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Functionality, Polymorphism, and Concurrency: A Mathematical
Investigation of Programming Paradigms

Abstract

The search for mathematical models of computational phenomena often leads to problems that are of
independent mathematical interest. Selected problems of this kind are investigated in this thesis. First, we
study models of the untyped lambda calculus. Although many familiar models are constructed by order-
theoretic methods, it is also known that there are some models of the lambda calculus that cannot be non-
trivially ordered. We show that the standard open and closed term algebras are unorderable. We characterize
the absolutely unorderable T-algebras in any algebraic variety T. Here an algebra is called absolutely
unorderable if it cannot be embedded in an orderable algebra. We then introduce a notion of finite models for
the lambda calculus, contrasting the known fact that models of the lambda calculus, in the traditional sense,
are always non-recursive. Our finite models are based on Plotkin’s syntactical models of reduction. We give a
method for constructing such models, and some examples that show how finite models can yield useful
information about terms. Next, we study models of typed lambda calculi. Models of the polymorphic lambda
calculus can be divided into environment-style models, such as Bruce and Meyer’s non-strict set-theoretic
models, and categorical models, such as Seely’s interpretation in PL-categories. Reynolds has shown that there
are no set-theoretic strict models. Following a different approach, we investigate a notion of non-strict
categorical models. These provide a uniform framework in which one can describe various classes of non-
strict models, including set-theoretic models with or without empty types, and Kripke-style models. We show
that completeness theorems correspond to categorical representation theorems, and we reprove a
completeness result by Meyer et al. on set-theoretic models of the simply-typed lambda calculus with possibly
empty types. Finally, we study properties of asynchronous communication in networks of communicating
processes. We formalize several notions of asynchrony independently of any particular concurrent process
paradigm. A process is asynchronous if its input and/or output is filtered through a communication medium,
such as a buffer or a queue, possibly with feedback. We prove that the behavior of asynchronous processes can
be equivalently characterized by first-order axioms.
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ABSTRACT
FUNCTIONALITY, POLY MORPHISM, AND CONCURRENCY:

A MATHEMATICAL INVESTIGATION OF PROGRAMMING PARADIGMS

Peter Selinger

Andre Scedrov

The search for mathematical models of computational phenomena often leads to problems that are of inde-
pendent mathematical interest. Selected problems of thiskind are investigated in this thesis. First, we study
models of the untyped lambda calculus. Although many familiar models are constructed by order-theoretic
methods, it is also known that there are some models of the lambda calculus that cannot be non-trivially
ordered. We show that the standard open and closed term algebras are unorderable. We characterize the ab-
solutely unorderable T-algebrasin any algebraic variety T. Here an algebrais called absolutely unorderable
if it cannot be embedded in an orderable algebra. We then introduce a notion of finite models for the lambda
calculus, contrasting the known fact that models of the lambda calculus, in the traditional sense, are aways
non-recursive. Our finite models are based on Plotkin's syntactical models of reduction. We give a method
for constructing such models, and some examples that show how finite models can yield useful information
about terms. Next, we study models of typed lambda calculi. Models of the polymorphic lambda calculus
can be divided into environment-style models, such as Bruce and Meyer’s non-strict set-theoretic models,
and categorical models, such as Seely’sinterpretationin PL -categories. Reynolds has shown that there are no
set-theoretic strict models. Following a different approach, we investigate a notion of non-strict categorical
models. These provide a uniform framework in which one can describe various classes of non-strict models,
including set-theoretic models with or without empty types, and Kripke-style models. We show that com-
pleteness theorems correspond to categorical representation theorems, and we reprove a completeness result
by Meyer et al. on set-theoretic models of the simply-typed lambda calculus with possibly empty types. Fi-
nally, we study properties of asynchronous communication in networks of communicating processes. We
formalize several notions of asynchrony independently of any particular concurrent process paradigm. A
process is asynchronous if its input and/or output is filtered through a communication medium, such as a
buffer or a queue, possibly with feedback. We prove that the behavior of asynchronous processes can be
equivalently characterized by first-order axioms.
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| ntroduction

The central aim in giving mathematical meaning to computer programsis to represent computational objects,
such as procedures, data types, or communication channels, by mathematical objects, such as functions, sets,
or more generally, pointsin suitable mathematical spaces. Often, one begins with an idealized programming
language, such as the lambda calculus or Milner’s calculus of communicating systems, and then seeks to
find a mathematical model that reflects the relevant computational properties. The search for such models
is guided by computational as well as mathematical intuitions, and it often leads to problems that are of
independent mathematical interest. Some selected problems of this kind are investigated in this dissertation.

Thefirst part of this thesis is devoted to the model theory of the untyped lambda calculus. D. Scott dis-
coveredin the late 1960’s that models of the untyped lambda cal culus can be constructed by a combination of
order-theoretic and topological methods. Scott’s methods have been widely studied and adapted to numerous
situations, and today one can choose from awide array of model constructionsthat are based on Scott’s prin-
ciples. On the other hand, there are results that indicate that Scott’'s methods may not in general be complete:
Honsell and Ronchi Della Rocca [27] have shown that there exists alambdatheory that does not arise as the
theory of areflexive model in the cartesian-closed category of complete partial orders and Scott-continuous
functions. Moreover, there are properties that one may desire in a model, but that are incompatible with
the presence of a partial order: for instance, Plotkin [50] has recently shown that there exists an extensional
lambdaalgebrawhich isfinitely separable. By definition, alambdaalgebra X isfinitely separableif for every
finite subset A C X and for every function f : 4 — X, thereexistsanelement f € X suchthat -z = flz)
foral z € X. Itisnot hard to seethat afinitely separable algebra cannot be non-trivially partially ordered in
away such that the order is compatible with the algebra structure.

In general, we define a lambda algebra X to be unorderable if there does not exist a non-trivial partial
order on X for which the application operation is monotone. Our first main result is the following: The
standard open and closed term algebras of the A\3- and A8n-calculi are unorderable. Recall that the standard
term agebras are just made up from lambda terms, taken up to 8- or Bn-equivalence. The unorderability
of the standard term algebras is a surprising fact, because the algebras that were previously known to be
unorderable, such as Plotkin'sfinitely separable algebra, require a much more delicate syntactic construction.
As a consequence of thisresult, it followsthat if a partially ordered model of the untyped lambda calculusis
complete for one of the theories A3 or A3, then the denotations of closed termsin that model are pairwise
incomparable, i.e. the term denotations form an anti-chain.

Closely related to the question of unorderability isthe question of order-incompleteness: does there exist
a lambda theory that does not arise as the theory of a non-trivially partially ordered model? Or, expressed
in terms of algebras: does there exist a lambda algebra which cannot be embedded in an orderable one?
We call such an algebra absolutely unorderable. The concept of absolute unorderability can be formulated
in any algebraic variety T, and our second main result is a theorem in universal algebra: In any algebraic
variety T, an algebra A is absolutely unorderable if and only if, for somen > 1, there exist polynomials
My,... , M, € Alx;,x2,x3] such that the equations ¢t = M;(t,u,u), M;(t, t,u) = M;1(t,u,u) for
1 <4< n,and My(t,t,u) = u hold in Afu,t]. Operators M, ..., M, satisfying this condition are
called generalized Mal’cev operators. Such operators were first used by Hagemann and Mitschke [25] to
characterize varieties with n-permutable congruences. The connection to unorderability was first noticed by
Taylor [63, 11], who proved that algebras in a variety with n-permutable congruences are unorderable; the
converseis anew result.



Asaconseguence, the question of order-incompletenessfor the untyped lambda cal cul us has been reduced
to the question whether it is consistent, for somen > 1, to add generalized Mal’cev operators M, ... , M,
to the lambda calculus. It was proved by Plotkin and Simpson that a Mal’cev operator is inconsistent with the
lambda calculus for n = 1. Later, Plotkin and myself showed that it is also inconsistent for n = 2. In the
remaining cases, the answer is not known.

We continue our investigation of models of the untyped lambda cal culus by introducing a notion of finite
lambda models. These models provide a tool for predicting the evaluation behavior of a lambda term by
finitary means. This yields a novel proof method for proving inequalities of untyped lambdaterms. Finite
models differ from traditional models of the untyped lambda calculus, which are aways infinite and in fact
never even recursive, in that they are models of reduction, rather than models of conversion. This meansthat
they are equipped with apartial order and asoundness property of theform M — N = [M] < [N], where
— denotes either 8- or Bn-reduction. Models of reduction were considered by several authors[23, 30, 49],
and we use a formulation which was given by Plotkin [49] in the spirit of the familiar syntactical |lambda
models [5]. We focus on practical methods of constructing such models, and we show in two examples that,
despite their smplicity, finite models can yield useful information about lambdaterms.

The second part of thisthesisis devoted to models of the simply-typed and the polymorphic lambda cal-
culus. The modelsin the literature follow one of two basic designs. set-theoretic environment-style models,
such as Henkin models for the simply-typed lambda calculus[21] or Bruce-Meyer modelsfor polymorphism
[10], and categorica models, such as the interpretation of the simply-typed calculus in a cartesian closed
category [33] or of the polymorphic calculusin a PL -category [56]. Environment-style models are typically
non-strict, in the sense that a function type o — 7 isinterpreted as a subset of the set of functionsfrom ¢ to
7. On the other hand, categorical models are always strict.

Reynolds has shown that there are no strict set-theoretic models of the polymorphic lambda calculus
[52]. Here, we take the opposite approach and consider non-strict categorical models. This generalizes
both environment-style models and strict categorical models. The central concept is that of a Henkin rep-
resentation: afunctor H between cartesian-closed categories that preserves finite products, such that for all
objects A, B, the canonical morphism H(B4) — H(B)"(4) is monic. Henkin representations provide a
uniform framework in which one can describe various classes of non-strict models, including set-theoretic
models with possibly empty types [39], set-theoretic models with non-empty types [21], and Kripke-style
models [42]. We show that completeness theorems for each of these classes of models correspond naturally
to categorical Henkin representation theorems. One such Henkin representation theorem characterizes those
cartesian-closed categoriesthat can be Henkin-embeddedin the category of sets: we show that thisisthe case
if and only if every object A iseither partially initial, or the canonical morphism A — 1 isepic. Thisallows
anew proof of aresult by Meyer et al. [39] on the semantic consequences that hold in set-theoretic models
of the simply-typed lambda cal culus with possibly empty types.

The last part of this dissertation is concerned with the study of properties of asynchronous communica-
tion in networks of communicating processes. Informally, communication in such a network is said to be
synchronous if message transmission is instantaneous, such that sender and receiver must be available at the
sametimein order to communicate. It isasynchronous if messages are assumed to travel through acommuni-
cation medium with possible delay, such that the sender cannot be certain when a message has been received.
Asynchronous communication is often studied in the framework of a concurrent process cal culus such as the
asynchronous w-calculus [26, 9] or the join calculus [17, 18]. Here, we study asynchronous communication
in general, independently of any particular process paradigm. We model processes by labeled transition sys-
tems with input and output. These transition systems are similar to the input/output automata by Lynch and
Stark [35], but our presentation is more category-theoretic in a style that resembles Abramsky’s interaction
categories [1, 2]. In particular, we adopt Abramsky’s notation S; T for the sequential composition of two
processes, by which we mean the process obtained by connecting the output of S to the input of T.

First, we formalize the intuitive notion of asynchrony in elementary terms. we define a process to be
asynchronous if its input and/or output is filtered through an explicitly modeled communication medium,
such as a buffer or a queue, possibly with feedback. For instance, we call a process out-buffered if it is,
up to weak bisimulation, of the form S; B, where B is a specia buffer process. Our main result about
asynchronous processes is a characterization of various different such notions of asynchrony in terms of



first- and second-order axioms. These axiomsrefer directly to the behavior of a process, without mentioning
buffers or queues explicitly. For instance, a process is out-buffered if and only if it is weakly bisimilar to
a process satisfying three properties which we call output-commutativity, output-confluence, and output-
determinacy. We illustrate these concepts by applying them to an asynchronousversion of Milner's CCS and
to the corejoin calculus.

This thesis is organized as follows: Chapter 1 is a summary of standard concepts of category theory,
domain theory, and universal algebra, which are needed throughout the thesis. Chapter 2 is an introduction
to the untyped lambda calculus and its combinatory models. In Chapter 3, we investigate unorderable and
absol utely unorderable models of the untyped lambda calculus. Chapter 4 is devoted to finite lambdamodels.
In Chapter 5, we study Henkin representation theorems and their applications to non-strict models of the
simply-typed and polymorphic lambda calculi. In Chapter 6, we investigate properties of asynchronous
communication.






Chapter 1

Preliminaries

We begin by gathering some basic concepts from category theory, domain theory, and universal algebra. This
ismostly for the purpose of fixing terminology and notation for the later chapters of thisthesis, and to provide
a brief reference. We do not give any proofsin this chapter. For a more complete and detailed introduction
to category theory, see e.g. [20] or [36]. For an introduction to domain theory, see e.g. [3] or [47]. For an
introduction to universal algebra, seee.g. [24] or [13].

1.1 Basiccategory theory

1.1.1 Categories

A category C = (|C|,(—, —),id, o) consists of aclass |C| of objects, together with a set (A4, B) of mor-
phisms for each pair of objects A, B € |C|, and together with operations

idg € (A,A)
©A,B,C : (B,C) X (A,B) - (A,C)

foral A, B,C € |C]|, satisfying

idpof=f=foida, forfe (A4, B)
(hog)of=ho(gof) forfe (A B),ge(B,C),he(C,D).

We will often omit the subscriptson id and o. A morphismid 4 is called an identity morphism, and g o f is
called the composition of f and g. The set (A, B) is called the hom-set of A and B. If we want to make
the category unambiguous, we also write hom-sets as C(A, B). A morphism f € (A, B) is aso written

f:A— BorA ER B, and we call A the source or the domain and B the target or the codomain of f.
If f: A— Bandg: B — C, then we sometimes write the composition g o f in diagrammatic order as

AL BY% Corastg.
Example 1.1. The category . of sets has sets as its objects, and functions as its morphisms. Notice that the

collection of all setsisnot itself a set; thisiswhy, in the definition of a category, one alows the collection of
objectsto be a proper class. A category is said to be small if the collection of its objectsis a set.

A category is discrete if its only morphisms are identity morphisms. If C is any category, then its dual
category C° is defined by |C°| = |C| and C° (4, B) = C(B, A), i.e. by reversing the direction of ll
morphisms. If C and D are categories, then their product C x D is defined by |C x D| = |C| x |D| and
((A, A", (B,B")) = (A, B) x (4', B"), with the pointwise identities and composition.



A diagram

is used as a notation for the statement
fe(A,B)andg € (B,D)andh € (A,C)andk € (C,D)andgo f =koh,

and similarly for other diagrams. Note that this notation is not meant to imply that A, B,C, D or f,g,h, k
are different. In the diagrammatic notation, we may also omit the names of the objects. Of coursg, it isthen
till understood that the appropriate morphisms are composable. The symbol --in adiagram removes exactly
one eguation, such that

means f o g = f o h. This diagram does not say whether ¢ = h. Diagrams are just a notation for ordinary
mathematical statements, and we may use them together with logical symbols, quantifiers etc.

Example 1.2. A morphism f is said to be monic or amonomorphism if
Yg,h R = g=nh).
Dually, f issaid to be epic or an epimorphism if

; g
Vg, h (+—— "+~ = g=nh).
h

Also, f issaid to beiso or an isomorphism if
g9
% \ / \
. . .

If f isanisomorphism, then g is uniquely determined. g is called the inverse of f and it is denoted by f .
If thereisanisomorphism f : A — B, then A and B are said to be isomorphic objects. We sometimes write
f : A»— B for amonomorphism, f : A - B for an epimorphism, and f : A = B for an isomorphism.
Noticethat if f : A — B hasaleftinverseg o f = id 4, then f isamonic, called a split monic, and g isan

epic, called asplit epic. A collection of morphisms (A ELN B;)icr with the same sourceis called collectively
monic or amonic coneif foral g,h: C — A, whenever f;og = f;ohforadli e I,theng = h.

1.1.2 Functors

If C and D are categories, then a (covariant) functor FF : C — D isamap F : |C| — |D]| of objects,
together withamap F' : C(A, B) — D(F A, F B) for each hom-set, such that

Fidg =idpa

F(gof)=FgoFf
The category of small categories, together with functors between them, is denoted Cat. A functor F' : C% —
D isalso caled acontravariant functor from C to D.



Example 1.3. For any category C, thereisafunctor Hom : C*xC — ., whichisdefined by Hom(A, B) =
C(A, B) andHom(f, g)(z) = gozo f. Forany object A € |C|, thefunctor (4, —) : C — . iscaledthe A-
th (covariant) representablefunctor. Dudly, thefunctor (—, A) : C® — % iscalled the A-th contravariant
representable functor.

A functor F : C — D isfull if each F : (A,B) — (FA,FB) isonto. F isan embedding if each F :
(A,B) — (FA, FB) isone-to-one. We say F isfaithful if it is an embedding and it reflects isomorphisms,
i.e.,, whenever F'f is an isomorphism, thensois f.

A category C is asubcategory of D if |C| C |D|, andforal A, B € |C|, C(A,B) C D(A, B). The
corresponding inclusion functor 7 : C — D, withTA = Aand I f = f, isawaysan embedding. C is said
to beafull subcategory if I isfull, and afaithful subcategory if I isfaithful.

1.1.3 Natural transformations

A natural transformation 7 : F' — G between functors F,G : C — D isafamily (1.4) a¢|c of morphisms
na: FA— GAsuchthatforal f: A — B,

FA—s G4

Ffl lcf

FBT)GB

There is a category whose objects are functors ' : C — D, for fixed C and D (say, C is smal). The
morphisms are natural transformations. For any functor F', the identity natural transformationidp : F — F
isdefinedby (idr) 4 = idp 4. Composition of natural transformationsr : F — G andn' : G — H isdefined
by (7' on)a = 14 o na. Theresulting category iswritten D€, and it is called a functor category.

Two functors F, G : C — D are said to be naturally isomorphic, in symbols F' = G, if there are natural
transformationsn : F — G andn~! : G — F suchthatnon' = idg andn' on = idp.

We sometimes write p : F(A) —4 G(A), n : F(A,B) —a 5 G(A,B) etc. to express that i, as a
transformation of functors, is natural in theindicated arguments. Similarly, we write F/(A) =4 G(A) etc. to
expressthat F' and G are naturally isomorphic. Noticethat thisis different from writing (VA)F'(A4) = G(A);
the latter statement expresses only a condition on objects, and not on morphisms.

An equivalence of categories C and D isapair of functors F : C - Dand G : D — C suchthat Go F
and F' o G are naturally isomorphic to the identity functorson C and D, respectively.

1.1.4 Adjunctions

An adjunction between functors ' : C — D and G : D — C isanatural isomorphism
P (FAaB) %A,B (AaGB)

Inthiscase, the pair of functors F' and GG is called an adjoint pair, and wewritep : F' 4 G, orsmply F' 1 G.
F isaleft adjoint of G and G isaright adjoint of F'. Theunit u : ide — G o F' of an adjunction ¢ is the
natural transformation given by w4 = ¢(idrpa) € (A,GFA), and the co-unit ¢ : F o G — idp is defined
dualy. Each of the entities ¢, u and ¢ determines the two others uniquely. Moreover, F' and G determine
each other up to natural isomorphism.

1.15 Limitsand colimits

Let I beasmall category, C acategory. A diagramin C modeledon I isafunctor A : I — C. A cone over
adiagram A isapair (D, (d;);c|11), consisting of an object D and afamily of morphismsd; : D — A(i) for



eachi € |I|,suchthatforeach f : i — jinI,

Al — o AG).
N
D

A morphism between cones (E, (e;);c|r) and (D, (d;);cr)) over adiagram A isanarrow f : E — D such
that e; = d; o f foral i € [I|. A cone(D,(d;);cr)) is caled limiting or alimit if it is terminal among
cones over A, i.e. from any other cone (E, (e;);|r)), there is a unique morphism of cones f : £ — D.
Sometimes, we aso cal the object D a limit. The morphisms e; of a limiting cone are called limiting
morphisms. Limiting cones, if they exist at all, are uniquely determined up to isomorphism. Limiting cones
are collectively monic. Cocones, colimits and colimiting morphisms are defined dually.

Some special limits are of interest: A limit of adiagram that is modeled on a discrete category iscalled a
product. The limiting morphisms of a product are called projections. A limit of the empty diagram is called
aterminator or aterminal object. A limit of adiagram that is modeled on the category

T
T

iscalled an equalizer. A limit of adiagram that is modeled on the category

is called a pullback. The dual concepts are coproduct, coterminator or initial object, co-equalizer, and
pushout.

Definition. A category is completeif every small diagram has alimit, and cocompleteif every small diagram
has a colimit.

Proposition 1.4. A category is complete iff it has products and equalizers. It is cocomplete iff it has coprod-
ucts and co-equalizers.
1.1.6 Cartesian-closed categories

Recall that an object B is a terminator if for al A, (A4, B) is asingleton. A terminator is unique up to
isomorphism. If we have chosen a terminator in a category, we denote it by 1. The unique morphism in
(A, 1) isthen denoted O 4.

A diagram

P
SN
B c
is called a (binary) product diagramif for every pair of morphismsq: A - Bandr : A — C, thereexists
auniques : A — Psuchthat fos =gandgos =r. Thisisthecaseif and only if
(A7P> =a (A,B) X (A,C)

via a natural isomorphism that relates id » to the pair (f, g). Product diagrams are determined (for fixed B
and C) uniquely up to isomorphism. If we have chosen, for any B and C, aproduct diagram, then we denote



it by

Bx(C
B C.

Theunique morphisms : A — B x C suchthatmros=¢: A — Bandn'os =r: A — C isthen denoted
(g, 7). The operation that takes ¢ and r to (g, r) is caled pairing. If b: B — B'andc¢ : C — C’, thenwe
denote by b x ¢ the morphism (bom,con') : B x B" — C x C'. Thismakes F(B,C) = B x C intoa
functor.

In a category with chosen products, adiagram

DxB—1-¢

is called an exponential diagram if for every morphismg : A x B — C thereisauniqueh : A — D such
that

DxB—f>C.

Ax B
Thisisthe caseif and only if
(A7D> =4 (A x B,C)

via a natural isomorphism that relates idp to f. For given B and C, exponentia diagrams are determined
uniquely up to isomorphism. If we have chosen, for any B and C', an exponential diagram, then we denoteit

by
CB xB——=C.

The unique morphismh : A — CP suchthate o (h x idg) = g : A x B — C isthen denoted g*. The
operation that takes g into g* is called currying. Theinverse operation, whichtakesh to h, = ¢ o (h x idg),
is called uncurrying. If b : B' - Bandc: C — C’, then c® denotes the morphism (co e o (idgs x b))* :
cE - P This makes F'(B,C') = CP into afunctor, contravariant in the first argument and covariant in
the second.

Remark. The following identities are often useful, wherea : A’ -+ A,h: A — CB,g: Ax B — C:

(go(axidg))* = g*oa . A CB
e* = id . CB - OB

(hoa), = hyo(axidg) : A xB-=C

id, = ¢ - CBxB-oC

Definition. A cartesian-closed category (ccc) is a category with chosen terminator, chosen binary product
diagrams and chosen exponential diagrams. A ccc-representation is a functor that preserves the chosen
terminator, product and exponential diagrams. A functor that preserves ccc structure up to isomorphism is
called a ccc-representation up to isomorphism.

Example 1.5. For any small category C, the functor category . €™ is cartesian-closed. The Yoneda embed-
dingY : C — .#C” mapsan object A to thefunctor (—, 4) : C% — .&. The Yonedaembeddingisfull and
faithful, and if C is cartesian-closed, thenY” is a ccc-representation up to isomorphism. The functor category
C” is called the category of presheaves over C.



Table 1.1: Some posets

n
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(1) Theflat natural numbers (2) Theordina w

1.2 Basicdomain theory

We gather some basic domain-theoretic concepts. For a more detailed introduction, consult e.g. the texts by
Abramsky and Jung [3] or Plotkin [47].

1.2.1 Preordersand posets
A binary relation < onaset D iscalled apreorder if

1. Vz € D. z < z (Reflexivity).

2. Vz,y,z€ D.z <yandy < z = x < z (Trangitivity).
A preorder < isapartial order if, in addition,

3. Vz,y e D.z Lyandy < z = z = y (Antisymmetry).

A partially ordered set (D, <) is also called a poset. A function f : D — E between posets is monotone
if x < yimplies fx < fy, foral z,y € D. We denote the category of posets and monotone functions by
POSET. It is cartesian-closed. The exponential E is given by the set of all monotone functions from D to
E, withthe pointwiseorder, f < gifforadl z € D, fz < gx.

For A C D,let JAbetheset {y € D |3z € Ay < z}. A set A iscaled downward closed or a
downdeal if A = |A. If A ={z} isasingleton, we asowrite |z = [{z}. The sets +A and 1z are defined
dually. Anelement z € A issaidtobeminimal in A if Jlxt N A = {z}. Also, z € A issaid to beaminimum
or aleast element of A if A C 1. Maximal elements and greatest elements are defined dually. An element
b € D issaid to be an upper bound of A if a < bforadl a € A. If anong the upper bounds of A thereis
aleast one, it is called the least upper bound, the join or the supremum of A, and it is denoted by \/ A or
Ve z. Weasowrite z v y for the supremum of {z, y}, if it exists. Lower bounds are defined dually, and
a greatest lower bound, denoted A A, isalso called ameet or an infimum. A poset D is called alatticeif it
has finite supremaand infima, and a complete latticeif it has arbitrary supremaand infima.

A poset (D, <) ispointed if it hasaleast element L. D isflat if it is pointed and if &l elementsa # L
are maximal. An example of aflat poset are the “flat natural numbers’, shown in Table 1.1(1). Two elements
xz,y € D arecaled compatible, in symbolsz C v, if thereexists z € D withz < z andy < z. Notice that
two elementsin aflat poset are compatible iff and of themis L.
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Remark. Any poset (D, <) canitself be regarded as a category with hom-sets

_ ) {x} ifzgy
D(,y) = { 0 else.
Under thisinterpretation, aleast element L isjust aninitial object, supremaare colimits, functors are mono-
tone maps, and an adjunctionis apair of monotonemaps f : D — E and g : E — D such that

fe<y <= z<gy.

1.2.2 Completepartial orders

A poset [ isdirected if it is non-empty and if for all z,y € I, thereexistsz € I withz,y < z. A poset
(D, <) isdirected completeif every directed subset has a supremum. A directed complete poset isalso called
adcpo. Directed supremaare also denoted by \/ I or \/‘we, z. A function f : D — FE between dcpo’siscaled
Scott-continuous if it is monotone and it preserves directed suprema. We denote the category of dcpo’sand
Scott-continuous functions by DCPO. The full subcategory of pointed dcpo’s is denoted by DCPO |, . Both
these categories are cartesian-closed. The exponential £ isgiven by the set of all Scott-continuousfunctions
from D to E with the pointwise order. Directed supremain £ can be computed pointwise, i.e.
(\i/‘fi)(i’?) = \i/‘(fiiﬂ)

A poset [ islinearly ordered or a chain if for all z,y € I, either x < y or z > y. An example of a
linearly ordered set is the ordinal w, which is the set of natural numbers with their natural order, as shownin
Table 1.1(2). A set I whichisisomorphicto w is called an w-chain. A poset (D, <) isw-completeif every
w-chain I C D hasasupremumin D. An w-complete poset is also called a complete partial order or acpo.
A function f : D — E between cpo’sis called w-continuous if it is monotone and it preserves suprema of
w-chains. We denote the category of cpo’s and w-continuous functions by CPO, and its full subcategory of
pointed cpo’'s by CPO | . These categories are cartesian-closed, with the exponential EP given by the set of
all w-continuous functionsfrom D to E with the pointwise order, and pointwise suprema of w-chains.

Remark. The categories CPO and DCPO have similar properties. DCPO is a subcategory of CPO, but is
neither full, nor isit a sub-ccc.

1.2.3 Bounded complete partial orders

A subset A of a partially ordered set D is caled bounded if thereisd € D with A C |d. A cpo D
is bounded complete if every bounded subset A C D has a supremum. Bounded complete cpo’s and w-
continuous functions form a full sub-ccc CPOP of CPO. Notice that we do not require the morphisms to
preserve all bounded suprema. The categories CPO®, DCPO®, and DCPO® are defined analogously.

124 Stability

A cpo D is ameet cpo if it has bounded binary meets which act continuously. This means, that for every
x € D, the set |z has binary meets, and the function {(a, b) — a A b is continuouson |z x Jz. A function
f : D — FE between meet cpo’'sis stable if it preserves bounded binary meets. We denote the category
of meet cpo’s and stable maps by CPO”, and its full subcategory of pointed meet cpo’s by CPO’}. These
categories are cartesian-closed too, and the exponential £ is given by the set of all stable functionsfrom D
to E, not with the pointwise order, but with the Berry order or stable order:

f<s9g &= (Vr,yeD.x<y= f(z)=fly) Ng(x))

Directed suprema, as well as bounded infima, with respect to the Berry order are taken pointwise. The
cartesian-closed categories DCPO” and DCPO’} are defined analogously.

The theory of meet cpo’s and stable functionsis dueto Berry [7], who used them to study the semantics
of sequential computations.
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1.2.5 Domain equations

Let D be any one of the pointed categories DCPO, , CPO,, DCPO’}, CPO’}, DCPO"’, or CPO". The
objects of D are called domains. One of the main features of these categories of domainsis that they can be
used to solve domain equations, such as

D = DD,

A solution to such an equation in a category D consists of an object D, together with an isomorphism ¢ :
D — DP. Theability to solve domain equationsis an essential tool in mathematical programming semantics
to give meaning to a variety of programming language constructs, such as recursive data types. We are
particularly interested in solutions to the “classic” domain equation D = DP, whose solutions yield models
of the untyped lambda-3n-cal culus (see Section 2.7).

