307 research outputs found

    On the characterization of models of H*: The semantical aspect

    Full text link
    We give a characterization, with respect to a large class of models of untyped lambda-calculus, of those models that are fully abstract for head-normalization, i.e., whose equational theory is H* (observations for head normalization). An extensional K-model DD is fully abstract if and only if it is hyperimmune, {\em i.e.}, not well founded chains of elements of D cannot be captured by any recursive function. This article, together with its companion paper, form the long version of [Bre14]. It is a standalone paper that presents a purely semantical proof of the result as opposed to its companion paper that presents an independent and purely syntactical proof of the same result

    Lambda theories of effective lambda models

    Get PDF
    A longstanding open problem is whether there exists a non-syntactical model of untyped lambda-calculus whose theory is exactly the least equational lambda-theory (=Lb). In this paper we make use of the Visser topology for investigating the more general question of whether the equational (resp. order) theory of a non syntactical model M, say Eq(M) (resp. Ord(M)) can be recursively enumerable (= r.e. below). We conjecture that no such model exists and prove the conjecture for several large classes of models. In particular we introduce a notion of effective lambda-model and show that for all effective models M, Eq(M) is different from Lb, and Ord(M) is not r.e. If moreover M belongs to the stable or strongly stable semantics, then Eq(M) is not r.e. Concerning Scott's continuous semantics we explore the class of (all) graph models, show that it satisfies Lowenheim Skolem theorem, that there exists a minimum order/equational graph theory, and that both are the order/equ theories of an effective graph model. We deduce that no graph model can have an r.e. order theory, and also show that for some large subclasses, the same is true for Eq(M).Comment: 15 pages, accepted CSL'0

    Effective lambda-models vs recursively enumerable lambda-theories

    Get PDF
    A longstanding open problem is whether there exists a non syntactical model of the untyped lambda-calculus whose theory is exactly the least lambda-theory (l-beta). In this paper we investigate the more general question of whether the equational/order theory of a model of the (untyped) lambda-calculus can be recursively enumerable (r.e. for brevity). We introduce a notion of effective model of lambda-calculus calculus, which covers in particular all the models individually introduced in the literature. We prove that the order theory of an effective model is never r.e.; from this it follows that its equational theory cannot be l-beta or l-beta-eta. We then show that no effective model living in the stable or strongly stable semantics has an r.e. equational theory. Concerning Scott's semantics, we investigate the class of graph models and prove that no order theory of a graph model can be r.e., and that there exists an effective graph model whose equational/order theory is minimum among all theories of graph models. Finally, we show that the class of graph models enjoys a kind of downwards Lowenheim-Skolem theorem.Comment: 34

    On Linear Information Systems

    Get PDF
    Scott's information systems provide a categorically equivalent, intensional description of Scott domains and continuous functions. Following a well established pattern in denotational semantics, we define a linear version of information systems, providing a model of intuitionistic linear logic (a new-Seely category), with a "set-theoretic" interpretation of exponentials that recovers Scott continuous functions via the co-Kleisli construction. From a domain theoretic point of view, linear information systems are equivalent to prime algebraic Scott domains, which in turn generalize prime algebraic lattices, already known to provide a model of classical linear logic

    Relational Graph Models at Work

    Full text link
    We study the relational graph models that constitute a natural subclass of relational models of lambda-calculus. We prove that among the lambda-theories induced by such models there exists a minimal one, and that the corresponding relational graph model is very natural and easy to construct. We then study relational graph models that are fully abstract, in the sense that they capture some observational equivalence between lambda-terms. We focus on the two main observational equivalences in the lambda-calculus, the theory H+ generated by taking as observables the beta-normal forms, and H* generated by considering as observables the head normal forms. On the one hand we introduce a notion of lambda-K\"onig model and prove that a relational graph model is fully abstract for H+ if and only if it is extensional and lambda-K\"onig. On the other hand we show that the dual notion of hyperimmune model, together with extensionality, captures the full abstraction for H*

