsys(k) is deterministic and can be calculated directly from hsys(k). That

leaves the other three terms rsig(k), rcross(k), and rw(k), which will need to be generated.

If sbb(n) and w(n) are modeled as random processes, then it follows that these terms

will be random processes with a distribution relating to the autocorrelation estimation

process. Fortunately, since each term in one of these autocorrelation processes is the sum
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of many product terms which are themselves random, the central limit theorem can be

invoked. It is therefore justifiable to model rsig(k), rcross(k), and rw(k) as Gaussian random

processes. These processes are assumed to be independent for simplicity (rsig(k) and rw(k)

are reasonably assumed to be independent, but rcross(k) has some entanglement with both

rsig(k) and rw(k), which is ignored).

Gaussian random processes can be easily simulated if the mean and covariance is known.

It is assumed that sbaseband(k) has a power of one (and therefore unity variance), and adjust

signal noise power N2
0 to achieve the desired signal-to-noise ratio. Note that in Chapter 4,

signal-to-noise ratio is set according to the median received power, which requires calculating

the power associated with every channel rcross(k) and assigning N2
0 relative to that value.

An approximation for the mean and covariance of autocovariance estimates are given

in Jenkins and Watts [45]. Letting ryy(n) = 1
N−k

∑N−1
n=0 y(n)y(n−k) be the autocorrelation

estimate, and assuming E[y(n)] = 0 (this renders the autocorrelation and autocovariance

equivalent), and letting γyy(k) be the theoretical autocorrelation obtained for N =∞, these

are included below, with minor adjustments to adapt them to autocorrelation estimates used

in this thesis.

E[ryy(k)] = γyy(k), |k| ≤ N (A.8)

Cov[ryy(k), ryy(l)] =
1

N − k

∞∑
n=−∞

γyy(n)γyy(n+ l − k) + γyy(n+ l)γyy(n− k). (A.9)

If sbb(n) and rw(n) are white noise processes, they have γyy(k) = δ(k) and γyy(k) =

N2
0 δ(k) respectively. The sum in (A.8) will then reduce to

1

N − k

∞∑
n=−∞

γyy(n)γyy(n+ l − k) + γyy(n+ l)γyy(n− k)

=
1

N − k

∞∑
n=−∞

N4
0 δ(n)δ(n+ l − k) +N4

0 δ(n+ l)δ(n− k)

=
N4

0

N − k
(δ(l − k) + δ(k + l)), (A.10)

with N0 = 1 for rsig(k). This suggests that if the 1
N−k scaling is applied later, then
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the covariance will be 1 or N4
0 for individual samples k 6= 0, having double that vari-

ance for the k = 0 term. This also indicates that pairs k = −l must be identical, as

Cov[ryy(k), ryy(l)] = Cov[ryy(k), ryy(k)] = Cov[ryy(l), ryy(l)], meaning that all variance is

completely shared. This is actually a rather mundane result, as it only enforces the condi-

tion that the autocorrelation is symmetric (in the real case), which must always be true of

real autocorrelation functions. Still, this gives a way to produce a sample rsig(k) and rw(k).

It can be produced generating a random vector drawn from

N (



1

0

...

0


,

2 0>

0 I

) (A.11)

for rsig(k), and then (if values for k < 0 are needed) extending it using the autocorrelation

symmetry property. Likewise samples of rw(k) are produced using

N (



N2
0

0

...

0


,

2N4
0 0>

0 N4
0 I

) (A.12)

and extended for k < 0 using symmetry if needed.

To produce a sample for rcross(k), slightly different methodology is needed. One can first

calculate a sequence for sbb(n)∗w(−n). Each term in the sum 1
N−k

∑N−1
n=0 sbb(n)w(n−k) is

the product of two Gaussian random variables, which are then added together. The product

of two Gaussian random variables with mean zero and variance one is a nongaussian random

variable, which also has variance one (this follows trivially from results by Seijas-Maćıas et

al. in [46]). Since the component Gaussian random variables have variances of 1 and N2
0 , the

product variance will be N2
0 (as Cov[1 ·XN0Y ] = N2

0 Cov[XY ]). Since these nongaussian-

distributed terms are summed however, central limit theorem can be invoked once again
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to justify using a Gaussian random process to represent these values. The sbb(n) ∗ w(−n)

values can then be treated as a Gaussian random process with mean zero and a covariance

of N2
0 . One can then convolve this signal with hsys(n), giving a sequence for rcross(k). The

sequence sbb(n) ∗ w(−n) must be made long enough to avoid edge effects of rcross(k), and

central values chosen. Finally the generated sequences will be combined as in (A.7), and

the scaling 1
N−k is applied to whole sequence.

Note that this process neglects the role of complex phase. If it is assumed that the

phase of sbaseband(n) and w(n) are uniformly random and independent between each sample,

it is reasonable to conclude that the phase of the product terms in the autocorrelation will

be similarly random. There is no mechanism to encourage any bias towards a particular

phase in the resulting autocorrelation (with the exception of the autocorrelation conjugate

symmetry), so it is assumed that the phase is random for each sample up to conjugate

symmetry. One can therefore simply generate samples of rsig(k), rw(k), and rcross(k) with

random phase for each sample (and forcing conjugate symmetry except on rcross(k).

Results of this process are compared to the baseline method of generating source signals

sbaseband(n) performing convolution, adding noise and calculating the autocorrelation from

the whole sequence in Figures A.2 — A.5.
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Figure A.2: Autocorrelation samples from baseline method, looking at real part of se-
quences. (Top left) Median autocorrelation with 0.0013, 0.228, 0.1587, 0.8413, 0.9772, and
0.9987 quantile regions, corresponding to standard deviations for Gaussian-distributed vari-
ables. (Top right) Same quantile regions as distance from median. (Bottom left) The nor-
malized autocorrelation matrix from these samples with brighter regions indicating higher
correlation. (Bottom right) Several autocorrelation sequences generated using this method.
(Top left) Median autocorrelation with quantile regions
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Figure A.3: Autocorrelation samples from baseline method, looking at imaginary part of
sequences. (Top left) Median autocorrelation with 0.0013, 0.228, 0.1587, 0.8413, 0.9772, and
0.9987 quantile regions, corresponding to standard deviations for Gaussian-distributed vari-
ables. (Top right) Same quantile regions as distance from median. (Bottom left) The nor-
malized autocorrelation matrix from these samples with brighter regions indicating higher
correlation. (Bottom right) Several autocorrelation sequences generated using this method.
(Top left) Median autocorrelation with quantile regions



117

0 50 100 150
−500

0

500

1,000

0 50 100 150
−100

−50

0

50

100

20 40 60 80 100 120

50

100

0 50 100 150
−500

0

500

1,000

Figure A.4: Autocorrelation samples from described method, looking at real part of se-
quences. (Top left) Median autocorrelation with 0.0013, 0.228, 0.1587, 0.8413, 0.9772, and
0.9987 quantile regions, corresponding to standard deviations for Gaussian-distributed vari-
ables. (Top right) Same quantile regions as distance from median. (Bottom left) The nor-
malized autocorrelation matrix from these samples with brighter regions indicating higher
correlation. (Bottom right) Several autocorrelation sequences generated using this method.
(Top left) Median autocorrelation with quantile regions
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Figure A.5: Autocorrelation samples from described method, looking at imaginary part of
sequences. (Top left) Median autocorrelation with 0.0013, 0.228, 0.1587, 0.8413, 0.9772, and
0.9987 quantile regions, corresponding to standard deviations for Gaussian-distributed vari-
ables. (Top right) Same quantile regions as distance from median. (Bottom left) The nor-
malized autocorrelation matrix from these samples with brighter regions indicating higher
correlation. (Bottom right) Several autocorrelation sequences generated using this method.
(Top left) Median autocorrelation with quantile regions
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APPENDIX B

Code Listings

B.1 Overview of source code

This section contains the basic MATLAB ® code used in this project. These scripts

can be used to reproduce the main results in Chapter 4. The plots used in this thesis were

derived from this code, additionally using the matlab2tikz package [47].

B.2 Main scripts

The following four MATLAB ® scripts can be used to perform ray-tracing, generate

impulse response functions, and finally evaluate fingerprinting performance. They require

file reading/writing access and MATLAB ® GPU functions, though it would not be difficult

to modify them to remove dependence on these GPU functions if needed.

script genSantFloor.m

% script - genSantFloor

% generates the .mat file that is used to create the WallSet

used

% elsewhere in this code

% requires:

%

% outputs:

% wallSet.mat file , containing u0, and u1 variables

%

u0 = [...

40.5, 16.5;

40.5, 26.5;

7, 26.5;

7, 18.5;

38, 16.5;

42, 16.5;

42, 10;

38, 10;
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38.5, 10;

38.5, 8;

39, 8;

39, 4.5;

35.5, 0;

2, 0;

2, 8;

35.5, 8;

0, 10;

4.5, 10;

4.5, 16.5;

0, 16.5;

4, 16.5;

3.5, 22.5;

6.5, 16;

6.5, 10.5;

36, 10.5;

36, 16;

22, 16;

26.5, 16;

31, 16;

4, 18.5;

3.5, 18.5;

15.5, 0];

u1 = [...

40.5, 26.5

7, 26.5

7, 18.5

40.5, 18.5

42, 16.5

42, 10

38, 10

38, 16.5

38.5, 8

39, 8

39, 4.50

35.5, 4.50

2, 0

2, 10

35.5, 8

35.5, 0

4.5, 10

4.5, 16.5

0, 16.5

0, 10
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4, 18.5

7, 22.5

6.5, 10.5

36, 10.5

36, 16

6.5, 16

22, 10.5

26.5, 10.5

31, 10.5

3.5, 18.5

3.5, 22.5

15.5, 8];

save('wallSet_santFloor.mat','u0','u1');

script rayHost multi.m

% script - rayHost_multi

% performs raytracing simulation to produce sets of paths

through which

% propogation occurs between a set of transmitter locations

(sx) and a

% grid of receiver locations (specified by rgrid)

%

% requires:

% wallSet.mat file , containing u0, and u1 variables (

produced by

% script_genSantFloor.mat)

%

% outputs:

% K pathRecs files , where K is the number of transmitter

locations

%

clearvars; % close all;

%% set up ray tracing parameters

N_rays = 2^11; % number of initial rays

N_trans = 8; % max number of ray interactions

r_seed = 0; % rng seed (used for minor random grid

perturbation)

base_tag = 'sant_mglass '; % save file name

save_dir = 'prop_data/'; % data save directory



121

rgrid.r0 =[0 0]; % bottom left of receiver grid

rgrid.r1=[42 26.5]; % top right of receiver grid

rgrid.divisions_per_m_0 = 4; % receivers per meter in x

direction

rgrid.divisions_per_m_1 = 4; % receivers per meter in y

direction

% list of transmitter locations

% sx =[8.19 1.16;

% 2.46 18.21;

% 14.9 6.71;

% 34.1 15.3;

% 15.4 15.9;

% 18.1 4.1];

sx =[8.62 3.62;

25.62 3.37;

10.12 9.37;

2.12 13.38;

14.38 13.38;

21.62 9.37;

5.12 20.88;

