1,220 research outputs found

    Multiview Regenerative Morphing with Dual Flows

    Full text link
    This paper aims to address a new task of image morphing under a multiview setting, which takes two sets of multiview images as the input and generates intermediate renderings that not only exhibit smooth transitions between the two input sets but also ensure visual consistency across different views at any transition state. To achieve this goal, we propose a novel approach called Multiview Regenerative Morphing that formulates the morphing process as an optimization to solve for rigid transformation and optimal-transport interpolation. Given the multiview input images of the source and target scenes, we first learn a volumetric representation that models the geometry and appearance for each scene to enable the rendering of novel views. Then, the morphing between the two scenes is obtained by solving optimal transport between the two volumetric representations in Wasserstein metrics. Our approach does not rely on user-specified correspondences or 2D/3D input meshes, and we do not assume any predefined categories of the source and target scenes. The proposed view-consistent interpolation scheme directly works on multiview images to yield a novel and visually plausible effect of multiview free-form morphing

    Smoothly Switching Method of Asynchronous Multi-View Videos Using Frame Interpolation

    Get PDF
    This paper proposes a method that generates viewpoint smooth switching by reducing the flickering artifact observed at bullet-times generated from asynchronous multi-view videos using frame interpolation processing. When we asynchronously capture multi-view videos of an object moving at high velocity, deviations occur in the observed position at the bullet-times. We apply a frame interpolation technique to reduce the problem. By selecting suitable interpolated images that produce the smallest movement of the subject\u27s observed position, we smoothly generate viewpoint switched bullet-time video.Published in: 2017 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON) Date of Conference: 7-9 June 2017 Conference Location: Copenhagen, Denmar

    Fluid Morphing for 2D Animations

    Get PDF
    Professionaalsel tasemel animeerimine on aeganõudev ja kulukas tegevus. Seda eriti sõltumatule arvutimängude tegijale. Siit tulenevalt osutub kasulikuks leida meetodeid, mis võimaldaks programmaatiliselt suurendada kaadrite arvu igas kahemõõtmelises raster animatsioonis. Vedeliku simulaatoriga eksperimenteerimine andis käesoleva töö autoritele idee, kuidas saavutada visuaalselt meeldiv kaadrite üleminek, kasutades selleks vedeliku dünaamikat. Tulemusena valmis programm, mis võib animaatori efektiivsust tõsta lausa mitmeid kordi. Autorid usuvad, et see avastus võib viia kahemõõtmeliste animatsioonide uuele võidukäigule — näiteks kaasaegsete arvutimängude kontekstis.Creation of professional animations is expensive and time-consuming, especially for the independent game developers. Therefore, it is rewarding to find a method that would programmatically increase the frame rate of any two-dimensional raster animation. Experimenting with a fluid simulator gave the authors an insight that to achieve visually pleasant and smooth animations, elements from fluid dynamics can be used. As a result, fluid image morphing was developed, allowing the animators to produce more significant frames than they would with the classic methods. The authors believe that this discovery could reintroduce hand drawn animations to modern computer games

    Surface and bulk stresses drive morphological changes in fibrous microtissues

    Get PDF
    Engineered fibrous tissues consisting of cells encapsulated within collagen gels are widely used three-dimensional in vitro models of morphogenesis and wound healing. Although cell-mediated matrix remodeling that occurs within these scaffolds has been extensively studied, less is known about the mesoscale physical principles governing the dynamics of tissue shape. Here, we show both experimentally and by using computer simulations how surface contraction through the development of surface stresses (analogous to surface tension in fluids) coordinates with bulk contraction to drive shape evolution in constrained three-dimensional microtissues. We used microelectromechanical systems technology to generate arrays of fibrous microtissues and robot-assisted microsurgery to perform local incisions and implantation. We introduce a technique based on phototoxic activation of a small molecule to selectively kill cells in a spatially controlled manner. The model simulations, which reproduced the experimentally observed shape changes after surgical and photochemical operations, indicate that fitting of only bulk and surface contractile moduli is sufficient for the prediction of the equilibrium shape of the microtissues. The computational and experimental methods we have developed provide a general framework to study and predict the morphogenic states of contractile fibrous tissues under external loading at multiple length scales.Published versio

    A Survey of Morphing Techniques

    Full text link
    Image morphing provides the tool to generate the flexible and powerful visual effect. Morphing depicts the transformation of one image into another image. The process of image morphing starts with the feature specification phase and then proceeds to warp generation phase, followed by the transition control phase. This paper surveys the various techniques available for all three stages of image morphing