General methods for solving domain equations were pioneered by D. Scott [53], and further developed
by Smyth and Plotkin [61]. In general, a domain equation takes the form D = F'(D). Notice that, since the
right-hand-side may contain positive (covariant) as well as negative (contravariant) occurrencesof D, F will
not in general be afunctor. The problem of mixed variance can be solved by passing from the category D to
acategory D¢ of embeddings. The objects of D¢ are the same as the objects of D. The morphisms of D¢ are
embeddings, wheree : D — E in D is caled an embedding if there exists aprojectionp : E — D inD
such that

poe=idp eop <idg,

wheretheinequality isunderstood to be with respect to the relevant order on functions, i.e. the pointwise order
in the case of DCPO, , CPO |, etc., and the stable order in the case of DCPO’} or CPO’}. An embedding e
isuniquely determined by its associated projection p and vice versa. We writep = ¢* and e = p,. One also
speaks of D¢ as a category of embedding-projection pairs.

An expanding sequence in D¢ is a diagram modeled on the ordinal w, i.e. afunctor A : w — D°€. In
more concrete terms, an expanding sequence is a sequence (D, ),en Of objects, together with embeddings
enm : Dn = Dy, foral n < m, suchthat e, ., = idp,, and ey, © epm = epp, foral p < m < n.

Proposition 1.6. Limit-colimit coincidence. Every expanding sequence ((Dy,)n, (€nm)n<m) in D¢ has a
colimit D in D¢, with colimiting morphisms e,, : D,, — D. Moreover, (D, (e,),) is also a colimit in D, and
(D, (€e})n) isalimitof ((Dy,)n, (€5, )n<m) InD. This is called the limit-colimit coincidence, and D is also
called a bilimit. O

Proposition 1.7. Characterization of bilimits. Let (D, (e,),) be a cocone over the expanding sequence
((Dn)n, (enm)ngm) inDe. Then (D, (e,,),) is a bilimit if and only if

idp = \fe, oex.
n O

Definition. A functor F' : D¢ — D¢ is continuous if for every expanding sequence ((D.,)r, (€nm)ngm)
with colimit (D, (e,,)r), the sequence ((F'Dy,)n, (Fenm)ngm) hascolimit (F D, (Fey)n).

Proposition 1.8. Solution of domain equations. Consider a domain equation D 2 F(D), where F :
D¢ — De is a continuous functor. Starting with a domain D, and an embedding e : Do — F(Dy), let
Dyt = F(Dy) and epi1,n+2 = F(enny1) forall n € N. Let D be the colimit of the expanding sequence
((Dn)n, (€nm)ngm), Where e, = €m—1,m 0 -+ 0 €n ny1, for n < m. Then D = F(D).

Proof. Since F' is continuous, the sequence ((FDy)n, (Fenm)n<m) = ((Dnt1)n, (€nt1,m+1)ngm) has
colimit £'(D). On the other hand, D isacolimit of the same sequence, henceonegets D = F'(D). O

The question remains how to identify a given functor as continuous. A useful criterion was given by Smyth
and Plotkin [61], who observed that a continuous functor £ on D can be obtained from alocally continuous
functor F on D. Thisworksevenif F'is of mixed variance.
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Definition. A functor £ : D% x D — D islocally continuousif for al objects D, D', E, E' € D,
F:D(D,D')x D(E,E'Y - D(F(D',E),F(D,E"))

if continuous as a map between hom-sets (with the pointwise order in the case of DCPO and CPO_, and
the stable order in the case of DCPO’} and CPO"}).

Proposition 1.9. Every locally continuous functor ' : D% x D — D gives rise to a continuous functor
F : D¢ — D¢, defined by

F(D)=F(D,D)  F(e) = F(e*,e)

1.2.6 The D -construction

The method of Proposition 1.8, applied to the locally continuous functor F(D, E) = EP, serves to solve
the “classic’ domain equation D = DP. This construction is due to D. Scott, and it is called the D.-
construction.

Remark. Notice that the construction of a D ,-model is dependent on some parameters, namely a category
D, an object Dy and an embedding eg; : Dy — D(?O. Hence, there is awhole class of such models. Among
these, we distinguish the standard D,-model to be the one model constructed in CPO | from the cpo Dy
with two elements 1. < T, and the embedding eg; : Dy — D(?O which maps L to the constant L function
and T to the constant T function.

1.3 Basicuniversal algebra

131 X-algebras

An algebraic signature X isapair (2, ) consisting of aset 2 of function symbolsandamap a : @ — N,
assigninganarity k > Otoeach f € Q. Welet Q, = {f € Q| a(f) = k} bethe set of k-ary function
symbols. A X-algebra A = (A, I) isaset A together with an interpretation I( f) of every function symbol
asamap from A>(/) — A. We often write |A|, or even A for the underlying set A of an algebra, and f A or
even f for theinterpretation I( f). A homomorphismof X-algebrasy : A — Bisafunctiony : |A| — |B|
suchthat foral f € Qp andadl ay,...,a; € A

o(falar,... ar)) = fe(par,..., pak)

We denote the category of X-algebras and homomorphisms by 3-Alg. The category 3-Alg has al limits,
and the forgetful functor U : £-Alg — . preserves and reflects them. For instance, binary products are
givenby |[A x B| = [A| x [B| and faxs({a1,b1),... ,(ak, b)) = (fa(ar,... ,ak), fB(b1,... ,bi)). A
Y-algebra A is asubalgebra of another -algebraB if |[A| C |B|andforal f € Qr anday, ... ,ar € A,
falai,... ,ax) = fa(a1,...,a;). Theinclusion map A — B of a subalgebrais a homomorphism.

Definition 1.10. A binary relation R on a X-algebra A is compatibleif it is a subalgebraof A x A. This
isthe case if and only if whenever {(a;,b;) € Rfori = 1...k,then{fa;...ax, fb1...bx) € R, for each
k-ary function symbol f € Q. A congruence on a $-algebra A is acompatible equivalencerelation. If ~
is acongruence, then the quotient algebra A /~ is awell-defined S-algebravia fa /. ([21]~, . .. , [Tk]~) =
[fa(z1,...,2k)]~. Thenatural map A — A/~ isahomomorphism of X-agebras. The kernel ker ¢ of a
homomorphism ¢ : A — B isthe congruencerelation ~ on A defined by a ~ o' iff p(a) = p(a’).
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1.3.2 Term algebras

Let X beaset. For each z € X, pick adistinct symbol ¢,,, whichisnotin Q. Let W (X, Q) be the set of
words (i.e.finite sequences) from the alphabet {c, | z € X} U Q.

Definition. The set of X-termsover X is defined to be the smallest subset T C W (X, Q) such that

zeX fe t1 €T tr €T
CIGT ftl...thT ’

Let ©x be the set of T-terms thus defined. It has a natural X-algebra structure via fs, (t1,... ,tx) =
ft1...tp. ThealgebraY x is caled the X-term algebra over X.

Remark. We have represented terms as words from some aphabet. There are other possible choices; for
instance, one could represent aterm ft; . .. t;, asalabeled rooted tree with label f at the root and with imme-
diate subtreesty, ... ,t;. In general, we will not be too concerned here with the details of how to represent
syntax; rather, we will treat syntax as a primitive notion. Independently of which concrete representation for
terms one chooses, ¥ x, together with itsnatural map 7 : X — Y x : « — ¢,, is completely determined by
the following universal property:

Proposition 1.11. For any Y-algebra B and any map p : X — B, there is a unique homomorphism 4 :
Y x — B such that

Equivalently, the forgetful functor U : $-Alg — . has a left adjoint F : .¥ — 3-Algwith F(X) = T,
and with X — X x as the unit of the adjunction. O

Amapp: X — Bisasocaled avaluation in B. If j isthe unique extension of p to terms, then we often
write [t], instead of j(t) for theinterpretation of aterm ¢ € ¥ x. The defining equationsfor [ | are

[«], = px), for z avariable,
Ufte...tel, = falltily, ... [tel,), for f € Q.
If X ={z1,...,z,}isafiniteset of variables, thenatermt¢ € X x isaso caled an-ary operationin X. We
writet = ¢(x1,... ,x,). Ifby,... , b, areelementsof aX-algebraB, then we sometimeswritet (b, ... , by,)

for [t], wherep : X — B : z; — b;.

1.3.3 Algebraic varieties

Fix a countable set V' of variables. A X-eguation isapair of terms (¢, s) € £y, x £y. Equations are often
written in the form ¢ = s. A X-algebra A satisfies an equation ¢t = s, in symbols A = ¢ = s, if for all
homomorphisms¢ : £y — A, ¢(t) = ¢(s). Equivalently, A |= t = s if for al valuationsp : V — A,
[tl, = [sl,-

Definition. Let X beasignature, and let £ be aset of X-equations. A Y-algebra A that satisfies al equations
in & iscaled a (X, £)-algebra. The (X, £)-agebras form a full subcategory of 3-Alg, which we denote
by (X, £)-Alg. Any full subcategory T of X-Alg that arises in thisway is called an algebraic variety. The
algebras of an algebraic variety T are also called T-algebras.

Let T bean algebraic variety, defined by asignature 3 and equations£. We construct T, the free T-algebra
over aset X, asfollows: On theterm algebra X x, consider the smallest congruencerelation ~ such that

<S,t>€g p:Yy = Xx
p(s) ~ p(t) '
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Table 1.2; Equational rules for X-algebras

(cong)
(symm) t o1 sk = fti-tx
t= _ B
’ (subst) s=1 _p:iy >y
(trans) -1 t=u p(s) = p(t)

Let Tx bethe algebraX x /~. Then Ty is aT-agebra Together with the natural map 7 : X — Ty, it has
the universal property:

Proposition 1.12. For any T-algebra B and any map p : X — B, there is a unique homomorphism p :
Tx — B such that

) g

NS D

We say that a set of equations £ entails an equation s = ¢, in symbols £ ey s = ¢, if s = ¢ can be derived
from the hypotheses £ by therulesin Teble 1.2. We write £ |=x.a1g s = t if for all Z-algebras A, if A |= €&,
then A = s =+t.

Proposition 1.13. Soundness and Completeness for X-algebras.

Elegs=t ifandonlyif & |=sags=t

1.3.4 Indeterminates

Let T be a variety with signature ¥ and equations £. Let A be a T-algebra, and let X be a set. Assume
without loss of generality that X and |A| are disjoint. Relative to the variety T, the polynomial algebra
A[X] is defined as follows: On the term algebra X | x, consider the smallest congruence relation ~ such
that

a= faay...ay (s,t) € & p:Yy = YA+ x

Ca ~ fCay -+ Cay p(s) ~ p(t) '
Let A[X] bethealgebra¥ a |4 x /~. Together with A[X], consider the natural maps : A — A[X] defined
by t(a) = [ca]~,and g : X — A[X] defined by j(x) = [cz]~-

Proposition 1.14. A[X] is a T-algebra with the following universal property: For any T-algebra B, any
homomorphism f : A — B of T-algebras, and any map g : X — B, there is a unique homomorphism
h: A[X] — B such that

B. O

Remark. Themap:: A — A[X] isaways an injection; we will often regard it as an inclusion. Notice that
A[X][Y] = A[X +Y]. Inthecasewhere X = {z;,...,z,} isfinite, wewrite A[X] = Afzy,...,zn].
The elements of A[X] are called polynomials, and X is called a set of indeterminates.
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Table 1.3: Inequational rulesfor X-algebras

feQ s; < t; (Z:].k‘>

(refl) (cong)

S<S fSl...Skgftl...tk
<t t<u s<t (ptzv—)zv
(trans) s<u (subst) 20) <o)

1.35 Ordered algebras

Let A beaX-algebra, and let < beapartial order onthe carrier set |A|. Thepair (A, <) iscalled an ordered
3-algebraif the order < isacompatiblerelation on A in the sense of Definition 1.10. Concretely, thisisthe
caseiff foreach f € Qy, fa : A¥ — A isamonotone map with respect to <. A homomorphism of ordered
X-algebrasis ahomomorphism of 3-algebras that is monotone. We denote the resulting category of ordered
Y-algebrasby 2-Ord.

Just as we considered sets of equations for ¥-algebras, we may consider sets of inequations for ordered
Y-algebras. Recall that V is a countable set of variables, and that 3y, isthe X-term algebra. A X-inequation
isapair of terms (¢, s) € £y, x Xy, oftenwrittent < s. An ordered S-algebra (A, <) satisfies an inequation
t < s, insymbols A |= ¢t < s, if for @l homomorphisms ¢ : ¥, — A of Z-algebras, p(t) < ¢(s).
Equivalently, A |= ¢ < sif fordl valuationsp : V — A, [t], < [s],.

Definition. An ordered -algebra that satisfies a given set Z of inequations is called an ordered (X, T)-
algebra. The ordered (X, 7)-agebras form afull subcategory of ¥-Ord, which we denoteby (3, 7)-Ord. A
full subcategory O of X-Ord that arisesin thisway is called an ordered variety.

Let O bean ordered variety, defined by apair (£, 7) of asignature and a set of inequations. The free ordered
(X, 7)-algebra over aposet P, denoted Op, is constructed as follows: On theterm algebra X p, consider the
smallest compatible preorder < satisfying

(s,t) €T p:3y = Xp r<y€eP
p(s) < p(t) Ce S Cy

Let ~ be the congruence < N = on X p, and let Op be the algebra ¥ p /~, together with the partial order
< induced by < via[z]. < [y]~ iff z < y. Then Op is an ordered (X, 7)-algebra, and the natural map
7 : P — Op ismonotone. The following universal property holds:

Proposition 1.15. For any ordered (2, 7)-algebra B and any monotone map p : P — B, there is a unique
homomorphism of ordered (X, 7)-algebras 5 : Op — B such that

P4J>0p
L
B. O

Rulesfor deriving inequations are given in Table 1.3. We say that a set of inequationsZ entails an inequation
s < t,insymbolsT Fineq s < t, if s < t can be derived from the hypotheses Z by these rules. We write
€ Es-ord s < tif foral ordered S-algebras A, if A |= &, then A = s < t.

Proposition 1.16. Soundness and Completeness for ordered 3-algebras.

EFegs<t ifandonlyif & FEsogs<t
We also sometimes write Z Fineq s = ¢ asan abbreviation for Z Fineg s < t and Z Fineg t < 5.

16



1.3.6 Dcpo-algebras

Let ¥ be asignature. An ordered X-algebra (A, <) is called a X-dcpo-algebra if the partial order < is di-
rected complete, and if each interpreted operation fa : A¥ — A is Scott-continuous. A homomor phism of
X-dcpo-algebrasis a Scott-continuous homomorphism of ordered X-algebras. We denote the resulting cate-
gory of X-dcpo-agebrasby X-DCPO. Each set 7 of inequations determines a full subcategory of ¥-DCPO,
which we denote by (32, 7)-DCPO. We call such a subcategory a dcpo-variety.

Let D be a dcpo-variety, defined by (X, Z). For every dcpo D, there exists a free (X, Z)-dcpo-algebra
Dp over D, with an associated continuous map y : D — Dp, satisfying the usual universal property. The
construction of the free dcpo-algebraislesstrivial than in the case of ordered algebras, and it reliesan Freyd's
Adjoint Functor Theorem. A proof of the existence of Dp can be found in Abramsky and Jung [3].
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Chapter 2

The Lambda Calculusis Algebraic

The correspondence between Church’'s untyped lambda calculus and Curry’s and Schonfinkel’s combina-
tory algebras is among the oldest known, and most esthetically pleasing, facts about the lambda calculus.
However, the combinatory interpretation is also known to be somewhat imperfect, as Curry’s combinatory
abstraction operator does not in genera satisfy therule

M=N
© Az M =X z.N ~

One usualy resolves this problem by moving from the class of lambda algebras to the smaller class of
lambda models, which are, by definition, those lambda algebrasin which (£) holds. However, unlikethe class
of lambdaalgebras, the class of lambdamodelsis not equationally definable. Therefore, it failsto enjoy some
useful closure properties such as being closed under subalgebras.

In this chapter, we point out that the failure of the &-rule, and the subsequent need for a non-equational
class of models, is not due to thelambdacalculusitself, but to theway free variablesare usually interpretedin
these models. The usual interpretation of alambdaterm is defined relative to a valuation of its free variables.
Essentially, this amounts to interpreting a term M with n free variables as afunction A™ — A. We argue
that it is more natural to model free variables as algebraic indeterminates and to interpret M as an element of
apolynomial algebra Az, ... ,z,]. Based onthisinterpretation, we show that the class of lambda algebras
is sound and complete for arbitrary lambdatheories. In particular, the notoriousrule (£) is sound with respect
to thisinterpretation.

This chapter is intended to serve as a self-contained, brief introduction to the lambda calculus and its
combinatory models. We do not claim originality for the results in this chapter, which follow from known
results in Barendregt's book [5] and in the work of Koymans [31]. We do however hope to present these
issues from a fresh point of view, particularly where the interpretation of free variablesis concerned. Maybe
this exposition will help to clarify the precise relationship between the lambda cal culus, lambda algebras, and
lambda models, which are sometimes confused in the literature.

Lambda conversion and reduction are introduced in Section 2.1. Combinatory algebras and lambda al-
gebras are defined in Section 2.2. Section 2.3 contains a detailed analysis of the behavior of indeterminates
in the theory of lambda algebras, which leads to a streamlined interpretation of the lambda calculus. In Sec-
tion 2.4, we show that the categories of lambdatheories and of lambda algebras are equivaent. This, to some
extent, justifies the slogan “the lambda calculusis algebraic”. Lambda models are the subject of Section 2.5,
and Section 2.6 is devoted to model s of the lambda-3n-calculus. Finally, in Section 2.7, werelate the different
kinds of algebraic modelsto reflexive ccc models.
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Table 2.1: The axioms and rules of the lambda calculus

M=M N=N'

(reﬂ) M=M (Cong) MN = M'N'
MoN M=N
(symm) N =11 ©  mar=uN
M=N N=P
(trans) V=P @) (Ax.M)N = M[N/z]

2.1 Thelambda calculus

The lambda calculus is atheory of functions as rules. Its two basic constructions are functional application,
where () denotes the application of afunction f to an argument z, and functional abstraction, where Azt
denotes the function that maps z to t.

Definition. LetV be acountable set of variables, fixed throughout the rest of this chapter. Let C' be a set of
constants. The set of raw lambda terms A" is defined to be the least set of terms such that

reV ceC M,N € A@” eV  MeARY
x € AR c e ABY (MN) e AR (Az.M) € AB”

Notation: We often use upper case letters M, N, . . ., aswell aslower caseletters s, t, u, . .. to denotelambda
terms. We use z,y, ... to denote variables. To save parentheses, we write M N P instead of ((M N)P),
Az.M N instead of (\xz.(MN)), and \xy ...z, M instead of (Az;.(... (A\x,.M)...)). Theset FV (M) C
Y of freevariables of araw lambdaterm M is defined recursively:

FV(z) = {z} FV(c) =10 FV(MN)=F/(M)UFV(N) FV(Az.M) =RV (M) \ {z}.

Variables that are not free are bound. We write M =, N if M and N are equal up to renaming of bound
variables. The set A of lambda terms is then defined to be the set A" /=, of a-equivalence classes of
raw terms. From now on, we will consider terms up to a-equivalence without further mentioning it. A term
with no free variablesis closed. The set of closed terms is denoted A2,. We write M[N/z] for the result of
substituting IV for z in M, taking appropriate care to ensure that neither z nor any of the free variables of N
areboundin M. For arigorous trestment of a-equivalence and substitution, see e.g. [5].

2.1.1 Lambda conversion

The axioms and rules for deriving equations between lambda terms are shown in Table 2.1. If £ is a set of

equations, wewrite £ g M = N if M = N isderivablefrom £ by using theserules. A lambdatheory isa

set 7 of closed equationsthat is closed under derivability,i.e. 7 3 M = N impliesM = N € T, for closed

M and N. For agiven set of constants, there is a unique smallest theory A3, called the pure theory or the

theory of 3-conversion. We alsowritet-3 M = N as M =g N and we say that A/ and N are 3-convertible.
Thelambda-3n-calculusis the lambda cal culus with the additional axiom

z ¢ PV (M)
) g 3w =1
We write £ g, M = N if M = N isderivable from a set of equations £ and the axiom (5). A lambda
theory 7" which is closed under 3, is called alambda-3n-theory. The unique smallest such theory is called

the theory of 3n-conversion, and it is denoted Agn. If g, M = N, then we write A/ =g, N and we say
that M and N are 3n-convertible.
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Table 2.2: Reduction rules of the lambda calculus

M — M’ N — N/

(et (cong) MN — M'N
M—M M — N
(trans) M — N N —P ©) .M — \x.N

M — P

B eIy = v/

Remark. The notion of theory given here is a dightly more libera than the one given in [5], where the
equations of atheory are not allowed to contain any constants.

Notice that the lambda calculus is not given by a signature and equations in the sense of universal algebra.
However, we will show in Section 2.3 that the lambda calculus is equivaent, in a suitable sense, to an
algebraic theory.

2.1.2 Lambdareduction and consistency

When considering functions asrules, it is natural to think of the evaluation of a function applied to an argu-
ment as a dynamic process. This processis made explicit in the notions of 3-reduction and 8n- reducuon

A term of the form (Az.M )N is caled a 3-redex, and it 3-reducesto M[N/z]. Therelation L, isthe
reflexive, transitive and contextual closure of this one-step -reduction. More precisely, 5, isthe smallest
relation on lambda terms satisfying the axioms and rules in Table 2.2. A term of the form Ax. Mz, where
x & FV (M), is caled an n-redex, and it n-reducesto M. The relation 81, is the reflexive, transitive and
contextual closure of the one-step 3- and n-reductions, i.e., it is the smallest relation satisfying the axioms
and rulesin Table 2.2 and also the axiom

x & FV(M)
) etz — 31

A term M is said to bein 3-normal form no subterm is a 8-redex, i.e. |f MM = M= M. Similarly,
M isin Bn-normal form if it contains no - or n-redex, i.e. if MESM = M = M. Examples of
termsin 8-normal form include the booleans T = Azy.x and F' = A\zy.y, aswell as the Church numerals
0= \zy.z, 1= \zy.zy, 2= \zy.z(zy) etc.; al of these except for 1 are also in Bn-normal form.

Definition. A binary relation — is said to have the diamond property if whenever a — banda — ¢,
then thereexists d such that b — d and ¢ — d. In diagrams:

Also, arelation — is said to be Church-Rosser if the transitive closure —* has the diamond property.
Theorem 2.1 (Church, Rosser [12]). The relations -2 and 2% are Church-Rosser. O

This theorem was first proved by Church and Rosser in 1936 [12]. Since then, the proof has been adapted
and streamlined in various ways by Tait, Martin-Lof, Girard and others. One can find a proof in Barendregt's
book [5].

The Church-Rosser Theorem has several important consequences. Asafirst consequence one provesthat
for each pair of S-convertible lambdaterms M =g N, thereis aterm P with M-L25P and N2, P. This
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Table 2.3: The axioms and rules of combinatory logic

A=A B=DpB

(refl) 1= A (cong) 1B = AF
A=B
(symm) Ve ©  gap=a1
A=B B=C
(trans) A=0 ®) siBc=acmEO

is easily shown by induction on the derivation of M =z N, using therulesin Table 2.1. Thisimmediately
implies consistency of the lambda calculus:

Corollary 2.2. Consistency. If M and N are two different terms in 8-normal form, then M #3 N. If M
and IV are two different terms in 8n-normal form, then M #g, N. O

2.2 Combinatory models of the lambda calculus

2.2.1 Combinatory algebrasand combinatory logic

Definition. An applicative structure (A, ) is a set A together with a binary operation. A combinatory
algebra(A, -, k, s) isan applicative structurewith distinguished elements k and s suchthat forall z,y, 2z € A,

kry ==z sryz = x2(yz)

Here we write kzy for (k - z) - y, etc. A homomorphism of combinatory algebrasis f: A — B such that
fk=k fs=sand f(z -y) = fx- fy fordl z,y € A.

Example. The closed term algebra associated with alambdatheory 7 is (A% /T, -, K, S), where A%, /T is
the set of T-equivalence classes of closed terms, M - N = (MN), K = Azy.x and S = Azyz.xz(yz).
Similarly, the open term algebrais (A¢ /T, -, K, S).

Combinatory algebrasform an algebraic variety. The corresponding algebraic languageis combinatory logic:
let V be aset of variables and C' a set of constants as before. The set € of combinatory terms or terms of
combinatory logic is defined to be the smallest set of terms such that

zey ceC A,Be€ €
T € € c € Co (AB)EQ:C K e ¢ See¢c

Again, we economize the use of parentheses by writing ABC' instead of ((AB)C'). A combinatory term is
closed if it contains no variables. The set of closed termsis denoted by ¢2,. A closed and constant-free term,
i.e. atermthat is made up only from K and S, isalso called a combinator. The axioms and rules for deriving
equations of combinatory logic areshownin Table2.3. Wewrite£ ¢ A = B if A = B canbederived from
aset of equations £ by theserules. A theory of combinatory logic is a set of closed equationsthat is closed
under derivability. The minimal theory is denoted CL, and we also write A =¢. B instead of ¢, A = B.

Terms of combinatory logic can be interpreted in a combinatory algebra A, relative to a valuation p of
variables an an interpretation I of constants. We call this the local interpretation to distinguish it from the
absolute interpretation that we will consider in Section 2.3.2.

Definition. Local interpretation of combinatory logic. Let A beacombinatory algebra, andlet7 : C — A
be an interpretation of constantsin A. A valuation of variablesin A isamap p: V — A. The local
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interpretation [A]! of aterm A € ¢ is defined inductively:
[«], =p(@) [, =1(c) [Kl,=k [SI,=s [ABI,=I[Al,-[BI,.

For terms A, B € ¢, we say that the interpretation I locally satisfies the equation A = B, notation I
A = B, if forall valuationsp in A, [A]! = [B]]. Wewrite £ }=ca A = B if for all combinatory algebras
A and dll interpretations : C — A,if I = Ethen] = A = B.

Proposition 2.3. Soundness and Completeness for combinatory logic. Let £ be a set of closed equations
of combinatory logic. For combinatory terms A and B,

EFc. A=DB ifandonlyif & |ca A= B.

2.2.2 Thederived lambda abstractor

The significance of the two combinators K and S of combinatory logic lies in the fact that they can be used
to simulate lambda abstraction. DefineI = SKK. Noticethat Iz =¢_ z, for al x. For a combinatory term
A€ ¢-andavariablex € V, definetheterm A\*z. A € €¢ inductively:

Nezx = 1
Xz.B = KB, if v ¢ FV(B)
M¢.BC = S(\*z.B)(\*z.C), otherwise.

Noticethat (A\*z.A)x =c. A can be shown by induction for any term A. Also, FV(A*z.A) = FV(A4) \ {z}.
Wecall \* thederived lambda abstractor of combinatory logic. It isimportant to remark herethat, in general,
the operator A* is well-defined only on terms, and not on equivalence classes of terms. For this reason, the
A* operator does not, in generd, yield an operator A*: A[z] — A, for acombinatory algebra A. We will see
in Section 2.3.2 that we do get such an operator when A isalambdaalgebra

Proposition 2.4. Combinatory completeness. For every term B € ¢¢ with variables in z4,... , z,, there
exists a closed term A such that B =c; Az -+ xp.

Proof. Let B = \*z1 ...z, .A. O
As a consequence, in the variety of combinatory agebras, all elements of A[zq, ... ,z,] can be writtenin

theform Az, ...x,, where A € A. However, such A isnot necessarily unique.

2.2.3 Thelocal interpretation of lambdaterms

Using the derived lambda abstractor A* of combinatory logic, we can define trandationscl: A¢ — €¢ and
A: €0 — Ag from lambdaterms to combinatory terms and vice versa:

Tegg = T lc:)\ i i‘j
N =
Cl = C —
(MN)qy = MaNg (Al;)i _ f;ﬁfg
(Az.M)g = Nz.Myg Sy = Awzyz.axz(yz)

Notice: Again, these trand ations are defined on terms, rather than equival ence classes of terms. For example,
(Az.(Az.z)z)q = S(KI)I and (Az.z)q = I are not equivalent in combinatory logic. The following hold:

Lemma 2.5. For any lambda term A/, we have Mg » =g M. For combinatory terms A, B, if A =¢. B
then Ay =g B,. For lambda terms M, N, if Mg =cL Ne, then M =5 N. For a combinatory term A,
()\*x.A)A =B )\x.AA. O
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We can now interpret lambda terms in any combinatory algebra, by first translating them into combinatory
logicviacl:

Definition. Local interpretation of lambda terms. Let A be acombinatory algebraand I : C — A an
interpretation of constants. For lambdaterms M, N € A¢ and avauationp: V — A, define

[M], = [Md]]
I=EM=N iff Il My=Ny
Th(I) = {M=N|MNecA% Ik M=N}

This interpretation is not sound for the lambda calculus, since there are derivable equations, such as for
instance \z.(\z.z)z = Az.z, that do not hold in all combinatory algebras. In particular, Th(I) need not be a
lambdatheory!

This leads us to consider the class of lambda algebras, which are precisely those combinatory algebras
that satisfy all the equations of the lambda cal culus.

224 Lambdaalgebras

Let A beacombinatory algebra. Then € 5 isthe set of combinatory terms with one constant symbol for each
element of A. Let I, : A — A bethe canonica interpretation of each constant symbol as itself, i.e. the
identity function. For A, B € €A, wewrite A |= A= Binsteadof I = A = B.

Definition. A combinatory algebra A is called alambda algebra if for all combinatory terms A, B € €4,
Ay =3 B = A ': A=B.
A homomorphism of lambda algebrasis a homomorphism of combinatory algebras.

Example. For any lambda theory 7', the open term algebra A /7 and the closed term algebra A2, /T are
lambdaalgebras. Inthe opentermsalgebra, Ac/T = A= Biff T k3 A\ = B,.

