7 research outputs found

    Développements algorithmiques pour l’amélioration des résultats de l’interférométrie RADAR en milieu urbain

    Full text link
    Le suivi des espaces urbanisés et de leurs dynamiques spatio-temporelles représente un enjeu important pour la population urbaine, autant sur le plan environnemental, économique et social. Avec le lancement des satellites portant des radars à synthèse d’ouverture de la nouvelle génération (TerraSAR-X, COSMO-SkyMed, ALOS, RADARSAT-2,Sentinel-1, Constellation RADARSAT), il est possible d’obtenir des séries temporelles d’images avec des résolutions spatiales et temporelles fines. Ces données multitemporelles aident à mieux analyser et décrire les structures urbaines et leurs variations dans l’espace et dans le temps. L’interférométrie par satellite est effectuée en comparant les phases des images RSO prises à différents passages du satellite au-dessus du même territoire. En optant pour des positions du satellite séparées d’une longue ligne de base, l’InSAR mène à la création des modèles numériques d’altitude (MNA). Si cette ligne de base est courte et à la limite nulle, nous avons le cas de l’interférométrie différentielle (DInSAR) qui mène à l’estimation du mouvement possible du terrain entre les deux acquisitions. Pour toutes les deux applications de l’InSAR, deux opérations sont importantes qui garantissent la génération des interférogrammes de qualité. La première est le filtrage du bruit omniprésent dans les phases interférométriques et la deuxième est le déroulement des phases. Ces deux opérations deviennent particulièrement complexes en milieu urbain où au bruit des phases s’ajoutent des fréquents sauts et discontinuités des phases dus à la présence des bâtiments et d’autres structures surélevées. L’objectif de cette recherche est le développement des nouveaux algorithmes de filtrage et de déroulement de phase qui puissent mieux performer que les algorithmes considérés comme référence dans ce domaine. Le but est d’arriver à générer des produits InSAR de qualité en milieu urbain. Concernant le filtrage, nous avons établi un algorithme qui est une nouvelle formulation du filtre Gaussien anisotrope adaptatif. Quant à l’algorithme de déroulement de phase, il est fondé sur la minimisation de l’énergie par un algorithme génétique ayant recours à une modélisation contextuelle du champ de phase. Différents tests ont été effectués avec des images RSO simulées et réelles qui démontrent le potentiel de nos algorithmes qui dépasse à maints égards celui des algorithmes standard. Enfin, pour atteindre le but de notre recherche, nous avons intégré nos algorithmes dans l’environnement du logiciel SNAP et appliqué l’ensemble de la procédure pour générer un MNA avec des images RADARSAT-2 de haute résolution d’un secteur de la Ville de Montréal (Canada) ainsi que des cartes des mouvements du terrain dans la région de la Ville de Mexico (Mexique) avec des images de Sentinel-1 de résolution plutôt moyenne. La comparaison des résultats obtenus avec des données provenant des sources externes de qualité a aussi démontré le fort potentiel de nos algorithmes.The monitoring of urban areas and their spatiotemporal dynamics is an important issue for the urban population, at the environmental, economic, as well as social level. With the launch of satellites carrying next-generation synthetic aperture radars (TerraSAR-X, COSMO-SkyMed, ALOS, RADARSAT-2, Sentinel-1, Constellation RADARSAT), it is possible to obtain time series of images with fine temporal and spatial resolutions. These multitemporal data help to better analyze and describe urban structures, and their variations in space and time. Satellite interferometry is performed by comparing the phases of SAR images taken at different satellite passes over the same territory. By opt-ing for satellite positions separated by a long baseline, InSAR leads to the creation of digital elevation models (DEM). If this baseline is short and, at the limit zero, we have the case of differential interferometry (DInSAR) which leads to the estimation of the possible movement of the land between the two acquisitions. In both InSAR applica-tions, two operations are important that ensure the generation of quality interferograms. The first is the filtering of ubiquitous noise in the interferometric phases and the second is the unwrapping of the phases. These two operations become particularly complex in urban areas where the phase noise is added to the frequent jumps and discontinuities of phases due to the presence of buildings and other raised structures. The objective of this research is the development of new filtering and phase unwrap-ping algorithms that can perform better than algorithms considered as reference in this field. The goal is to generate quality InSAR products in urban areas. Regarding filtering, we have established an algorithm that is a new formulation of the adaptive anisotropic Gaussian filter. As for the phase unwrapping algorithm, it is based on the minimization of energy by a genetic algorithm using contextual modelling of the phase field. Various tests have been carried out with simulated and real SAR images that demonstrated the potential of our algorithms that in many respects exceeds that of standard algorithms. Finally, to achieve the goal of our research, we integrated our algorithms into the SNAP software environment and applied the entire procedure to generate a DEM with high-resolution RADARSAT-2 images from an area of the City of Montreal (Canada) as well as maps of land movement in the Mexico City region (Mexico) with relatively medium-resolution Sentinel-1 images. Comparison of the results with data from external quality sources also demonstrated the strong potential of our algorithms