    A low offset dynamic comparator with morphing amplifier

    Get PDF
    Dynamic comparators are popular structures used in analog circuits such as RFID tags, ADC, memory modules, etc. Compared with traditional open-loop amplifiers that can be used as a comparator, well-designed dynamic comparators are usually faster and more power-efficient, but dynamic CMPs also have some problems. Device mismatch-induced offset voltages is a major challenge when designing dynamic comparators because device mismatch is a random variable that is non-predictable during the design stage. There are many popular dynamic CMP structures; one of them is the Lewis-Gray dynamic comparator [1]. Many authors have introduced alternative dynamic comparator structures which they claim are less affected by device mismatch than the Lewis-Gray circuit but few present a comprehensive and reasonable comparison method. In those papers, different modifications are implemented in order to minimize device mismatch offset, one popular way is to add an amplifier stage before the dynamic comparator. The input signals are amplified in the first amplifier stage before going into the second dynamic comparator stage. Since the outputs of the first stage have a larger difference comparing with the inputs, the offset requirement for the dynamic comparator is loosened. However, the offset still has room for improvement. In this work, a low offset dynamic comparator with morphing amplifier is proposed. It doesn’t have two independent stages. Instead, the amp is inherently integrated into a dynamic comparator, and it yields better offset performance. Moreover, a new fair and comprehensive offset comparison method is also introduced

    Four-Dimensional Bioprinting for Regenerative Medicine: Mechanisms to Induce Shape Variation and Potential Applications

    Get PDF
    Regenerative medicine is an exciting field of research, in which significant steps are being taken that are leading to the translation of the technique into clinical practice. In the near future, it is expected that clinicians will have the opportunity to bioprint tissues and organs that closely mimic native human tissues. To do so, imaging of patients must be translated to digital models and then fabricated in a layer-by-layer fashion. The main aim of this review is to elaborate on the possible mechanisms that support four-dimensional bioprinting, as well as provide examples of current and future applications of the technology. This technology, considering time as the fourth dimension, emerged with the aim to develop bioactive functional constructs with programmed stimuli responses. The main idea is to have three-dimensional-printed constructs that are responsive to preplanned stimuli. With this review, the authors aim to provoke creative thinking, highlighting several issues that need to be addressed when reproducing such a complex network as the human body. The authors envision that there are some key features that need to be studied in the near future: printed constructs should be able to respond to different types of stimuli in a timely manner, bioreactors must be developed combining different types of automated stimuli and aiming to replicate the in vivo ecology, and adequate testing procedures must be developed to obtain a proper assessment of the constructs. The effective development of a printed construct that supports tissue maturation according to the anticipated stimuli will significantly advance this promising approach to regenerative medicine.info:eu-repo/semantics/publishedVersio

    Magnetic systems for regenerative medicine

    Get PDF
    [Excerpt] Over the last decade, magnetic-based systems have made remarkable breakthroughs in the field of tissue engineering and regenerative medicine. The ability for contactless manipulation of magnetic responsive biomaterials, or even living cells, has been leveraged to devise innovative concepts that are widening the available bioengineering design space that can be explored in this multidisciplinary field. From the fabrication of cellular constructs with bioinspired patterns and hierarchical structures up to the concepts of levitational bioassembly, magnetic systems are enabling to engineer 3D tissues that better recapitulate the complex biophysical and biological cues of their native counterparts. Moreover, the inherent magnetic responsiveness of this living systems is being explored as mechanical and electrical nanotransducers to further stimulate cell functions, not only in vitro but also in vivo. Remarkably, recent advances in the convergence of microfabrication technologies with magnetic materials is also opening prospects to further fabricate advanced living microrobots and microphysiological systems with new added functionalities. Due to their good track record of biological tolerance and biodegradability, iron oxide-based nanoparticles remain the first choice of (superpara)magnetic nanomaterials, but new variants and combinations of nanomaterial are being increasingly explored in this field. Altogether, magnetic systems are contributing in multiple ways to boost the regenerative potential of bioengineered constructs and may lead to the development of in vitro tissue/organ models with improved physiological relevance. [...

    Smart alginate inks for tissue engineering applications

    Get PDF
    Amazing achievements have been made in the field of tissue engineering during the past decades. However, we have not yet seen fully functional human heart, liver, brain, or kidney tissue emerge from the clinics. The promise of tissue engineering is thus still not fully unleashed. This is mainly related to the challenges associated with producing tissue constructs with similar complexity as native tissue. Bioprinting is an innovative technology that has been used to obliterate these obstacles. Nevertheless, natural organs are highly dynamic and can change shape over time; this is part of their functional repertoire inside the body. 3D-bioprinted tissue constructs should likewise adapt to their surrounding environment and not remain static. For this reason, the new trend in the field is 4D bioprinting – a new method that delivers printed constructs that can evolve their shape and function over time. A key lack of methodology for printing approaches is the scalability, easy-to-print, and intelligent inks. Alginate plays a vital role in driving innovative progress in 3D and 4D bioprinting due to its exceptional properties, scalability, and versatility. Alginate's ability to support 3D and 4D printing methods positions it as a key material for fueling advancements in bioprinting across various applications, from tissue engineering to regenerative medicine and beyond. Here, we review the current progress in designing scalable alginate (Alg) bioinks for 3D and 4D bioprinting in a "dry"/air state. Our focus is primarily on tissue engineering, however, these next-generation materials could be used in the emerging fields of soft robotics, bioelectronics, and cyborganics.</p
    corecore