Proposition 2.6 (Curry). Lambda algebras form an algebraic variety. In fact, the class of lambda algebras
can be axiomatized over the class of combinatory algebras by the following five closed equations, known as
the Curry axioms:

L k= s(s(ks)(s(kk)k))(k(skk))
2. 5= s(s(ks)(s(k(s(ks)))(s(k(s(kk)))s))) (k(k(skE)))
3. s(kk) = s(s(ks)(s(kk)(s(ks)k))) (kk)
4. s(ks)(s(kk)) = s(kk)(s(s(ks) (s(kk)(skk))) (k(skk)))
5. s(k(s(ks)))(s(ks)(s(ks))) = s(s(ks)(s(kk)(s(ks)(s(k(s(ks)))s)))) (ks)
Proof. See[5]. We will give adifferent axiomatization of lambda algebrasin Remark 2.20. O

We denote the variety of lambdaalgebras by LA. We write k4 for provability from the axioms and rules of
combinatory logic plus the five Curry axioms. We alsowrite A =5 B instead of - o A = B. Thefollowing
complements Lemma 2.5:

Lemma 2.7. For any combinatory term A, we have Ay ¢ =.a A. For lambdaterms M, N, if M =g N, then
My =LA Ng. For combinatory terms A, B, if Ay =g By, then A =.a B. O

If £ is aset of equations, we write £ = a A = B if for al lambda algebras A and al interpretations
I:C — A,iflI |=E&then] = A = B. Thefollowing is a soundness and completeness theorem for the
pure lambdacalculus, i.e. for equations M = N that are provablein the puretheory AS. In Section 2.3.3, we
prove a more genera theorem for arbitrary theories.
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Theorem 2.8. Soundnessand completenessfor the purelambdacalculus. For lambdaterms M, N € A¢,
Fs M =N ifandonlyif |a M =N.

Proof. Soundness follows directly from the definition of lambda algebras. For compl eteness, notice that the
open term agebra A /A3 of the lambda beta calculusis alambdaagebrainwhich M = N iff M =5 N. O

Remark 2.9. Failure of (£) for thelocal interpretation. The reason that we state the soundness and com-
pleteness only for the purelambda calculus at this point is that in general, the local interpretation in alambda
algebradoesnot satisfy therule (€), i.e.itisnotingeneral truethat I = A = Bimplies] |= \*z.A = \*z.B.
A counterexample is the closed term algebra M of the lambda-3-calculus. Plotkin [46] shows that there
exist closed terms M, N such that for all closed terms Z, MZ =3 NZ, but Mz #3 Nz for avariable z.
Hence M° = Mz = Nz, but M° £ Az. Mz = Xz.Nz. The absolute interpretation, to be defined in
Section 2.3.2, takes care of this problem.

2.3 Lambda algebrasand indeter minates

2.3.1 A characterization of A[z] for lambda algebras

Recall that for a combinatory algebra A, we denote by A|[z] the algebra obtained by freely adjoining an
indeterminate z to A in the variety of combinatory algebras. If A isalambdaalgebrathensois Afz]. More
generdly, if A isalambdaagebraand f: A — B isahomomorphism of combinatory algebras, then B isa
lambda algebra. Thisis because lambda algebras are definable by closed equations (Proposition 2.6).

If A isalambda algebra, then A[z] has an interesting explicit description. The following construction
is similar to constructions given by Krivine [32] and, in the case of Curry algebras, by Freyd [19]. Let
A= (A, k, s),anddefineB = (B, e, K, S), where

B = {a€A|a=1la}, wherel = s(ki),i= skk
aeb = sab

K = kk

S = ks

Note: ab denotes applicationin A, and a e b denotes application in B.
Proposition 2.10. 1. B is a well-defined combinatory algebra.
2. Themap :: A — B with «(a) = ka is a well-defined homomorphism.

3. For every homomorphism f: A — C and every x € C, there is a unique homomorphismg: B — C
suchthat f = g o and g(i) = «. Consequently, B 2 A[x].

Notice that 1ab =cL ab, and 1 =g Azy.zy. The proof of Proposition 2.10 relies on the following seven
properties of lambda algebras. We will see later that lambda algebras are already characterized by these
properties (see Remark 2.20).

Lemma 2.11. The following hold in any lambda algebra:

(a) 1(sa) = sa,
() 1(sab) = sab,
(¢) 1(ka) = ka,
(d) s(s(kk)a)b = 1a,
(e) s(s(s(ks)a)b)e = s(sac)(sbe),
() Kab) = s(ka)(kb),
(o) shai = 1a,
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Proof. Oneeasily checksthat (1(sa))x =s (sa)x, and similarly for the other equations. O
Proof of Proposition 2.10:

1. Itfollowsby Lemma2.11(a)—(c) that al of K, S,a e b,i and 1 are elementsof B, forany a,b € B. In
particular, the operations on B are well-defined. Moreover, for al a, b, c € B,

Keaeb=s(s(kk)a)b 2D 10 = a, and

Seaebec=s(s(s(ks)a)b)c 2le)

2.: UsingLemma2.11(f),

(sac)(sbc) =aece (bec).

t(ab) = k(ab) = s(ka)(kb) = v(a) e 1(b).

3.. Defineg(a) = f(a) - x, and check that this has the desired properties. For uniqueness, take any homo-
morphismh: B — C suchthat f = hovand h(i) = z. Thenforal a € B,

h(a) = h(1a) "2 h(s(ka)i) = h((ka) o i) = h(ka) - h(i) = h(ia) - (i) = f(a) - = = g(a).

Corollary 2.12. Let A be a lambda algebra, and a,b € A. Then ax = bz holds in A[z] if and only if
la = 1bholdsin A.

Proof. =: Supposea,b € A and az = bz in A[z]. By Proposition 2.10, items 1. and 2., thereis aunique
map h: Afz] — B extending : and sending z to i. Then

211(9) s 11(g)

la ka)i = (ka) o i = h(az) = h(bz) = (kb) i = s(kb)i =" 1b.
<! la=1binA = 1la=1binAlz] = ar = laz = 1bz = bx in Afz]. U

2.3.2 Theabsoluteinterpretation

Let M € €¢ be alambdaterm whose free variables are among x1,... ,z, = Z. Let A be a combinatory
algebra, and let I : C — A be an interpretation of constants. The local interpretation [[M]],{, defined in
Section 2.2.1, depends on a vauation of variables p: V — A. Since, in fact, it depends only on the values
of patzy,...,r,, theloca interpretation can be viewed asafunction [AM/]L: A™ — A, sending an n-tuple
a € A" to [M][,._ . Intheseterms, an equation A/ = N holds locally in A if A/ and N define the same
function A™ — A.

We will now consider a different interpretation of terms, interpreting M as an element in A[z], i.e. asa
polynomial. We call this the absolute interpretation of A/. The absolute interpretation distinguishes more
terms than the local one, since, in general, two different polynomials may define the same function. For

closed terms, however, the absolute and the local interpretations coincide.

Definition. Absolute interpretation. Let A be a combinatory algebra, and let 7 : C — A be aninterpre-
tation of constantsin A. For each combinatory term A € € whose variablesareamong z = x4, ... , Ty,
we define its absolute interpretation [A]2S as an element of A[z] by the following inductive clauses. Notice
that although the absol ute interpretation depends on I, we omit the extra superscript.

[zl =w  [dF=1() [KIZ*=k [SI¥°=s [ABIZ®=[Al5" [BIF

We say that the interpretation I absolutely satisfies the equation A = B, in symbols I =% 4 = B, if
[A]®s = [B]®s, where FV (A, B) C Z. Notice that, since the canonical homomorphism A[z] — A[g] is
one-to-onefor z C g, this notion is independent of the choice of variables z. The absolute interpretation of
lambdaterms M € A isdefined viathe trandation cl:

M1 = [Ma]?*

ITE®»M =N iff IE® My= Ny
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Remark. In the language of universal algebra, [ - ]2 is just the unique map making the following diagram
commute. Hence the local and the absolute interpretation can be defined in any algebraic variety.

, Yo —1 > Sois. ,
/ft [[.]]absi T
T

A

C

Alz]
The terminology “an equation holds absolutely” is justified by the following lemma:

Lemma2.13. Let A, B € ¢¢ be combinatory terms with variables in z. Let A be a combinatory algebra
and I : C' — A an interpretation of constants. The following are equivalent:

1. I =% A=0B,
2. 1ol = A= B,where.: A — A[z] isthe canonical map,
3. folI = A = B foral homomorphismsf: A — B.

Proof. 1.=3.: Consider f: A - Bandp: V — B. Letg: A[Z] — B bethe unique map extending f such
that g(z;) = p(x;) for dl i. Then [[A]]gf"[ = g[A]®S and [[B]]gf"f = g[B]2*s, hence [[A]]gf"f = [[B]]gf"[, which
provesfol | A= B.3=2.:Trivia. 2=1.:10] = A= Biffforal p: vV — Alz], [A]5! = [B]y'.

Take p(z;) = z; to get [A]®S = [B]®S. O
Lemma 2.14. In any lambda algebra, 1(A*z.4) = A*z. A.
Proof. By definition of A* and Lemma2.11(b) and (c). O

The next lemma, which is crucia for the soundness of the interpretation of the lambda calculus, holds for
absolute, but not for local interpretations.

Lemma2.15. Therule (§) issound for the absoluteinterpretation. Let A be a lambda algebra, 7 : C —
A an interpretation and A, B € € combinatory terms. Then
I=®»A=2B = TE® M\ A=)\2.B

Proof. Assumethevariablesof A and B arecontainedin z,y1,--- ,Yn.
= Suppose A[z,y] E A = B. Then Alz,3] = (\z.A)r = A = B = (\*z.B)z, hence by Corol-
lary 2.12, A[j] E 1(\*z.A) = 1(\*z.B). Theclaim follows by Lemma2.14.
<! Suppose Afg] E Mz A= X2z.B. ThenAlz,5] F A= (\z.A)x = (\*z.B)z = B. O
It follows from thislemmathat the derived lambda abstractor A*z isawell-defined operator A*z : A[z] — A
if A isalambdaalgebra When Afz] is explicitly constructed as (B, e, K, S) like in Section 2.3.1, then
AMz: B — A turns out to be the map that sends every element a to itself. Using this A* operator, the
absolute interpretation of alambdaterm can be defined directly, i.e. without relying on the translation cl into
combinatory logic:

[F°=c [@lf=w  [MN]F®=[MF [NIF®  DeM]F®=Xe[M]T5
Proposition 2.16. In the category of lambda algebras, the derived lambda abstractor A*z : A[z] — Ais
natural in A, i.e.forall p : A — B,

Proof. Any element of A[z] canbewritten (not uniquely) asaz, wherea € A. Then p(A\*z.az) = p(la) =
1(pa) = X z.(pa)x = N z.p[z](ax). O
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2.3.3 Soundness and completeness for lambda algebras

Proposition 2.17. Soundness. The set of equations that hold absolutely in a lambda algebra A is closed
under the axioms and rules of the lambda calculus. As a consequence, Th(A) is a lambda theory for any
lambda algebra A.

Proof. Consider each axiom and rule of the lambdacalculus. («) and (3) are satisfied because A is alambda
algebra. The rules (refl), (symm), (trans) or (cong) are trivially satisfied. Finaly, therule (¢) is satisfied by
Lemma 2.15. For the second claim, notice that a closed equation holds absolutely iff it holds locally. O

Theorem 2.18. Soundness and Completenessfor lambda algebras. Let £ be a set of closed equations of
the lambda calculus. Then for lambda terms M, N,

EFg M =N ifandonlyif &}a M =N.

Proof. Soundness follows by Proposition 2.17. For completeness, observe that the open term algebra A / T
associated with the theory 7 is alambdaalgebra satisfying M = N iff T g M = N.

Corollary 2.19. For a set £ of closed equations of the lambda calculus, let £ be its translation into combi-
natory logic. Then for lambda terms M and N,

EFg M =N ifandonlyif &gbia Mg = Ng.
O

Remark 2.20. It is worth noting that Corollary 2.12, Lemma 2.15, and Proposition 2.17 were all proved
using only the seven properties of Lemma 2.11. Hence, if a combinatory algebra A satisfies 2.11(a)—(g),
then Th(A) isalambdatheory, whichimpliesthat A isalambdaalgebra. Thus, the class of lambdaa gebras
is axiomatized over the class of combinatory algebras by the propertiesin Lemma 2.11. Of course, these
axioms can be closed by using the derived lambda abstractor. However, after spelling everything out in terms
of s and k, the axioms given in Proposition 2.6 are considerably shorter.

2.4 Lambdatheoriesand lambda algebrasform equivalent categories

In this section, we define the category of lambda theories, and we show that it is equivalent to the category of
lambda agebras.

Definition. The category LT of lambda theories is defined as follows: An object is a pair (C, T, where C
is a set of constants and 7 a lambda theory in the language A2,. The pair (C,T), like T itself, is called
alambda theory. A trandlation from C to C' is afunction ¢: C — A%,. Any such ¢ extends uniquely
to afunction g: AY — A2, defined by oM (cq,... ,c,) = M(pca,... ,pc,), whereey, ... ¢, aethe
constants that appear in M. A morphism from (C, 7 to (C’,7"') is named by atranslation from C to C'
suchthat 7 +g M = N implies 7' 5 pM = ¢N foral M, N € A%. ¢ and ¢ name the same morphism
if 7' 5 @M = oM foral M € A,. Composition is defined by @ o ¢ := ¢ 0 9.

Theorem 2.21. The category LT of lambda theories is equivalent to the category L A of lambda algebras.

Proof. We defineapair of functors F': LT — LA andG: LA — LT. F sendsalambdatheory (C, T) toits
closed term algebra A2, /T, which is always alambda algebra. F' sends a morphism ¢: (C,T) — (C', T")
to the homomorphism f: A2 /T — A2, /7" induced by ¢: A2, — A2,. G sends alambda algebra A to
(A, Th(A)), which is alambda theory by Proposition 2.17. G sends a homomorphism f: A — B to the
trandation p: A — A} with pa = fa.

Next, we describe a natural isomorphism 7: id a — F o G. For every lambda algebra A, definena :
A — FoG(A) =AY /Th(A) by na(a) = a. Thisisclearly ahomomorphism, anditisnatural in A.. To see
that this is an isomorphism, notice that for every M € A} thereisauniquea € A with Th(A) k5 M = q,
namely, a = [M].
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In order to show the existence of anatural isomorphismGo F' 2 id, T, it now sufficesto show that F" isfull
and faithful. F' is one-to-one on hom-sets by definition of morphismsin LT. F isaso full: if f: A% /T —
A%, /T" is any homomorphism, then f maps a closed lambda term M (c1, ... ,¢,) to M(fei,. .., fen),

wherecy, ... , ¢, arethe constants that appear in M. Thisisbecause M is equivalent to an applicative term
made up from ey, . . . , ¢, and the combinators k& and s, which are preserved by f. It followsthat f = F,
where p: C — A2, is defined by choosing a representative ¢(c) of f(c), for every c € C. |

2.5 Lambda models

The notion of lambda model arises, asin [5], if one attempts to prove Proposition 2.17 with respect to the
equations that hold locally. To do this, one needsthe “local” equivalent of Lemma2.15:

AEA=B = AEXNzA=X\uzB

This property, which is called weak extensionality, does not hold in general. Hence one defines a lambda
model to be aweakly extensional lambda algebra.

From our point of view, lambda models can be characterized as those lambda algebras which are intrinsi-
caly local: in alambdamodel, an equation holds absolutely if and only if it holdslocally. Or in other words:
in alambdamodel, every polynomial is determined by its behavior as afunction. In the language of category
theory, such a property is called well-pointedness, and indeed lambda models correspond to well-pointed
lambda algebras in a sense that will be made precise in Proposition 2.27.

Proposition 2.22. The following are equivalent for a lambda algebra A
1. A isweakly extensional.
2. A satisfies the following Meyer-Scott axiom: for all a,b € A,

Ve € A.ax = bz
la=1b

(MS), where1 = S(KI),

3. every equation that holdslocally in A already holds absolutely.

By weak

Proof. 1. => 3. Let A be weskly extensional and A = A = B. Assume FV(A,B) C Z.
Z.B, and finally

extensiondlity, A = \*7.4 = \*z.B. Thisisaclosed equation, hence A =5 \*z.4 = \*
A =¥ A = B by Lemma2.15.

3. = 2. Weshow (MS): Supposeforadl z € A, ax = bz. Then A =S az = br by 3., i.e. ax = bx €
Alz]. Hence1a = 1b by Corallary 2.12.

2.= 1. To show wesk extensionality, suppose A = A = B. Then A |= (\*z.A)z = A = B =
(Mz.B)z, henceby 2., A = 1(A*z.A) = 1(\*z.B), henceby Lemma2.14, A |= \*z.A = \*z.B. O

Lambda modelsareless natural than lambda a gebras, because they do not form an algebraic variety. Histori-
cally, lambdamodel swere avehiclefor proving soundness and compl eteness theorems such as Theorem 2.18,
seee.g. [5, Thm. 5.2.18]. We conclude this section by remarking that every lambda algebra can be embedded
in aweakly extensional one:

Proposition 2.23. If A is a lambda algebra and X an infinite set, then A[X] is a lambda model.

Proof. We show the Meyer-Scott axiom: assumea,b € A[X] and az = bz for dl z € A[X]. Thenthereis
somefiniteY C X witha,b € A[Y]. Letz € X \ Y, thenaz = bz in A[Y][z], hencela = 1bin A[Y] by
Corollary 2.12. O
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2.6 Modesof thelambda-gn-calculus

2.6.1 Curry algebras
A Curry algebra [33] isalambdaalgebrawith 1 = I. Note that Curry algebras form an algebraic variety.
Proposition 2.24. A lambda algebra A is a Curry algebra if and only if Th(A) is a lambda-7-theory.

Proof. If x ¢ FV(M), then \a.Mz =5 (Azy.xy)M = 1,M. Hencein any Curry agebra, \z.Mz =
1M = M. Conversely, if Th(A) isalambda-gn-theory, then A =1 = Azy.ay = Az.x = L d

Hence Curry algebras are to the lambda- 37n-cal culus what lambda a gebras are to the lambda-3-calculus.

2.6.2 Extensional models

An applicative structureis extensional if forall a,b € A,

Ve € A.ax = bx
a=0» ’

Extensional combinatory algebras are Curry algebras, and hence models of the A@n-calculus. Although
extensionality is an intuitive property, extensional models do not form an algebraic variety: e.g. the closed
term algebra of the lambda-n-calculus is extensional, but the subalgebra of closed terms is not (see [5,
Thm. 20.1.2] and [46]). In fact, a Curry algebra is extensional if and only if it is a lambda model, since
the Meyer-Scott axiom from Proposition 2.22 is equivalent to extensionality in the presence of the equation
1=1

2.7 Lambda algebrasand categorical models

2.7.1 Reflexive ccc models

In this section, we relate the combinatory models of the lambda calculus to the models that arise from a
reflexive object in acartesian-closed category. Anobject D in acartesian-closed category C iscalled reflexive

if there exists morphisms e and p such that
N
p

D— > DP

Thetriple(D, e, p) iscalled areflexive C-model or acategorical model of 3-conversion. If dlsopoe = idp,
we speak of acategorical model of 3n-conversion.

One defines an interpretation [M],, . .. of each lambdaterm M with FV(M) C {zy,... ,z,} asa
morphism D™ — D. Assume that bound variables are renamed as appropriate. Recall that ¢* and e, are our
notations for the curry and uncurry operations, respectively.

[ziler.. 2. = D™ X% D  (theithprojection)
[[]\/[N]]z17___7wn — Dn <[[M]]21,...,mn7|IN]]wl,...,mn>) D % D i) D
My, . yepi1)”
IIAJ’.TL+1‘M]]I17...7I" = D" M DD ﬂ) D.

Proposition 2.25. The following are properties of categorical models of 3-conversion:
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1. Permutation. The interpretation is independent of the ordering of the free variables, or of the addi-
tion of dummy variables, in the following sense: If o : {1,... ,n} — {1,...,m} isinjective and
FV(M) CA{zs1,... ,Zsn}, then

[M]zy,....2m
D" ——D.
<ﬁaly~~~7& %wal,...,mg—n
Dn

2. Substitution. Let FV(M) C {z1,... ,z,} and FV(Ny,... ,N,) C{y1,... ,ym}, and let M[N/z]
denote the simultaneous substitution of Ny, ... , N, forzy,... ,z, in M. Then

[MIN/z]ly

m

D D.
(IN1Dge [N lg) %
DTL

3. Soundness. If M =g N, then [M]z = [N]z. Inacategorical model of gn-conversion, if M =g, N,

Proof. 1. and 2. are straightforward by induction on theterm M. For 3., define M ~ N iff [M]z = [N]az;
by 1., thisis independent of the sequence of variables Z, aslong as FV (M, N) C z. Clearly, ~ satisfies the
properties (refl), (symm), (trans) from Table 2.1. Moreover, it satisfies (cong) and (£) by 2.; to seethat it also
setisfies (8), first notethat e, o (p x idp) = (e o p), = (idpo), = €. Hence

D x D

([Ae.M]z,[N]=)

Dn

(idpn,[Nl=)

D" x D

By definition, the composition along the top is [(Az.M)N]z, while by the Substitution Property 2., the
composition along the bottom is [M[N/z]]z. Thisshows (Az.M)N ~ M[N/z]. Hence =g C ~, and we
are done with thefirst claim. The case for -conversion follows by a similar diagram chase. O
2.7.2 Réflexive ccc models and lambda algebras

From a categorical model (D, e, p), one can define alambdaalgebra (A, -, k, s):

A = (1,D) (the hom-set)
ab = 1% pypiyp
E o= 1 [Mzy.2z] D

S =

Lemma2.26. (A, k,s) is a well-defined lambda algebra.

31



Proof. Itiseasy to show by induction on terms that for any combinatory term A,

T1,.e.PTr Axlay, ... 2n
[Al, = 1<p1’p>‘Dn[[)\]]1 > D.

Hence, Ay =3 Br = [Ax\]z = [BA\lz = [4]l, = [B]l, = A= A=B. O

Remark. Every lambdaalgebraarisesfrom areflexivemodel. The construction of a cartesian-closed category
from alambdaalgebrais due to Scott [54], and it is also described in [31].

The following proposition relates various concepts of lambda algebras to corresponding concepts of the
categorical interpretation. An object D in acategory iswell-pointedif foral f,g : D — E,

f

.
—

g

(Vo.1——=D E) = f=g.

We say that D islocally well-pointed if the same holdsfor al f,g: D — D.
Proposition 2.27.

1. Asalambdamodel iff D islocally well-pointed.

2. AisaCurryalgebra iff poe=idp.

3 A is extensional iff D is locally well-pointed and p o e = idp.
4, Alz] (1,DP) =~ (D, D).
5
6
7

1%

Alzy,...,zy] = (D", D).
AEM=N iff M=N:(1,D)— (1,D).
AE»SM =N iff M=Nce (D" D).

Proof. In A, onefirst computesI = [Az.z] = po (idp)*, 1 = [Azy.zy] = po (poe)’,andforadla € A,
l-a=poeoa.

1. =: Suppose A isalambdamodel and suppose f,g: D — D suchthatforalz:1— D, foz = gou.
Letf_pof*andg_pog €A Thenf-z = fox =gox =g-zforadlz € A, hence
1-f=1-g=poeopof*=poecopog=f=yg.
<: Suppose D islocally well-pointed. We show the Meyer-Scott axiom (see Proposition 2.22). Suppose
a,b € A suchthat foral z € A, ax = bx. Thisimpliesforal z:1 — 1 x D,

axidp, DXD&
1—"=1xD - D,
meD4

hence, by local well-pointedness, the square commutes. Currying the square, we get e o a = e o b, hence
1-a=1"-b0.

2. =: Suppose A isaCurry agebra. Then
(poe)* =eopo(poe)' =col=col=copo(idp)* = (idp)",

hencepoe =idp.
<: Supposepoe=idp,thenl =po (poe)* =po (idp)" =1

3. From 1. and 2.
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. and5. Consider the following two retracts:

Alz] and Db |
e T
A —— Alz] D———=DP.

(-)e

As we have seen in Section 2.3, the set A[z] can beidentified with thosea € A suchthat1-a = a. On
the other hand, arrows 1 — D can be identified with thosea : 1 — D suchthat po e o @ = a, whichis
againjust 1 - a = a. This gives a one-to-one correspondence between the points of A[z] and (1, DP) =
(D, D). ThecorrespondenceA[z1, ... ,x,] = (D™, D) issimilar. Moreover, this correspondenceinduces
alambdaalgebrastructure on (D™, D), which turns out to be the natural “pointwise” one given by

(a,b)

ab = D"245DxDsD
k = D”—>1M>D
s = Dpno_yq RovzeeAl g

. Wehave A = M = N iff [M], = [N], foral p:V — (1,D),iff [M]z o f =[N]zo f € (1,D) for
al f € (1,D").

. Followsfrom 5. and Lemma 2.13. O
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Chapter 3

Unorderability

Theformulation of the untyped lambda calculus, by Church and Curry in the 1930's, has preceded its modern
semantic theory by more than 30 years. It was not until the 1960's that Dana Scott constructed the first truly
“mathematical” models of the lambda calculus. Scott discovered that such models can be constructed by a
combination of order-theoretic and topological methods. Specifically, he observed that there exist non-trivial

diagrams of the form
N
p

D——>DP

in certain cartesian-closed categories of complete partial orders and Scott-continuous functions. Recall that
an object D in this situation is called reflexive, and that it gives rise to a model of the lambda calculusin a
canonical way as described in Chapter 2.

The question now arises whether all models of the lambda calculus can be constructed in this way. This
guestion must be modified, since a ssimple analysis reveals that every reflexive CPO-model is uncountable
[48], while there are some countable model s of the lambdacalculus. Instead, one can ask the refined question:
can every model of the lambda calculus be embedded in a reflexive CPO-model ? Alternatively: does every
lambda theory arise as the theory of a reflexive CPO-model? The answer is known to be negative: Honsell
and Ronchi DellaRocca[27] have exhibited alambdatheory that does not arise from such amodel. One may
now further relax this question by asking:

(i) Can every model of the lambda calculus be partially ordered?
(ii) Can every model of the lambda calculus be embedded in one that admits apartial order?

These two questions are the subject of this chapter. Let us call alambda algebra unorderable if it does not
admit anon-trivia partial order that is compatible with the algebra structure. Unorderablea gebrasare known
to exist. Plotkin has recently constructed a finitely separable algebra, a property with implies unorderability.
In Section 3.1, however, we show that one does not have to look very far to find unorderable algebras. the
most natural term models of the lambda calculus, namely the standard open and closed term algebras, are
unorderable. An application to reflexive CPO-modelsis discussed in Section 3.2.

Question (ii) is more difficult to answer, as indicated by the fact that the answer is still unknown. Let us
call alambda agebra absolutely unorderable if it cannot be embedded in an orderable one. In Section 3.3,
we give an algebraic characterization of absolutely unorderable T-algebras in any algebraic variety T. We
show that a T-algebrais absolutely unorderableif and only if it has afamily of so-called generalized Mal’cev
operators. The question (ii) thereby reduces to the syntactic question whether it is consistent to add such
Mal'cev operators to the lambda calculus. Thisis an open problem in general, but we discuss some special
casesin Section 3.4. Finally, in Section 3.5, we relate various different notions of unorderability.
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3.1 Lambdatermscannot beordered

In this section, we investigate unorderable models of the lambda calculus. Let usfirst fix some terminology.
Preorders and partial orders were defined in Section 1.2.1. The unique minimal preorder on any set X is
called discrete, the unique maximal preorder is called indiscrete, and discrete or indiscrete preorders are
caled trivial. By convention, if we wish to refer to apreorder that satisfiesz < y = y < z, wewill not call
it trivial, but symmetric. Of course, a partial order is symmetric iff it is discreteiff it istrivial.

Applicative structures and combinatory algebras were defined in Section 2.2.1. Let (X, -) be an applica-
tive structure. Recall that a preorder < on X is called compatibleif the application operation is monotonein
both argumentswith respect to <, i.e. if

Va,b,a',b' € X.a<ad andb<b =a-b<a-b.

An applicative structureis called unorderableif it does not allow a non-trivial compatible partial order.

Noticethat if (X, -, k, s) isacombinatory algebra, then apreorder < is compatibleif and only if applica-
tion is monotonein just the second argument. Monatonicity in the first argument then follows by considering
f=MXuz.x-bbecausea < a' impliesa-b=f-a< f-d =ad -b.

Recall that the open term algebra of the A 3-calculusisthe combinatory algebra (A¢ /=3, -, K, S), where
A¢ isthe set of untyped lambda terms with constants from C, - is the application operation on terms, and
K and S arethe terms Azy.z and Azyz.xz(yz), respectively. The closed term algebra (A2 /=3, -, K, S) is
defined analogously, and similarly for the An-calculus.

3.1.1 Plotkin’sunorderable algebra: Separability

In a recent paper [50], G. Plotkin has constructed a finitely separable lambda, a property which implies
unorderability. Following an idea of Flagg and Myhill [43], Plotkin calls a subset A of alambdaalgebra X
separable if every function p: A — X isredlized by some element ¢ € X, meaning that for all a € A,
p(a) = ¢ - a. A lambda algebrais said to be finitely separable if every finite subset is separable. Flagg and
Myhill noticed that finitely separable algebras do not allow non-trivial compatible preorders: Thisis because
if a < b aretwo distinct comparable elementsin X, then al pairs z, y of elements are comparable via some
peXwthg-a=zandy -b=y.

3.1.2 Thestandard term algebrasare unorderable

We will now show that the standard open and closed term algebras cannot be non-trivially partially ordered.
Notice that these are not finitely separable. For instance, consider the terms w = (A\z.zz)(Az.zz) and
I = \z.z. Theterm w is unsolvable, while I isin normal form. Let T' be another term in normal form. By
the Genericity Lemma (Barendregt [5], Proposition 14.3.24), whenever Rw = T, then RI = T'. Hence, w
and I cannot be separated.