4.12 1.12];

rx_radius = 0.24; % simulated reciever radius (meters)

rx_max = 1000; % maximum paths per receiver

p_loss = 1; % amplitude path loss rate (1 in free space)

rx_pos_noise = 0.1; % stdev of position error (as a fraction

of grid spacing)

load 'wallSet_santFloor.mat'; % load wall data

% load in p and s polarization wall profiles

[rws , rwp , tws , twp , theta_in] = fresnel_slab (1.0, 6.9);

% [rws , rwp , tws , twp , theta_in] = fresnel_slab (1.0, 60.0);

rw = 0.8* rws.';
tw = tws.';

%% display wall profile

figure; plot (1: size(rw),rw ,1: size(tw),tw);

title('reflection/transmission wall profile ');
legend ({'reflection ','transmission '});
xlabel('angle in degrees ');
ylabel('coefficient value ');
grid on;

%% initialize parameters
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rng(r_seed); % set random seed

K = size(sx ,1);

tag = ['s' num2str(K) '_' base_tag '_' num2str(rgrid.

divisions_per_m_0) 'im_' ...

num2str(log2(N_rays)) 'N' num2str(N_trans)];

walls = WallSet(u0 ,u1);

figure; plot(sx(:,1), sx(:,2), 'k+')
hold on; walls.plot();

%% set up receiver grid

rgrid.dim0 = floor(( rgrid.r1(1)-rgrid.r0(1))*rgrid.

divisions_per_m_0) - 1; % rgrid.dim0 =3*2^6; % number of

receivers per horiz. line

rgrid.dim1 = floor(( rgrid.r1(2)-rgrid.r0(2))*rgrid.

divisions_per_m_1) - 1; % rgrid.dim1 =2^7; % number of

recievers per vert. line

rgrid.dr = 1./[ rgrid.divisions_per_m_0 rgrid.divisions_per_m_1

]; % grid spacing

rgrid.rg0 = ((0: rgrid.dim0 -1) +0.5)*rgrid.dr(1); rgrid.rg1 =

((0: rgrid.dim1 -1) +0.5)*rgrid.dr(2);

rgrid.rg0_full=repmat(rgrid.rg0 ,[rgrid.dim1 1]); rgrid.

rg0_full=rgrid.rg0_full (:);

rgrid.rg1_full = repmat(rgrid.rg1.',[rgrid.dim0 1]);

dim = rgrid.dim0*rgrid.dim1;

rx = [rgrid.rg0_full rgrid.rg1_full ];

rx = rx + rx_pos_noise*rgrid.dr.* randn(size(rx));

% Set up folder for saving

mkdir(save_dir ,tag);

for k=1:K

%% Perform ray propogation

disp(['Performing Ray Propogation ' num2str(k) '/' num2str

(K)]);

tic;

rs = RaySet(sx(k,:),N_rays ,N_rays *(2^( N_trans +1)),N_trans)

;

for t=1: N_trans +1

rs=rs.propogate(walls , rw , tw);

end

toc;
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%% Get receive structure

disp('Calculating receives ...');
tic;

recs = rs.receive2D(rx ,rx_radius ,rx_max ,p_loss);

[del_spread , rms_del_spread] = recs2delSpd(recs);

toc;

figure; imagesc(rgrid.rg0 ,rgrid.rg1 ,reshape(recs.p,rgrid.

dim1 ,rgrid.dim0)); title(['receive count map ' num2str(

k)]);

hold on; walls.plot(); colorbar;

% figure; imagesc(rgrid.rg0 ,rgrid.rg1 ,reshape(del_spread ,

rgrid.dim1 ,rgrid.dim0)); title(['delay spread ' num2str(k)])

;

% hold on; walls.plot(); colorbar;

figure; imagesc(rgrid.rg0 ,rgrid.rg1 ,reshape(rms_del_spread

,rgrid.dim1 ,rgrid.dim0)); title (['delay spread rms'
num2str(k)]);

hold on; walls.plot(); colorbar;

% figure; imagesc(rgrid.rg0 ,rgrid.rg1 ,reshape (1./(

rms_del_spread),rgrid.dim1 ,rgrid.dim0)); title(['coh bw '
num2str(k)]);

% hold on; walls.plot(); colorbar;

save_name = [save_dir tag '/' 'pathRecs_ ' tag '_' num2str(

k) '.mat'];
save(save_name ,'recs ','rx','sx','del_spread ','rgrid ','-v7

.3');

end

script multiRecs2H.m

% script multiRecs2H

% converts sets of paths (made of delays and amplitudes) to

transfer

% functions (H) and autocorrelation functions (R). Produces

two sets , one

% for varying bandwidth/sampling -frequency (dfs) and the

other for
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% varying center frequency (dfc).

%

% requires:

% pathRecs file for each transmitter location to test (

produced by

% script_rayHost_multi.m)

%

% outputs:

% M*K pathHR_dfs files , where M is the number of frequency

configurations

% for dfs , and K is the initial number of transmitters

% M*K pathHR_dfc files , where M is the number of frequency

configurations

% for dfc , and K is the initial number of transmitters

%

clearvars; % close all;

load_dir = 'prop_data/'; % data load directory

save_dir = 'prop_data/'; % data save directory

% tag corresponding to desired dataset

tag = 's8_sant_mglass_4im_11N8 ';
% tag = 's8_sant_mglass_1im_9N4 ';

% Go to subfolder for tag

load_dir = [load_dir tag '/'];
save_dir = [save_dir tag '/'];

% Load one file to get configuration variables

load([ load_dir 'pathRecs_ ' tag '_1' '.mat']);
S = size(sx ,1);

%% convert raw receiver delays/gains into transfer functions/

autocorrs

% Varying fs datatset

fc = 900e6; %400e6 900e6 2.4e9 5.0e9 %

fs = [5e5 1e6 2e6 4e6 8e6 16e6 32e6 64e6 128e6]; %

L_ac = fs *0+128;%max(16,ceil(fs*1e-6)); % length of ac

rel_bw =0.5;

M = length(fc);

N = length(fs);

[m, n] = meshgrid (1:M,1:N);
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m = m(:).'; n = n(:).';
fc_full = repmat(fc(m), [1 S]);

fs_full = repmat(fs(n), [1 S]);

L_ac_full = repmat(L_ac(n), [1 S]);

MN = M*N;

s_full = sort(repmat (1:S, [1 MN]));

for s=1:S

disp('Loading receive data ');
load([ load_dir 'pathRecs_ ' tag '_' num2str(s) '.mat']);

for m=1:MN

disp(['Generating transfer functions and autocorrelations

... ' num2str(s) '/' num2str(S)]);

disp(['Generating ... ' num2str(m) '/' num2str(MN)]);

t_start=tic;

[H, R, R2] = recs2h(recs , L_ac_full(m), fc_full(m),

fs_full(m), rel_bw);

save([ save_dir 'pathHR_ ' tag '_dfs_ ' num2str(m + (s-1)*MN)

'.mat'],...
'sx','rx', 'L_ac_full ','fc_full ','fs_full ','s_full ','

L_ac ',...,
'fc','fs','H','R','R2','rgrid ','-v7.3');

toc(t_start);

end

end

% varying fc dataset

fc = [100e6 400e6 900e6 1.2e9 2.4e9 5.0e9]; %

fs = [8e6 16e6 32e6]; %

L_ac = fs *0+128;%max(16,ceil(fs*1e-6)); % length of ac

rel_bw =0.5;

M = length(fc);

N = length(fs);

[m, n] = meshgrid (1:M,1:N);

m = m(:).'; n = n(:).';
fc_full = repmat(fc(m), [1 S]);

fs_full = repmat(fs(n), [1 S]);

L_ac_full = repmat(L_ac(n), [1 S]);

MN = M*N;
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s_full = sort(repmat (1:S, [1 MN]));

for s=1:S

disp('Loading receive data ');
load([ load_dir 'pathRecs_ ' tag '_' num2str(s) '.mat']);

for m=1:MN

disp(['Generating transfer functions and autocorrelations

... ' num2str(s) '/' num2str(S)]);

disp(['Generating ... ' num2str(m) '/' num2str(MN)]);

t_start=tic;

[H, R, R2] = recs2h(recs , L_ac_full(m), fc_full(m),

fs_full(m), rel_bw);

save([ save_dir 'pathHR_ ' tag '_dfc_ ' num2str(m + (s-1)*MN)

'.mat'],...
'sx','rx', 'L_ac_full ','fc_full ','fs_full ','s_full ','

L_ac ',...,
'fc','fs','H','R','R2','rgrid ','-v7.3');

toc(t_start);

end

end

disp('... finished ');

script eval HR.m

% script - eval_HR

% evaluates performance of fingerprinting algorithms with

different

% parameters and conditions , and produces summary plots.

%

% requires:

% M*K pathHR_dfs files , where M is the number of frequency

configurations

% for dfs , and K is the initial number of transmitters (

produced by

% script_multiRecs2H)

% M*K pathHR_dfc files , where M is the number of frequency

configurations
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% for dfc , and K is the initial number of transmitters (

produced by

% script_multiRecs2H)

%

% outputs:

% plots summarizing performance of channel fingerprinting

%

clearvars; % close all;

load_dir = 'prop_data/'; % data load directory

save_dir = 'prop_data/'; % data save directory

r_seed = 0; % rng seed (used for simulated estimation/noise

effects)

% tag corresponding to desired dataset

tag = 's8_sant_mglass_4im_11N8 ';
% tag = 's8_sant_mglass_1im_9N4 ';

% Go to subfolder for tag

load_dir = [load_dir tag '/'];
save_dir = [save_dir tag '/'];

% Load first data for parameters

load([ load_dir 'pathHR_ ' tag '_dfs_1.mat']);
S = size(sx ,1);

MN = length(fs_full)/S;

% apply seed

rng(r_seed);

% create default train/test grids

d1m =(0:4: rgrid.dim0 -1);

d2m =(0:4: rgrid.dim1 -1);

d1t =(1:2: rgrid.dim0 -1);

d2t =(1:2: rgrid.dim1 -1);

idx_m= 1+d1m*rgrid.dim1 + d2m.';
idx_t= 1+d1t*rgrid.dim1 + d2t.';
idx_m=idx_m (:); idx_t=idx_t (:);

if any(idx_m == idx_t.','all'), error('Testing on map data ');
end

% create large train/test grid

d1m_l =(0:2: rgrid.dim0 -1);
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d2m_l =(0:2: rgrid.dim1 -1);

idx_ml= 1+ d1m_l*rgrid.dim1 + d2m_l.';
idx_ml=idx_ml (:);

if any(idx_ml == idx_t.','all'), error('Testing on map data ');
end

% create small train/test grid

d1m_s =(0:8: rgrid.dim0 -1);

d2m_s =(0:8: rgrid.dim1 -1);

idx_ms= 1+ d1m_s*rgrid.dim1 + d2m_s.';
idx_ms=idx_ms (:);

if any(idx_ms == idx_t.','all'), error('Testing on map data ');
end

% prepare variables with grids

rm = rx(idx_m ,:);

rt = rx(idx_t ,:);

rm_l = rx(idx_ml ,:);

rm_s = rx(idx_ms ,:);

dt2 = ((rt(:,1) - rm(:,1).').^2 + (rt(:,2) - rm(:,2).').^2).';
dlt2 = ((rt(:,1) - rm_l (:,1).').^2 + (rt(:,2) - rm_l (:,2).')