    The Broadest Necessity

    Get PDF
    In this paper the logic of broad necessity is explored. Definitions of what it means for one modality to be broader than another are formulated, and it is proven, in the context of higher-order logic, that there is a broadest necessity, settling one of the central questions of this investigation. It is shown, moreover, that it is possible to give a reductive analysis of this necessity in extensional language. This relates more generally to a conjecture that it is not possible to define intensional connectives from extensional notions. This conjecture is formulated precisely in higher-order logic, and concrete cases in which it fails are examined. The paper ends with a discussion of the logic of broad necessity. It is shown that the logic of broad necessity is a normal modal logic between S4 and Triv, and that it is consistent with a natural axiomatic system of higher-order logic that it is exactly S4. Some philosophical reasons to think that the logic of broad necessity does not include the S5 principle are given

    Functionality, Polymorphism, and Concurrency: A Mathematical Investigation of Programming Paradigms

    Get PDF
    The search for mathematical models of computational phenomena often leads to problems that are of independent mathematical interest. Selected problems of this kind are investigated in this thesis. First, we study models of the untyped lambda calculus. Although many familiar models are constructed by order-theoretic methods, it is also known that there are some models of the lambda calculus that cannot be non-trivially ordered. We show that the standard open and closed term algebras are unorderable. We characterize the absolutely unorderable T-algebras in any algebraic variety T. Here an algebra is called absolutely unorderable if it cannot be embedded in an orderable algebra. We then introduce a notion of finite models for the lambda calculus, contrasting the known fact that models of the lambda calculus, in the traditional sense, are always non-recursive. Our finite models are based on Plotkin’s syntactical models of reduction. We give a method for constructing such models, and some examples that show how finite models can yield useful information about terms. Next, we study models of typed lambda calculi. Models of the polymorphic lambda calculus can be divided into environment-style models, such as Bruce and Meyer’s non-strict set-theoretic models, and categorical models, such as Seely’s interpretation in PL-categories. Reynolds has shown that there are no set-theoretic strict models. Following a different approach, we investigate a notion of non-strict categorical models. These provide a uniform framework in which one can describe various classes of non-strict models, including set-theoretic models with or without empty types, and Kripke-style models. We show that completeness theorems correspond to categorical representation theorems, and we reprove a completeness result by Meyer et al. on set-theoretic models of the simply-typed lambda calculus with possibly empty types. Finally, we study properties of asynchronous communication in networks of communicating processes. We formalize several notions of asynchrony independently of any particular concurrent process paradigm. A process is asynchronous if its input and/or output is filtered through a communication medium, such as a buffer or a queue, possibly with feedback. We prove that the behavior of asynchronous processes can be equivalently characterized by first-order axioms