How would one go about constructing a partial order on, say, the open term algebra of the A3-calculus?
Asafirst approximation, one might take two distinct variables z and y, and let C be the preorder generated by
asingleinequality = C y. For this preorder, onehas M C N iff N isobtained from M up to 8-equivalence
by replacing some, but not necessarily all occurrences of the variable x by y. In other words, M C N iff
thereis aterm P (not itself containing « or y) such that M = Pxzxy and N =g Pxyy. This preorder is
non-trivial, becausey Z z. Butisit apartial order? The following lemma, to be proved in Section 4.4, shows
that this is not the case:

Lemma3.1. There exists a closed term A of the untyped lambda calculus with Azzzy =g Azyyy, but
Axzxy #pn Azzyy #s, Azyyy for variables « # y. O

Notice that in the preorder that we have just defined, Azzzy C Azzyy T Axyyy = Axxxy. But since
Azxzry # Azxyy, the preorder C is not antisymmetric, hence not a partial order. By the same reasoning, «
and y cannot be related in any compatible partial order on open terms. To show this section’s main result, we
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need to replace the variables x and y by arbitrary terms v and ¢. This is achieved by the following lemma,
which states that, if s isafresh variable, then su and st behave essentially like indeterminates: any equation
that holds for su and st will hold for variables z and . Let 7 be one of the theories A3 or A8n.

Lemma3.2. Let uq,...,u, be terms that are distinct with respect to 7. If s is a variable not free in
Uy, - - - , Uy, then suy, sus, ... , su, behave like generic arguments. More precisely, for all terms M, N with
s € FV(M, N), and for variables z1, ... , z,,

M (suq)(sug) ... (su,) =7 N(suy)(suz) ... (su,)
implies
Mzixs...xp =7 Nx122 ... 200 -

Proof. Let {z1,29,..., 2y} bealist of al the free variables of theterms . .. , u,,. Choose fresh, distinct
constants ¢y, ... ,c,, anddy,... ,d,. Fori = 1...n, let u; bethe closed term obtained from w; by replac-
ing free variables with the appropriate constants: u; = w;[c1/21, ... ,¢m/2m]. Further, add to the lambda
calculusanew constant o ¢ C and equationsou; = d;, fori = 1...n. Let T + o denote the theory that is
obtained in thisway on A ;. Then

M (su1)(suz2) -..(suy) =7 N(sui)(suz) ... (suy)
= M(our)...(0Un) =74, N(0U1)...(0U,)  (by renaming)
= Mdy...dy =740 Ndi ...dy

The claim now follows from the fact that 7 + o is conservative over 7. Thisis a consequence of Plotkin's
separability result [50]: the closed term algebra can be embedded in aseparablealgebra. Let s : A /T — A
be such an embedding. Then choose ¢ € A suchthat ¢ - wu; = ud;, fori = 1...n. Thereis a unique
extension ' : A%M/T — A of «, sending o to ¢. Clearly, the theory induced by . is a conservative
extension of T satisfying the additional equations. O

Theorem 3.3. Let M be the open or the closed term algebra of the A3- or A@n-calculus. Then M does not
allow a non-trivial compatible partial order.

Proof. Let < be a compatible partial order on M. Let u # t € M, and assume, by way of contradiction,
thatu < t. Let A beasin Lemma3.1, and let s be afresh variable. Then by compatibility,

As.A(su)(su)(su)(st) < As.A(su)(su)(st)(st)
< As.A(su)(st)(st)(st)
= As.A(su)(su)(su)(st),

hence, by antisymmetry,
A(su)(su)(su)(st) = A(su)(su)(st)(st)

ApplyingLemma3.2to M = Axy.Azzzy and N = \zy.Azzyy, onegets Azxxy = Axxyy for variables
x and y, contradicting the choice of A. Consequently, the order istrivial. O

3.2 TheTopological Completeness Problem

Recall that, for any cartesian-closed category C, areflexive C-model is amodel of the lambda calculus that
arises from adiagram



in the category C (see Section 2.7). These models have been particularly well studied in the category CPO
of cpo’'s and Scott-continuous functions. Reflexive CPO-models are sometimes referred to as continuously
complete, because every Scott-continuous function f : D — D is definable by an element f € D. Honsell
and Ronchi Della Rocca [27] aso use the term topological model. The following is a long standing open
problem ([27]):

Open Problem. (Topological Completeness) Isthere areflexive CPO-model whose theory is A3 or A\3n?

Two related questions have been answered: Honsell and Ronchi Della Rocca [27] have shown that thereis a
lambda theory C,, which is not induced by any reflexive CPO-model. The reflexive CPO-models are thus
incompletefor arbitrary lambda theories. On the other hand, Di Gianantonio et al. [16] have shown that A8y
can arise as the theory of areflexive CPO;-model. If wy and w; denote, respectively, thefirst infinite ordinal
and the first uncountable ordinal, then CPO; is the category whose objects are wy- and w, -complete partial
orders, and whose morphisms preserve limits of w1 -chains (but not necessarily of wy-chains). However, the
construction given in [16] makes decisive use of non-Scott-continuous functions.

We will now explore some conseguences of Theorem 3.3 for topological completeness. First, one notices
that in all models whose theory is A3 or A3n, the denotations of closed lambda terms necessarily form a
discrete subset:

Coroallary 3.4. Inany partially ordered lambda algebra whose theory is A3 or A3, the denotations of closed
terms are pairwise incomparable.

Proof. The set of closed term denotations is a sub-lambda algebra which is isomorphic to the closed term
algebra; hence the partial order is discrete on it by Theorem 3.3. |

Recall that two elements z, y of a partially ordered set D are called compatible if there exists z € D with
x < zandy < z. We can now show that any complete reflexive CPO | -model, if such amodel exists, must
satisfy one of two peculiar properties:

Theorem 3.5. Suppose D is a reflexive CPO | -model whose theory is A3 or A3n. Then either:
1. The denotations of closed terms are pairwise incompatible, or

2. There exist closed lambda terms M and N such that, for all z,y € D,

(z<yory<x) = Mzy = Nzy.

Proof. Suppose 1. does not hold, i.e. there are two distinct closed terms u and ¢ whose denotations have an
upper boundv € D. Let A beasinLemma3.l, andlet M = Azyrs.A(s(rz))(s(rz))(s(rz))(s(ry)) and

N = Azys.A(s(rz))(s(rz)) (s(ry)) (s(ry)).

=: Supposez < yory < z. Then Mzy = Nxy by the same reasoning as in the proof of Theorem 3.3.
<: Suppose, by way of contradiction, that M xy = Nxy for incomparable z,y € D. Definer : D — D
by

1 ifzg<zandz <y
u ifz<randz Ly
t ifzgrandz<y
v ifzgrandzLy

Then r is continuous; supposeit is represented by # € D. Then
D = As. A(su)(su)(su)(st) = Mzyr = Nzyr = As.A(su)(su)(st)(st).
But the proof of Theorem 3.3 shows that the first and the last term are Agn-different, contradicting the

assumption that D was a complete model. U
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3.3 A characterization of absolutely unorderable algebras

In Section 3.1, we have shown that the combinatory algebra of open lambda terms cannot be non-trivially
ordered. However, it can be embedded in an orderable algebra; this follows e.g. from the work of Di Gi-
anantonio et al. [16]. Plotkin conjecturesin [50] that there exists a combinatory algebra which is absolutely
unorderable, i.e. which cannot be embedded in an orderable combinatory algebra. In this section, we charac-
terize, for any algebraic variety T, those T-al gebras which are absolutely unorderable.

Let T be an algebraic variety. Recall that a preorder < on a T-algebra A is compatible if whenever
a; <b;fori =1...k then fa,...a; < fby...by, for each k-ary function symbol f € Q. Notice that
monotone preorders are closed under arbitrary intersections. If < is monotone, then so is the dual preorder
>. Every monotone preorder determines a congruence ~ ¢ on A, which istheintersection of < and >. Also
notice that < naturally defines a partial order on A /~«.

A T-agebra A issaid to be unorderableif it does not alow anon-trivial compatible partial order. Also,
A issaid to be absolutely unorderableif for any embedding A — B of T-algebras, B is unorderable.

3.3.1 Absolutely unorderable algebras and generalized Mal'cev operators
Consider a T-algebra A. Let < be the smallest compatible preorder on A[u, ] suchthat u < t.
Lemma3.6. fistrivialon A,ie.agb=a=>bfora,be A.

Proof. Let ~ bethe kernel of the canonical morphism Afu,t] — A[z] which sends both « and ¢ to z. Then
~ isacongruence, hence in particular a compatible preorder on AJu,t]. Sincealso u ~ t, by definition x is
contained init. But ~, hence <, istrivial on A. O

Lemma3.7. A is absolutely unorderable if and only if ¢ 5 w.

Proof. =: Suppose A is absolutely unorderable. Consider the natural map A — Afu,t] - Afu,t]/~«.
Lemma 3.6 implies that, the composition is an embedding, hence < must be trivial as a partial order on
Alu,t]/~<. Equivalently, < asapreorder on A[u, t] issymmetric. Sinceu < t, it followsthat ¢ < .

<: Suppose A isnot absolutely unorderable. Thenthereisan embedding ' : A — B of T-algebraswhere
B has a non-trivial compatible partial order <. Hencethereare U # T € B suchthat U < T'. Consider
the uniquemap G : Afu,t] - B suchthat u — U, t — T and G|o = F. Definea < bin Afu, t] iff
G(a) < G(b) inB. Then < isacompatible preorder on A[u, t]. But u < ¢, hence < is contained in <. But
t £ u, hencet % u. |

Further, < hasthefollowing explicit description: On A[u, t], definea < b if and only if thereis apolynomial
A(xy,x2,23) € Az, 29, 23] SUChthat A(t,u,u) = a and A(t,t,u) = b.

Lemma 3.8. < is the transitive closure of <.

Proof. Notice that < isreflexive. Let <* be the transitive closure. Clearly, <1, and hence <*, is contained
in <. On the other hand, <* is a preorder on A[u, t] satisfying u <* ¢. To see that <* is compatible, let
f beak-ary function symbol in X. First assumea; < b; fori = 1...k. Thenthereare A;(z1,x2,x3) €
Alzy,z9,23], fori = 1...k, such that A;(¢t,u,u) = a; and A;(¢,t,u) = b; for each i. By considering
A(.’El,.’fz,l’g) = f(Al(l'l,l'z,l'?,) . Ak(l'l,l'Z,l'?,)), it follows that fa1 Leeap < fbl ...b,. Hence « is
compatible, which readily implies compatibility for <*. Therefore, < is contained in <*. O

Putting this together with Lemma 3.7, we get the following characterization of absolutely unorderable alge-
bras. Recall that an equation p(u, t) = q(u, t) holds absolutely in A iff it holdsin A[u, t].
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Theorem 3.9. Characterization of absolutely unorderable T-algebras. Let T be an algebraic vari-
ety. A T-algebra A is absolutely unorderable if and only if, for some n > 1, there exist polynomials
M;(z1, 22, z3) € Alz1, 22, 23], fori = 1...n, such that the following equations hold absolutely in A:

t = Mq(t,u,u)
Ml(tatau) = MQ(t,U,U)
MZ(t,tvu) = M3(t,u7u) (3.1
Mp(t,t,u) = wu

Proof. By Lemmas 3.7 and 3.8, A is absolutely unorderableif and only if therearety,... ,t,—1 € Alu,t]
suchthatt <ty < ... <t, < u. Thecorollary follows by definition of <. O

In the case n = 1, the equations (3.1) have the simple form ¢ = M(¢,u,u) and M (¢,¢,u) = u. These
equationswere first studied by A.l. Mal'cev [37] to characterize varieties of congruence-permutable algebras
(so-called Mal'cev varieties). A ternary operator M satisfying these equations is called a Mal'cev operator.
Accordingly, wecdl M4, ... ,M,, satisfying (3.1) afamily of (generalized) Mal'cev operators, and we call
the equations (3.1) the (generalized) Mal'cev axioms. Hagemann and Mitschke [25] have shown that an
algebraic variety has n-permutable congruencesif and only if it has operators satisfying the axioms (3.1). It
was proved by W. Taylor [63, 11] that algebras in a variety with n-permutable congruences are unorderable;
however, the converse, to the best of my knowledge, is anew result. Also notethat Theorem 3.9 characterizes
individual algebras that are absolutely unorderable, rather than varieties of unorderable algebras.

3.3.2 An application to ordered algebras and dcpo-algebras

Recall from Section 1.3.5 that an algebraic signature > and a set of inequations Z define a variety O of
ordered algebras. The free ordered (X, 7)-algebra over any poset P was denoted by Op. One may ask under
which circumstances the canonical map y : P — Op is order-reflecting. The following theorem shows that
the answer depends only on the presence of Mal’cev operatorsin (3, 7). Recall that a k-ary operationin X is
smply aX-termt(zq, ... , zk).

Theorem 3.10. Let ¥ be a signature and Z a set of inequations. Let P be a non-trivially ordered poset and
let ) : P — Op be the canonical map from P into the free ordered (X, 7)-algebra over P. The following are
equivalent:

1. jisnot order-reflecting.

2. Every ordered (X, 7)-agebraistrivially ordered.

3. Thereareternary operationsM,... ,M,, in X such that Z entails
< Ml(tauau)
Ml(tatau) < MQ(t,U,U)
MZ(t,tvu) < M3(t,u7u) (32)
Mn(tt,u) < u

Proof. 1. = 2.: Suppose B isanon-trivially ordered (X, 7)-algebra with elements a < b. We show that
isorder-reflecting. Let -,y € P with y(z) < y(y). Defineg : P — B by

_Joa ifzgy
g(z)—{ b ifzLy
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Then g is monotone; therefore, by the universal property of Op, there exists a unique homomorphism of
ordered algebras i : Op such that g = h o 3. By monotonicity of i, we get g(z) = h(y(z)) < h(y(y)) =
g9(y) = a,hencezx < y.

2. = 3.. Suppose every ordered (3, 7)-algebraistrivialy ordered. Then, in particular, Oy istrivialy or-
dered, and hence Z tineq s < ¢ iff Z Fineg t < 5. We can therefore regard Z as a set of equations. The claim
follows by applying Theorem 3.9t0 A = Oy.

3. = 2.. Suppose (2, 7) has operators satisfying (3.2). Then for any (2, 7)-algebraB, if a < b € B, then
b< Mi(b,a,a) <Mq(b,b,a)<... < My(b,b,a) < a, hence B istrivially ordered.

2= 1: Amapy: P — Op fromanon-trivially ordered set into a trivially ordered one cannot be order-
reflecting. O

Remark. Notice that the proof of 3. = 2. shows that the inequalities (3.2) already imply the corresponding
equalities (3.1).

The equivalent of Theorem 3.10 holds for dcpo-algebras as well. Thisis due to the following lemma, which
relates the existence of non-trivial dcpo-algebrasto the existence of non-trivial ordered algebras:

Lemma3.11. Let X be a signature and Z a set of inequations. There exists a non-trivially ordered (X, 7)-
dcpo-algebra if and only if there exists a non-trivially ordered (X, 7)-algebra.

Proof. =: Trivial, since every dcpo-algebrais an ordered algebra.

«<: Let (A, <) bean ordered (X, 7)-algebra. We consider the ideal completion of A: A subset I C A is
anideal if it is downward closed and directed. Let 7 = IdI(A), the ideal completion of A, be the set of all
ideals, ordered by inclusion. Abramsky and Jung [3] provethat 7 isa (X, Z)-dcpo-algebra. Moreover, the
map A — J : x — |x isorder preserving and reflecting, and hence 7 is non-trivialy ordered if A is.

Corollary 3.12. Let X be a signature and Z a set of inequations. Let D be a non-trivially ordered dcpo and
let : D — Dp be the canonical map from D into the free ordered (X, 7)-algebra over D. The following
are equivalent:

1. jisnot order-reflecting.
2. BEvery (X, 7)-dcpo-algebraistrivially ordered.
3. Thereareternary operationsM,... ,M,, in X such that 7 entails (3.2).

Proof. The equivalence of 2. and 3. follows from Theorem 3.10 and Lemma 3.11. Theimplication 2. = 1.
istrivial, and 1. = 2. follows as in the proof of Theorem 3.10; notice that the function ¢ defined there is
continuous. O

3.4 Absolutely unorderable combinatory algebras

If A isacombinatory algebra, then the statement of Theorem 3.9 takes a particularly simple form, due to
combinatory completeness: A combinatory algebra A is absolutely unorderable if and only if there are a
numbern > 1 and elementsM¢,... ,M,, € A such that the following hold absolutely in A:

t = Mituu
Mittu = Mstuu
Msttu = Mstuu (3.3
Myttu = u

41



Note that if A isalambdaalgebra, one can replace these equations by the closed equations A *tu.t = M jtuu
etc.

But does an absolutely unorderable combinatory algebraexist? Unfortunately, thisis not known. Clearly,
an absolutely unorderable combinatory algebraexistsif and only if the equations (3.3) are consistent with the
axioms of combinatory algebras for some n. The answer is only known inthecasesn = 1 andn = 2. In
these cases, (3.3) isinconsistent with combinatory logic, as we will now show. Notice that if the axioms are
consistent for some n, thenaso for all m > n, by lettingM ,41,... ,M,,, = Azyz.z

Let Y be any fixpoint operator of combinatory logic, for instance the paradoxical fixpoint combinator
Y = Af.(Az.f(zz))(A\z. f(xzzx)). Write uz. M for Y (Az.M). The operator p satisfies the fixpoint property:

pr.A(z) = A(uz.A(z)). (fix)
The diagonal axiomis
uy.uz.Alz,y) = pr.Alz, ). (A)
Thefollowing lemmais dueto G. Plotkin and A. Simpson:

Lemma 3.13 (Plotkin, Simpson). Assuming the diagonal axiom, the Mal’cev axioms (3.3) are inconsistent
with combinatory logic for all n.

Proof. Let x bearbitrary. Let A = pz.Mi2zzz. Then A = pz.x = . Also,

r=A = pzMizzz
= py.pz.Mizyz by (A)
= pzMizxz by (fix)
= pz.Msxzz by (3.3)

= pzMy_1xx2
= uz.z by (3.3)

Hencez = pz.z for al z, whichis an inconsistency. O
Theorem 3.14 (Plotkin, Simpson). For n = 1, the Mal’cev axioms are inconsistent with combinatory logic.

Proof. Suppose M isaMal'cev operator. Let x be arbitrary and let A = py.uz.Mzyz. Then

AW pwzMaxAz ©Mzaa (Maleev:) x,
hencer = pz.MzAz = pzMzxzz = pz.z. O
Theorem 3.15 (Plotkin, Selinger). For n = 2, the Mal’cev axioms are inconsistent with combinatory logic.

Proof. Suppose M; and M, are operators satisfying the Mal'cev axioms (3.3). Define A and B by mutual
recursion such that

A px.f(MizAB)(M12AB)
B = py.pz.f(MsABy)(M2ABz).

Then

B = f(MyABB)(M,ABB) by (fiX)
= f(M{AAB)(M,;AAB) by (3.3)
= A by (fix)

Sopx.frx = pr.f(MizAA)(M 2 AA) = A= B = py.pz.f (MaAAy) (Mo AAZ) = py.pz. fyz, whichis
the diagonal axiom. By Lemma 3.13, this |eads to an inconsistency. O
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3.5 Relating different notions of unorder ability

3.5.1 Local notions

We defined a combinatory algebra to be unorderable if it does not allow a non-trivial compatible partial
order. There are other notions of unorderability that are worth investigating. For instance, one can ask for
the existence of non-symmetric preorders instead of partial orders. Or one can ask for the (pre)order to be
compatible with abstraction as well as with application: < is called alambda-(pre)order if it is compatible
and

Ve € A.ax < bx
la <1b

We thus arrive at the following four unorderability notionsfor a combinatory algebra A

1. unorderableif every compatible partial order on A istrivial.

2. un-preorderableif every compatible preorder on A is symmetric.
3. un-A-orderableif every lambda-order on A istrivial.

4. un-\-preorderableif every lambda-preorder on A is symmetric.

Between these notions, only the obviousimplications hold:

unorderable
un-preorderable un-\-orderable

N

un-\-preorderable

To see that no other implications hold, first observe that the open term agebra is unorderable, but A-pre-
orderable: let M < N iff for al valuations p, [AM], < [N], in the standard D..-model. It follows from
[29, 64] that this preorder is non-trivial; it is alambda-preorder because the order on the standard D ,-model
is pointwise.

The counterexamplein the other direction is dueto G. Plotkin, and it is given in the following theorem:

Theorem 3.16. (G. Plotkin) There is an extensional, partially ordered lambda algebra A that does not allow
a non-trivial lambda-preorder.

Proof. Theidea of the constructionisto work in a category where the order relation on function spacesis not
pointwise. We use the category of meet cpo’s and stable functions CPO”, which was defined in Section 1.2.4.
Recall that the objects of this category are cpo’s with bounded binary meets which act continuously, and that
the morphisms are stable functions, i.e. continuous functions preserving the bounded meets. Aswe outlined
in Section 1.2.5, the usua Scott D .-construction of models of the lambda-3n-cal culus goes through in this
category.

Let D, be the cpo with two elements L < T. Define D, to be the stable function space D2~. Then
D, hasthree elements B, I, T, where B is the constantly | function, 7" is the constantly T function, and 7
isthe identity. Notice that the stable order on D; is as shown:

T T I
\ NS
1 B

Do Dy
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Defineeg; : Dy — Dy tosend T to T and L to B, and definep1o : D1 — Do tosend f to f(L). The pair
(eo1, p1o) isisan embedding-projection pair in the category CPO”, in particular, eg; o p1g is stably less than
the identity. From this, one constructs the other embedding projection pairs and takes the inverse limit D as
usual. Then D = DP, and asalambdaalgebra, D is extensional by Proposition 2.27. Clearly the order < on
D isnon-trivial and compatible.

For convenience, we identify all relevant function spaces with the corresponding subspaces of D. Let
pn : D — D, betheprojection of D onto D,,, and e,, the corresponding embedding.

Now suppose that C is alambda-preorder. We will show it istrivial, i.e. it is either discrete or indiscrete.
First notice that, since we are in an extensional model, 1 = I and hence

Ve € D.ax C bx
alb

(34

Chasing the definition of the D.,.-model, one calculates that for f € D,y = DP» andz € D, the applica-
tion f -z isgivenby e, o f o p,(z). Fromthisand (3.4), it followsthat f C g € Dy, iff f -2 C g -« for
al z € D,,. One distinguishes three cases:

Casel: [ C T. For any pair of elementsz,y € D, define f : Dy — Dby f(I) = z and f(T) = y
and f(B) = L. Thisis stable and therefore realized by some f € D. Weget that z C y and hence C is
indiscrete.

Case2: T CI.Smilar.

Case3: Neither I C T nor T C I. Suppose, by way of contradiction, that there are distinct elements
x,y € D suchthat z C y. Then for somen the projections z,, = p,(z) and y,, = p,(y) are distinct. Since
the projection p,, itself isrealized by somep,, € D, one gets z,, C y,,. But then, since z,, # y,, thereare
Zn_1,---,20NDyp_1,... ,Dogsuchthata = z,zp_1...20 anda’ = ypz,_1 ...z aredistinct elements of
Dy. Onethen knowsthat a C a’, and hence it must bethe casethat either L. C T or T C L. Inthefirst case,
one has

T= I-TCT-T =T
1= J-1CT-L =T,

hence, since C is alambda-preorder, I C T'. Similarly, in the second case, one hasT' C 1, the required
contradiction. O

3.5.2 Absolutenotions

Thereis amultitude of notions of absolute unorderability that one can consider. Fortunately, we will see that
al of them coincide. Recall that we defined a combinatory algebra A to be absolutely unorderable if for
every embedding A — B, the algebra B is unorderable. First, one can adapt this with respect to preorders,
lambda-orders etc. Second, one can replace the word “embedding” by “homomorphism”. Third, one can
restrict attention to certain subcategories, e.g. lambda algebras or lambda models.

Instead of catal oging some 30 different notions and showing them all to be equivalent, we start with some
simple observations. If P is some property of objects in a category, we say that an object A absolutely
satisfies P if for all A — B, B satisfies P.

First notice that, since lambda algebras are defined by closed equations, their full subcategory is right-
closed in the category of combinatory algebras: i.e., if A — B isahomomorphism of combinatory algebras,
and A is alambda algebra, then so is B. Hence, alambda algebra A satisfies some property absolutely
as a lambda algebra iff it does so as a combinatory algebra. The corresponding property is true for Curry
algebras.

Next, there are some obviousimplications: if A absolutely satisfies P with respect to homomorphisms,
then also with respect to embeddings. We also have the implications that were discussed in Section 3.5.1.

It therefore suffices to show, for each of the categories of combinatory algebras, lambda algebras, and
Curry agebras, that the weakest notion that we are considering implies the strongest one. Thisis donein the
following proposition.



Proposition 3.17. For a combinatory algebra A, the following are equivalent:
1. There is A — B for some non-symmetrically preordered combinatory algebra B.
2. Thereis A — B for some non-trivially partially ordered combinatory algebra B.
For a lambda algebra A, the following are equivalent:
3. There is A — B for some non-symmetrically preordered lambda algebra B.
4. There is A — B for some non-trivially lambda-ordered lambda model B.
For a Curry algebra A, the following are equivalent:
5. There is A — B for some non-symmetrically preordered Curry algebra B.
6. Thereis A — B for some non-trivially lambda-ordered extensional algebra B.

Proof. 1. => 2.: Suppose A — B and B is non-symmetrically preordered. Let B’ = B/(< N =), then B’
is non-trivially partially ordered and A — B’. Now let B” = B’ x A, which is non-trivially ordered by the
componentwise order where A isdiscrete. Wehave A — B

3. = 4.. Suppose A — B and B is non-symmetrically preordered. First, construct A — B" asin 2;
then consider A — B" — B"[X] for a countable set X. We know that B"[X] is a lambda model by
Proposition 2.23. It has a non-trivial lambda order by Lemma 3.18 bel ow.

5.= 6.. Sameas3.=4. O

Lemma 3.18. Suppose < is a non-trivial partial order on a lambda algebra B. Then < extends naturally to
a lambda-order on B[ X, for countable X.

Proof. First, consider the case of adjoining a single indeterminate A C AJz]. Let < be a partial order on
A, and define on A[z] the partial order a < b iff A*z.a < A*z.b. Notice that if @ and b werein A, then
AMz.a = Ka and AM*z.b = Kb, hencea < bin Afz] iff Ka < Kbin A iff a < bin A, i.e. the order
on A[z] is an extension of the order on A. Now consider B[X], which can be regarded as a union of an
ascending chain of subsets B C B[z;] C B[z, 2] C ---. Starting with a partial order on B, one can
extend it step by step to all of B[X]. In the limit, we obtain a lambda-order, because if az < bz for dl
z,thena,b € A = Blzy,...,2,-1] for somen and one can take = z,,. But az, = bz, in Alz,] iff
N Tp.axy = Nxp.br, inAie 1a = 1b.

Finally, notice that none of the local notions of unorderability that we have considered implies absolute
unorderability: Plotkin's finitely separable algebra [50], although it cannot be non-trivially preordered, can
still be embedded in an orderable algebra (for example by Theorem 3.9).
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Chapter 4

Finite Lambda M odels

It has long been known that a model of the untyped lambda calculus, in the traditional sense, can never be
finite or evenrecursive [5]. For instance, no consistent lambda theory equates any two of the countably many
Church numerals 0 = Azy.y, 1 = Azy.xy, 2 = Azy.z(zy), €tc.; hence, these terms must have distinct
denotations in any non-trivial model. Consequently, model constructions of the lambda calculus typicaly
involve passing to an infinite limit, yielding unwieldy models in which term denotations or equality of terms
are not effectively computable.

By contrast, we introduce a notion of finite models for the lambda calculus. These finite models are
models of reduction, rather than of conversion. Therefore, as we shall see, they are not subject to the usual
limitations on size and complexity. Informally, by amodel of conversion, we mean a model with a soundness
property of the form

M =N = [M] =[N].

where= ise.g. - or gn-convertibility, and | ] isthefunctionthat carriesalambdatermtoitsinterpretationin
the model. On the other hand, amodel of reduction has an underlying partial order and a soundness property
of theform

M — N = [M] < [N],

where —» ise.g. 8- or Sn-reduction. Models of reduction have been considered by different authors [23,
30, 49]. We will focus here on a formulation which was given by Plotkin [49] in the spirit of the familiar
syntactical lambda models [5]. The key observation here is that models of reduction, unlike models of
conversion, may be finite, and that they can be easily constructed. In special cases, models of reduction allow
alimited form of reasoning about convertibility of terms. Thisisthe casefor instanceif the underlying partial
order isatree.

We begin by reviewing syntactical and categorical models of reduction in Section 4.1. In Section 4.2,
we introduce a reasoning principle for models whose underlying order is a tree. We also give a method
for efficiently constructing such models. In Section 4.3, this is further specialized to the case where the
underlying order is flat. Examples are given in Section 4.4. Some reflections on completeness properties
follow in Section 4.5. In Section 4.6, we investigate the connection between models of reduction and the
D -construction.

4.1 Modedsof reduction

4.1.1 Syntactical models of reduction

Definition. (Plotkin [49]) An ordered applicative structure (P, -) is a poset P, together with a monotone
binary operation-: P x P — P. Let PV bethe set of all valuations, i.e. functions from variablesto P. A
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syntactical model of 3-reduction (P, -, [ ]) isan ordered applicative structuretogether with an interpretation
function

[-]:AxPV =P
with the following properties:
L [=], = p()
2. [MN], = [M], - [N1,
3. [Az.M], - a < [M]y(z:=q), foradla € P

N

. plevany = Plevan = [M], = [M],y

5. (Va.[M]p(z:=a) < [N]p(wi=a)) = [Az.M], < [Az.N],
Moreover, wesay (P, -,[ ]) isasyntactical model of 3n-reduction, if it also satisfies the property

6. [Az.Mz], < [M],,ifz & FV(M).
A syntactical model of conversion is a syntactical model of 3-reduction (X, -, [ ]), where X is discretely
ordered, i.e., aset. Notice that this notion coincides with the familiar syntactical lambda models as defined
e.g.in[5].
Remark. Properties 1.—3. do not form an inductive definition; rather they state properties of afunction | ]
whichisgivena priori. Inparticular, 3. does not uniquely determinethe interpretation of alambdaabstraction
[Az.M],.