.^2).';
dst2 = ((rt(:,1) - rm_s (:,1).').^2 + (rt(:,2) - rm_s (:,2).')

.^2).';

load 'wallSet_santFloor.mat';
walls = WallSet(u0 ,u1);

% plot grid information

figure; subplot (311); plot(rx(:,1),rx(:,2),'g.',rm(:,1),rm
(:,2),'.',rt(:,1),rt(:,2),'.');

hold on; walls.plot(); grid on;

legend ({'unused grid position ', 'reference measurement ', '
test/eval measurement '});

title('normal grid ');
% xlim([min(rx(:,1)) max(rx(:,1))]); ylim([min(rx(:,2)) max(rx

(:,2))]);

subplot (312); plot(rx(:,1),rx(:,2),'g.',rm_l (:,1),rm_l (:,2),'.
',rt(:,1),rt(:,2),'.');

hold on; walls.plot(); grid on;

title('double -size grid ');
% xlim([min(rx(:,1)) max(rx(:,1))]); ylim([min(rx(:,2)) max(rx

(:,2))]);

subplot (313); plot(rx(:,1),rx(:,2),'g.',rm_s (:,1),rm_s (:,2),'.
',rt(:,1),rt(:,2),'.');
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hold on; walls.plot(); grid on;

title('half -size grid ');
% xlim([min(rx(:,1)) max(rx(:,1))]); ylim([min(rx(:,2)) max(rx

(:,2))]);

% display predicted grid spacing

grid_distm = max(median(diff(rm)));

grid_distt = max(median(diff(rt)));

grid_distm_l = max(median(diff(rm_l)));

grid_distm_s = max(median(diff(rm_s)));

disp([ grid_distm; grid_distt; grid_distm_l; grid_distm_s ])

% define some utility functions

split_complex = @(R) [real(R) imag(R)];

index_f2 = @(x, idx1 , idx2) x(idx1 ,idx2);

apply_pulse_shape = @(r2,w,L) index_f2(conv(w, r2) ,1:size(r2

,1),floor((size(r2 ,2)+length(w))/2) +(1:L));

clear H R R2;

t_start = tic;

[proto_err , ~] = l2fp_eval(rm,rm,rt,rt,dt2);

err_l2(MN ,S) = proto_err;

err_gp(MN ,S) = proto_err;

err_m2(MN ,S) = proto_err;

err_wn(MN ,S) = proto_err;

H_err_gp(MN,S) = proto_err;

Hna_err_gp(MN,S) = proto_err;

fft_err_gp(MN,S) = proto_err;

na_err_gp(MN,S) = proto_err;

lg_err_gp(MN,S) = proto_err;

sg_err_gp(MN,S) = proto_err;

wg_err_gp(MN,S) = proto_err;

ws_err_gp(MN,S) = proto_err;

T=4;

nse_err_gp = cell(T,1);

nse_pmf_gp = cell(T,1);

for t=1:T

nse_err_gp{t}(MN,S) = proto_err;

end

for s=1:S

for m=1:MN

disp(['Loading data ... ' num2str(m+(s-1)*MN) '/'
num2str(MN*S)]);
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load([ load_dir 'pathHR_ ' tag '_dfs_ ' num2str(m+(s-1)*

MN) '.mat']);

Rx_na = R{1}./ vecnorm(R{1},2,2);

Rx_na = Rx_na (:,1:min(size(Rx_na ,2) ,128));

L = size(Rx_na ,2);

Rx_na = (1:-1/L:1/L).*Rx_na;

Rx = abs(Rx_na);

Hx_na = H{1}./ vecnorm(H{1},2,2);

Hx_na = Hx_na (:,1:min(size(Hx_na ,2) ,128));

Hx = abs(Hx_na);

Rt = Rx(idx_t ,:);

Rm = Rx(idx_m ,:);

disp(['evaluating performance ... ' num2str(m+(s-1)*MN)

'/' num2str(MN*S)]);

%% base

tic;

[err_l2(m,s), pmf_l2] = l2fp_eval(Rm,rm,Rt,rm,dt2);

[err_gp(m,s), pmf_gp] = gpfp_eval(Rm,rm,Rt,rm,dt2);

% gp eval for different grid size (x3)

Rm_l = Rx(idx_ml ,:);

Rm_s = Rx(idx_ms ,:);

[lg_err_gp(m,s), lg_pmf_gp] = gpfp_eval(Rm_l ,rm_l ,Rt,

rm ,dt2);

[sg_err_gp(m,s), sg_pmf_gp] = gpfp_eval(Rm_s ,rm_s ,Rt,

rm ,dt2);

% gp eval for H

Ht = Hx(idx_t ,:);

Hm = Hx(idx_m ,:);

[H_err_gp(m,s), H_pmf_gp] = gpfp_eval(Hm,rm,Ht,rm,dt2)

;

% gp eval for fft R

Rm_fft = abs(fft(Rx_na(idx_m ,:).')).';
Rt_fft = abs(fft(Rx_na(idx_t ,:).')).';
[fft_err_gp(m,s) ,fft_pmf_gp] = gpfp_eval(Rm_fft ,rm,

Rt_fft ,rm ,dt2);
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% gp eval for non -abs R

Rm_na = split_complex(Rx_na(idx_m ,:));

Rt_na = split_complex(Rx_na(idx_t ,:));

[na_err_gp(m,s) ,nabs_pmf_gp] = gpfp_eval(Rm_na ,rm,

Rt_na ,rm ,dt2);

% gp eval for non -abs H

Ht_na = split_complex(Hx_na(idx_t ,:));

Hm_na = split_complex(Hx_na(idx_m ,:));

[Hna_err_gp(m,s), H_pmf_gp] = gpfp_eval(Hm_na ,rm,Ht_na

,rm ,dt2);

% gp eval for noisy/low sample -rate (x4?)

H_mag = vecnorm(H{1},2,2);

H_mdn = 10* log10(median(H_mag));

N_t = [200000 200000 2000000 2000000];

snr_t = [20 40 20 40];

L = size(R{1},2);

for t=1:T

R_nse = R{1};

for k=1: size(Hx ,1), R_nse(k,:) = (1:-1/L:1/L).*

R_sim_noise(H{1}(k,:), snr_t(t)-H_mdn , N_t(t),

L); end

Rt_nse = R_nse(idx_t ,:); Rt_nse=abs(Rt_nse)./

vecnorm(Rt_nse ,2,2);

Rm_nse = R_nse(idx_m ,:); Rm_nse=abs(Rm_nse)./

vecnorm(Rm_nse ,2,2);

[nse_err_gp{t}(m,s), nse_pmf_gp{t}] = gpfp_eval(

Rm_nse ,rm ,Rt_nse ,rm ,dt2);

end

% gp eval for mismatched AC (x4?)

Rt2 = R2{1}( idx_t ,:);

x = -16:16;

rbw = 0.45;

w_gauss = exp ( -0.5*(x.^2)/(rbw)^2);

w_srrc = srrc_ac (1e-8+x,1/rbw ,0.25);

L = size(Rx ,2);

Rt_wg = zeros(size(Rt));

for k=1: size(Rt2 ,1), Rt_wg(k,:) = apply_pulse_shape(

Rt2(k,:),w_gauss ,L); end

Rt_wg=abs(Rt_wg)./ vecnorm(Rt_wg ,2,2);

[wg_err_gp(m,s), wg_pmf_gp] = gpfp_eval(Rm,rm,Rt_wg ,rm

,dt2);
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Rt_ws = zeros(size(Rt));

for k=1: size(Rt2 ,1), Rt_ws(k,:) = apply_pulse_shape(

Rt2(k,:),w_srrc ,L); end

Rt_ws=abs(Rt_ws)./ vecnorm(Rt_ws ,2,2);

[ws_err_gp(m,s), ws_pmf_gp] = gpfp_eval(Rm,rm,Rt_ws ,rm

,dt2);

toc;

end

end

toc(t_start);

%% Load and process data for varying fc

% Load first data for parameters

fs0 = fs;

fs_full0 = fs_full;

load([ load_dir 'pathHR_ ' tag '_dfc_1.mat']);
S = size(sx ,1);

MN = length(fs_full)/S;

fc_err_gp(MN,S) = proto_err;

% loop over center frequencies

for s=1:S

for m=1:MN

disp(['Loading data ... ' num2str(m+(s-1)*MN) '/'
num2str(MN*S)]);

load([ load_dir 'pathHR_ ' tag '_dfc_ ' num2str(m+(s-1)*

MN) '.mat']);

Rx_na = R{1}./ vecnorm(R{1},2,2);

Rx = abs(Rx_na);

Rt = Rx(idx_t ,:);

Rm = Rx(idx_m ,:);

[fc_err_gp(m,s), pmf_gp] = gpfp_eval(Rm,rm,Rt,rm,dt2);

end

end

toc(t_start);

% store parameters for varied fc plot

dfc.fs = fs;
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dfc.fc = fc;

dfc.fs_full = fs_full;

dfc.fc_full = fc_full;

fs_full = fs_full0;

%% Plots

p_base1 = sum(dt2 <1^2,'all')/numel(dt2);
p_base5 = sum(dt2 <5^2,'all')/numel(dt2);
err_base = eval_err ([],dt2);

fsp = @(err , c) plot(log2(fs0*1e-6) -1, err , [c ' x']);
fsl = @(val , c) plot(log2(fs0*1e-6) -1, fs0*0+val , [c]);

fspm = @(err ,c) plot(log2(fs0*1e-6) -1, median(err ,2), [c '-'])
;

fcl = @(val , c) plot(log2(fc*1e-6) -1, fc*0+val , [c]);

fcp = @(err , c) plot(log2(fc*1e-6) -1, err , [c ' x']);
fcpm = @(err ,c) plot(log2(fc*1e-6) -1, median(err ,2), [c '-']);
f2m = @( structname , fld) field2mat(structname , fld);

%% final research plots

wallFig = figure; hold on;

txplt=plot(rm(:,1),rm(:,2),'+',rt(:,1),rt(:,2),'x');
% plot(rx(:,1),rx(:,2) ,'g.',rm(:,1),rm(:,2) ,'.',rt(:,1),rt

(:,2) ,'.');
% plot(rx(:,1),rx(:,2) ,'g.',rm_l (:,1),rm_l (:,2) ,'.',rt(:,1),rt

(:,2) ,'.');
% plot(rx(:,1),rx(:,2) ,'g.',rm_s (:,1),rm_s (:,2) ,'.',rt(:,1),rt

(:,2) ,'.');
rxplt=plot(sx(:,1), sx(:,2), 'ko'); walls.plot();

legend ([ txplt; rxplt],{'reference location ', 'test location ',
'receiver location '});

xlim([min(rx(:,1)) max(rx(:,1))]); ylim([min(rx(:,2)) max(rx

(:,2))]);

figure; subplot (121);

pl0=fsl(err_base.p15 ,'k--'); hold on;

e=f2m(err_gp ,'p15'); c='b'; fsp(e,c); pl1=fspm(e,c);

e=f2m(err_l2 ,'p15'); c='r'; fsp(e,c); pl2=fspm(e,c);

grid on; xlabel('bandwidth (2^x MHz)'); ylabel('proportion
with less than 1.5m error ');

legend ([pl0 ,pl1 ,pl2],{'baseline ', 'gaussian process ', 'L_2 1-

nearest neighbor '});
subplot (122);

pl0=fsl(err_base.p25 ,'k--'); hold on;
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e=f2m(err_gp ,'p25'); c='b'; fsp(e,c); pl1=fspm(e,c);

e=f2m(err_l2 ,'p25'); c='r'; fsp(e,c); pl2=fspm(e,c);

grid on; xlabel('bandwidth (2^x MHz)'); ylabel('proportion
with less than 2.5m error ');