    Models and theories of lambda calculus

    Get PDF
    A quarter of century after Barendregt's main book, a wealth of interesting problems about models and theories of the untyped lambda-calculus are still open. In this thesis we will be mainly interested in the main semantics of lambda-calculus (i.e., the Scott-continuous, the stable, and the strongly stable semantics) but we will also define and study two new kinds of semantics: the relational and the indecomposable semantics. Models of the untyped lambda-calculus may be defined either as reflexive objects in Cartesian closed categories (categorical models) or as combinatory algebras satisfying the five axioms of Curry and the Meyer-Scott axiom (lambda-models). Concerning categorical models we will see that each of them can be presented as a lambda-model, even when the underlying category does not have enough points, and we will provide sufficient conditions for categorical models living in arbitrary cpo-enriched Cartesian closed categories to have H^* as equational theory. We will build a categorical model living in a non-concrete Cartesian closed category of sets and relations (relational semantics) which satisfies these conditions, and we will prove that the associated lambda-model enjoys some algebraic properties which make it suitable for modelling non-deterministic extensions of lambda-calculus. Concerning combinatory algebras, we will prove that they satisfy a generalization of Stone representation theorem stating that every combinatory algebra is isomorphic to a weak Boolean product of directly indecomposable combinatory algebras. We will investigate the semantics of lambda-calculus whose models are directly indecomposable as combinatory algebras (the indecomposable semantics) and we will show that this semantics is large enough to include all the main semantics and all the term models of semi-sensible lambda-theories, and that it is however largely incomplete. Finally, we will investigate the problem of whether there exists a non-syntactical model of lambda-calculus belonging to the main semantics which has an r.e. (recursively enumerable) order or equational theory. This is a natural generalization of Honsell-Ronchi Della Rocca's longstanding open problem about the existence of a Scott-continuous model of lambda-beta or lambda-beta-eta. Then, we introduce an appropriate notion of effective model of lambda-calculus, which covers in particular all the models individually introduced in the literature, and we prove that no order theory of an effective model can be r.e.; from this it follows that its equational theory cannot be lambda-beta or lambda-beta-eta. Then, we show that no effective model living in the stable or strongly stable semantics has an r.e. equational theory. Concerning Scott-continuous semantics, we prove that no order theory of a graph model can be r.e. and that many effective graph models do not have an r.e. equational theory.Dans cette thèse on s'intéresse surtout aux sémantiques principales du λ-calcul (c'est- a-dire la sémantique continue de Scott, la sémantique stable, et la sémantique fortement stable) mais on introduit et étudie aussi deux nouvelles sémantiques : la sémantique relationnelle et la sémantique indécomposable. Les modèles du λ-calcul pur peuvent être définis soit comme des objets réflexifs dans des catégories Cartésiennes fermées (modèles catégoriques) soit comme des algèbres combinatoires satisfaisant les cinq axiomes de Curry et l'axiome de Meyer-Scott ( λ-modèles). En ce qui concerne les modèles catégoriques, on montre que tout modèle catégorique peut être présenté comme un λ-modèle, même si la ccc (catégorie Cartésienne fermée) sous-jacente n'a pas assez de points, et on donne des conditions su santes pour qu'un modèle catégorique vivant dans une ccc \cpo-enriched" arbitraire ait H pour théorie équationnelle. On construit un modèle catégorique qui vit dans une ccc d'ensembles et relations (sémantique relationnelle) et qui satisfait ces conditions. De plus, on montre que le λ-modèle associe possède des propriétés algébriques qui le rendent apte a modéliser des extensions non-déterministes du -calcul. En ce qui concerne les algèbres combinatoires, on montre qu'elles satisfont une généralisation du Théorème de Représentation de Stone qui dit que toute algèbre combinatoire est isomorphe a un produit Booléen faible d'algèbres combinatoires directement indécomposables. On étudie la sémantique du λ-calcul dont les modèles sont directement indécomposable comme algèbres combinatoires (sémantique indécomposable); on prouve en particulier que cette sémantique est assez générale pour inclure d'une part les trois sémantiques principales et d'autre part les modèles de termes de toutes les λ-théories semi-sensibles. Par contre, on montre aussi qu'elle est largement incomplète. Finalement, on étudie la question de l'existence d'un modèle non-syntaxique du λ-calcul appartenant aux sémantiques principales et ayant une théorie équationnelle ou inéquationnelle r.e. (récursivement énumérable). Cette question est une généralisation naturelle du problème de Honsell et Ronchi Della Rocca (ouvert depuis plus que vingt ans) concernant l'existence d'un modèle continu de λβ ou λβη. On introduit une notion adéquate de modèles effectifs du λ-calcul, qui couvre en particulier tous les modèles qui ont été introduits individuellement en littérature, et on prouve que la théorie inéquationnelle d'un modèle effectif n'est jamais r.e. ; en conséquence sa théorie équationnelle ne peut pas être λβ ou λβη. On montre aussi que la théorie équationnelle d'un modèle effectif vivant dans la sémantique stable ou fortement stable n'est jamais r.e. En ce qui concerne la sémantique continue de Scott, on démontre que la théorie in équationnelle d'un modèle de graphe n'est jamais r.e. et qu'il existe beaucoup de modèles de graphes effectifs qui ont une théorie équationnelle qui n'est pas r.e
    corecore