    Elevation and Deformation Extraction from TomoSAR

    Get PDF
    3D SAR tomography (TomoSAR) and 4D SAR differential tomography (Diff-TomoSAR) exploit multi-baseline SAR data stacks to provide an essential innovation of SAR Interferometry for many applications, sensing complex scenes with multiple scatterers mapped into the same SAR pixel cell. However, these are still influenced by DEM uncertainty, temporal decorrelation, orbital, tropospheric and ionospheric phase distortion and height blurring. In this thesis, these techniques are explored. As part of this exploration, the systematic procedures for DEM generation, DEM quality assessment, DEM quality improvement and DEM applications are first studied. Besides, this thesis focuses on the whole cycle of systematic methods for 3D & 4D TomoSAR imaging for height and deformation retrieval, from the problem formation phase, through the development of methods to testing on real SAR data. After DEM generation introduction from spaceborne bistatic InSAR (TanDEM-X) and airborne photogrammetry (Bluesky), a new DEM co-registration method with line feature validation (river network line, ridgeline, valley line, crater boundary feature and so on) is developed and demonstrated to assist the study of a wide area DEM data quality. This DEM co-registration method aligns two DEMs irrespective of the linear distortion model, which improves the quality of DEM vertical comparison accuracy significantly and is suitable and helpful for DEM quality assessment. A systematic TomoSAR algorithm and method have been established, tested, analysed and demonstrated for various applications (urban buildings, bridges, dams) to achieve better 3D & 4D tomographic SAR imaging results. These include applying Cosmo-Skymed X band single-polarisation data over the Zipingpu dam, Dujiangyan, Sichuan, China, to map topography; and using ALOS L band data in the San Francisco Bay region to map urban building and bridge. A new ionospheric correction method based on the tile method employing IGS TEC data, a split-spectrum and an ionospheric model via least squares are developed to correct ionospheric distortion to improve the accuracy of 3D & 4D tomographic SAR imaging. Meanwhile, a pixel by pixel orbit baseline estimation method is developed to address the research gaps of baseline estimation for 3D & 4D spaceborne SAR tomography imaging. Moreover, a SAR tomography imaging algorithm and a differential tomography four-dimensional SAR imaging algorithm based on compressive sensing, SAR interferometry phase (InSAR) calibration reference to DEM with DEM error correction, a new phase error calibration and compensation algorithm, based on PS, SVD, PGA, weighted least squares and minimum entropy, are developed to obtain accurate 3D & 4D tomographic SAR imaging results. The new baseline estimation method and consequent TomoSAR processing results showed that an accurate baseline estimation is essential to build up the TomoSAR model. After baseline estimation, phase calibration experiments (via FFT and Capon method) indicate that a phase calibration step is indispensable for TomoSAR imaging, which eventually influences the inversion results. A super-resolution reconstruction CS based study demonstrates X band data with the CS method does not fit for forest reconstruction but works for reconstruction of large civil engineering structures such as dams and urban buildings. Meanwhile, the L band data with FFT, Capon and the CS method are shown to work for the reconstruction of large manmade structures (such as bridges) and urban buildings

    Machine Learning in Sensors and Imaging

    Get PDF
    Machine learning is extending its applications in various fields, such as image processing, the Internet of Things, user interface, big data, manufacturing, management, etc. As data are required to build machine learning networks, sensors are one of the most important technologies. In addition, machine learning networks can contribute to the improvement in sensor performance and the creation of new sensor applications. This Special Issue addresses all types of machine learning applications related to sensors and imaging. It covers computer vision-based control, activity recognition, fuzzy label classification, failure classification, motor temperature estimation, the camera calibration of intelligent vehicles, error detection, color prior model, compressive sensing, wildfire risk assessment, shelf auditing, forest-growing stem volume estimation, road management, image denoising, and touchscreens

    ATHENA Research Book

    Get PDF
    The ATHENA European University is an alliance of nine Higher Education Institutions with the mission of fostering excellence in research and innovation by facilitating international cooperation. The ATHENA acronym stands for Advanced Technologies in Higher Education Alliance. The partner institutions are from France, Germany, Greece, Italy, Lithuania, Portugal, and Slovenia: the University of Orléans, the University of Siegen, the Hellenic Mediterranean University, the Niccolò Cusano University, the Vilnius Gediminas Technical University, the Polytechnic Institute of Porto, and the University of Maribor. In 2022 institutions from Poland and Spain joined the alliance: the Maria Curie-Skłodowska University and the University of Vigo. This research book presents a selection of the ATHENA university partners' research activities. It incorporates peer-reviewed original articles, reprints and student contributions. The ATHENA Research Book provides a platform that promotes joint and interdisciplinary research projects of both advanced and early-career researchers

    ATHENA Research Book, Volume 1

    Get PDF
    The ATHENA European University is an alliance of nine Higher Education Institutions with the mission of fostering excellence in research and innovation by facilitating international cooperation. The ATHENA acronym stands for Advanced Technologies in Higher Education Alliance. The partner institutions are from France, Germany, Greece, Italy, Lithuania, Portugal, and Slovenia: the University of Orléans, the University of Siegen, the Hellenic Mediterranean University, the Niccolò Cusano University, the Vilnius Gediminas Technical University, the Polytechnic Institute of Porto, and the University of Maribor. In 2022 institutions from Poland and Spain joined the alliance: the Maria Curie-Skłodowska University and the University of Vigo. This research book presents a selection of the ATHENA university partners' research activities. It incorporates peer-reviewed original articles, reprints and student contributions. The ATHENA Research Book provides a platform that promotes joint and interdisciplinary research projects of both advanced and early-career researchers
    corecore