% legend ([pl0 ,pl1 ,pl2],{'baseline ', 'gaussian process ', 'L_2
1-nearest neighbor '});

figure; subplot (121);

pl0=fsl(err_base.p15 ,'k--'); hold on;

e=f2m(err_gp ,'p15'); c='b'; fsp(e,c); pl1=fspm(e,c);

e=f2m(H_err_gp ,'p15'); c='r'; fsp(e,c); pl2=fspm(e,c);

grid on; xlabel('bandwidth (2^x MHz)'); ylabel('proportion
with less than 1.5m error ');

legend ([pl0 ,pl1 ,pl2],{'baseline ','autocorrelation ','impulse
response '});

subplot (122);

pl0=fsl(err_base.p25 ,'k--'); hold on;

e=f2m(err_gp ,'p25'); c='b'; fsp(e,c); pl1=fspm(e,c);

e=f2m(H_err_gp ,'p25'); c='r'; fsp(e,c); pl2=fspm(e,c);

grid on; xlabel('bandwidth (2^x MHz)'); ylabel('proportion
with less than 2.5m error ');

% legend ([pl0 ,pl1 ,pl2],{'baseline ','autocorrelation ','impulse
response '});

figure; subplot (121);

pl0=fsl(err_base.p15 ,'k--'); hold on;

e=f2m(sg_err_gp ,'p15'); c='g'; fsp(e,c); pl1=fspm(e,c);

e=f2m(err_gp ,'p15'); c='b'; fsp(e,c); pl2=fspm(e,c);

e=f2m(lg_err_gp ,'p15'); c='r'; fsp(e,c); pl3=fspm(e,c);

grid on; xlabel('bandwidth (2^x MHz)'); ylabel('proportion
with less than 1.5m error ');

legend ([pl0 ,pl1 ,pl2 ,pl3],{'baseline ', '2m ref measurement grid

',...
'1m ref measurement grid ','0.5m ref measurement grid '});

% legend ([pl0 ,pl1 ,pl2 ,pl3],{'baseline ', '2m reference

measurement grid ',...
% '1m reference measurement grid ','0.5m reference

measurement grid '});
subplot (122);

pl0=fsl(err_base.p25 ,'k--'); hold on;

e=f2m(sg_err_gp ,'p25'); c='g'; fsp(e,c); pl1=fspm(e,c);

e=f2m(err_gp ,'p25'); c='b'; fsp(e,c); pl2=fspm(e,c);

e=f2m(lg_err_gp ,'p25'); c='r'; fsp(e,c); pl3=fspm(e,c);

grid on; xlabel('bandwidth (2^x MHz)'); ylabel('proportion
with less than 2.5m error ');
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% legend ([pl0 ,pl1 ,pl2 ,pl3],{'baseline ', '2m ref measurement

grid ',...
% '1m ref measurement grid ','0.5m ref measurement grid '});
% legend ([pl0 ,pl1 ,pl2 ,pl3],{'baseline ', '2m reference

measurement grid ',...
% '1m reference measurement grid ','0.5m reference

measurement grid '});

figure; c_t = 'brgk '; subplot (121);

pl0=fsl(err_base.p15 ,'k--'); hold on;

t=1; e=f2m(nse_err_gp{t},'p15'); c=c_t(t); fsp(e,c); pl1=fspm(

e,c);

t=2; e=f2m(nse_err_gp{t},'p15'); c=c_t(t); fsp(e,c); pl2=fspm(

e,c);

t=3; e=f2m(nse_err_gp{t},'p15'); c=c_t(t); fsp(e,c); pl3=fspm(

e,c);

t=4; e=f2m(nse_err_gp{t},'p15'); c=c_t(t); fsp(e,c); pl4=fspm(

e,c);

grid on; xlabel('bandwidth (2^x MHz)'); ylabel('proportion
with less than 1.5m error ');

legend ([pl0 ,pl1 ,pl2 ,pl3 ,pl4],{'baseline ', '200k meas , 20dB SNR

',...
'200k meas 40dB SNR','2mil meas 20dB SNR','2mil meas 40dB

SNR'});
subplot (122);

pl0=fsl(err_base.p25 ,'k--'); hold on;

t=1; e=f2m(nse_err_gp{t},'p25'); c=c_t(t); fsp(e,c); pl1=fspm(

e,c);

t=2; e=f2m(nse_err_gp{t},'p25'); c=c_t(t); fsp(e,c); pl2=fspm(

e,c);

t=3; e=f2m(nse_err_gp{t},'p25'); c=c_t(t); fsp(e,c); pl3=fspm(

e,c);

t=4; e=f2m(nse_err_gp{t},'p25'); c=c_t(t); fsp(e,c); pl4=fspm(

e,c);

grid on; xlabel('bandwidth (2^x MHz)'); ylabel('proportion
with less than 2.5m error ');

% legend ([pl0 ,pl1 ,pl2 ,pl3 ,pl4],{'baseline ', '200k meas , 20dB

SNR ',...
% '200k meas 40dB SNR ','2mil meas 20dB SNR ','2mil meas 40

dB SNR '});

figure; subplot (121);

pl0=fsl(err_base.p15 ,'k--'); hold on;

e=f2m(err_gp ,'p15'); c='b'; fsp(e,c); pl1=fspm(e,c);

e=f2m(wg_err_gp ,'p15'); c='r'; fsp(e,c); pl2=fspm(e,c);

e=f2m(ws_err_gp ,'p15'); c='g'; fsp(e,c); pl3=fspm(e,c);
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grid on; xlabel('bandwidth (2^x MHz)'); ylabel('proportion
with less than 1.5m error ');

legend ([pl0 ,pl1 ,pl2 ,pl3],{'baseline ', 'ideal white noise ',...
'simple gaussian pulse ','RRC 25% excess BW'});

% 'simple gaussian pulse ','root -raised -cosine 25% excess

BW '});
subplot (122);

pl0=fsl(err_base.p25 ,'k--'); hold on;

e=f2m(err_gp ,'p25'); c='b'; fsp(e,c); pl1=fspm(e,c);

e=f2m(wg_err_gp ,'p25'); c='r'; fsp(e,c); pl2=fspm(e,c);

e=f2m(ws_err_gp ,'p25'); c='g'; fsp(e,c); pl3=fspm(e,c);

grid on; xlabel('bandwidth (2^x MHz)'); ylabel('proportion
with less than 2.5m error ');

% legend ([pl0 ,pl1 ,pl2 ,pl3],{'baseline ', 'ideal white noise

',...
% 'simple gaussian pulse ','RRC 25% excess BW '});

figure; subplot (121);

pl0=fsl(err_base.p15 ,'k--'); hold on;

e=f2m(err_gp ,'p15'); c='b'; fsp(e,c); pl1=fspm(e,c);

% e=f2m(H_err_gp ,'p15 '); c='r'; fsp(e,c); pl2=fspm(e,c);

e=f2m(na_err_gp ,'p15'); c='r'; fsp(e,c); pl3=fspm(e,c);

% e=f2m(Hna_err_gp ,'p15 '); c='c'; fsp(e,c); pl4=fspm(e,c);

e=f2m(fft_err_gp ,'p15'); c='g'; fsp(e,c); pl5=fspm(e,c);

grid on; xlabel('bandwidth (2^x MHz)'); ylabel('proportion
with less than 1.5m error ');

legend ([pl0 ,pl1 ,pl3 ,pl5],{'baseline ', 'magnitude of elements ',
...

'augmented vector ', 'spectral density '});
% legend ([pl0 ,pl1 ,pl2 ,pl3 ,pl4],{'baseline ', 'a',...
% 'b','c','d'});
subplot (122);

pl0=fsl(err_base.p25 ,'k--'); hold on;

e=f2m(err_gp ,'p25'); c='b'; fsp(e,c); pl1=fspm(e,c);

% e=f2m(H_err_gp ,'p25 '); c='r'; fsp(e,c); pl2=fspm(e,c);

e=f2m(na_err_gp ,'p25'); c='r'; fsp(e,c); pl3=fspm(e,c);

% e=f2m(Hna_err_gp ,'p25 '); c='c'; fsp(e,c); pl4=fspm(e,c);

e=f2m(fft_err_gp ,'p25'); c='g'; fsp(e,c); pl5=fspm(e,c);

grid on; xlabel('bandwidth (2^x MHz)'); ylabel('proportion
with less than 2.5m error ');

% legend ([pl0 ,pl1 ,pl3 ,pl5],{'baseline ', 'magnitude of elements

',...
% 'augmented vector ', 'spectral density '});

L_fs = length(dfc.fs);

L_fc = length(dfc.fc);
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plc = cell(L_fs ,1);

fc_err15_gp = f2m(fc_err_gp ,'p15');
fc_err25_gp = f2m(fc_err_gp ,'p25');
figure; subplot (121);

pl0=fcl(err_base.p15 ,'k--'); hold on;

for t=1:L_fs , e=reshape(fc_err15_gp(dfc.fs_full ==dfc.fs(t)),

L_fc ,[]); c=c_t(t); fcp(e,c); plc{t}=fcpm(e,c); end

grid on; xlabel('center frequency (2^x MHz)'); ylabel('
proportion with less than 1.5m error ');

legend ([pl0 ,plc{1},plc{2},plc {3}] ,{'baseline ', '4 MHz

bandwidth ',...
'8 MHz bandwidth ','16 MHz bandwidth '});

subplot (122);

pl0=fcl(err_base.p25 ,'k--'); hold on;

for t=1:L_fs , e=reshape(fc_err25_gp(dfc.fs_full ==dfc.fs(t)),

L_fc ,[]); c=c_t(t); fcp(e,c); plc{t}=fcpm(e,c); end

grid on; xlabel('center frequency (2^x MHz)'); ylabel('
proportion with less than 2.5m error ');

% legend ([pl0 ,plc{1},plc{2},plc{3}],{' baseline ', '4 MHz

bandwidth ',...
% '8 MHz bandwidth ','16 MHz bandwidth '});

disp('... finished ');
save([ save_dir 'eval_ ' tag '.mat'],'sx','rx', 'L_ac_full ','

fc_full ','fs_full ','L_ac ','fc','fs','err_l2 ','err_gp ','-v7
.3');

B.3 Supporting functions

This section contains functions that are used by the previous scripts to construct chan-

nel impulse responses, perform fingerprinting steps, and evaluate performance.

delay2h.m

% function - delay2h

% converts , set of path amplitudes and delays to transfer

function , with

% chosen sample frequency , center frequency , and bandwith

relative to

% sample frequency. Applies set number of samples to

beginning and end of

% minimum and maximum delay.