We have seen in Chapter 3 that many models of conversion are equipped with a partial order. This, however,
is entirely different from the partial order we consider on a model of reduction. Models of conversion have
an approximation order, where a < b is often understood to mean that a is “less defined” or “diverges more
often” than b. On the other hand, models of reduction have a reduction order, where a < b means a reduces
to b. More precisely, one has the following soundness theorem:

Proposition 4.1 (Plotkin [49]). The following are properties of syntactical models of 3-reduction:
1. Monotonicity. If p(z) < p'(z) for dl z, then [M], < [M], .
2. Substitution. [[M[N/l’]]]p = IIM]]p(w::[[N]]‘,)'

3. Soundness for reduction. If -2, then [M], < [N],. Inasyntactical model of n-reduction: If
ME%N, then [M], < [N],. 0

Syntactical models of 3-reduction are easily constructed. One may, for example, start with any pointed poset
P and monotone function -: P x P — P, and define, somewhat uningenioudly, [Az.AM], = L. Among
the possible interpretation functions on a given ordered applicative structure, this choice is the minimal one.
Much more interesting is the situation in which there exists a maximal such choice. We will explore such a
situation in Section 4.2.2.

4.1.2 Categorical modelsof reduction

Let D be acartesian-closed category of posets and monotone functions, with the pointwise order on hom-sets.

Definition. A categorical model of 3-reduction (P, e, p) is given by an object P € D, together with a pair
of morphismse: P — PP andp: P — P, suchthat

id
P
lS

P—— PP,

If moreover p o e < idp, then (P, e, p) is acategorical model of 3n-reduction.
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Categorical models of reduction have been studied by various authors, e.g. by Girard [23] for the case of
qualitative domains, or by Jacobs et al. [30], where they are called models of expansion. For a detailed
discussion of these and other references, see Plotkin [49].

From a categorica model of reduction (P, e, p), one can construct a syntactical model of reduction
(P,~,[ ])bylettinga - b = e(a)(b) and by defining [ ] inductively:

[[x]]p = p(x)a
[MN], = e([M],)([N],),
[Az.M], = p(Aa.[M] )(z:=a))-

Proposition 4.2. If (P,e,p) is a categorical model of 3-reduction, then the above construction yields a
well-defined syntactical model of -reduction (P,-,[ ]). Moreover, (P, e, p) is a categorical model of 5n-
reduction, then (P, -,[ ]) is a syntactical model of 85-reduction.

Proof. To see that the inductive definition is well-defined, and in particular that the function Aa.[M] ,(;:=a)
indeed defines an element in P, it is best to work directly in the category D and to define an interpretation
[M]ey.... =, Of eachlambdaterm M with FV (M) C {z4,... ,z,} asamorphism P — P, just aswe did
for categorical models of conversion:

[ziler.. 2 = P"-% P (theithprojection)
IIMN]]wh___’zn — Pn <|IM]121,...,27L7|IN]]21,...,mn>/ PXP&)P
My, 2piq)”
Aepo1 Mz, o = P"MPPi)P‘
+ 1y005Tn

Itis easily seen that the two definitions coincide in the sense that

My, .. an P

IIM]]p -1 (p(ﬁl),---,p(-fn))) P

The verification that thisis a syntactical model of 3-, respectively, 8n-reduction is now routine. ]

4.1.3 Modesof gn-reduction: Order-extensionality

We have seen in Chapter 2 that an extensional model of 3-conversion is always a model of (n-conversion.
The property that corresponds to extensionality for models of reduction is order-extensionality: An ordered
applicative structure (P, -) is called order-extensional if

Ve € P.ax < bx
a<b

Lemma4.3. If a syntactical model of 3-reduction (P, -, [ ]) is order-extensional, then it is a model of 3n-
reduction.

Proof. Supposer € FV(M). Thenfordla € P, [Az.Mz],-a < [M2],2:=0) = [M]p(2:i=a) [Tl p(2:=a) =
[M], - a, hence [Az.Mz], < [M],. O

4.2 Treemodels
4.2.1 Recapturing convertibility

The soundness property for models of reduction does not in general yield useful information about convert-
ibility, since interconvertibleterms M = N may have different denotations. However, if the reduction under
consideration is Church-Rosser, then M/ = N impliesthat thereisaterm Q with M — Q and N — Q.
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Therefore, the denotations [M], and [IV], must be compatible. Recall that a and b are compatible, in sym-
bolsa T b, if thereexistsc witha < cand b < ¢. Inamodel of reduction, one has the following restricted
form of soundnessfor convertibility:

M =N = [M], = [N],. 4.1)

The latter property is especially useful if the underlying poset P has many pairs of incompatible elements.
Therefore, we will pay special attention to the cases where P isatree or aflat partial order.

Definition. A pointed poset P iscalled atreeif forall a,b € P,a Z bimpliesa < bora > b. Equivaently,
for each x € P, the downdeal |z is linearly ordered. A tree P is said to be bounded if there is a number
n € N such that each |z has at most n elements. The smallest such n is called the height of P.

A model of reductionis called atree model if the underlying poset is atree.

4.2.2 A method for constructing models

In general, there may be many different ways of defining an interpretation function [ ] that makes a given
ordered applicative structure (P, -) into a syntactical model of reduction. Even if one restricts attention to
those cases where [ ] is defined inductively from a categorical model (P, e, py, with e(a)(b) = a - b, thereis
achoiceinvolved in determining the morphismp : P¥ — P. In general, the greater p is chosen with respect
to the pointwise order, the greater the resulting interpretation [ ] will be, and the better one will be able to
make use of the soundness property for convertibility 4.1.

The best possible situation arises if we can find aright adjoint p of e, because if p is such aright adjoint,
thenit ismaximal with the property eop < id. Itiswell-knownthat if P isacompletelattice, thene: P — @
has aright adjoint if and only if e preserves suprema. In thiscase, onecandefinep(y) = \/{z € P | e(z) <
y}. But following the remarksin Section 4.2.1, we are interested in posets P that have incompatible pairs of
elements, and which can therefore not be complete lattices. In the case of bounded trees, the existence of a
right adjoint is characterized by a property which we call strong extensionality:

Definition. Let P be a bounded tree. We say that an ordered applicative structure (P, -) is strongly exten-
sional if foral a,b € P,

Vx € P.ax C bx
alb

Proposition 4.4. Let (P, -) be an ordered applicative structure, where P is a bounded tree. Lete : P — PP
be the map defined by e(a)(b) = a - b. Then e has a right adjoint in the category of posets if and only if (P, -)
is strongly extensional.

Proof. =: Supposee hasaright adjointp : PP — P. Leta,b € P suchthat ax — bz foral z. Since P is
atree, onehasaxz < bz or ax > bz for every z. Defineamonotonemap f : P — P by f(z) = max(az, bx).
Sincee(a)(z) = az < f(z) for al z, onehase(a) < f and hencea < p(f), and similarly for b. Hence
a Z b, and (P, -) isstrongly extensional.

<: Suppose (P, -) is strongly extensional. For any f € PP, consider the subset Py = {z € P | e(z) <
f} C P. Noticethat for any a,b € Py, e(a) C e(b), hence ax = bz for al x, hence a T b by strong
extensionality. Since P isatree, either a < bora > b. Therefore Py islinearly ordered. Since P is bounded,
the set Py isfinite, and henceit hasamaximal element p( f). Clearly, the function p thus defined is monotone,
andz < p(f) iff 2 € Py iff e(z) < f. Thereforee - p. O

Corollary 4.5. The last proposition yields a practical method for constructing a tree model of reduction:
Begin with a tree P and a monotone binary operation -: P x P — P, such that (P, -) is strongly extensional.
Define [ ] inductively as follows:

L [=], = p(x)
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2. [[MN]]p = [[M]]p ’ [[N]]p
3. [Az.M], is the maximal b € P suchthatb - a < [M],(;.=,) foralla € P.
Then (P, -, [ ]) is a well-defined model of 3-reduction.

Proof. Proposition 4.4, together with Proposition 4.2, ensures that this is well-defined, in particular, that a
maximal b existsin 3. O

The following lemmais sometimes useful for reasoning about such a mode!:

Lemmad4.6. If [ ] is defined as in Corollary 4.5, then for all n > 1, the denotation of an n-fold lambda
abstraction [Az; ...x,.M], is the maximal b € P such thatfor all a; ...a, € X,

b-ai---an < [[M]]p(zlzzal)...(znzzan)~
Proof. By induction on n. O

If (P,-) is order-extensional, then the construction in Corollary 4.5 yields a model of 3n-reduction by
Lemma 4.3. We end this section with a lemma that relates order-extensionality to strong extensionality for
tree models:

Lemmad4.7. If P is a tree, and if (P,-) is strongly extensional and extensional, then it is also order-
extensional.

Proof. Supposefor al x, ax < bz, henceax T bz, hencea T b by strong extensionality. Since P isatree,
either a < bora > b. Inthefirst case, we are done; in the second case, ax > bz, and hence ax = bz, for all
z, whichimpliesa = b by extensionality. d

4.3 Partial models

Asthe examplesin Section 4.4 will show, it often suffices to consider tree models whose underlying poset P
isflat, i.e. P = X, foradiscreteset X. If one aso assumes that the application operation-: P x P — P is
strict in each argument, then one can think of L astheundefined element, and of - and [ ] aspartial functions.
Since it is sometimes convenient to think in terms of these partial operations, we restate the definition of a
model of reduction in this special case. The venturi-tube == denotes directed equality: A = B meansthat if
A isdefined, then sois B, and they are equal.

Definition. A partial applicativestructure (X, -) isaset X with apartia binary operation-: X x X — X.
Let Val(X) betheset of partial valuations) — X. A partial syntactical lambdamodel (X, -,[ ]), or partial
model for short, is given by a partial applicative structure together with a partial map

[-]:Ax xVad(X)— X,
such that
L [z], = p(z)
2. [MN], = [M], - [N],
3. [Az.M], - a = [M],(z:=q), forala € X
4. plevinny = P'levan = [M], = [M]y
5. (Va.[M]pw:=a) = [N]pwi=a)) = [A2.M], = [Az.N],

Moreover, if
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6. [Az.Mz], = [M],,ifx ¢ FV(M).
then (X, -, [ ]) isapartial Bn-model.

Here, equality is understood to be Kleene equality, meaning A = B if and only if A and B are either both
undefined or both defined and equal. Notice that the directed equality == on X isjust the partial order on the
flat poset X, . Thus, the axioms 1-5 and 6 correspond exactly to the axioms for a syntactical model of 3-,
respectively, 8n-reduction.

In apartia model, the denotation of some terms may be undefined. Theidea of using partiality in models
for thelambdacal culusis not new. Infact, Kleene's“first model”, which consists of Godel numbers of partial
recursive functions and their application, is partial. The models we consider here are even “more” partial; we
do not even assume that the interpretations of basic combinatorssuch as S and K are defined. Thefollowing
soundness properties ensure that the class of termswhose denotation is defined is closed under reduction, and
that interconvertible terms have the same denotation if they are both defined.

Proposition 4.8. The following are properties of partial models:
1. Soundnessfor reduction. If A/-25 N, then [M], = [N],-

2. Soundness for convertibility. If M =3 N, and if [M], and [N], are both defined, then [M], =
[N],-
3. Inapartia Bn-model, the respective properties hold for £ and =gy

Proof. Soundness for reduction follows from Proposition 4.1. Soundness for convertibility follows from the
Church-Rosser property. O

Partial applicative structures are particularly easy to manipulate in practice, since they are just given by
aset X and a “multiplication table” such as the one in Table 4.1. It is easy to read properties such as
strong extensionality off thetable: A partial applicative structureis strongly extensional if no two rows of the
multiplication table are compatible, and it is order-extensional if no row is subsumed by another. In particular,
if thetableis everywhere defined, i.e. if (X, -) isatotal applicative structure, then both strong extensionality
and order-extensionality coincide with (ordinary) extensionality.

4.4 Examples

4.4.1 A classof finite modelsto distinguish theterms Q2,,

Let z be avariable and define z! = z and z"+! = 2”2z forn > 1. Letw, = Az.2” and Q,, = w,wp.
None of these terms has anormal form, e.g. Q> = (Az.zz)(A\z.zz) reducesonly to itself. Theterms 2, are
unsolvable; therefore, their interpretations coincide with L in the D .-model [29, 64]. We will now give a
class of finite partial models that distinguishes these terms.

Fixanintegerp > 1 andlet X = Z, = {1,2,...,p}. Addition and subtraction in X are modulo p; let
=, denote equality modulo p. Define-: X — X by

o n+1l ifm=,1
TR m+1 if m #, L.

A “multiplication table” for this operation is shown in Table 4.1. Clearly, (X, ) is a strongly extensional
applicative structure. Define[ ] asin Corollary 4.5 to get a partial model. For n > 2, wecaculate1™ =, n
andm"” =, m + 1form # 1. Hence, forall z € X andn > 2,

" =, (n—1)-z
= [wn] = z2"] =p n-1
= [Q] = [wnwn] =p (R—=1)-(n—-1) = n.

Hence, [Q2,,] isalways defined for n > 2, and we have [Q2,,] = [Q] iff n =) m.
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Table 4.1: Multiplication table for a partial model

. 1 2 3 p—1 p
1 2 3 4 P 1
2 3 3 4 P 1
3 4 3 4 P 1
p—1|p 3 4 p 1
p 1 3 4 p 1

4.4.2 A non-trivial 3-element moded

In this section, we provide the proof of Lemma 3.1 from Chapter 3. At the heart of the proof is a 3-element
partial model which distinguishes two appropriately chosen unsolvable terms Auuut and Auutt.

Lemma. There is a closed term A of the untyped lambda calculus with Auuut =g Auttt, but Auuut #g,
Auutt #3, Auttt for variables u # t.

Proof. Defineterms

h = Azyz.zzy(zzy(zzyz))
f = hh
A = duwvwt Az fu(fo(fw(ftx))).

Thenfor al z, y:
fyz 5 fy(fy(fye)),
hencefor all u, t:

Az.fu(ftx) SN Az.fu(fu(fu(ftz))) = Auuut
Ao.fu(ftr) 2 o fu(ft(ft(ftz))) = Auttt.

To seethat Auuut #g, Auutt for variables u and ¢, we will construct a partial model. Let X = {k,0,1},
and let - be defined by the following “multiplication table”:

Then (X, -) is a strongly extensional applicative structure. Define [ ] inductively as in Corollary 4.5. Al-
though (X, -) istotal, [ ] will be partial.

Consider the function ¢(c, b, a) := [zzy(zzy(22yx))] p(z:=c)(y:=b)(2:=a) = ccb(ccb(ccba)). Table 4.2
shows the values of this function, and one observesthat ¢)(c,b,a) = k-c-b-aforal ¢,b,a € X. Hence
by Corollary 4.5, [h] = [Azyz.zzy(zzy(zzyz))] is defined and equal to k, and consequently [ f] = [hh] =
kk = 0. If p(u) = p(z) = 0and p(t) = 1, then

[fu(fu(fu(fte))], = 1
[fulfu(ft(ftx))], = O

By soundness, fu(fu(fu(ftx))) #ay Fu(fu(ft(fte))) = Auuut #, Auutt. O
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Table 4.2: Valuesfor ¢(c,b,a) andk-c-b-a

S

C
korOor1

o

o
=
S

J|k-c-b-a

Y

=

== =O O O

= O = o Rl o RS
O = Ol O Ok OO
O = Ol O Ok OO

45 Completeness
Given a syntactical model of - or 8n-reduction (P, -, ]), onecan defineitslift (P, ,e,[ ]') asfollows:

_ a-b ifa,b#L1
aeb = {L else,

], = [M], ifp(z)# Lforalze FV(M)
P € else

Itiseasily checked that thisis again amodel of 3-, respectively, Bn-reduction. Asatrivial consequence, one
has the following compl eteness theorem for partial models:

Proposition 4.9. Completeness: If M #z N, then there is a partial model and p for which [A],, [N], are
defined and [AL], # [N],. If M #3, N, then the model can be chosen to be strongly extensional.

Proof. Take amodel of conversion such that [A], # [N], for some p, e.g. aterm model. Thenitsliftisa
partial model with [M ]}, Z [N],,. O

Of course much moreinteresting questions can be asked, e.g. how close one can cometo afinite completeness
theorem for models of reduction? In other words: can every inequality M # 3 N be demonstrated in afinite
model of reduction? The answer to this question must be no, since such afinite completeness theorem would
yield adecision procedurefor convertibility of lambdaterms, which is known to be an undecidable problem.
It is an open problem to identify subclasses of terms for which a finite completeness property holds, or to
describe the class of equationsthat hold in all finite models of reduction, tree models, partial models etc.

4.6 Relating modelsof reduction to D,,-models

Consider afinite categorical model of reduction (P, e, p), suchthateop < idpr andpoe =idp. Since P is
finite, itisadcpo and e and p form a Scott-continuous embedding-projection pair. Therefore, one can take P,
e and p asthe basisfor carrying out the D ,-construction in the category CPO, as outlined in Section 1.2.6.
LetDy = Pand D, = DP». Letey =e: Dy — Dy andpy = p : D; — Dy. Fromthis, construct the
other embedding-projection pairs and take the bilimit D, asusual. Let ¢, : D, -+ Do, andm,, : Dy — D),



be the limiting morphisms. For each n > 0 one has

€n Pn
D, —= pD» D, <t pD»
n l lLZ" and ”nT T”Ln"
Do —— DD Doo <5— DD,

Notethat each (D,,, ey, pp) and (D, €00, Doo) iSacategorical model of reduction. Let [ ]™ and[ ]°° bethe
respective interpretation functions. How are they related? For avaluation of variablesp : V — D, denote
by pn thevaluation, o p : V — D,,. One may expect that [M]} = m,[M]5°. However, thisisin general
not the case. The following propositionrelates| ]™ and [ ]°°:

Proposition 4.10. For all lambda terms MM,

VI = M.

nz

Proof. Firstrecall from Proposition1.7thatidp_ = \f,, tnom,. Alsonotethat 7, 0p.otm» = pyomlrotfn =
prn. The proposition is proved by induction on M. There are three cases:

Casel:  [z]° = p(x) =V tnomnop(x) =\ tn 0 pul@) =\, taf2]y, -

Case2: [[MN]]ZOfooo([[M]]E")([[N]]SO) = eoo(\/‘nbn[[M]]Zn)(\/‘nLn[[N]]Zn)
=V, e (M2 ) (aINT7 ) = Vs i (en[ M]3, ) (en[NT7)
= V(i 0 (ealM]},) 0 ) (1a[NT},) = Vi e (en([M17, ) (INT5,))
=V ta[MN],

Case3 [Ae.M]Z = pso(ha € Doo [MIZ, _)) = pooOha Ny ta M2 i )
Vo oo At M2 o ) =\ P 003 (A € Do [MI2 )
=\f, tn 0 70 0 o 0 42 (Ab € Do [M]2 . _,))

=\, tnopn(Nb € D”‘[[M]]Zn(x::b)) =\, [ Y17
Inparticular, it followsthat ¢, [M ]} < [M]5° for every M, and by applying 7, to both sides, it also follows
that [M]} < m,[M]5°. To see that equality does not in general hold, notice that D, by construction, is
amodel of conversion. Hence for al M =5 N, one has 7,[M]° = m,[N]3°. On the other hand, D,
is finite and hence a proper model of reduction. Therefore, it is possible to find M, N with A/ =3 N and
[M]7, # [T,

Corollary 4.11. If M and N are lambda terms such that, for some n, [M]7} Z [N]} , then [M]>° Z
[N]5°. The converse holds if D, is bounded complete (this is the case, for instance, if P is a tree).

O

Proof. Suppose [M]5° = [N]°. Let c € Do suchthat [M]5°,[N]° < c. Then [M]} < mn[M]5°
mpe, and similarly for [N]7 . For the converse, assume D, is bounded complete. Assumethat foraln >
[M];. < [NT;,. Thenw,[M]} < w,[N];, fordln. Letc, = w,[M]} V 1,[N]}, in De. Then
(¢n)n>0 isanincreasing sequenceand [M]° = \f, 1, [M]7 <\, ¢, andsimilarly [N]2° < \f,, cp, hence
[M]o° = [N]5°. O
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Chapter 5

Henkin Representations, Polymor phism,
and Empty Types

The polymorphic lambda cal culus was independently discovered by Girard [22] and Reynolds [51]. It has
been extensively studied as a prototypical programming language because of its great expressive power and
economy of syntax. The basic idea is to augment the simply-typed lambda calculus with type variables
a, 3, ... and with explicit universal quantification over types. This alows the formulation of algorithms that
uniformly handle data of more than one type. Type instantiation and type abstraction is made explicit on
terms: If ¢ isaterm of type Va.r, then to isaterm of type 7o /a], for al typeso. Conversdly, if s isaterm
of type 7, then Aa.s isaterm of type Va.r. Now consider for instance the type

Polybool = Va.aa — o — «a.

A term ¢ of thistypeyieldsaterm to of typec — o — o, for every type o. Moreover, following Strachey’s
concept of parametric polymorphism [62], one expects the behavior of o to vary uniformly with the choice
of o. In the polymorphic lambda calculus, there are only two such uniform functions of type Polybool, i.e.
there are exactly two closed terms of type Polybool, corresponding to the first and second projections:

p1 = Aadz:ady:a.r and ps = Aa )z \y:a.y.

Several notions of models for the polymorphic lambda calculus have been proposed in the 1980's. These
models follow one of two basic designs:

1. Environment-style models, which have been considered by Bruce and Meyer [10], extend the familiar
Henkin models of the simply-typed lambda calculus. These models are non-strict, in the sense that
afunction type o — 7 isinterpreted as a subset of the set of functions from o to 7, and similarly a
universal type Va.7 isinterpreted as a subset of an infinite product [ 7[o /.

2. Categorical models, introduced by Seely [56], are based on general principlesfor the interpretation of
guantifiers in categorical hyperdoctrines. Seely’s PL -categories are a canonical extension of the ccc
interpretation of the simply-typed lambda calculus. These interpretations are strict, in the sense that
both function types and universal types are interpreted directly by their categorical counterparts.

These two classes of models do not readily mesh, because it is known that strict interpretations collide with
the classical foundations: Reynolds showed that there are no set-theoretic strict models of the polymorphic
lambda calculus[52].

The aim of this chapter is to reconcile the categorical and the set-theoretical approaches by giving a
categorical treatment of non-strict models. This generalizes both Seely’s models and the models of Bruce
and Meyer. The central concept is that of a Henkin representation: afunctor H between ccc's is a Henkin
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representation if it preserves finite products and if for al objects A, B, the canonical morphism H(B4) —
H(B)") ismonic.

In Section 5.1, we prove three Henkin representation theorems characterizing those ccc's which can
be Henkin-represented, respectively, in the category of non-empty sets .+, the category of sets ., and
a category .7 " of presheaves over some poset P. After reviewing the simply-typed lambda calculus in
Section 5.2, we show in Section 5.3 that the three Henkin representation theorems correspond naturally to
completeness theoremsfor three different classes of non-strict models: Friedman’s set-theoretic modelswith
non-empty types [21], set-theoretic models with possibly empty types, as investigated by Meyer et al. [39],
and Mitchell and Moggi’s Kripke lambda models [42], respectively. Sections 5.4 through 5.6 are devoted to
Henkin representations of PL -categoriesand their relationship to compl eteness theoremsfor the polymorphic
lambda calculus.

5.1 Henkin representations of cartesian-closed categories

5.1.1 Henkin representations

Definition. Let C and D be cartesian-closed categories. A functor H : C — D iscaled aHenkin repre-
sentation if it preservesterminator and binary products, and if for all objects A, B € C, the canonical arrow
(Hea )" : H(BA) — HBH4 ismonic.

Recall that a ccc-representation F' : C — D is a functor that preserves al ccc structure, and in particular
F(BA) = FB"4 and (Fea,5)* = F(ca,5*) = id. Thus, every ccc-representation is a Henkin representa-
tion, but not vice versa. Henkin representations arise naturally as the forgetful functors of various concrete
ccc'sinto .. Even though Henkin representations do not in general preserve exponentials, they are  compat-
ible’ with ccc structure in an essential way: their kernels are ccc-congruences. This is why they correspond
to useful notions of ‘model’ for typed lambda calculi.

Definition 5.1. A ccc-congruence ~ on accc C is given by an equivalence relation ~ 4 g on each hom-set
(A, B), such that the following hold:

1 f~aBf g~Bcg 9 f~apf g~acyg 3 f~axs,c [
. . . *
gof~acgolf (f,9) ~a,Bxc (f',9") f*~acs f

Thekernel of afunctor F : C — D isdefinedby f ~4 5 f'iff Ff = Ff',fordl f,f': A — B. Clearly,
the kernel of a ccc-representation is a ccc-congruence. The sameis true for Henkin representations:

Lemma5.2. The kernel of a Henkin representation H : C — D is a ccc-congruence.

Proof. 1. and 2. are obvious, since H preserves binary products. For 3., suppose f ~axp,c f',ie. Hf =
Hf'. Onehas

€ He

(He)”

CEB xB C H(CP)x HB HC H(CB)»—— HCHB,
“xidg = i = *
£ xid T / H(f )XdHBT / H(f )T %
AxB HAXx HB HA
and similarly for f'. Since (H f)* = (H f')*, and since (He)* is monic, onegets H (f*) = H(f"™). O

Remark 5.3. Henkin representations do not form a category, since they do not in general compose. If H, and
H, are Henkin representations, then the composition H, o H; will beaHenkin representationif H, preserves
monics or if H; isa ccc-representation.
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Henkin representations can also be described in terms of partial exponentia diagrams. We say that adiagram

pxBLc isapartial exponential diagramif for every morphismg : A x B — C, thereis at most one
h: A — D suchthat

DxB—f>C.

Ax B

We have dropped the condition for the existence of h from the definition of exponential diagramsin Sec-
tion 1.1.6. In general, the word “partial” stipulates that one requires uniqueness, but not existence, while the
word “weak” or the prefix “pre-" indicates the opposite.

A Henkin representation of a ccc C can now be characterized as a finite product preserving functor
HEA,B

H : C — D suchthat foral A,B € C, thearrow H(B4) x HA —= HB is a partia exponential
diagram. The advantage of this definition is that it makes sense for a category D with finite products, even
if it is not cartesian-closed. Our definition of Henkin representations for PL -categoriesin Section 5.4.2 will
make use of a similar notion of partial V-diagrams.

5.1.2 Henkin representations and well-pointed ccc’'s

Definition. An object A iswell-pointed if forevery f # g : A — B, thereisapointp : 1 — A such that
fop# gop. A category D iswell-pointed if al its objects are well-pointed.

Note that for accc D, the following are equivalent:
1. D iswell-pointed.
2. Thepoint functor ' = (1, —) isan embedding.
3. I"isaHenkin representation.

Proposition 5.4. Every ccc representation F' : C — D from a ccc C into a well-pointed ccc D gives rise to
a Henkin representation H = T'o F' : C — .. Conversely, every Henkin representation H : C — . arises
in this way.

Proof. If D is well-pointed, thenT" o F' : C — . is a Henkin representation by Remark 5.3. For the
converse, suppose H : C — . isaHenkin representation. Define D by |D| = |C|and D(A, B) = H(B*).
Composition and identities are given by the respective H -imagesof the canonical morphismso : CZ x BA —
CAandid* : 1 — A4 in C. Associativity and the identity laws follow from the commutativity of the
following diagramsin C, and of their images under H:

(id,id*)

idxo
DY x OB x BA =% pC x A BA BA x AA
oxidl lo (id*,id)l \ lo
DB x BA S DA BB x BA ——— B4

Define F : C — D asthe identity on objects, and by sending f : A — Bto H(f*) : 1 — H(B*) =
D(A, B). Itisroutineto check that D is awell-pointed ccc, that F' is a ccc representation,andT" o F = H.
(I
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5.1.3 Freely adjoining arrowsto a ccc

If Aisan object of accc C, let C[1-A] be the ccc obtained from C by freely adjoining an indeterminate
arrow z : 1 — A. The category C[1 - A], together with the canonical ccc-representation  : C — C[1-2 A],
is uniquely determined by the following universal property: for every ccc-representation ' : C — D and
every arrow f : 1 — F A in D, thereis a unique ccc-representation F' : C[1-5 A] — D such that

c—1>Cl134]

N

D

and F'z = f. Thecategory C' = C[1-5 A] has a concrete description as the Kleisli category of the comonad
T(B) = A x B (see Lambek and Scott [34]). This means, the objects of C’ arethose of C, and the hom-sets
aregivenby C'(B,C) = C(Ax B,V). Theidentityat BinC’is#' : Ax B — B inC, andthe composition

gofinC'isAx B Mwl xCL DinC.z:1— AinC’isid: A — AinC. The canonical functor
7:C—>Csendsf:B—->Ctofor: AxB—C.

It is an interesting question to ask which properties are preserved or reflected by the canonical functor
7: C — C[15 A]. Wewill pay particular attention to the question under what conditions ; is an embedding,
and under what conditionsit is faithful (i.e., isomorphism reflecting).

Definition. Inany category, amorphism f : A — B iscaled acover if, whenever f factorsthrough a monic
m1

4-1op

N

U,

then m is necessarily iso. We sometimeswrite f : A —> B for acover. Notice that any morphismf : A — B
with aright inverse f o g = idp isacover, caled asplit cover. Also noticethat any f isiso iff it isamonic
cover. Anobject A iscalled well-supported if for each object B, the second projection7’ : A x B — Bisa
cover.

Anobject A is partially initial if every hom-set (A, B) has at most one element.