%
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% inputs:

% a: vector of path amplitudes

% t: vector of path delays in seconds

% fs: sample frequency

% optional inputs:

% fc: center frequency of involved signals (affects phase)

% rbw: relative bandwidth , channel response is band -limited

to this

% proportion. Recommended that 0.01 < rbw < 1.0.

%

% outputs:

% h: channel impulse response as vector

%

function h=delay2h(a,t,fs,fc,rbw)

if nargin <4, fc=0; end

if nargin <5, rbw =1; end

if isempty(t)

h = zeros (10,1);

else

d=fs*t;

h_L = max(round(d)) + 90; % 90 samples after end of

last path

n=(0:(h_L -1)) - 30; % 30 samples before first path

h=sum(sinc((n-d(:))*rbw).*a(:).*exp(-2j*pi*fc*d(:)/3e8

) ,1).';

end

end

eval err.m

% function - eval_err

% eval

%

% inputs:

% pmf: probability mass function for probability of position

(rows) from

% data vs true position (columns)

% dmt2: distance between test position (rows) and true

position (columns)

%

% outputs:
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% err: struct containing error values for a variety of

different metrics:

% md: median estimated -position -to-true -position distance

% d2: total estimated -position -to-true -position distance

squared

% normalized by total square distance between points

in region

% p05: proportion of estimated -position -to-true -position

distances less

% than 0.5 units

% p10: as p05 , but 1.0 units

% p15: as p15 , but 1.5 units

% p20: as p20 , but 2.0 units

% p25: as p25 , but 2.5 units

% p30: as p30 , but 3.0 units

%

function err = eval_err(pmf , dmt2)

if isempty(pmf)

err=eval_err(zeros(size(dmt2))+(1/ size(dmt2 ,1)),dmt2);

err.md = sqrt(min(median(dmt2 ,2)));

else

err.md = sum(sqrt(dmt2(pmf==max(pmf ,2))))/size(dmt2 ,1);

err.d2 = sum(dmt2.*pmf ,'all')/sum(dmt2/size(dmt2 ,1),'all')
;

err.p05 = sum(pmf(dmt2 <0.5^2) ,'all')/size(dmt2 ,2);
err.p10 = sum(pmf(dmt2 <1.0^2) ,'all')/size(dmt2 ,2);
err.p15 = sum(pmf(dmt2 <1.5^2) ,'all')/size(dmt2 ,2);
err.p20 = sum(pmf(dmt2 <2.0^2) ,'all')/size(dmt2 ,2);
err.p25 = sum(pmf(dmt2 <2.5^2) ,'all')/size(dmt2 ,2);
err.p30 = sum(pmf(dmt2 <3.0^2) ,'all')/size(dmt2 ,2);

end

end

field2mat.m

% function - field2mat

% extracts a particular field from a vector of structs to a

vector

%

% inputs:

% structArray: a vector of structs

% field: name of field to extract form structArray

%

% outputs:
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% mat: vector of values extracted from given field of

structArray

%

function mat = field2mat(structArray , field)

mat = zeros(size(structArray));

for k=1: numel(structArray), mat(k)=structArray(k).( field)

(1);

end

fresnel lossless.m

% function - fresnel_lossless

% Generates reflection and transmission coefficients for an

interface of

% between two lossless dialectric materials.

%

% inputs:

% mu: a tuple containing relative magnetic permeabilitiy

(1.0 in many

% materials) with the first value as the input media ,

and the second

% as the output media

% ep: a tuple containing relative electric permittivity (1.0

for air ,

% higher number for many materials) with the first value

as the input

% media , and the second as the output media

% theta_in: a vector of input angles (in radians) for which

the

% reflection and transmission coefficients should

be calculated

%

% outputs:

% rs: s or perpendicular polarized reflection coefficients

% rp: p or parallel polarized reflection coefficients

% ts: s or perpendicular polarized transmission coefficients

% tp: p or parallel polarized transmission coefficients

% theta_in: angle of incidence associated with each value in

rs/rp/ts/tp

% theta_tr: angle of incidence associated with leaving the

interface

% R: reflectance with fields s and p for the corresponding

polarization
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% T: transmittance with fields s and p for the corresponding

polarization

%

function [rs, rp, ts, tp, theta_in , theta_tr , R, T] =

fresnel_lossless(mu , ep , theta_in)

if nargin <3, theta_in = linspace(0,pi/2, 90); end

if nargin ==0, test_fresnel (); return; end

w = 1; % included in formula , but does not have effect when

lossless

mu0 = 4e-7*pi;

ep0 = 8.854e-12;

% use relative permeability/permittivity

mu = mu*mu0;

ep = ep*ep0;

eta = sqrt(mu./ep);

beta = w*sqrt(mu.*ep);

% calculate transmitted angle

theta_tr = asin((beta (1)/beta (2))*sin(theta_in));

% fresnel equations (lossless)

rs = (eta (2)*cos(theta_in)-eta (1)*cos(theta_tr))...

./( eta (2)*cos(theta_in)+eta(1)*cos(theta_tr));

rp = (-eta (1)*cos(theta_in)+eta (2)*cos(theta_tr))...

./( eta (1)*cos(theta_in)+eta(2)*cos(theta_tr));

ts = (2* eta (2)*cos(theta_in))./( eta (2)*cos(theta_in)+eta (1)*

cos(theta_tr));

tp = (2* eta (2)*cos(theta_in))./( eta (1)*cos(theta_in)+eta (2)*

cos(theta_tr));

% correct for totat -internal -reflection

tir = abs(imag(theta_tr)) >0;

ts(tir) = 0; tp(tir) = 0;

rs(tir) = 1; rp(tir) = -1;

% create reflectance and transmittance

t2T = (eta(1)*cos(theta_tr)./(eta(2).*cos(theta_in)));

R.s = real(rs).^2; R.p = real(rp).^2;

T.s = t2T.*real(ts).^2; T.p = t2T.*real(tp).^2;

end
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fresnel slab.m

% function - fresnel_slab

% Generates reflection and transmission coefficients for a

slab of

% lossless dialectric material with up to several internal

reflections ,

% and in air.

%

% inputs:

% mu: relative magnetic permeabilitiy (1.0 in many materials

)

% ep: relative electric permittivity (1.0 for air , higher

number for many

% materials)

%

% outputs:

% rs: s or perpendicular polarized reflection coefficients

% rp: p or parallel polarized reflection coefficients

% ts: s or perpendicular polarized transmission coefficients

% tp: p or parallel polarized transmission coefficients

% theta_in: angle of incidence associated with each value in

rs/rp/ts/tp

% theta_tr: angle of incidence associated with leaving the

slab , should

% match theta_in

%

%

function [rs, rp, ts, tp, theta_in , theta_tr] = fresnel_slab(

mu, ep)

if nargin ==0, test_fresnel_slab (); mu=1;ep=1; end

[rs1 , rp1 , ts1 , tp1 , theta_in , theta_tr1] =

fresnel_lossless ([1 mu],[1 ep]);

[rs2 , rp2 , ts2 , tp2 , theta_in2 , theta_tr] =

fresnel_lossless ([mu 1],[ep 1], theta_tr1);

rs = rs1 + ts1.*ts2 .*( rs2);

rp = rp1 + tp1.*tp2 .*( rp2);

ts = ts1.*ts2 .*(1 + rs2 .^2 + rs2 .^4 + rs2 .^6);

tp = tp1.*tp2 .*(1 + rp2 .^2 + rp2 .^4 + rs2 .^6);

end
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function test_fresnel_slab ()

% test with a glass slab

mu = 1.0;

ep = 1.5^2;

[rs1 , rp1 , ts1 , tp1 , theta_in , theta_tr1] =

fresnel_lossless ([1 mu],[1 ep]);

[rs2 , rp2 , ts2 , tp2 , theta_in2 , theta_tr] =

fresnel_lossless ([mu 1],[ep 1], theta_tr1);

[rs , rp , ts , tp , theta_in , theta_tr] = fresnel_slab(mu, ep

);

% plot results

fresnel_plot(theta_in , rs1 , rp1 , ts1 , tp1);

fresnel_plot(theta_in2 , rs2 , rp2 , ts2 , tp2);

fresnel_plot(theta_in , rs , rp , ts , tp);

end

function fresnel_plot(theta , rs, rp, ts, tp)

figure; subplot (121); plot(theta , rs , theta , rp); grid on;

xlabel('angle of incidence (radians)'); xlim([0,pi/2]);

ylabel('reflection/transmission coefficient ');
subplot (122); plot(theta , ts , theta , tp); grid on;

xlabel('angle of incidence (radians)'); xlim([0,pi/2]);

end

gp mod2pmf fast.m

% function - gp_mod2pmf_fast

% Computes a normalized likelihood associated between a set

of candidate

% locations (rc) and a set of test features (Qt) using a set

of reference

% measurements/locations (Qm, qm) and Gaussian -process -model

paramters

% (mu , sig)

%

% inputs:

% Qm: matrix of reference measurement feature vectors

% rm: locations associated with measurement vectors

% Qt: matrix of test measurement feature vectors for

evaluation

% rc: candidate locations where likelihood is evaluated (not

necessarily

% associated with Qt)



144

% dmt2: pre -computed squared -distance between reference

measurement and

% test/candidate locations

%

% outputs:

% pmf: probability mass function assigned by estimation

process ,

% indicates estimated likelihood that a particular test

measurement

% (from Qt) came from a particular candidate location (

from rc)

% llh: log -likelihood , unnormalize log -likelihood used to

generate pmf

% m_cmap: mean of Gaussian posterior distributions used for

estimation

% sig_cmap: variance of Gaussian posterior distributions

used for

% estimation

%

function [pmf , llh , mu_cmap , sig_cmap] = gp_mod2pmf_fast(Qm,

rm, Qt, rc, mu, sig)

% covariance proportion below this cutoff will be set to zero

to save computation

limit_cutoff = 0.001;

Qt = Qt - mu;

Qm = Qm - mu;

sig0 = max(sig(:,1) ,0.1*sig(:,2)); % set minimum sig0 (

avoids degenerancy)

sigk = sig(:,2);

disk = sig(:,3);

M = length(rm);

T = length(rc);

C = size(Qt, 1);

L = size(Qm, 2);

llh_tm = zeros(T, C);

d2 = ((rm(:,1) - rm(:,1).').^2 + (rm(:,2) - rm(:,2).').^2);
dt2 = ((rc(:,1) - rm(:,1).').^2 + (rc(:,2) - rm(:,2).').^2);

mu_cmap = zeros(T,L);

sig_cmap = zeros(T,L);
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for l=1:L

if abs(disk(l)) >1e-16

qml = Qm(:,l);

qtl = Qt(:,l);

% limit operations on distant points

dist_cmp_limit = disk(l)*sqrt(-2*log(limit_cutoff));

d_in_limit = (d2~=0 & d2 <( dist_cmp_limit ^2));

% create sparse map covariance

Sig_map = (sig0(l)+sigk(l))*eye(M);

Sig_map(d_in_limit) = sigk(l)*exp (( -0.5/( disk(l).^2))*

d2(d_in_limit));

% create test point vs map covariance

dt_in_limit = (dt2 ~=0 & dt2 <( dist_cmp_limit ^2));

if sum(dt_in_limit)==0, dt_in_limit = (dt2 ~=0 & dt2

<(9* dist_cmp_limit ^2)); end

if sum(dt_in_limit)==0, continue; end

Sig_tst2map = zeros(T, M);

Sig_tst2map(dt2 ==0) = (0* sig0(l)+sigk(l));

Sig_tst2map(dt_in_limit) = sigk(l)*exp (( -0.5/( disk(l)

^2))*dt2(dt_in_limit));

mu_cmap(:,l) = Sig_tst2map*cgs(Sig_map ,qml

,[],[],[],[],qml);

% mu_cmap(:,l) = Sig_tst2map *( Sig_map\qml); % non -cgs

version

pts_in_limit = sum(dt_in_limit ,2);

[max_p ,max_t] = max(pts_in_limit);

[min_p ,min_t] = min(pts_in_limit);

% calculate lowest variance and highest variance for

gp posterior

lim_t = dt_in_limit(max_t ,:); %lim_t(max_t)=1;

max_sig = sqrt(sig0(l)+sigk(l)-Sig_tst2map(max_t ,lim_t

)*cgs(Sig_map(lim_t ,lim_t),Sig_tst2map(max_t ,lim_t)

.'));

lim_t = dt_in_limit(min_t ,:); %lim_t(min_t)=1;

min_sig = sqrt(sig0(l)+sigk(l)-Sig_tst2map(min_t ,lim_t

)*cgs(Sig_map(lim_t ,lim_t),Sig_tst2map(min_t ,lim_t)

.'));
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% fit variance to candidate points based on how many

neigbhors

% point has (this saves a lot of computation time and

works well

% when reference measurements are a grid)

if max_p ~= min_p

sig_cmap(:,l) = min_sig + (pts_in_limit -min_p)*((

max_sig -min_sig)/(max_p -min_p));

else

sig_cmap(:,l) = max_sig; % special case

end

% calculate likelihood of all points using posterior

llh_tm = llh_tm - 0.5*( log (2*pi*sig_cmap(:,l)) + ((qtl

.' - mu_cmap(:,l))./ sig_cmap(:,l)).^2);

end

end

% move out of log domain and normalize to produce pmf

llh = llh_tm;

lh_tm = 1e-18+ exp(llh_tm -max(llh_tm)); pmf=lh_tm ./sum(lh_tm

,1);

end

gp modEst1f.m

% function - modEst1f

% calculates Gaussian -process -model parameters using a set

of features

% with associated positions

%

% inputs:

% Q: matrix of features

% p1: location coordinates associated with features

% either contains both coordinates , or just x-coordinate

% optional inputs:

% p2: location y-coordinate , optionally included as second

vector

%

% outputs:

% mu0: mean for Gaussian process model

% s_opt: variance parameters for Gaussian process model ,

% first column: variance associated with individual

measurement
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% second column: term associated with covariance size

based on distance

% third column: distance scale associated with covariance

%

function [mu0 , s_opt] = gp_modEst1f(Q, p1, p2)

if nargin ==2, p2=p1(:,2); p1=p1(:,1); end

K2 = 18; % Number of points used when estimating GP distance

parameter

% lmvgpdf = @(x, mu ,Sig) -0.5* length(x)*log(2*pi) -0.5* logdet

(Sig) - 0.5* ((x-mu).'*(Sig\(x-mu)));
d2 = (p1-p1.').^2 + (p2-p2.').^2;
L = size(Q, 2);

mu0 = mean(Q,1);

Q = Q - mu0;

% estimate typical distance between reference measurements

dp0 = (max(diff(sort(p1)))+max(diff(sort(p2))))/2;

% compute limits on allowed distance parameter , based on min/

max covariance

min_var_frac = 0.01;

max_var_frac = 0.99;

max_cmp_dist = 5*dp0;

min_dk = sqrt(dp0/(-2*log(min_var_frac)));

max_dk = sqrt(dp0/(-2*log(max_var_frac)));

d2vs = d2(d2 <max_cmp_dist ^2);

knl_0 = double(d2vs ==0);

s_opt = zeros(L,3);

for l=1:L

ql = Q(:,l);

cov_est = ql*ql.';
cev = cov_est(d2 <max_cmp_dist ^2);

cev0 = cov_est(d2==0);

s0sk = mean(cev0);

% create set of distances to check

dkl = exp(linspace(log(min_dk),log(max_dk),K2));

% evaluate GP models at different distance parameters
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s0 = zeros(K2 ,1);

sk = zeros(K2 ,1);

ek = zeros(K2 ,1);

for kdk = 1:K2

knl_dk = exp ( -0.5*( d2vs/dkl(kdk).^2));

sk(kdk) = max(0, (cev.'*knl_dk)/sum(knl_dk .^2));
s0(kdk) = max(0, s0sk - sk(kdk));

ek(kdk) = sum((s0(kdk)*knl_0 + sk(kdk)*knl_dk - cev).^2);

end

% identify smallest error param set

[~, kmin] = min(ek);

s0min = s0(kmin);

skmin = sk(kmin);

dklmin = dkl(kmin);

if (1<kmin && kmin <K2)

c2 = (ek(kmin -1)+ek(kmin +1))/2 - ek(kmin);

c1 = (ek(kmin +1)-ek(kmin -1))/2;

% c0 = ek(kmin);

if c2 >0

ddk = dkl(2)-dkl(1);

dklmin = dkl(kmin)-(ddk)*c1/(2*c2);

knl_dk = exp ( -0.5*( d2vs/dklmin .^2));

skmin = max(0, (cev.'*knl_dk)/sum(knl_dk .^2));
s0min = max(0, s0sk - skmin);

end

end

s_opt(l,:)=[s0min skmin dklmin ];

% This code checks that the selected model performs better

than a "null"

% model , potentially improving performance , but has

computational cost

% M = length(d2);

% Sig0 = (s0min*eye(M));

% Sigk = skmin*exp (( -0.5/( dklmin .^2))*d2);

% Sig_fin = Sig0 + Sigk;

% llh_alt = -0.5* logdet(Sig_fin) -0.5*(ql.'*( Sig_fin\ql));
%

% Sig_null = s0sk*eye(M);

% llh_null = -0.5* logdet(Sig_null) -0.5*(ql.'*( Sig_null\ql));
% if llh_null >llh_alt , s_opt(l,:) = [s0sk 0 0]; end

end
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end

gpfp eval.m

% function - gpfp_eval

% evaluates performance of fingerprinting using a

% principal -component -analysis feature , Gaussian process

approach

%

% inputs:

% Rm: matrix of reference measurement vectors

% rm: locations associated with measurement vectors

% Rt: matrix of test measurement vectors (for evaluation)

% rt: candidate locations where likelihood is evaluated

% dmt2: Pre -computed squared -distance between reference

measurement and

% test/candidate locations

%

% outputs:

% err: struct containing error values for a variety of

different metrics ,

% see eval_err for structure details

% pmf: probability mass function assigned by estimation

process ,

% indicates estimated likelihood that a particular test

measurement

% (from Rt) came from a particular test location (from

rt)

%

function [err , pmf] = gpfp_eval(Rm, rm, Rt, rt, dmt2)

[Qm , Qt] = reduce2q(Rm ,Rt ,1); % get PCA features

[mu0 , s_opt] = gp_modEst1f(Qm,rm); % estimate gp params

[pmf ,~]= gp_mod2pmf_fast(Qm,rm,Qt,rt,mu0 ,s_opt); % perform

estimation

pmf_m = 1e-64+( pmf==max(pmf ,[],2));

pmf_m = pmf_m ./sum(pmf_m ,1);

err = eval_err(pmf_m ,dmt2);

end
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l2fp eval.m

% function - l2fp_eval

% evaluates performance of fingerprinting using basic l2-

distance

% approach

%

% inputs:

% Rm: matrix of reference measurement vectors

% rm(unused): placeholder for parity with gpfp

% Rt: matrix of test measurement vectors (for evaluation)

% rt(unused): placeholder for parity with gpfp

% dmt2: pre -computed squared -distance between reference

measurement and

% test/candidate locations

%

% outputs:

% err: struct containing error values for a variety of

different metrics ,

% see eval_err for structure details

% pmf: probability mass function assigned by estimation

process ,

% indicates estimated likelihood that a particular test

measurement

% (from Rt) came from a particular test location (from

rt)

%

function [err , pmf] = l2fp_eval(Rm, rm, Rt, rt, dmt2) % map

% K = length(rm);

[Km ,~] = size(Rm);

[Kt ,~] = size(Rt);

% ensure normalized vectors

Rm = gpuArray(Rm);

Rm = abs(Rm);

Rm = Rm./ vecnorm(Rm ,2,2);

Rt = gpuArray(Rt);

Rt = abs(Rt);

Rt = Rt./ vecnorm(Rt ,2,2);

% calculate l2 distances between reference measurements and

test

% measurements
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l2mt = gpuArray(zeros(Km ,Kt));

for k1=1:Km

dif = Rm(k1 ,:) - Rt;

l2mt(k1 ,:) = sum(abs(dif).^2, 2);

end

% pmf assigns 1 to smallest distance position in rm

n0_pmf = 1e -64+( l2mt==min(l2mt ,[] ,2));

n0_pmf = n0_pmf ./sum(n0_pmf ,1);

pmf = gather(n0_pmf);

err = eval_err(pmf ,dmt2);

end

R sim noise.m

% function - R_sim_noise

% produces an autocorrelation value simulating the effects

of calculating

% the autocorrelation from a limited number of samples (N)

with additive

% noise

%

% inputs:

% h: true channel impulse response used to generate ac

functions

% snr: signal to noise ratio , specified in db,

% so sig_pow/noise_pow = 10^( snr /10)

% N: simulated number of samples used to estimate

autocorrelation (higher

% numbers will reduce variance)

% L: desired length of autocorrelation

%

% outputs:

% R: an autocorrelation vector simulating the effects of

estimation from

% a noisy signal with the given number of samples

%

function [R] = R_sim_noise(h, snr , N, L)

if nargin == 0, R = test_R_sim_noise ();

else

% set up power and scaling
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Lh = length(h);

n_pow = 10^(-snr /10);

l=(-L:L).';
m_scal0 = N-abs(l);

m_scal1 = 1./(N-abs(l)).^1;

% create source signal term

r_sig = sqrt(N^2)*(l==0) + sqrt (1+0.*(l==0)).*sqrt(m_scal0

).*( randn (2*L+1,1)+1j*randn (2*L+1,1));

r_sig = 0.5*( r_sig + flip(conj(r_sig)));

% create noise term

r_nse = sqrt(N^2)*(l==0) + sqrt (1+0.*(l==0)).*sqrt(m_scal0

).*( randn (2*L+1,1)+1j*randn (2*L+1,1));

r_nse = 0.5*( r_nse + flip(conj(r_nse)));

% create cross term

r_crs = sqrt(N)*conv(h,sqrt (0.5) *(randn(Lh+2*L+1,1)+1j*

randn(Lh+2*L+1,1)));

r_crs = r_crs(Lh:Lh+2*L);

r_crs = sqrt (0.5) *(r_crs + conj(flip(r_crs)));