Lemma5.5. Suppose F' : C — D has a right adjoint. Then F' preserves epics and partial initial objects.
Moreover, if C has pullbacks, then F' preserves covers.

Proof. Let ¢ : F' 4 G betheadjunction. Supposee : B — C isepic and

g ¥vg
FB-—L~FC =+ D = B—>C =+ _GD,
h ph

which implies ¢og = @h, hence g = h. Hence Fe is epic. Dualy, right adjoints preserve monics. Now
suppose A is partialy initial. Then |(F A, B)| = |(A,GB)| < 1, hence F'A is partially initial. Now assume
C has pullbacks, and suppose f : A —> Bisacover. Assume Ff = FA 5 U 2 FB. Since G isaright
adjoint, Gm : GU — GF B ismonic, and we can consider

N T

GU —— GFB GU —— GFB U FB,
Gm Gm m



where u isthe unit of the adjunction. Notice that pullbacks always preserve monics, hence m' is monic, and
it must beiso since f isacover. The last diagram impliesthat m isiso, and it followsthat F'f isacover. O

Lemma5.6. Let C' = C[15A]and y : C — C' the canonical functor. The following hold:
1. j preserves epics, monic cones, partial initial objects, and well-pointed objects.
2. 7is an embedding if and only if the unique morphism A — 1 is epicin C.
3. yis faithful if and only if it is an embedding and A is well-supported.

Proof. 1.: Recall that in a ccc, the product functor T'(B) = A x B has aright adjoint; hence it preserves
epics and partia initial objectsby Lemma5.5. Now suppose f : B — CisepicinCandgo jf = hojfin
C'. By the characterization of C[1- A], this means

idaxf v
AxB—»AxC _ +_ D,

h

holdsin C, and hence ¢ = h. Thus, 3f isepic. Now, suppose B is a partial initial objectin C. Then A x B
isalso partidly initial, hence |C'(B, C)| = |C(A x B, ()| < 1, hence B ispartialy initial in C’. Moreover,
T', and hence 3, preserves monic cones. Now, suppose B iswell-pointed in C, and suppose f # g: B —» C
inC'. Thenf #g: Ax B — C, hence f* # g* : B — C” inC, and since B is well-pointed, there is
p:1— Bwith f*op# g*op. Thisimplies f o (ida X p) # go (ida X p), hence f o yp # go gpinC'.
2. =: Certainly A — 1isepicin C[1-5 A] (it splits). But embeddings reflect epics.

<: Suppose A — lisepicinC. Thenn' : A x B - B isepicfor al B. Consider f,g: B — C inC
withyf = 9. Then for' =gon' : Ax B — C, hence f = g.

3.:  First noticethat any monic-preserving embedding F reflectsisosiff it reflects covers: Suppose F' reflects
isos and F'f is a cover. Suppose f factors through a monic m, then F'f factors through F'm, hence Fm is
iso, hencem isiso, hence f isacover. Conversely, suppose F' reflects covers. If F'f isiso, then F'f, hence f,
is amonic cover, hence an iso. Since 7 : C — C[1- A] preserves monics, it suffices to show that 7 reflects
coversiff A iswell-supported.

= Suppose; reflects covers. Clearly, A x B — B isasplit cover in C[1- A], henceacover in C, making
A well-supported in C.

< Suppose 4 is well-supported in C, and suppose f : C — B issuch that Ff isacover in C[1-5A].
Suppose f factorsthroughamonicm : D »— C. Then F f factorsthrough F'm, hence Fm isisoin C[1 5 A].
This means, thereism ! € C'(C, D) = C(A x C, D) suchthat in C,

AxC—">C

N

D.

But 7' isacover, thereforem anisoin C. Thisshows f isacover. O
Lemmab.7. If f #g: A— BinC,then f ox # jg0xin C[1 5 A]
Proof. jf oz = fox' o(ida,ida) = finC, and similarly for jg o x. O

Proposition 5.8. Let C be a small ccc. If A C |C] is a set of objects such that A — 1 for all A € A, then
there is a ccc-embedding F4 : C — D such that F A is well-pointed for all A € A. F4 preserves monic
cones. Moreover, if each A € A is well-supported, then F4 can be chosen to be faithful, i.e. isomorphism-
reflecting.

61



Proof. We adjoin countably many arrows1 — A toeach A € A. More precisely, let I be the directed poset
of finite subsets X C N x A4, ordered by inclusion. Let A : I — CCC be the diagram that associates to each

= {(i1, A1), ..., {in, An)} € Tacce C[X] := C[ll—Al>A1, .., 124, 4], and to each inclusion
t: X =>Y € I the canonical ccc-representation A, : C[X] — C[Y] Notice that by Lemma 5.6, A,
is a monic-preserving embedding, and moreover, if each A € Aiswell-supported, then A, is faithful. We
can take D to be the colimit of the diagram A. Concretely, assume that each C[X] has the same objects as
C, and that the embeddings A, are actua inclusions on hom-sets. Then D can be described as follows: the
objects of D are those of C, and the hom-set D(B, C) is the directed union of the hom-sets C[X|(B, C),
where X € I. One checksthat D isaccc and that theinclusion F' : C — D is a ccc-embedding preserving
collective monics, and moreover, F' isfaithful if the A, are. To show that A iswell-pointedinD, let A € A
andassumef #¢g:A— BinD. Thenthereis X € I with f,g € C[X]. Let (i, A) ¢ X and consider
C[X, 1—>A] onehas f o x; 4 # g o x;, 4 by Lemma5.7. Hence A iswell-pointed in D. O

5.1.4 Henkin representation theorems

A Henkin representation theorem characterizes those ccc’s which can be Henkin embedded in a given cate-
gory, or in acategory from a given class. We consider Henkin representationsinto the category of non-empty
sets .7 T, into the category of sets.7, and into a category .7 of presheaves over a poset P. We will seein
Section 5.3 how each of these target categories corresponds to a certain class of models of the simply-typed
lambda calculus. The first one corresponds to Friedman’s set-theoretic models with non-empty types [21];
the second one correspondsto set-theoretic modelswith possibly empty types, asinvestigated by Meyer et al.
[39], and the third one corresponds to Mitchell and Moggi’s Kripke models[42]. Our Henkin representation
theorems will trandate into compl eteness theorems for each of these classes of models. 5

Representation Theorems for cartesian-closed categories have been considered in the papers of Cubric
[14] and Simpson [60]. The difference to our representation theoremsis that Cubri€ and Simpson work with
strict ccc representations rather than Henkin representations, and they only consider representations of afree
cartesian-closed category.

Henkin representationsin 7+

Theorem 5.9. A small ccc C can be Henkin-embedded in . T if and only if for every object A, the morphism
A — 1is epic.

Proof. =: In.*, onehas A — 1 for al A; moreover, embeddings reflect epics.

<: Consider the ccc-embedding F4 : C — D from Proposition 5.8, with A = |C|. Then C Iap b
T isaHenkin-embedding. O

Corollary 5.10. If for every object A in a small ccc C, the morphism A — 1 is epic and A is well-supported,
then there is a faithful (i.e., isomorphism-reflecting) Henkin-embedding # : C — .7 +. O
Henkin representationsin .%/

Definition. A cartesian-closed category C is called special if for every object A, either the morphism A — 1
isepic, or A ispartialy initial.

Theorem 5.11. A small ccc C can be Henkin-embedded in .~ if and only if it is special.

Proof. =: Thecategory .7 is special, because each non-empty set A satisfies A — 1, while the empty set
is (partidly) initial. Moreover, embeddings reflect epics and partial initial objects, and hence specianess.

<: Suppose C is specia. Consider the ccc-embedding 4 : C — D from Proposition 5.8, with 4 =
{A€|C|| A— 1}. Theneach A € A iswell-pointedin D by construction of D; moreover, each A ¢ A is

partidly initial and thereforetrivially well-pointed. Hence C LENS ) JLNZ is a Henkin-embedding. O
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Corollary 5.12. Let M be a monoid, i.e. a one-object category. A small ccc C can be Henkin-embedded in
<M if and only if C is special.

Proof. =: .M isspecia, and embeddings reflect specialness.
«<: Thereisan obvious ccc-embedding H : . — .M which preserves monics. If C is special, it can be
Henkin-embeddedin .# and hence, by Remark 5.3in .7 M O

Corollary 5.13. Let I be a set. A small ccc C can be Henkin-embedded in .7 if and only if there is a family
(~4)ier of ccc-congruences on C such that each quotient C/~; is special, and such that [, _; ~; is the
identity relation.

icl

Remark. If accc C hasanobject A suchthat A ispartiadly initial and A — 1, then C isapreorder, i.e. every
hom-set has at most one element. Indeed, if f,g : B — C, then

hence f = g. Asaconsequence, if C has a non-trivial hom-set, then any Henkin embedding C — . not
only reflects, but also preserves partial initial objectsand epics A — 1.

Henkin representationsin .#*

Any small cce C can be ccc-embedded in a category of presheaves. 2, for instance by the Yoneda embed-
ding (see Example 1.5). If onetakes A to be a poset, it is still possible to obtain a Henkin embedding:

Theorem 5.14. Any small ccc C can be Henkin-embedded in . % for some poset P. Moreover, the embed-
ding preserves monic cones.

Let A and B be small categories, andlet F : A — B beafunctor. Thisinducesafunctor .7 % : B — 74,
whichwedenoteby F,. Notethat F,, always preserves monic conesand limits, since these aretaken pointwise
in.7A and.#B. The following two lemmas give sufficient conditions for 7, to be a Henkin representation,
respectively, an embedding.

Definition. A functor F': A — B iscaled left-full if foral g : FA — B inB, thereexists f : A — A’ in
A suchthat B=FA'andg = Ff.

Lemmab.15. If F: A — B is left-full, then F, : .#B — .2 is a Henkin representation.

Proof. We need to show that the canonical natural transformation ¢ : F.(QF) — F.QT+F is monic for
al P,Q € ./B. Let A € A. Unraveling the definition of exponentiation in a functor category yields that
PA yB(B(FA,_) x P,Q) — yA(A(A,_) x F.P,F.Q) isgivenby (pan)ar(f,z) = nra(Ff,z),
wheren : B(FA,—)x P - Q, A € A, f: A— A'andx € (F.P)A' = P(FA’). Toshow that ¢4 is
one-to-one, assumen # ' A(FA,—) x P — @Q. Thenthereare B € B, g : FA — B andx € PB such
that ng(g,x) # n(g, ). Since F isleft-full, thereis f : A — A’ in A suchthat B = FA'and g = Ff,
hence

(pam)ar (f,2) = nra(F f,x) = np(g,2) # 1p(9,7) = npa (Ff,z) = (pan')a (f,2),
and therefore p 4n # @ 4n’. Thisshowsthat ¢ 4 isone-to-onefor every A, hence p is monic. O
Lemmab.16. If ' : A — B is onto objects, then F, : .#B — .74 is an embedding.

Proof. Let P,Q € YBandn #n' : P — Q. Thennp #n% : PB — QBforsomeB € B. Let A € A
with B = FA. Then (Fun)a =nra # Np s = (Fun')a, hence Fun # F.'. O
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Table 5.1: Typing rulesfor the simply-typed lambda cal culus

(var) xob>z:o
(const) —_
'>c”:o (app) I'>M:o—>T1 I'>N:o
" PP ToMN 7
* -
p>x:l Lzo>M: T
. ' M:o I'>N:7 (abs) ' Ao M :0 > 71
(pair) ['>(M,N):oxT I'>bM:0 TCI
(weaken) ; =
(m) '>M:oxT I'oM:o
g '>mM:o
() I'>bM:oxT
2 I'>mM:T

The proof of Theorem 5.14 now rests on the fact that every small category A is, in the terminology of Freyd
and Scedrov [20], dominated by some poset P, i.e. there is a left-full functor F : P — A which is onto
objects.

Lemma5.17 (Freyd, Scedrov [20]). Every small category A is dominated by some poset P.

Proof. Let the objects of P be finite sequences of objects and morphisms A, o, Ay LN b) An,
ordered by the prefix ordering. Then P is a poset, and the obvious functor F' : P — A isleft-full and onto
objects. O

Proof of Theorem 5.14: Let C be asmall ccc. Then C is dominated by some poset P by Lemma 5.17;
let F : P — C°. By Lemmas 5.15 and 5.16, the functor F, : .#C" — .#F is a Henkin embedding;
moreover it preserves monic cones. By precomposing F,. with the Yoneda embedding, one obtains a Henkin
embedding F, oY : C = .#F. O

5.2 Theinterpretation of the ssimply-typed lambda calculus

521 Thesimply-typed lambda calculus

Let TC beaset of type constantst, u, . ... Simpletypeso, 7, ... aregiven by the grammar:
a:::t| 1|0><T|J—>T

Let V be an infinite set of variables x,y,.... For each type o, let C, be a set of individual constants
¢?,d?,.... Thecollection (T'C, (C,),) is aso caled a smply-typed signature. Raw typed lambda terms
M, N, ... aregiven by the grammar:

Mu=z|c | « | (M,N)| mM | mM| MN | oM | Mo

We have the usual notions of free and bound variables, and we write FV (M) for the free variables of a
term M. We identify raw terms up to renaming of bound variables, and we write M[N/z] for the result of
substituting NV for = in M.
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Table 5.2: Equational rules for the simply-typed lambda cal culus

(ref) ToM=M o _
I'>M=N:o (unit) '>M=x:1
(symm) T>N=M:0 .
(trans) '>M=N:¢ I'>N=P:o (proj.) L>m(M,N)y=M:o
I'>M=P:o .
congy LEM=M:io ToN=N:r (proj2) Tom(M,N)=N:r
> (M,Ny=(M',N'Y:o0xT )
(congy) I>M=M:0xr1 S S (mM,maM) =M :0xT
'smM=mM :0o
(congs) I'>M=M :0xT1 () ' (\z:o.M)N = M[N/z]: 1
L>mM=mM':T z & FV(M)
(conga) I'>bM=M:0—-7 I'bN=N":0 () P> Azio.(Mz)=M:0—>T1
'>MN=M'N":1 (add-var) '>M=M:o rcr’
(congs) Deo>M=M:1 I'oM=M:o
' Ar:o.M =X x:o M 0 — T
A type assignment I' = z1:01,25:09,... ,Z,:0, IS afinite, possibly empty sequence of pairs of a

variable and atype, such that z; # z; foral i # j. WewriteI’ C I if " iscontained in I as a set. A valid
typing judgment is an expression of theform I' > M : o which can be derived by therulesin Table 5.1. An
equation of the simply-typed lambdacalculusis an expression of theformI'> M = N : o, whereI'>> M : ¢
andT' > N : o arevdid typing judgments. If E isan equation and £ is a set of equations, wewrite£ +; E
if E can be derived from £ by the rulesin Table 5.2. Asusua, £ is caled a theory if it is closed under
derivability, i.e. if £ 5, E implies E € £. The smallest theory of the simply-typed lambda calculus (for a
fixed signature) is denoted by \. It isalso called the pure theory.

5.2.2 Strict interpretation in a cartesian-closed category

Fix a simply-typed signature. An (strict) interpretation I of the simply-typed lambda calculusin a ccc C,
which we schematically writeas I : A — C, consists of an interpretation of types and an interpretation of
typing judgments. A type o is interpreted as an object [¢]’ of C. A valid typing judgmentT' > M : 7 is
interpreted as a morphism [T > M : 7]%. A strict interpretation I is uniquely determined by its values on
type constants and individual constants.

Let I : TC — |C| be an interpretation of type constants as objects of C. This extends uniquely to an
interpretation [o]” of every type:

[ = I@t)
o = 1
[ox)" = [o]" x[r]
o = (e
If T = 21:00,... ,Tm:0., isatype assignment, we write [[']! = [o1]f x --- x [o.]}. Let I, : C, —

(1, [o]") be an interpretation of term constants as morphisms of C, for each type o. This extends uniquely to
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aninterpretation [I" > M : 7]7 of valid typing judgments:

P>z 0] = [O)f = [[JJ]][ the jth projection
Foem o = [ 2125 o)
[Cex*:1] = [ 1=}
O (MN):ox 7] = [r]f JEe2el “IFDN”” S ol % [T = [o x 717
[C>mM: o]l = [T [[FDM—:UXT]]I> [o]" x [7]" = [o]”
[C>mM: ) = [ w [o]" x [7]" Rt [o]"
o> MN:7) = [r]f LMoo Nl ool o] 5 7]
[C>Av:oM:0— 7]l = [T M) ([[T]]I)[[‘T]]I =[o— 7]’

Lemma5.18. The interpretation of the simply-typed lambda calculus in a ccc has the following properties,
which are proved by induction on M:

1. Permutation of Individual Variables. If s : {1,...,l} — {1,...,m} isinjectiveand FV(M) C
{Zs1,...,xq},andif [V = z1:09,... ¢pi0p aNAT = 24:041, ... 25:04 then

[[F’DM:T]]I

) 1.

(Wsl,...k 4M:T]]I

[r1

2. Term Substitution. LetI' = z1:01, ... Zmi0pm and ' = y1:p1, ... y;:p, and suppose I' > M : 7 and
"> Nj:ojforj=1,...,m. Let M[N/z] denote the simultaneous substitution of Ny, ... , N, for
Z1,-.-,Ln iNM. Then

[T'>M[N/z):r]*

) 1.

([[FII>N1:0'1]]I,...,[[F’DNH:O'M\ 4]\/‘[#]}1

[y 0

We say that an interpretation I satisfiesan equationI' > M = N : r,insymbols, [ ET't> M = N : 7, if
[C>M:7]f =[C>N: 7]l If isaset of equations, thenwewrite I = £if I = Eforal E € £. The
set of all equationsthat an interpretation I satisfies is written Th(I). If M isaclass of ccc's, then we write
€ Em E, for an equation E and a set of equations &, if for every strict interpretation I inaccc C € M,
I'=¢&implies] = E.

Proposition 5.19. Soundness of the strict ccc interpretation.

EFs E implies €& =cee E.
O

If T isatheoryand I : PL — C isan interpretation such that I = 7, then we aso wnteI 7' — C.
An interpretation can be post-composed with a ccc-representation in an evident way: 7 Lc L cisthe
interpretation J defined by [o]” = Flo]! and[T > M : 7]/ = F[T' > M : 7] .
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5.2.3 Thecartesian-closed category associated to a theory

From atheory T over a simply-typed signature, one constructs a cartesian-closed category J ...(7") as fol-
lows: The objects are simple types o, and the morphisms f,; € (o, 7) are named by terms M such that
z:0 > M : Tisavalid typing judgment. Two terms M and N name the same morphismif 7+, z:0 > M =
N :T.

Proposition 5.20. The above construction yields a well-defined cartesian-closed category §...(7). There is
a canonical strict interpretation Iy : 7 — Feee(T) With [o] = o and [z:o > M : 7] = for 10 — T
Moreover, I, has the following universal property: For any strict interpretation J : 7 — C, there is a unique
cce-representation F' : F...(7) — C such that

I

SCCC(T> ? C |:|

Corollary 5.21. Completeness of the strict ccc interpretation. Each theory 7 of the simply-typed lambda
calculus arises as the theory of some ccc-interpretation. Consequently, for any set of equations &£,

EEcecc E implies £k E.

5.2.4 Henkin representations of afreeccc

Definition. Thefree ccc over asimply-typed signatureis the cartesian-closed category associated to the pure
theory )\ over that signature.

Cubri¢ proved in [14] that for any object A in afree ccc, the unique morphism A — 1 is epic, and hence the
condition of Theorem 5.9 is satisfied. The proof uses a strongly normalizing system of Mints reductions. Let
us remark here that, using these Mints reductions, one can show more about the morphism A — 1:

Proposition 5.22. In a free ccc, the morphism A — 1 is a coequalizer of the diagram

Proof sketch: Let f : A — B benamed by theterm z:A > M : B, andassume f o™ = f o x'. This
meanst, y:A, z:A > M[y/z] = M|[z/z]. Suppose M’ is the unique normal form of A with respect to the
system of Mints reductions. Then M'[y/x] and M'[z/z] are the respective unique normal formsof M [y/x]
and M [z/z], hencethey are syntactically equd. It followsthat A/ does not contain = freely, and therefore f

factorsas A — 1 25 B. We already know that the factorization is unique because A — 1. a

As a consequence, in afree ccc, every object A is well-supported, i.e. 7’ : A x B — B for dl B. Indeed,
products preserve coequalizers, and coequalizers are covers. With Corollary 5.10, one gets:

Corollary 5.23. Any free ccc has a faithful (i.e. isomorphism-reflecting) Henkin-embedding into .« +. O

5.25 Thenon-strict interpretation of the simply-typed lambda calculus

Let C beaccc. A non-strict interpretation of the simply-typed lambda calculus I : A — C isaHenkin
representation H : F...(A) — C. One defines [o]! = H[o]" and [l > M : 7]} = H[T' > M : 7]l.
A non-strict interpretation I satisfies an equationI' > M = N : 7,insymbols =T'> M = N : 7, if
[C>M: 7] =[T> N :7]'. Asbefore, we denote by Th(I) the set of equations that are satisfied in 1.
For aclass M of ccc'swe write £ =10 £ if any non-strict interpretation in some C € M that satisfies
£ dso satisfies E. The following soundness theorem is an obvious consequence of Lemma 5.2:
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Proposition 5.24. Soundness of the non-strict ccc-inter pretation.

Ers B implies & ERostrict g, ]

Remark. Completenessis also evident, because the strict ccc-interpretations are among the non-strict ones.
More interesting are completeness theorems with respect to certain smaller classes of models. This s the
subject of the next section.

5.3 From Henkin representation theoremsto completeness theorems

5.3.1 The problem with empty types

By a set-theoretic model of the simply-typed lambda calculus, we mean a non-strict interpretation in ..
The equational rules for the lambda calculus from Table 5.2 are not complete for equational reasoning in
set-theoretic models. Thiswas first noticed by Meyer et al. in [39]. If in some model, the interpretation [o]
of atype o isthe empty set, then the model satisfies every equation of the form

rzo,I'>M=N:T1. (5.1
On the other hand, if [o]! is non-empty, then the model satisfies the rule

zo,I'>DM=N:T1 x ¢ FV(M,N)

(non-empty) T>M=N:r

(5.2)

for that type o. (By this we mean, for every instance of the rule, if the model satisfies the premise, then it
satisfiesthe conclusion. We aso say theruleis sound for themodel.) Soin any particular set-theoretic model,
for each o, either (5.1) or (5.2) holds. However, in ageneral theory of the simply-typed lambda calculus, this
is not true. Meyer and his co-authors give the following example: Let o and T be type constants, and let
f:(0c = 0 — o) = 7hbeanindividua constant. Let p; = Az:0.\y:0.z and p» = Az:0.\y:0.y. Then the
following is sound for any set-theoretic interpretation:

o> fpr=fpa:T
>fpr=fp:7 63

Thisis because, if [o]! is empty, then p; = p, holds as a consequence of (5.1), whileif o] is non-empty,
then (5.3) follows from (5.2). On the other hand, (5.3) is not sound for arbitrary theories of the lambda
calculus: specificaly, let 2 be the poset with two elements L. < T, and consider the following interpretation
I: )\ — 2 fortypes, welet

[l (L) =0, [o1'(T) ={s1,s2},  [F17(L) = {tn, 22}, [71°(T) = {u},
with the unique maps o]/ (L) — [o]/(T) and [r]! (L) — [7]*(T). Let A = [o — o — o]!, and notice
that A(L) = A(T) = {s1, 5210552 Let 1 ¢ {s1,52}% = {s1, 50} bethefirst projection. Now define
If1' : [0 — o = o]f — [r]! via

else,

MW ={{ o "  FOo-u

With respect to thisinterpretation, [fp:]7 (L) = t1 # ta = [fp2]?(L). On the other hand, thereis a unique
morphism [o]! — [7]!. Hence, z:0 1> fp1 = fp2 : T holdsfor the interpretation I, while > fp; = fpa : 7
does not. Consequently, the rule (5.3) is not admissible for arbitrary lambdatheories.

As the example shows, the equational rules in Table 5.2 are not complete for the class of set-theoretic
models. On the other hand, the rule (non-empty) is sound only for set-theoretic models with non-empty types.
Hence, the need arises to consider the following three classes of models, and their associated completeness
theorems, separately:
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1. One may consider set-theoretic models where all types are non-empty. Thisis the classical approach
[21]. Inthis case, the rulesin Table 5.2, together with (non-empty), are sound and complete.

2. One may consider all set-theoretic models. This necessitates a more elaborate system of inference
rules. A sound and complete system was givenin [39].

3. One may enlarge the class of models to allow non-set-theoretic ones. The class of Kripke lambda
models, introduced in [42], is a convenient such class, and for it, the rules in Table 5.2 are sound and
complete.

Each of the three classes of model s can be described in terms of Henkin representations, and the compl eteness
theorems in each of the three cases can be derived from the three respective Henkin representation theorems
of Section 5.1.4.

5.3.2 A categorical analysis of the rule (non-empty)

We have already remarked that in a set-theoretic model, the rule (non-empty) is sound for atype o if [o]! is
non-empty. More generaly, if I : A — C isanon-strict interpretation of the simply-typed lambda calculus,
and if [o]! isan object such that [o]’ — 1 isepic, then the rule (non-empty) is sound for o with respect to 1.
Becauseif z ¢ FV(M, N), and if [z:0,T > M : 7]} = [2:0,T > N : 7], then, using Lemma5.18,

, [T>M:r]*
[o]" x [T —— ') ——=—_ 1",
[C>N:7]*

andhencel =T1> M = N : 7. Conversely, assume that (non-empty) is sound for o in sometheory 7. Then
[oe]% — 1isepicintheccc F...(T), for the canonical interpretation I.

5.3.3 Set-theoretic models with non-empty types

Fix a simply-typed signature. By a set-theoretic model with non-empty types of the simply-typed lambda
calculus, wemean anon-strictinterpretation I : A — .+, Wewrite& |:§”+'St”°t E for semantic consequence
with respect to that class of models. We write £ F1°"™Y E if E can be derived from the equations £ by the
usual simply-typed lambda cal culus rules, together with the rule (non-empty).

Theorem 5.25. Soundnessand Completenessfor non-strict interpretationsin .+. The rule (non-empty)
is sound for non-strict interpretations in .. Moreover, any theory that is closed under (non-empty) arises
from such an interpretation. As a consequence,

& |:gl;5"i°t E ifandonlyif & Rhonemey g

Proof. Soundness: It follows from the remarks in Section 5.3.2 that the rule (non-empty) is sound for
an;strict_

Completeness:  Assume £ 905" B, Let T be the theory generated by £ and (non-empty). We need
toshow £ € T. LetIy : T — Feee(T) be the canonical interpretation. Then A — 1 for al objects of
Teee(T), hence thereis aHenkin embedding H : ec.(T) — -7+ by Henkin Representation Theorem 5.9.
LetI=Holy:T — .*.ThenTh(I) = Th(Io) =T, hence = =FE=EcT. O

5.34 Set-theoretic modelswith empty types

For reasoning about possibly empty types, we use the extended proof system of Meyer et al. [39]. Fix a
simply-typed signature. An emptiness assertion is an expression e(r), where T is atype. We use the letter
A to denote a sequence of emptiness assertions, and we write A C A’ if A iscontainedin A’ asaset. An
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Table 5.3: Rules for the simply-typed lambda cal culus with emptiness assertions

(empty) Ase(o),z:0,T>M=N:T1
Ae(o),[>M=N:71 Ayzio, ' >DM=N:T1
AT>M=N:1
AT>M=N:T A CA!
ANT>M=N:71

(cases)

(add-emp)

extended equation is an expression of thefoom A,I'> M = N : 7,whereI'> M : 7andT"' > N : 7 are
valid typing judgments (note that no A appearsin typing judgments). The intuitive meaning of an extended
equatione(ry),...,e(r),I'> M = N : ris: if i through 7, are empty, thenT' > M = N : 7 holds. We
freely use suggestive notation such ase(o) > E to denote an extended equation whose | eft-hand side contains
an emptiness assertion e(o), and z:0 > E to denote an extended equation whose left-hand side contains a
type assertion x:0, where E may contain other emptiness or type assertions.

We consider three special rules for extended equations, which are shown in Table 5.3. Notice that in the
rule (cases), the variable = cannot be free in M, N. We write £ ! E for derivability using these rules,
together with the equational rules of the simply-typed lambda calculus. Throughout this subsection, we will
write E for an extended equation, and £ for a set of extended equations. An extended theory is a set of
extended equations that is closed under derivability. If 7 is an extended theory, then we write 7 ° for its
subset of equations, i.e. those extended equations of 7 that contain no emptiness assertions. 7 ° is atheory,
which we call the coreof 7.

Recall that accc C is special if for every object A, either A — 1 isepic or A is partiadly initial. Let
I : )\ — C bean interpretation of the simply-typed lambda calculus in a special ccc, and let E be an
extended equation, say, e(1), ... ,e(rx),[' > M = N : 7. We say that I satisfies E, insymbols I = E, if

[m]%,- .., [m]" patidly initial = [C>M: 7} =[C>N:7].

If M isaclassof specia ccc's, wewrite £ = E, respectively & £ B if T | € impliesI = E for
all strict, respectively non-strict, interpretations I inacccin M.

Definition 5.26. An extended theory T is caled principal if for each type o, either 7 contains all extended
equations of theform z:o > E', or it contains all extended equations of the forme(o) > E’.

Proposition 5.27. The correspondence between principal extended theories and special ccc's.

1. Let I : A — C be a strict or non-strict interpretation of the simply-typed lambda calculus in a special
ccc. Thentheset 7 = {E | I = E} is a principal extended theory.

2. Conversely, every principal extended theory arises in this way from some strict interpretation 1.

Proof. 1.: First, we need to check that 7 is indeed an extended theory. It is easily checked that the rules
(empty), (cases) and (add-emp) are sound with respect to any interpretation I in aspecia ccc C. For (cases),
one uses the fact that C is special: the conclusion follows from the first premise if [o]! is partialy initial,
and from the second premise if [o]/ — 1. The fact that 7 is principal follows directly from the definition
of I = E: consider any type o. If [o]! is partialy initial, then 7 contains all extended equations of the
form z:0 > E'. If [o]! isnot partialy initial, then 7 (trivially) contains all extended equations of the form
e(o) > E'.