% combine terms into autocorrelation

r = conv(r_sig ,conv(h(:),conj(flip(h(:)))));

r = r(length(h):length(h)+2*L) + 2*sqrt(n_pow)*r_crs +

n_pow*r_nse;

r = (r.* m_scal1);

% format result

r=r.';
R = r(1,L+2:2*L+1);

end

end

function R = test_R_sim_noise ()

K = 10000; % number of ac samples to generate

L = 64; % length of ac sample

rng(0); % repeatable seed (arbitrarily chosen)

h = filter(hamming (8) ,1,randn(L*2+1 ,1)+1j*randn(L*2+1 ,1));

% test impulse response

snr = 10; % test snr

r = zeros(K, L); ri = r;

r_ref = zeros(K, L); ri_ref = r_ref;
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% generate samples using fast and standard generation

methods

tic;

N = 4000;

for k=1:K

r(k,:) = real(R_sim_noise(h, snr , N, L));

r_ref(k,:) = real(R_sim_noise_ref(h, snr , N, L));

ri(k,:) = imag(R_sim_noise(h, snr , N, L));

ri_ref(k,:) = imag(R_sim_noise_ref(h, snr , N, L));

end

toc;

% plot summarizing images

plotAcSummary(r); title('sim_r ');
plotAcSummary(r_ref); title('ref_r ');
plotAcSummary(ri); title('sim_i ');
plotAcSummary(ri_ref); title('ref_i ');

R = [];

end

function [R] = R_sim_noise_ref(h, snr , N, L)

R = (xcorr(filter(h,1,sqrt (0.5) *(randn(1,N)+1j*randn(1,N))

) + sqrt (10^( -snr /10))*sqrt (0.5) *(randn(1,N)+1j*randn

(1,N)), L, 'unbiased '));
R = R(1,L+2:2*L+1);

end

function f = plotAcSummary(r)

Lo2 = size(r,2);

f = figure; subplot (221); hold on; grid on;

% plot quantiles with median (corresponding to integer std

.

% deviations for Gaussian random variable)

plot (1:Lo2 ,quantile(r ,0.0013));

plot (1:Lo2 ,quantile(r ,0.0228));

plot (1:Lo2 ,quantile(r ,0.1587));

plot (1:Lo2 ,quantile(r ,0.5));

plot (1:Lo2 ,quantile(r ,0.8413));

plot (1:Lo2 ,quantile(r ,0.9772));

plot (1:Lo2 ,quantile(r ,0.9987));

er = r-median(r);

subplot (222); hold on; grid on;
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% plot quantiles around median (corresponding to integer

std.

% deviations for Gaussian random variable)

plot (1:Lo2 ,quantile(er ,0.0013));

plot (1:Lo2 ,quantile(er ,0.0228));

plot (1:Lo2 ,quantile(er ,0.1587));

plot (1:Lo2 ,quantile(er ,0.5));

plot (1:Lo2 ,quantile(er ,0.8413));

plot (1:Lo2 ,quantile(er ,0.9772));

plot (1:Lo2 ,quantile(er ,0.9987));

% plot image depicting covariance structure

subplot (223); imagesc(cov(r));

% plot samples of generated functions

subplot (224); plot (1:Lo2 ,r(1:4 ,:));

end

recs2delSpd.m

% function - recs2delSpd

% calculates delay spread associated with a set of paths

according to two

% standard formulations of delay spread

%

% inputs:

% recs: a structure containing distance and gain values

associated with

% multipath channel components , produced by RaySet

receive2D

% function

%

% outputs:

% delay_spread: computed delay spread associated with the

channels

% provided

% delay_spread_rms: computed rms delay spread associated

with the

% channels provided

%

function [delay_spread , delay_spread_rms ]= recs2delSpd(recs)

% set minimum delay to zero , and setup variables
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recs.d = recs.d-min(recs.d);

N = length(recs.p);

c = 3e8;

delay_spread = zeros(N,1);

delay_spread2 = zeros(N,1);

delay_spread_rms = zeros(N,1);

% calculate delay spread and rms delay spread

for n=1:N

idx = ~isinf(recs.d(n,:));

delay_spread(n) = sum((recs.d(n,idx)/c).*abs(recs.g(n,

idx)))...

/(1e -120+ sum(abs(recs.g(n,idx))));

delay_spread2(n) = sum((recs.d(n,idx)/c).^2.* abs(recs.

g(n,idx)))...

/(1e -120+ sum(abs(recs.g(n,idx))));

delay_spread_rms(n) = sqrt(delay_spread2(n)-

delay_spread2(n)^2);

end

end

recs2h.m

% function - recs2h

% converts sets of paths (made of delays and amplitudes) to

transfer

% functions (H) and autocorrelation functions (R) at

specified center

% frequency (fc), sample frequency (fs), and relative

bandwidth (rel_bw)

%

% inputs:

% recs: a struct of paths associated with a set of receivers

with:

% g: matrix of complex gains associated with a particular

receiver and

% path

% d: matrix of distances associated with a particular

receiver and path

% L_ac: length to which output ac functions are set

% fc: center frequency for signals of interest , affects

complex phase

% fs: sample frequency for desired channel impulse responses

and

% autocorrelations



156

% rel_bw: relative bandwidth of signal relative to Nyquist.

Channel will

% be bandlimited to specified value. (set to 1.0 for

no

% additional bandlimiting)

%

% outputs:

% H: matrix of impulse responses associated with specified

receives

% R: matrix of one -sided autocorrelation functions from

receives

% R2: matrix of two -sided autocorrelation functions from

receives

%

function [H, R, R2] = recs2h(recs , L_ac , fc, fs, rel_bw)

K=size(recs.d,1);

B = max([ length(L_ac),length(fc),length(fs)]);

if(length(L_ac)==1), L_ac = repmat(L_ac ,[B 1]); end

if(length(fc)==1), fc = repmat(fc ,[B 1]); end

if(length(fs)==1), fs = repmat(fs ,[B 1]); end

h = cell(K,1);

p = cell(K,1);

H = cell(B,1);

R = cell(B,1);

R2 = cell(B,1);

L_h=zeros(K,1);

for b=1:B

disp(['Generating ... ' num2str(b) '/' num2str(B)]);

t_key = tic;

for k=1:K

[h{k}, p{k}]= recs2paths(recs , k, fc(b), fs(b), rel_bw)

;

L_h(k)=length(h{k});

end

H{b} = zeros(K,max(L_h));

R{b} = zeros(K,L_ac(b));

R2{b} = zeros(K,2* L_ac(b)+1);

for k=1:K
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% extend h to standardize length

dL = max(L_h) - length(h{k});

if dL >0

h{k}=[h{k}; zeros(dL ,1)];

end

H{b}(k,:) = h{k};

R2{b}(k, :) = xcorr(h{k},L_ac(b));

end

R{b}(:, :) = R2{b}(:, L_ac(b)+2:end);

toc(t_key);

end

end

function [h, path_set ]= recs2paths(recs , idx , fc, fs, rel_bw)

path_set.t = recs.d(idx ,:)/3e8;

path_set.a = recs.g(idx ,:);

p = recs.p(idx);

% if no paths , apply dummy path

if p==0

path_set.a = 1e-12;

path_set.t = 10;

p=1;

end

% order based on arrival time

[~,order] = sort(path_set.t);

path_set.t=path_set.t(order);

path_set.a=path_set.a(order);

% keep only first p values (prunes NANs)

path_set.t = path_set.t(1:p);

path_set.a = path_set.a(1:p);

path_set.t = (path_set.t-min(path_set.t)).';
path_set.a = path_set.a.';

% apply phase effect of path

path_set.a = path_set.a.*exp(-2j*pi*fc*path_set.t);

h = delay2h(path_set.a,path_set.t, fs, 0, rel_bw);

end
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reduce2q.m

% function - reduce2q

% converts a matrix of signal vectors into a matrix of

feature vectors

% obtained using principal -component -analysis.

%

% inputs:

% aq: matrix containing a set of vectors to convert to PCA

features

% aqb: an additional matrix to convert to features , this

matrix is not

% used in computing feature transformation

% t: a toggle for whether the input matrix should be

transposed before

% processsing , may be needed if input matrix isn 't
oriented as

% expected

%

% outputs:

% q: matrix that is featurized version of aq

% qb: matrix that is featurized version of aqb

% u: unitary matrix which extracts selected features when

applied , also

% contains vectors showing shape of features

% mu: mean removed from aq before performing PCA

%

function [q, qb, u, mu]= reduce2q(aq, aqb , t)

% ensure data is stacked right (tall vectors collected over

columns)

if nargin < 3

if size(aq ,2)<size(aq ,1), t=1;

else , t=0;

end

end

if t==1, aq = aq.'; aqb = aqb.'; end

% remove mean

mu = mean(aq ,2);

aq = aq - mu;

% identify principal components

[U, S, ~] = svd(aq);
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p = cumsum(diag(S));

M = min(find(p >0.99*p(end)));

% extract components

u = U(:,1:M).';
q = u*aq;

if nargin > 1, qb = u*(aqb -mu); % apply transform to aqb as

well

else , qb = []; end

if t==1, q = q.'; qb = qb.'; end

end

srrc ac.m

% function - srrc_ac

% produces vector containing samples of the autocorrelation

associated

% with a square -root -raised -cosine

%

% inputs:

% t: vector of sample times at which srrc ac is sampled

% w: width parameter , result is scaled widthwise by this

value (default = 1)

% alph: excess bandwidth associated with srrc , between zero

and one

%

% outputs:

% r: vector containing samples of srrc ac. Orientation will

match input t

%

% test code:

% figure; w=2; a=0.25; t=linspace (-3,3,1000); plot(t,(srrc(t

,w,a)))

%

function r = srrc_ac(t, w, alph)

r= w*(sinc(t/w).*cos(alph*pi*t/w)./(1 -(2* alph*t/w).^2) -

alph/4 * sinc(alph*t/w).*cos(pi*t/w)./(1 -( alph*t/w).^2)

);

end
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B.4 Ray-tracing classes

This section contains two classes which can be used to perform ray-tracing simula-

tion for a two-dimensional environment. Their usage can be seen in the previous script

“script rayHost multi.m”.

WallSet.m

% class - WallSet

% stores a set of wall segments describing a ray tracing

environment.

% Used in conjunction with raySet class

%

% further documentation provided throughout class

%

classdef WallSet

properties

% Convention: row = segment index , col = coordinate

index (x,y)

% Walls

u0 = []; % contains first top -down 2D vertex of all

wall segments

u1 = []; % contains first top -down 2D vertex of all

wall segments

a = []; % top -down 2D normal vector for alternative

representation

b = []; % top -down 2D offset scalar for alternative

representation

wR = []; % wall reflectivity

wT = []; % wall transmissivity

end

methods

% constructor:

% creates a WallSet using a set of line segment

start points (u0)

% and wall segment endpoints (u1)

%

function obj = WallSet(u0, u1)
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obj.u0=u0;

obj.u1=u1;

end

% getters:

% L: gives wall count

% vertexList: gives back initial line segment

endpoints

%

function L = W(obj) % wall count

L = length(obj.u0);

end

function [u0, u1] = vertexList(obj)

u0 = obj.u0;

u1 = obj.u1;

end

% function - rayIntersect

% takes in a set of ray parameters (start point x0,

direction v)

% and provides a list of collision information ,

where

% s is the ray displacement to the first

intersection ,

% w is the index of the wall first intersected , and

% a is the perpendicular vector to the wall first

intersected.

%

function [s, w, a] = rayIntersect(obj , x0, v)

x0 = gpuArray(x0);

v = gpuArray(v);

sR = zeros(length(x0),obj.W,'gpuArray ');
sW = zeros(length(x0),obj.W,'gpuArray ');

r = gpuArray(obj.u1-obj.u0);

v_perp = flip(v,2);

v_perp (:,1) = -v_perp (:,1);

r_perp = flip(r,2);

r_perp (:,1) = -r_perp (:,1);

for w = 1:obj.W

cu0=obj.u0(w,:);

cu0=gpuArray(cu0);
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den = v_perp*r(w,:).';
dif = x0 - cu0;

% calculate distance along ray

sR(:,w) = (dif*r_perp(w,:).')./den;
% calculate position on wall

sW(:,w) = (v_perp (:,1).*dif(:,1)+v_perp (:,2).*

dif(:,2))./den;

end

% remove intersections that do not fall on ray or

wall segment

sR(sW <0 | sW >1 | sR <0)=Inf;

% Identify closest intersection

[s, w] = min(sR.');

% collect and return intersection information

a = gather(r_perp(w,:)./( vecnorm(r_perp(w,:) ,2,2))

);

s = gather(s.');
w = gather(w);

end

% function - plot

% plots wall object , normally with black lines ,

unless otherwise

% specified by optional format parameter

%

function plot(obj ,fmt)

if nargin <2, fmt='k'; end

holdOn = ishold; hold on; % preserve hold status

% stack up sets of walls

plot_x=cat(2,obj.u0(:,1),obj.u1(:,1));

plot_y=cat(2,obj.u0(:,2),obj.u1(:,2));

% plot

plot(plot_x.',plot_y.',fmt);

if ~holdOn , hold off; end

end

end

end
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RaySet.m

% class - RaySet

% facilitates ray tracing simulation , stores rays and

provides functions

% for ray propogation

%

% further documentation provided throughout class

%

classdef RaySet

properties

DIM = 2; % Dimension count (2 or 3)

N = 0; % max number of rays

curN = 0; % current number of rays used

T = 0; % max number of propogations

t = 0; % current number of propogations

x0 = []; % origin of ray at each time index

v = []; % ray propogation vector at each time index

gain = []; % path gain (will be less than 1)

evts = []; % series of interaction events

t0 = []; % time index where ray was generated

tf = []; % time index when ray was terminated

end

methods

% constructor:

% initializes RaySet with a source location (sx),

initial number

% of rays (N0), max allowable number of rays (maxN),

and maximum

% number of propogation steps (maxT)

%

function obj = RaySet(sx, N0, maxN , maxT)

% initialize ray variables

obj.N = maxN;

obj.curN = N0;

obj.T = maxT;

obj.t = 1;

obj.x0 = zeros(obj.N, obj.DIM , obj.T);

obj.v = zeros(obj.N, obj.DIM , obj.T);

obj.gain = ones(obj.N, 1, obj.T);

obj.evts = zeros(obj.N, 1, obj.T);

obj.t0 = -1*ones(obj.N, 1);



164

obj.tf = obj.T*ones(obj.N, 1);

% intialize radial rays from source point

n=(1:N0) ';
obj.x0(n,:,1) = repmat(sx ,[N0 1]);

obj.t0(n,1) = ones(N0 , 1);

ang = ((0 -2*pi)*(n-1)/N0);

obj.v(n,:,1) = cat(2,cos(ang),sin(ang));

end

% function - propogate

% propogates current ray set through one additional

wall

% intersection step , requires WallSet object (walls)

, and

% reflection (R) and transmission (T) profile

vectors. Note that

% if phase is flipped on reflection , this should be

included as a

% signed value on R

%

function obj = propogate(obj , walls , R, T)

if nargin <4, R=0.5* ones (91 ,1); T=0.5* ones (91 ,1);

end

activeIdx =(obj.t0 >=0 & obj.tf >=obj.t);

cx0=(obj.x0(activeIdx ,:,obj.t));

cv=(obj.v(activeIdx ,:,obj.t));

% s is displacement , w is wall index , a is normal

vector

[s, w, a] = ...

walls.rayIntersect(cx0 ,cv);

% update rays as reflections

obj.x0(activeIdx ,:,obj.t+1) = (cx0 + (s-1e-14).*cv

);

obj.evts(activeIdx ,1,obj.t+1) = -w;

th = (cv(:,1).*a(:,1)+cv(:,2).*a(:,2));

th = max(ceil(acosd(abs(th))) ,1);

rv = (cv - 2*(cv(:,1).*a(:,1)+cv(:,2).*a(:,2)).*a)

;
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obj.v(activeIdx ,:,obj.t + 1) = rv./ vecnorm(rv ,2,2)

;

obj.gain(activeIdx ,:,obj.t + 1) = R(th).*obj.gain(

activeIdx ,:,obj.t);

obj.tf(activeIdx) = obj.t + 1;

% remove vectors leaving structure

outRays = (isnan(s) | isinf(s));

fndAct=find(activeIdx);

outIdx = fndAct(outRays);

obj.tf(outIdx) = obj.t;

activeIdx(outIdx)=0;

% create transmitted vectors

newIdx=false(size(obj.t0));

newIdx ((obj.curN +1):obj.curN+sum(activeIdx))=1;

obj.x0(newIdx ,:,1:obj.t) = obj.x0(activeIdx ,:,1:

obj.t);

obj.evts(newIdx ,:,1:obj.t) = obj.evts(activeIdx

,:,1:obj.t);

% update next vertex and event history

th = th(~ outRays);

obj.x0(newIdx ,:,obj.t+1) = (cx0(~outRays ,:) + (s(~

outRays)+1e-14).*cv(~outRays ,:));

obj.evts(newIdx ,1,obj.t+1) = w(~ outRays);

obj.v(newIdx ,:,obj.t + 1) = cv(~outRays ,:);

obj.t0(newIdx) = obj.t + 1;

obj.gain(newIdx ,:,obj.t + 1) = T(th).*obj.gain(

activeIdx ,:,obj.t);

obj.tf(newIdx) = obj.t + 1;

obj.curN=obj.curN+sum(newIdx);

% update time index

obj.t = obj.t + 1;

end

% function - receive2D
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% compares contained rays to a set of reciever

locations (rx) to

% check if they pass within a certain distance (

radius). When

% this occurs , it is considered a "received path"

and propogation

% distances and gains are stored in recs. A maxR

value sets limit

% for receives per receiver (for memory management

purposes) and

% gains are set using a specified path loss (

pathLoss)

%

function [recs] = receive2D(obj , rx, radius , maxR ,

pathLoss)

R = size(rx ,1);

recs.d=inf(R,maxR);

recs.b=zeros(R,maxR);

recs.g=( zeros(R,maxR));

recs.p=( zeros(R,1)); % path count

% rx=gpuArray(rx);

for rt=1: obj.T-1

activeIdx=sparse(obj.t0 >=0 & obj.t0 <=rt & obj.

tf >=rt+1);

cx0=(obj.x0(activeIdx ,:,rt));

cxf=(obj.x0(activeIdx ,:,rt + 1));

vd=cxf -cx0;

nvd=vecnorm(vd ,2,2);

uvd=vd./nvd;

for cr = 1:R

cx0rx = rx(cr ,:)-cx0; % get receiver

relative to ray source position

cx0nx = (uvd(:,1).*cx0rx (:,1)+uvd(:,2).*

cx0rx (:,2)).*uvd; % position of nearest

point relative to ray source

raySeg = cx0nx (:,1)./vd(:,1);

onRaySegment =(0< raySeg & raySeg <1);

nx = cx0nx +cx0;

dist=sum((nx -rx(cr ,:)).^2 ,2);

inRadius =(dist <radius);

colIdx = (inRadius & onRaySegment);
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fndAct=find(activeIdx);

colRays=fndAct(colIdx);

if ~isempty(colRays)

L = length(colRays);

cpx = (obj.x0(colRays ,:,1:rt+ 1)); %

collision path coordinates

ceh = (obj.evts(colRays ,:,1:rt)); %

collision event history

cg = (obj.gain(colRays ,:,rt)); %

collision gain

chsum = sum(ceh(:,:,:) ,3);

cd = dist(colIdx); % collision

distance

nx = nx(colIdx ,:);

% expunge paths with same history

for k=1:L

dropIdx =[];

chIdx=k+1:L;

chIdx=chIdx(chsum(k)==chsum(chIdx)

);

for l=chIdx% k+1:L

% if (chsum(k)== chsum(l))

if all(ceh(k,:,:)==ceh(l

,:,:))

if cd(l)<cd(k) % if

point l is closer ,

overwrite k

cpx(k,:,:)=cpx(l

,:,:);

ceh(k,:,:)=ceh(l

,:,:);

nx(k,:,:)=nx(l

,:,:);

cg(k,:,:)=cg(l

,:,:);

cd(k)=cd(l);

end

dropIdx =[ dropIdx l]; %

#ok<AGROW >

end

% end
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end

cpx(dropIdx ,:,:) =[];

ceh(dropIdx ,:,:) =[];

nx(dropIdx ,:,:) =[];

cg(dropIdx ,:,:) =[];

L=L-length(dropIdx);

end

if (L>maxR), error('Receive Limit

Exceeded '); end

st=recs.p(cr)+1;

recs.d(cr,st:L+st -1)=(sum(vecnorm(cpx

(:,:,2:end) - cpx(:,:,1:end -1) ,2,2)

,3));

recs.d(cr,st:L+st -1)=(recs.d(cr ,st:L+

st -1) - (vecnorm(nx-cpx(:,:,end)

,2,2)).');
recs.g(cr,st:L+st -1)=sparse ((recs.d(cr

,st:L+st -1).^(- pathLoss)));

recs.g(cr,st:L+st -1)=recs.g(cr ,st:L+st

-1) .*(cg(:,:,:).');
recs.p(cr)=recs.p(cr)+L;

end

end

end

% reduce size to minimum necessary

max_p = max(recs.p);

recs.d=recs.d(:,1: max_p);

recs.b=recs.b(:,1: max_p);

recs.g=recs.g(:,1: max_p);

end

% function - plot

% plots all rays along with a given WallSet ,

illustrating ray

% operation. Avoid using this when too many rays or

propogation

% steps are used

%

function plot(obj , walls)

holdOn = ishold; hold on; % preserve hold status
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for n=1: obj.curN

plot_x = squeeze(obj.x0(n,1,obj.t0(n):obj.tf(n

)));

plot_y = squeeze(obj.x0(n,2,obj.t0(n):obj.tf(n

)));

plot(plot_x , plot_y);

end

if nargin >=2

if ~isempty(walls), walls.plot(); end

end

if ~holdOn , hold off; end

end

end

end
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