2. LetT beaprincipa extendedtheory. Let 7 ° bethecoreof T, i.e. the subset of those extended equations
of T that contain no emptiness assertions. Let C = F...(7°) be the cartesian-closed category associated
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to thetheory 7°, and let Iy : 7° — C be the canonical interpretation. We show that C is a special ccc.
Consider any object o. If 7 contains all extended equations of the form z:0 > E’, then o]0 is partially
initial. Otherwise, 7 contains all extended equations of the form e(o) > E’. Therefore, the first premise
of (cases) always holds for the type &, and hence the rule (add-emp) is sound for 7 at type sigma. By the
remarksin Section 5.3.2 this meansthat [o] /0 — 1. Therefore C is special.

We now clamthat 7 |= E iff I, = E, for any extended equation E. Let E bee(ry),... ,e(r) > Ep,
where Ej isan equation, i.e. E, contains no more emptiness assertions.

First, assume 7 = E. Assumethat [r ], ..., [rx]/ are partidly initial in C. Under this hypothesis,
we need to show I = Ejy. Since C isthe ccc associated to the theory 7°, thisimpliesthat 7° + z;:7; > Eo
fori = 1...k. With E, by repeated application of the rules (cases) and (add-emp), onegets 7 - E,. Since
E, isa(non-extended) equation, it must bein the core, i.e. 7° - E,, hence Iy = Ejp.

Conversely, assumethat 7 [~ E. We clamthat Iy = E. Since T is a principa extended theory and
T 2 E, it must bethe casethat 7 containsall extended equationsof theformz:7;>E’, foreachj = 1... k.
Therefore, each [r;]% is partialy initial in C. Also, from 7 /%t E, by (add-emp) one has T /% Ej, hence
Iy I# Ey. This shows that Iy I# E. O

The proof of the completeness result for set-theoretic models rests on the following lemma, which implies
that any extended theory is an intersection of principal ones:

Lemma5.28. Maximal extended theories are principal. Let E be an extended equation and let 7 be a
maximal extended theory such that 7 (/®* E. Then T is principal.

Proof. Consider the following two hypothetical arguments:

1.: If thereis some extended equation z:o > E' thatisnotin 7, then, by maximality, T U{z:0 > E'} F* E.
Consider any derivation of E from 7 U {z:0 > E'}. Alter this derivation by adding an emptiness assertion
(o) to each extended equation throughout. An inspection of the proof rulesin Tables 5.2 and 5.3 shows that
thisateration yieldsavalid derivation of e(o) > T U{e(o),z:0 > E'} F* e(0) > E, wheree(o) > T denotes
the set of equations {e(c) > E" | E" € T}. Applying the rules (add-emp) and (empty) at the leaves, one
gets 7 ' e(o) > E.

2.: If there is some extended equation e(o) > E’ that is not in T, then, by the same reasoning as in 1.,
T 20> E.

Now observe that cases 1. and 2. cannot happen simultaneously, since otherwise 7 =% E by (cases). It
followsthat 7 isprincipal. O

Theorem 5.29. Soundness and Completeness for special ccc's. Let CCCspec be the class of special ccc’s.
Then

£ Fceey, E it E |:2%‘C5;)’e"c°‘ E iff EFNE.

Proof. Soundness is an immediate consequence of the first part of Proposition 5.27. For completeness,
assume € /% E. Let T be amaximal extended theory containing £ such that 7 /% E. T is principa by
Lemma5.28. By the second part of Proposition 5.27, it follows that 7 is the extended theory of some strict
interpretation 7 : A —+ C. Hence I = £ but I £ E, whichimplies& [£cce,,,, E. O

Soundness and completeness for set-theoretic models now follows by applying the Henkin Representation
Theorem 5.11. We write =2 for semantic consequence for extended equations with respect to set-
theoretic models.

Theorem 5.30. Soundness and Completenessfor non-strict interpretationsin ..
g st o jfandonly if € U E.

Proof. Soundnessisaspecial case of Theorem 5.29. For completeness, suppose £ /%t E. By Theorem 5.29,
thereisaspecial ccc C and astrict interpretation I : A — C suchthat Iy |= € but Iy [# E. By Theorem5.11,
thereisaHenkinembedding H : C — .. Let I = H o Iy : A\ — .. It follows from Remark 5.1.4 that T
validates the same extended equations as 1. O
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5.3.5 Kripkelambda models

By a Kripke lambda model, we mean a a non-strict interpretation I : A — .#F in a presheaf category over
some poset P. We write £ |:”K$?‘;§te”°‘ E for semantic consequence in the class of Kripke lambda models.
Theorem 5.31. Soundness and Completeness for non-strict interpretationsin .. Each simply-typed
lambda theory arises from some non-strict interpretation in a presheaf category .#* over some poset P. As
a consequence,

£ it p ifandonlyif € b, E.

Proof. Soundnessis a specia case of Proposition 5.24. Completenessis an immediate consequence of The-
orem 5.14. (I

5.3.6 A remark on the principal model property

The class of set-theoretic models with non-empty types and the class of Kripke lambda models each have
the principal model property: any lambda theory that arises from the class actually arises as the theory of
a single model. However, the principal model property does not hold for interpretations in .. Indeed,
among the extended theories, the ones that arise from a single model are the principal ones in the sense of
Definition 5.26—but not all theories are principal.

Thereason for thefailure of the principal model property lies with the categorical propertiesof .. Unlike
the category of non-empty sets, the category of sets does not embed its own discrete powers. Notice that any
discrete power (.7 1) of the category of non-empty sets has enough points to be Henkin-embedded in .7 +
viathe point functor I = (1, —). Asaconsequence, accc C can be Henkin-embeddedin (. +)7 if and only
if it can be Henkin-embedded in .+, and a lambda theory arises as the theory of a family of models with
non-empty typesif and only if it arises as the theory of asingle such model. A similar property holds for the
class of Kripke lambda models, because any discrete power of a presheaf category . ©* is again of this form.

What the proofs of Theorems 5.29 and 5.30 really show about set-theoretic models is that any extended
theory is the theory of some interpretation in a discrete power .71 of the category of sets. The proof is
indirect, by first showing that any extended theory is an intersection of principa (namely, maximal) ones. In
the process, the categorical meaning of the extended equations gets lost. Isit possible to give a more direct
proof in the spirit of categorical logic, via a construction of a category directly from an extended theory?
This would be the ultimate form of Theorem 5.30. Presumably such a proof would require a categorical
characterization of those ccc's that can be Henkin-embedded in . 7. Unfortunately, the characterization
givenin Corollary 5.13 is not very elegant, and a more satisfactory Henkin Representation Theorem for the
class.#! isnot known.

5.4 Henkin representations of PL -categories

54.1 PL -categories

LetU : CCC — Catand |—| : CCC — . be the forgetful functors that map a small ccc to its underlying
category and to its set of objects, respectively.

Definition. A PL-category B = (B, Q, F,~,V,n) consists of
1. asmall base category B with finite products and a distinguished object 2,

2. acontravariant fiber functor F' : B — CCC, together with a natural isomorphism

v:(V,Q) =v |[Fy|,
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3. anatural transformationV : U (Fy xq) —v U(Fy ), together with anatural isomorphism

n: (FryC,D)yxa —v,cp (C,VyD)y.

We sometimes write a PL -category as (B, F, V) if the remaining parts of the structure are understood.

Remarks. We assume that the finite products of the base category are chosen. We use the letters V, W/, . ...
for objects of B. Thefiber functor F' maps an object V' to a cartesian-closed category F'y, caled the fiber at
V. Wealso cal Fo-~ the n-fiber, and in particular, F; is called the O-fiber. We usetheletters C, D, ... for
objectsand f, g, . . . for morphismsof the fibers, and we denote hom-sets of Fy by (C, D)y . Each morphism
of thebase ¢ : V' — W givesrise to a ccc-representation of fibers F, : Fy — Fy . For an object V' € B,
let 7y @ V x Q — V bethefirst projection. Theresulting functor F.,, : Fyy — Fy g is caled the dummy
functor at V', and we denoteit by Ay.. Noticethat Ay, likeny, isnatura in V. Each Ay hasaright adjoint
Vv : Fyxq — Fy. Notice that Vy is not assumed to be a ccc-representation. Both the functor V- and
the adjunction ny : Ay - Vy are assumed to be natural in V. The naturality of  in I means that for all
CeFyandD e Fyyxqandforal o : V — W,

nw,c,p

(AwC, D)wxa =~ (C,VwD)w
waﬂl \LEP (54)
(AvC", D)y xa ———= (C", Vv D)y,

whereC' = F,,C and D' = F,,.oD. Intheliterature on hyperdoctrinesand universal quantification[55, 15],
the condition that V is natural in V' is sometimes relaxed: one only requires that F,Yw and Vv F,xq are
naturally isomorphic as functors Fyy o — Fy. Inthis case, condition (5.4) is replaced by the so-called
Beck-Chevalley condition. In our setting, the Beck-Chevalley condition and (5.4) are equivalent.

The adjunction Ay 4 Vy can be described concretely in terms of its co-unit Ay Vy D HV—D> D by the
following property: for every object C € Fy and every morphism g : AyC — D, there exists a unique
h = nvyg : C - VvD such that

[/
AvVyD —% p
Ath f
AyC.

In analogy to product diagrams and exponential diagrams (see Section 1.1.6), we call a diagram of the form

AvE 7, D with the above universal property aV-diagram. Condition (5.4) is equivalent to the requirement
that F, preservesV-diagrams, i.e. F,0w,p = 0y, r,p foral ¢ :V — Wand D € Fy «q.

Definition. Let B = (B,Q, F,~,V,n) and B' = (B',Q', F',+',V',n") be PL-categories. A PL-repre-
sentation (B,G) : B — B’ is afinite product preserving functor B : B — B’ together with a natural
transformation G : F' — F' o B, suchthat BQ = Q' andforal V € B,C € Fy,and D € Fyyq:

B(V, Q) — = |Fy| Fyvg — Y Fy (AvC, D)y xo —=2 (C,Yy D)y
Bl lle GVXQl lGV GVXQl lGV
B'(BV,Q') —— |Fy|, Fpvxor —— Fav, (ApyC", D) pvxar —— (C",VvD') sy,

TBv Vv MBv,c’, D’

where C' = Gy C and D' = Gy xqoD. The condition that G preserves n can be equivalently expressed in
terms of V-diagrams by requiring Gv «a(0v,p) = 0y p-
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Noticethat G isanatural transformation of functorsB — CCC; in particular, each Gy : Fyy — Fpy, isa
ccc-representation.
Small PL -categories and PL -representations form a category, which we denote by PL.

We will now consider a notion of congruence relation on a PL -category. We are only concerned about
congruences on the morphisms of the fibers, and not on the morphisms or objects of the base.

Definition. A PL-congruence ~ on a PL-category B is given by a family of equivalence relations on the
hom-set of thefibers, i.e., an equivalencerelation ~v. ¢ p on (C, D)y foreachV € B and C, D € Fy, such
that for each V', ~y isaccc-congruenceon Fy, (see Definition 5.1), and in addition:

[ ~vxaayonp f
n f~vewep nvf'

If (B,G) : B — B'isaPL-representation, then itskernel isa PL -congruenceon B, defined by f ~v.cp g
iff Gy f = Gvg, fordl f,g € (C,D)y.

Conversely, let ~ be a PL -congruence on 3. One can define the quotient 3/~ by taking the quotient
(C,D)v /~v,c,p a each hom-set of the fibers; one checks that this is a well-defined PL -category with the
same base category as B.

5.4.2 Henkin-PL -representations

A pre-structure P = (P, M) consists of a base category P with finite products and a contravariant functor
M : P — CCC. For any pair of objects V, W € P, we consider thefirst projectionwy,w : V x W — V,
and the associated functor M. : My — My yw, which we again call the dummy functor, and which we

Tv,wW
denote by Ay . We say that adiagram Ay, C 4 Din My «w isapartial V-diagramiif for every object
C' € My and every morphismg : Ay, wC’' — D, thereexistsat mostoneh : C' — C such that

AV7WC 4f> D

a7

Ay.wC".

A Henkin natural transformation between functors F, G : B — CCC isanatural transformation H : UF' —
UG suchthat for each V' € B, Hy isaHenkin representation of ccc's.

Analogousto Henkin representations of cartesian-closed categories, we can now define Henkin represen-
tations of PL -categories:

Definition. Let B = (B, Q, F,v,V,n) beaPL-category and P = (P, M) be apre-structure. A Henkin-PL-
representation(B, H) : B — P isafinite product preserving functor B : B — P together with a Henkin
natural transformation H : UF — UM o B, suchthatforall V e Band D € Fy «q,

Hy xofv,p

Ay,Bo(HyVyD) = Hy xoAyVy D Hy oD
isapartia V-diagram. Notice that, by naturality of H,
Fy v Mpyv
AVFWV\L iABv,BQ=MBwV

Fy g — MpBvxBa-
Hyxa

Lemma 5.32. The kernel of a Henkin-PL-representation (B, H) : B — P, defined for all f,¢g € (C,D)y
by f ~v.c,p giff Hy f = Hyg, is a PL-congruence on B.
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Proof. Foreach V' € B, Hy : Fy — Mpy is aHenkin representation of ccc’s, and hence ~y is a ccc-
congruenceon Fy, by Lemmab.2. Itremainstobeseenthatfor C € FV andD € FV x Q, f ~vxq.Ayv0,D
frimpliesny f ~v.cv,p nvf'. Suppose f, f' € (AvC, D)vxq With Hy xof = Hy xaf'. Onehas

4 Hy xofv,
AvVyD —2% p Apy,paHyYy D Hy o AyVy D 222 Hy oD
Avnva / = ABV.BSZHV"'IVfT HvaAvnva %
Ay C Apy,paHyC ———= Hy xoAyC.

Thetop row isapartial V-diagram, hencethe arrow Hy ny f is uniquely determined by Hy ., f. Since there
isanidentical diagramfor f/, andsince Hy xqo f = Hy xq f' by assumption, onehas Hyny f = Hyny f'.0

Definition. We say that a Henkin-PL -representation (B, H) is a Henkin-PL-embedding if its kernel is the
trivial congruence, i.e. if Hy isaHenkin embedding for each V. Notice that we do not require B to be an
embedding of the base; it seems unnecessary to do so since we are only concerned with equality in thefibers.

5.4.3 Standard structures

Consider a cartesian-closed category D. Let D bethe pre-structure (., M), where the base category is the
category of sets, and the functor M : . — CCC mapsaset X to DX, the X -fold power of D. We call this
pre-structure the standard structure over D.

For a ccc, we considered the point functor I' : C — .. We now consider an analogue to this functor
for PL -categories. Consider a PL -category B = (B, Q, F, v, V, ), together with afunctor H° : F; — D.
We defineI'go = (B, H), where B : B — . is the point functor of the base category, mapping V' to
the hom-set B(1,V), and H : Fyy —y Mpy = DBV isthe natura transformation defined on objects by
HyC(z) = H°(F,C),whereC € Fy andz € BV = (1,V). The following proposition gives a sufficient
condition for (B, H) to be Henkin-PL -embedding.

Proposition 5.33. The pair (B, H) is a Henkin-PL-embedding B — D if the following hold:
1. H° is a Henkin embedding,
2. HP preserves monic cones, and
3. the functors F, : Fyy — Fy, wherez : 1 — V, form a collective embedding for each V' € B.

Proof. Clearly B preservesproductsand H is natural. What remainsto be shownisthat each Hy isaHenkin
embedding, and that the condition on V-diagramsis satisfied. First, notice that Hy : 7y, — CPBV factorsas

Fy

(Fz)zEBV\L K

BV 5
Fl (H())BVCBV'

Clearly, (F.).epv is accc representation; by assumption 3, it is aso an embedding. Assumption 1 im-
plies that (H®)BY is a Henkin embedding, hence Hy is a Henkin embedding for every V. Now suppose

AvVy D 22, D isav-diagramin B. We need to show that

Hy xafv.
Apv.pa(HyVyD) = Hy xoAyVy D =222 Hy oD

is a partial V-diagram. Unraveling the definitions, this amounts to showing that for each y € BV, the
collection of morphisms

HOF.0, ¢
R

(HOV1C HOcm)Z:l—)Q
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is collectively monic, where C = F, v D. Since H? preserves monic cones by assumption 2, it suffices to
show that for every C' € Fgq, thefamily

(VlC &) cm)zzlaQ

is collectively monic. Let f # g: A — V,C. Thennp='f # n=lg : AyA — C. By assumption 3, there
isz: 1€ QwithFop tf # F.ntg,ie F.(01,0 0 Aif) # F.(01,c o A1g). But F,A; = idp,, hence
(F.01,c) o f # (F.0:,c) o g, which provesthe claim. O

5.4.4 Freely adjoining arrowsto the base of a PL -category

Given a PL -category B = (B,Q, F,~,V,n), we may freely adjoin an arrow =z : 1 — U to the base as
follows: Let B' be the Kleisli category of the comonad 7'(V) = U x V, i.e. B’ has the same objects as B
and B'(V, W) = B(U x V,W) (compare Section 5.1.3). Define F' : B'® — CCC by F|, = Fyxy; this
isnatural in V. Define QY = Q, v, = yuxv, Vi, = Yuxy, and n{,ﬁo’D = nuxv.c,p. Itistrivial to check
that B’ = (B',QY, F',~',V',n') isindeed a PL -category; for instance V|, = Vuxv : Fuxvxe — Fuxv
isindeed right adjoint to A}, = Apxv : Fuxv = Fuxvxa. Lety = (Bo,Go) : B — B’ be the natural
PL -representation, defined by Bop = ¢ o ' and (Go)v = Ay : Fy — F{, = Fyxv. Letz € B'(1,U) be
id € B(U,U). We write B’ as B[1-5U], which isjustified by its universal property:

Proposition 5.34. B[1-5U] has the following universal property: for any PL-representation (B,G) : B —
D and any arrow « : 1 — BU in D, there is a unique PL-representation (B, G') : B[1-U] — D such that

B —1= B15U]
l(Bm
D

(B,G)

and Bz = 1.

Proof. Let B’ map an object V' to BV and a morphism ¢ € B'(V, W) = B(U x V,W) to BV X,

BU x BV 2% BW. Défine G/, by

F"/ . Dpy.

4%
TleXid

Fyxv —— DpuxBv
Guxv

It isreadily checked that thisis the unique PL -representation with the desired properties. O
Lemma 5.35. The canonical PL-representation 7 : B — B[1-5] is a PL-embedding.

Proof. In B, thereis awaysapoint+ : 1 € Q, for instance y~'1. The unique extension B[1-5Q] — B of
the identity that sends  to v isaleft inverseto ;. O

Proposition 5.36. Any PL-category 13 can be PL-embedded in a PL-category 3’ such that the functors F :
F4n — F|, where z : 1 — Q", form a collective embedding for each n.

Proof. To 5, adjoin countably many arrows 1 — € by constructing a sequence B = By - By 2 --- of
PL -categories, where B; 1 = B;[1 ﬁm] and »; is the canonical embedding. Notice that the n-fiber of 5; is
then + i-fiber of B. Let B’ be the colimit of this sequence, i.e. the objects of the base are the same asfor each
B;, and the hom-sets of the base and objects and hom-sets of the fibers are constructed as the directed unions
of the respective parts of the 3;. It iseasily checked that B’ is a PL -category with a canonical PL -embedding
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7 : B — B'. To show that the functors F? : F{;, — F| form acollective embedding, it suffices to show that
for every V, thefunctors Fy, , . : Fy,, o — Fj, formacollectiveembedding, wherez : 1 — €. Consider two
morphisms f # ¢ : C — D in Fy, . ThenC, D, f, and g dready exist in some 3;. Consider z; : 1 — Q
in B;,1. Writing F for the fiber functor of 3;, one has

i
FV><Q

SERN

i+1 z+1
FVXQ F1+1 F
Vxa;

henceFl Vi, Jif 7 F Xm 2i9, whichimplies Fy, . f # F'V x ;9. O

5.4.5 Henkin-PL -representation theorems
Henkin-PL -representationsin S+

Lemma5.37. If the O-fiber of a PL-category has the property that A — 1 for every object A, then the same
is true for any n-fiber.

Proof. LetV,, : Fo» — F; betheright adjoint of the canonical functor A,, = Fp : F} — Fo». Let C, D be
objects of Fy» and consider f, g : 1 — D such that

Vnf
= V,C—»1=V,1_+_V,D

I
Vng

f

= ApVpl——1_+_ D.
g

But both A,, andV,, preserveterminators, hence A,,V,1 = land f = g. (]

Theorem 5.38. Let B be a PL-category whose base is generated by Q2. Then B can be Henkin-PL-embedded

in .+, the standard structure over .7+, if and only if for every object A of the 0-fiber, the morphism A — 1
is epic.

Proof. =: Trivid, because a Henkin-PL -embedding B — St gives rise to a Henkin embedding F; —
<+, and embeddings reflect epics.

«<: By Lemmab5.37,C — 1 holds for al objects of al fibers. By Proposition 5.36, 3 can be embedded
in a PL -category B’ such that the functors F} : F{, — F{ form a collective embedding, for every V' € B.
Note that in the sequence of PL -categories (B;); constructed in the proof of Proposition 5.36, the 0-fiber of
B; is the n-fiber of B. Hence, C' — 1 holdsfor all objects of Fl', and therefore for all objects of F| aswell.

By Theorem 5.9, there is a Henkin embedding H® : F| —% D L o+ By Lemma 5.6, F 4 preserves
monic cones, and so does the point functor I. Therefore Proposition 5.33 is applicable and we obtain a
Henkin-PL -embedding B’ — ./ +. O

Henkin-PL -representationsin SP

Theorem 5.39. Any PL-category B can be Henkin-PL-embedded in 371’, for some poset P.
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Table 5.4: Typing rulesfor the polymorphic lambda cal culus

(typeapp) I'> M : Vot
I'> Mo :1[o/a]
'>M:T1 a & FTV(T)
I'> Aa.M :Va.T

(typeabs)

Table 5.5: Equational rules for the polymorphic lambda calculus

' M =M :Var

(conge) '>Mo=M©uo:T (B) I'> (Aa.]V[)a = ]\/[[O'/Oz] T
IT>M=M:r agFTV(I) a ¢ FTV(M)
(cong7) > Aa.M = Aa. M :Va.r H) ToRa(Ma) = M Var

Proof. By Proposition 5.36, B can be embedded in a PL -category B' such that the functors F : Fy, — F]
form a collective embedding, for every V' € B. By Theorem 5.14, there is a Henkin embedding H :
F| — %, for some poset P, such that H° preserves monic cones. With Proposition 5.33, one obtains a

Henkin-PL -embedding of B" in .. O

5.5 Theinterpretation of the polymor phic lambda calculus

5.5.1 The polymorphic lambda calculus

The polymorphic lambda cal culus was independently introduced by Girard [22] and Reynolds[51]. Here, we
describe a version of the second order lambda cal culus with surjective pairing and a unit type.

Let 7V be an infinite set of type variables «, 3, ..., and let T'C' be a set of type constants ¢, u, .. ..
Polymorphictypes o, 7,. .. aregiven by the grammar:

0:::a|t|1|JXT|U—>T|Va.J.

Let V beaninfinite set of individual variablesz, y, . .. . For each closed type o, let C, be aset of individual
constantsc?,d’, . ... Thecollection (T'C, (C,),) isaso caled apolymorphic signature. Raw polymorphic
lambdaterms M, N, ... are given by the grammar:

Mu=g|c¢ |« | (M,N)|mM | 7M| MN | Xs:o.M | Mo | Aa.M.

Asusud, the individual variable z is bound in the term A\z:0.M . Moreover, the type variable « is bound in
theterm Aa.M andinthetypeVa.o. All other occurrences of variablesarefree, and we write FV (M) for the
freeindividual variablesand FTV (M) for the free type variables of aterm M, aswell asFTV (o) for the free
type variables of atype o. We identify types, aswell as raw terms, up to renaming of bound variables. There
are three kinds of substitution: substitution of typesin types r[o/«], substitution of typesin terms Mo /a],
and substitution of termsin terms M [N/ z].

A type assignment I' = z1:01,25:09, ... , 20, IS defined as for the ssimply-typed lambda calculus.
Wewrite FTV(T') = FTV(o1) U...UFTV(0,,,). Thevalid typing judgmentsT' > M : o of the polymorphic
lambda calculus are derived by the rules in Tables 5.1 and 5.4. An equation is again an expression of the
fomT'> M = N :o,wherel’'> M : g and ' > N : ¢ arevaid typing judgments. If E is an equation and
€ isaset of equations, wewrite £ |, E if E can be derived from & by the rules for the simply-typed lambda
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calculusin Table 5.2, together with the one for the polymorphic lambda calculus in Table 5.5. £ iscaled a
theory if it is closed under derivability. The smallest theory of the polymorphic lambda calculus (for afixed
polymorphic signature) is denoted by PL .

5.5.2 Strict interpretation in a PL -category

Fix apolymorphicsignature. A (strict) interpretation I of the polymorphiclambdacalculusin a PL -category
B, which we schematically writeas I : PL — 13, consists of an interpretation of types and an interpretation
of typing judgments, both relativeto a sequencea = ay, . ..

alpha,, of type variables. A type o with FTV (o) C {a} is interpreted as an object [o]% of Fq.. A valid
typing judgment T' > M : 7 with FTV(T, M, 1) C {a} isinterpreted asamorphism [ > M : 7]% of Fgn.
Like for the ssimply-typed lambda calculus, an interpretation I is uniquely determined by its values on type
constants and individual constants.

Let I : TC — |F| bean interpretation of type constants as objects of the O-fiber. This extends uniquely
to an interpretation [o]’, .. of every type. Recall that v is the natural isomorphism (V,Q) =y |Fy|,
andthat Fo : Fi — For isthe ccc-representation induced by the unique morphism O : Q" — 1. We assume
that bound variables are renamed as necessary.

[ai]l = ~yanmi, wheren; € (Q7, Q) istheith projection
H% = Fol(t)
1L = 1

oxrlh = Dol x 71

[o =L = (7151

Va'oll = Varloll,

If C isany object of Fy, then it corresponds, via -y, to a morphism of the base p : V' — Q. The morphism
(idy,p) : V = V x Q givesrise to a functor F, : Fyxq — Fy, which we denote by [Cly. We call
this functor the substitution functor.

idy,¢)

Lemma 5.40. The following are properties of the interpretation of polymorphic types:

1. Permutation of Type Variables. Theinterpretation isindependent of the ordering of the freetype vari-
ables, or of the addition of dummy variables, in the following sense: If s : {1,... ,k} = {1,...,n}
isinjectiveand FTV(7) C {as1,... , s}, then

[[T]]gzl,... ,Qn = F<7Tsl7~~~ 7775k> [[T]]gzsl,... ,Qlsk "
In particular, if o/ ¢ FTV (o), then [o]7 ., = Agn [o]Z.
2. Type Substitution. For al typeso and 7 with FTV (o) C {a} and FTV(7) C {a,a'},
[rlo/a' N5 = [lo]5len [7]% o - O

Noticethat [C]y o Ay = Fiig,, o) © Frry, = idry, . Therefore, applying [C]y- tothe co-unit 6y, p : AyVy D —
D yields anaturd transformationinsty. ¢ p : Yy D —p [C]y D, which will be useful for the interpretation
of type application.

IfT = 21:01,... ,Zm:00 iSatype assignment, we write [[']} = [o1]4 x -+ x [om]L. Let I, : C,r —
(1,[o]%): be an interpretation of term constants as morphisms of the O-fiber, for each closed type o. This
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extends uniquely to an interpretation [T > M : 7] % of valid typing judgments:

[Pz 0] = [T]L = [o;]%, the jth projection
T>e:olh = [0 21727 o]}
[C>+:10% = [O]E > 1=l
[Co (M,N) o xrl = [rf; Al o [t = o x 7L
ComM o]l = [rf; e o« AL 5 [o]2
o ma:rll = o1 S22 ] L 2 o]
I MN:rL = [rf Mool BeNele), gnelh « o)L 5 ]2
[T > A\e:oM 0 — T]]g = [[F]]é M ([[T]]é)[[a]]é =[oc— T]]é
[T>Mo:rlofallt = o1, L2 vo 72 % ([ollon [ o0 = [rlo /o]
M5 Aa'.M Yool = [rpt 2o @ee o [71h o = Vo' 714

Lemma5.41. The interpretation of the polymorphic lambda calculus in a PL-category, defined inductively
as above, has the expected properties:

1. Permutation of Type Variables. If s : {1,...,k} — {1,...,n} isinjective and the free type
variablesFTV (T, M, 7) C {1, .., as,}, then

[Co>M:rll, 0 =Flumy [ > M 7]

< Tsk Qg1 yQske”

2. Permutation of Individual Variables. If s : {1,...,I} — {1,...,m} isinjectiveand FV(M) C
{Zs1,...,xq},andif IV = z1:09,... Tpiop aNAT = 24:041, ... 25:04 then

[[FIDM:T]]{&

'L, Il

<ﬁsl7---m 41\4:7]]2

[T1%
3. Type Substitution. Whenever FTV(T", M, 1) C {a, '} and FTV (o) C {a}, then
[T M :7)o/a' N5 = [olz]on [T > M : 7]% o

4. Term Substitution. LetT' = z1:01, ... 20, ad T = y1:p1,...y;:p, and suppose ' > M : 7 and
> Nj:ojforj=1,...,m. Then

[I'>M[N/z):r]L

7% []%

(|IF'I>N1:0'1]]£,...,[[F'DNH:JTM 4]\/]:7.]&

1% O

Asusual, we say that an interpretation I satisfiesan equationT' > M = N : 7,insymbols/ =ET'>M = N :
7, if[[>M:7]L =[T'> N : 7]L. Thisnotionisindependent of a, aslongas FTV (T, M, N, 1) C a. We
write = for semantic consequencein aclass M of PL -categories, meaning £ = E if al interpretations
ina PL-category in M that satisfy £ also satisfy E.
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Proposition 5.42 (Seely [56]). Soundness.

EF, E implies & =pc E.
a

If T isatheoryand I : PL — B isan interpretation such that I = 7T, then we aso erte I T — B.
An interpretation can be post-composed with a PL -representation in an evident way: 7 L B 5 Bisthe
interpretation J defined by [o]2 = G[o]L and [T > M : 7] = G[T > M : 7]L.

5.5.3 The PL -category associated to a theory

From atheory T over a polymorphic signature, one constructs a PL -category §p.(7T) = (B,Q, F,v,V,n)
as follows: Fix an enumeration o, as, ... Of type variables, and fix an individua variable . The base
B has countably many objects, which we denote 1,9, Q2,...; the hom-set (2", QF) is given by al k-

tuples (o4, ... , o) of polymorphictypeswith FTV (o4, ... ,0k) C {a4,... ,a,}. Compositionis given by
substitution:
n <0'17---70'k>\ k (Tl,...,Tl> l _
Q s Q) » Q' = (nloi/al, ... miloi]ail),
where 7[0; / ;] denotes the simultaneous substitution of o4,... ,0 for ai1,... ,a;. Theidentity a Q™ is

(a1, ... ,ay). One checksthat the base has finite products.

The objects of the n-fiber are defined via |Fo-| = (Q7,(), i.e. they are polymorphic types o with
FTV(o) C {a1,...,ay}. Themorphisms fy; € (o, 7)q~ Of the n-fiber are named by terms M such that
x:0 > M : T isavalid typing judgment. Two terms M and N name the same morphismif 7+, z:0 > M =
N : . Just asinthe construction of the ccc associated to asimply-typed theory (see Section 5.2.3), one checks
that F' is indeed cartesian-closed. The action of £ on morphisms ¢ : Q" — QF of the base is as follows:
Fio,,.. o) Maps objects 7 to 7[o;/;] and morphisms far t0 farrs,/a,)- This defines a cce-representation
For — Fon. Notice that Aqgro = o. Theright adjoint V- acts on objects as Voro = Va,11.0. The
adjunction ngn .- : (0, T)gn+1 = (0,Va,41.7)on iSQivenby nor o frr = fran M-

Proposition 5.43 (Seely [56]). The above construction yields a well-defined PL-category Sp.(T). Thereis
a canonical strict interpretation Ip : 7 — Fp.(7) with [o]Y = o and [z:o > M : 7]% = far 0 — 7.
Moreover, I, has the following universal property: For any strict interpretation .J : 7 — B, there is a unique
PL-representation G : p. (7)) — B such that

T

o N

Se(T) ?B. 0

Corollary 5.44. Completenessof PL -categoriesfor the polymorphic lambda calculus. Each theory T of
the polymorphic lambda calculus arises as the theory of some strict interpretation in a PL-category. Hence,

EEpc E implies £+, E.
O

5.5.4 Thenon-strict interpretation of the polymor phic lambda calculus

A non-strict interpretation of the polymorphic lambda calculus in a pre-structure P, denoted I : PL — P,
is a Henkin-PL -representation H : §p (PL) — P. One defines [0]L = H[o]? and [T > M : 7] =
H[T > M : 7). Thenotations I |= E, aswell as€ =" £, have their usual meanings. The following
Soundness Theorem is a consequence of Lemma 5.32. Again, completeness is evident, since the class of
non-strict interpretationsincludes the class of strict ones.
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Proposition 5.45. Soundness of the Non-Strict I nterpretation.

EFp, E implies & |:9g£n-strict E
O

A non-strict interpretation of the polymorphic lambda calculusin astandard structure D is called a standard
model. Thecase D = .+ givesrise to set-theoretic models with non-empty types which are closely related
to the environment-style model s that were described by Bruce and Meyer [10]. Thecase D = . * givesrise
to polymorphic Kripke models. Finally, the case D = . givesrise to set-theoretic models of polymorphism
with possibly empty types. We will leave the discussion of the latter class of modelsfor elsawhere.

5.6 From Henkin-PL -representation theorems to polymorphic com-
pletenesstheorems

5.6.1 Set-theoretic modelswith non-empty types
A set-theofr\e/tic model of polymorphism with non-empty types is a non-strict interpretation in the standard
structure . +. Write |:f;£ﬂ'l+'5”‘°t for semantic consequence with respect to this class of models.

Theorem 5.46. Soundness and Completenessfor set-theoretic models of polymor phism with non-emp-
ty types. The rule (non-empty) is sound for set-theoretic models of polymorphism with non-empty types.
Moreover, any theory that is closed under (non-empty) arises from such an interpretation. Consequently,

& #B{S”m E ifandonlyif & pomemy g,

Proof. Soundness follows from Lemma 5.37 and the remarks in Section 5.3.2. For completeness, let 7 be
atheory that is closed under (non-empty). Let Iy : 7 — Fp.(7) be the canonical interpretation. Because
of the rule (non-empty), one has C — 1 for al objects of the base, hence, by Theorem 5.38, there is a

Henkin-PL -embedding H : §p. (T) — #+. Thentheinterpretation I = H o I, satisfiesexactly 7. O
5.6.2 Polymorphic Kripke models

A polymorphic Kripke model is a non-strict interpretation in a standard structure P where P is a poset.

Semantic conseguence for this class of modelsis denoted by f={itiet.

Theorem 5.47. Soundness and Completeness for polymorphic Kripke models. Each polymorphic lamb-
da theory is the theory of some polymorphic Kripke model. Therefore,

£ [=penstict 7 ifand only if & -, E.

Proof. Thisisadirect consequence of Theorem 5.39. O
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Chapter 6

First-Order Axiomsfor Asynchrony

The distinction between synchronous and asynchronous communication is a relevant issue in the design and
analysis of distributed and concurrent networks. Intuitively, communication is said to be synchronous if
messages are sent and received simultaneoudly, via a ‘handshake' or ‘rendez-vous' of sender and receiver.
It is asynchronous if messages travel through a communication medium with possible delay, such that the
sender cannot be certain if or when a message has been received.

Asynchronous communication is often studied in the framework of concurrent process paradigms such
as the asynchronous 7-cal culus, which was originally introduced by Honda and Tokoro [26], and which was
independently discovered by Boudol [9] as a result of his work with Berry on chemical abstract machines
[8]. Another such asynchronous paradigm is the join cal culus, which was recently proposed by Fournet and
Gonthier as a calculus of mobile agentsin distributed networks with locality and failure [17, 18].

In this chapter, we study properties of asynchronous communication in general, not with regard to any
particular process calculus. We give a general-purpose, mathematically rigorous definition of asynchrony,
and then we show that this notion can be equivalently characterized by a small number of first-order axioms.
We model processes by labeled transition systems with input and output, a framework that is sufficiently
genera to fit concurrent process paradigms such as the w-calculus or the join calculus, as well as data flow
models and other such formalisms. These transition systems are similar to Lynch and Stark’s input/output
automata [35], but our treatment is more category-theoretic and close in spirit to Abramsky’s interaction
categories[1, 2].

Various properties of asynchrony have been exploited in different contexts by many authors. For instance,
Lynch and Stark [35] postulate a form of input receptivity for their automata. Palamidessi [45] makes use
of acertain confluence property to prove that the expressive power of the asynchronous 7-calculusis strictly
less than that of the synchronous 7r-calculus. Axioms similar to the ones that are presented here have been
postulated by Shields [59] and Bednarczyk [6] for a notion of asynchronous labeled transition systems, but
without the input/output distinction which is central to the present approach.

The main novelty of our approach is that the axioms are not postulated a priori, but derived from more
primitive notions. We define asynchrony in elementary terms: an agent is asynchronous if its input and/or
output is filtered through a communication medium, such as a buffer or a queue, possibly with feedback.
We then show that our first- and second-order axioms precisely capture each of these notions. This charac-
terization justifies the axioms a posteriori. As a testbed and for illustration, we apply these axioms to an
asynchronous version of Milner's CCS, and to the core join calculus.

6.1 An elementary definition of asynchrony

If Risabinary relation, we write R~ for the inverse relation and R* for the reflexive, transitive closure of
R. We also write +— for — 1, etc. The binary identity relation on a set is denoted A. The composition of
two binary relations R and Q iswritten R o Q or simply RQ, i.e. tRQz if there exists y such that z RyQz.

83



We write zR for the unary relation {y|zRy}, and similarly Ry for {z|xRy}. The digoint union of sets X
andY isdenotedby X + Y.

6.1.1 Labeled transition systemsand bisimulation

To keep this chapter self-contained, we summarize the standard definitions for labeled transition systems and
weak and strong bisimulation.

Definition. A labeled transition system (LTS) isatupleS = (S, A, —g, so), Where S isa set of states, A is
aset of actions, —g C S x A x S isatransition relation and so € S isan initial state. We call A the type
of S, and wewriteS: A.

We often omit the subscript on —g, and we write |S| for the set of states S. For a € A, weregard = asa
binary relation on |S| vias = s’ iff (s,a, s') € —. The definitions of strong and weak bisimulation rely on
the following principle of co-inductive definition:

Principle6.1. Let X be a set and P a property of subsets of X. If P(R) is defined by clauses of the form
Fi(R) C Gi(R), where F; and G, are set-valued, monotone operators, and if F; preserves unions, then P is
closed under unions. In particular, there is a maximal R, € X with P(Rpaz)-

Proof. Since F; preserves unions, it has aright adjoint ;. Then P(R) <= Vi.F;i(R) C Gi(R) <—
R C ), FiGi(R). Hence P is the set of pre-fixpoints of a monotone operator and therefore closed under
least upper bounds. Let R, = J{R | P(R)}. O

Definition. Let S and T be LTSs of type A. A binary relation R C |S| x |T| isastrong bisimulation if for
dlae A, RS C BRand RS C B R Indiagrams:

sRt s Rt sRt s Rt
le 53 a) |o ad o]  s3.al |
t s Rt s' s Rt

Next, we consider LTSs with adistinguished action 7 € A, called the silent or the unobservable action. Let
= betherelation 5*. Fora € A\ 7, let = betherelation -*-% 5%, A binary relation R C |S| x |T|isa
weak bisimulation if foral o € A, RS C SRand R~'% C 2R~ Indiagrams:

sRt s Rt sRt s Rt
le 53 a] |o ad o]  s3al |a
t s Rt s' s Rt

By Principle 6.1, it followsthat thereisa maximal strong bisimulation, which we denote by ~, and amaximal
wesk bisimulation, which we denote by ~. We say that s € |S| and ¢ € |T| are strongly (weakly) bisimilar
if s ~t(s~t). Finadly, S and T are said to be strongly (weakly) bisimilar if s ~ tg (sg ~ tg).

Remark. Note that R C |S| x |T| is a weak bismulation if and only if for dl a € 4, R=> C =R and
R'2C3R

If S, T, U arelabeled transition systems and if R C |S| x |T| and @ C |T| x |U| are weak (respectively,
strong) bisimulations, then so are the identity relation A C |S| x |S|, theinverse R=! C |T| x |S], and the
composition Ro @ C |S|x |U|. Henceweak and strong bisimilarity each define aglobal equivalencerelation
on the class of al states of al possible labeled transition systems.

Inparticular, ~ and ~, ashinary relationson an LTS S, are equivalencerelations. We denote the respective
equivalence classes of a state s by [s]. and [s]. On the quotient S/~, we define transitions [s]. = [t]~
iff s “~ t, making it into a well-defined transition system. Similarly, on S/~, we define [s] — [t]~ iff
s Bt Forals € S,onehass ~ [s]. and s ~ [s]x, and hence S ~ (S/~) and S ~ (S/~). We say that
Sis~-reducedif S = S/~, and ~-reduced if S = S/=.
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6.1.2 Input, output and sequential composition

So far we have distinguished only one action: the silent action 7. We will now add further structure to the
set of actions by distinguishing input and output actions. Let in and out be constants. For any sets X and Y,
define aset of input actions In X := {in} x X, and a set of output actionsOutY := {out} x Y. Note that
In X and OutY aredigoint. We will write input and output actions as inz and out z instead of (in, z) and
(out, ), respectively. Let B be a set whose elements are not of the form inz, outy or 7. The elements of
B + {7} arecalled internal actions.

Definition. We define X —»pY tobetheset In X 4+ OutY + B + {r}. A labeled transition system S of type
X—pgYiscaledan LTS, or smply an agent. If B isempty, we will omit the subscriptin X —gY".

Thetraditional CCS notationis“z” for input actionsand “z” for output actions. We use in z and out z instead
to emphasize the distinction between a message in = and its content .

Our labeled transition systems with input and output are similar to theinput/output automataof Lynch and
Stark [35]. However, we consider a notion of sequential composition that is morein the spirit of Abramsky’s
interaction categories [1, 2]. Giventwo agentsS: X—gY and T: Y —pZ, we define S; T: X—pZ by
feeding the output of S into the input of T. Thisis a specia case of paralel composition and hiding. Notice
that this notion of sequential composition is different from the one of CSP or ACP, where T cannot start
execution until S is finished.

Sequential composition, together with certain other agent constructors that we will investigate in Sec-
tion 6.3.1, can be used to build arbitrary networks of agents.

Definition 6.2. Let S: X—gY and T: Y — g Z be agents with respective initia states sq and ty. The se-
quential composition S; T isof type X —p Z. It hasstates|S| x | T| and initid state (s, to). Thetransitions
are given by the following rules:

: " _
s —»g s’ anotoutput t 5o t' anotinput g QM iy

(,1) Ssir (s',1) (s,t) =rsir (s,t) (5,1) =sir (s, 1)

Example 6.3. For any set X, define an agent Zx of type X —X with states X + {L}, initia state L and
tranditions L % z andz 2% 1, fordl z € X. ZIx actsasabuffer of capacity one: A possible sequence

of transitionsis

in out in out inz out z
15 =51 2y =% 25, 5 .

Let X = {z}. ThenZx and Zx; Zx arethefollowing agents:

<$7 J—> “outz <'T7'T>

Here the initial state of each agent is circled. When representing agents in diagrams like these, it is often
convenient to omit the names of the states, and to identify weakly bisimilar states. With that convention, we
write:

inz inz inz
=\
Ix =@~  IxiIx ~(@_ e e

outz outz outz

Note that Zx;Zx is a queue of capacity 2. Let Y = {y,z}. The following diagrams represent Zy- and
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Iy;Iy:

out z
out z iny out z out z
—

Iy = e . Iv; Iy =~ o T e

~
inz outy out Yy out Yy
outy

Again, Zy; Zy isaqueue of capacity 2. Noticethat it isfirst-in, first-out.
Two LTSs S and T of type A are isomorphic if there is a bijection between |S| and | T| preserving — and
initial states.

Lemma6.4. 1. Sequential Composition of labeled transition systems is associative up to isomorphism.

2. The following hold for the composition S; T

s =g s anotoutput t=rt  anotinput s MY g AUy
(s:8) Fser (51,1 (s.8) Sser (5,1) (5.8) Zsm (5,0

3. Sequential Composition of agents respects both weak and strong bisimulation, i.e.

81NSQ T1%T2 and SlNSQ TlNTQ
S1;T1 = Sy; Ty S1;T1 ~ S2; Ty

Proof. 1. Itiseasy to check that ((s,t),u) — ((s',t'),u') if and only if (s, (t,u)) = (s', (', u')).

2. Thefirst two statementsaretrivial from Definition 6.2. For thethird one, assume s Ty gy 2y o) Ty gt
andt 5% ¢, % ¢, T /. Then (5,8) 5% (s51,t) 5% (s1,t1) = (s2,t2) % (s',tz) =™ (s, ).

3. LetSy,So: X—»pY and Ty, Ty: Y—pZ. Suppose @ C |S;| x |Sz| and R C |T4]| x |T.| are wesk
bisimulations. We show tha[Q X R = {((Sl,t1>,<82,t2>> | 81Q82 andthtz} - |Sl7T1| X |SZ,T2| isa
weak bismulation. It suffices without loss of generality to show one of the two directions. Suppose

<81,t1> Q X R (SQ,t2>
X

(s1,11)
for some a € X—>BZ There are three cases, depending on which of the three rules in Definition 6.2 was
used to derive (s1, t1) — (s}, t}):
Casel s; > s),t = t; and aisnot output: By @ thereis s, suchthat s, = s, and s} Qs}. Let th = t,.
Case2: t; 5 t),s = s, andaisnotinput: By R thereist!, suchthat t, = t, and t| Rt),. Let s, = s».
Case3: s1 —% s, t % ¢ anda = 71 By Q and R, there are s}, and ¢/, such that s, 22¢ s, s, Qsb,
ty =% ¢!, and t} Rtb.
In each case, by 2.,

(51,t1) Q@ X R (s2,t2)
(s1,11) Q X R (s, 15).
For strong bisimulation, the proof is similar. |

Unfortunately, agents do not form a category under sequential composition: there are no identity morphisms.
In Section 6.1.4, we will introduce two categories of agents, one of which has unbounded buffers as its
identity morphisms, and the other one queues.
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6.1.3 Buffersand queues

For any set X, let X* be the free monoid and X ** the free commutative monoid generated by X. The
elements of X* are finite sequences. The empty sequence is denoted by €. The elements of X ** are finite
multisets. The empty multiset is denoted by (. We define the following agents of type X — g X:

1. The buffer Bx has states X **, initia state (), and transitions w e e and zw 2 w, for all

we X*andz € X.

2. The queue Qy has states X*, initial state ¢, and transitions w % wz and zw 2% w, for all
we X*andx € X.

The only difference between the definitions of 5x and Q x iswhether the states are considered as sequences
or multisets. We will write B and @ without subscript if X is clear from the context. 53 acts as an infinite
capacity buffer which does not preserve the order of messages. For example, one possible sequence of
transitionsis

inz iny outx inw
0 — =z —)my—)myz—) 22—z — wz.

Q actsas an infinite capacity first-in, first-out queue. A possible sequence of transitionsis

inz iny outz inz
E— T — T y—)y—)yz—)y w—)zw

Lemma6.5. 1. B;B~BandB;B +«B.
2. Q;Q~ Qand Q;Q # Q.
3. Q;B~Band Q;B # B.
4, If|X| > 2,then B; Q % Band B; Q # Q.

Proof. 1.-3.: Define (u, v)Rw iff vu = w, where u, v and w are multisets or sequences, as appropriate. In
each case, R isaweak bisimulation. To see that strong bisimilarity does not hold, observe that in each case,
the composite agent has silent actions, while B and Q do not.

outz

4. Observethat B; Q has atransition sy —% 2% ¢, fromitsinitial state such that s; 242¢ s possible,

but s; X2 jsnot. This is not the case for either B or Q. Such properties are preserved under weak

bisimulation. O

The remainder of this chapter is devoted to examining the effect of composing arbitrary agents with buffers
and queues.

6.1.4 Notionsof asynchrony

In the asynchronous model of communication, messages are assumed to travel through a communication
medium or ether. Sometimes, the medium is assumed to be first-in, first-out (a queue); sometimes, asin the
asynchronous r-cal culus, messages might be received in any order (a buffer).

Our approach is simple: we model the medium explicitly. An asynchronous agent is one whose output
and/or input behaves asiif filtered through either a buffer 5 or a queue Q.

Definition 6.6. AnagentS: X —gY is

out-buffered if S=S;B out-queued if S=~S;Q
in-buffered if S ~B;S in-queued if S~ Q:;S
buffered if S~ B;S;B queued if S=Q9;S;0

We use the word asynchrony as a generic term to stand for any such property. The reason we distinguish six
different notions is that, although it is probably most common to think of asynchrony as part of the output
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behavior of an agent, it is equally sensible to regard it as part of the input behavior, or both. Since input
and output behave somewhat differently, we will study them separately. Yet another notion of asynchrony,
incorporating feedback, will be defined in Section 6.3.2.

Remark. Because of Lemma®.5, the operation of pre- or post-composing an agent with 5 or Q isidempotent
up to =~. Consequently, any agent of theform S; B is out-buffered, any agent of the form B; S is in-buffered,
an agent is buffered iff it isin- and out-buffered, and so on. Also, each of the six propertiesisinvariant under
weak bisimulation.

Noticethat it isalmost never the case that an agent S is strongly bisimilar to S; 5 or to 5; S. Thiswill be
clear from the examplesin Section 6.1.5. Weak bisimulation appearsto be the finest equivalence relation that
is sensible for studying asynchrony. It is also possible to consider coarser equivalences; the results of this
chapter generalizein a straightforward way to any equivalence on processes that contains weak bisimulation;
see Remark 6.12.

Let B beaset. Buffered agents S: X — gY form the morphisms of a category Buf g, whose objects are sets
X, Y, etc.; the identity morphism on X is given by the buffer B x. Similarly, queued agents form a category
Quep. These categories have a symmetric monoidal structure, which will be described, along with other
constructions on agents, in Section 6.3.1.

6.1.5 Examples

Example 6.7. Thefirst exampleshowsthe effect of post-composing different agentswith the buffer B. Notice
that although B has infinitely many states, S; B may have only finitely many states up to weak bisimulation.

outy Outy
(2 () " s5,47)
?uty T \ : outy

°
S=t Bup = (1, 0) <" () < () N l l
inx e ——> o
\L inzl inml inxl outy
U outy outy 9
(u, 0) (u, y) (u,y*)
Example 6.8.

out y

outy
: out z S BN :
Outz

Example 6.9. Hereisan example on in-bufferedness. Notice that an input action is possible at every state of

B;S.
° inz
inz \iﬂy T outy
@< B{I};S%@%O inz OQinx
Ut‘ T out z
.
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Table 6.1: First-order axioms for out-buffered agents

outy outy outy outy
s —= g §s—> g/ s s §s—> g
\LO{ :> Ozl \LOZ Ozl :> C\fl la
outy outy
t s ——t s s >t
where a: # outy
output-commutativity (oB1) output-confluence (0B2)
outy
S ———> s’
Outyl = s =gs"
S”

output-determinacy (0B 3)

6.2 First-order axiomsfor asynchrony

In this section, we will give necessary and sufficient conditions for each of the notions of asynchrony from
Definition 6.6. These conditions are in the form of first-order axioms, by which we mean axioms that use
guantification only over states and actions, but not over subsets of states or actions. The axioms, which are
shown in Tables 6.1 through 6.4, characterize each of our notions of asynchrony up to weak bisimulation;
this means, an LTSis asynchronousiff it is weakly bisimilar to one satisfying the axioms. It is possibleto lift
the condition “up to weak bisimulation” at the cost of introducing second-order axioms; this is the subject of
Section 6.6.

6.2.1 Out-buffered agents

Table 6.1 lists three axioms for out-buffered agents. We use the convention that variables are implicitly
existentially quantified if they occur only on the right-hand-side of an implication, and all other variables are
implicitly universally quantified. Thusthe axioms are;

(oB1) Output-commutativity: output actions can always be delayed.

(oB2) Output-confluence: when an output action and some other action are possible, then they can be per-
formed in either order with the same result. In particular, neither action precludes the other.

(oB3) Output-determinacy: from any state s, thereis at most onetransitionouty for eachy € Y.

Each of these axiomsis plausible for the behavior of abuffer. Output-determinacy is maybe the least intuitive
of the three properties; the idea is that once an output action is stored in a buffer, there is only one way of
retrieving it. Together, these axioms characterize out-bufferedness up to weak bisimulation:

Theorem 6.10 (Char acterization of out-buffered agents). An agent S is out-buffered if and only if S ~ T
for some T satisfying (oB1)—-(0B3).

Thisisadirect consequence of the following proposition:
Proposition 6.11.
1. Every agent of the form S; B satisfies (0B1)-(0B3).
2. If S satisfies (oB1)-(0B3),then S =~ S; 5.
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Table 6.2: First-order axioms for in-buffered agents

SHSI

t

S
inz = |nzl
s

' inz , inz ,
HS Ss——>g §S—>g

l al/ - al \La
[ " n _inz

t s s ——=1t

input-commutativity (181)

input-confluence (182)

=S5 =S S =

inz
s— 1t

input-determinacy (183)

input-receptivity (184)

Table 6.3: First-order axioms for out-queued agents

outy
§ —> S,

S

-

!

where a not output

outy outy
— g § ——>
\La al
outy
— >t s

S
:>al/
l

where a: not output

outy
—_—

V)
~

H—%

outy
/e

output-commutativity’ (0Q1)

outy

output-determinacy’ (0Q3)

output-confluence’ (0Q2)

Table 6.4: First-order axioms for in-queued agents

!

S
- l
UL

sl —

where a not input

o o ' inz
§—>g S§—>g S ——g
linz = |nzl linz al
t s > t s
where o not input
input-commutativity” (1Q1)
inz
S ——> s’
inll =5 =5" s =

input-confluence’ (1Q2)

inx

s— 1t

input-determinacy (1Q3)
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Proof. 1. Clearly, the buffer B satisfies (0B1)—(0B3). Moreover, these conditions are preserved by arbitrary
sequential composition from theleft. We show thisfor (0B1); the other cases are similar. Suppose B satisfies
(oB1). To show that S; B satisfies (0B1), consider transitions

t
(u, 5) =" (u, s')

la
oy

Then s 2% ¢ in B. By Definition 6.2, there are three cases for (u, s’y 2 (u', )

Casel: s' =t,u— u', anotoutput.
Case2 wu=u',s' =t anotinput. Hence, by hypothesisthereis s” such that s = s

Case3 a=r1,u- 2% ', s % ¢ Hence, by hypothesisthereis s” such that s 2% s/ 2% °“ty t.

;1 outy outy, 4

In each of the three cases, the diagram can be completed:

Case 1: Case 2: Case 3:
(u, 5) —Lo (u, ) (u, 5) —Lo (u, ') (u, 5) —V (u, ')
<u'l, 5) —% <u'l, t) <u£”> Rl J t) <u',l 5"y 2 <u'l, t)

2. Suppose S: X —pY satisfies (oB1)—0B3). For any sequencew =Yy Yn € Y*, wewrite s —> t
if s touwl outya, ymy ¢+ (n > 0). Notethat if w' € Y™* |sapermutat|on of w, then s 21y ¢ iff
out w, outw

s —— thy (051) Consider therelation R C |S| x |S; B| givenby sR(t, w) iff s —— t. Clearly, R relates
initial states. We show that R is aweak bisimulation. In one direction, suppose

s R (t,w)

2

s'.

TwoO cases arise:

Casel: « = outy forsomey € w. By thedefinition of R, s 2% & s 4 wherew = yw'. By (0B3),
we have s’ = s". Therefore s’ R(t,w'), and also (t, w) = (t w').v
out w , outw

Case2: « # outyforaly € w. Froms —= tands 5 s, weget s’ —= t' andt = t' by repeated
application of (0B2). Therefores’ R(t', w) and (t,w) = (t',w) (noticethe use of = here, which is necessary
in case o is an output action).v’

In the other direction, suppose

s R (t,w)

o

", w').

We distinguish three cases for (t,w) - (', w'), depending on which rulein Definition 6.2 was used.

Casel t % #,w = w' and a not output. Then s 2% ¢ % ¢, which implies s % s’ 2% ¢ py

repeated application of (oBl),i.e. s = s'R(t', w).v
Case2: t=t',w - w anda not mPut Since B has only input and output transitions, o must be outy for
somey € Y withw = yw'. Thens =% s LN 8 tie s 5 'Rt w') .Y
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t i . t t
Case3 t 2% ¢, w 2% w' anda = 7. Inthiscase, w' = wy and s =% ¢ 2% ¢ hence

sR(t',w'y.v O

Remark 6.12. Theorem 6.10 generalizes to other notions of equivalence of processes, as long as they are
coarser than weak bisimulation. Indeed, if 2 is an equivalence of processes such that ~ C 22, then for any
agent S, there exists some out-buffered T with S = T iff thereexists T' satisfying (0B1)—(0B3)and S = T".
Thisis atrivia consequence of Theorem 6.10. Similar remarks apply to the other results in this section and
in Section 6.3.

6.2.2 In-buffered agents

The axioms for in-buffered agents are listed in Table 6.2. The main difference to the out-buffered case is the
property input-receptivity: an in-buffered agent can perform any input action at any time. Thiswasillustrated
in Example 6.9. The input/output automata of Lynch and Stark [35] have this property, and so does Honda
and Tokoro's original version of the asynchronous 7-calculus [26].

Remark. Somewhat surprisingly, the axioms in Table 6.2 are not independent. In fact, (1B1) and (1B2) are
equivalent in the presence of (1B3) and (1B4). We present all four axiomsin order to highlight the analogy to
the output case.

Theorem 6.13 (Char acterization of in-buffered agents). Anagent S is in-buffered if and only if S ~ T for
some T satisfying (1B1)—(1B4).
Thisis a consequence of the following proposition:
Proposition 6.14.
1. Every agent of the form ; S satisfies (1B1)—(184).

2. If S satisfies (1B1)—(184), then S ~ B; S.

Proof. The proof is much like the proof of Theorem 6.11. We give the details of 2. to demonstrate how each
of the properties (1B1)—(1B4) is used.

2. Suppose S: X —pgY satisfies (1B1)—(1B4). For any sequencew = zixs - -z, € X* wewrite s '”—“’> t
if § Loty 02y L M2 4 (> 0). Again, notice that if w’ € X* isapermutation of w, then s —— ¢ iff
Inw nw

s — t by (1B1). Consider therelation R C |B; S| x |S| given by (w, s)Rt iff s — ¢. R relatesinitia
states, and we show that it isaweak bisimulation. In one direction, suppose

(w,s) Rt
;
Then s 22% ¢, hence (w, s) = (0, ¢) = (0, ). But clearly (0, #')Rt".
In the other direction, suppose

(w,s) Rt

g

(w', s"y.
We distinguish the usual three cases by Definition 6.2.

Casel: s =s',w - w' and a not output. Inthiscase, « = inz for somez € X with w’ = wz. By
definition of R, s —= ¢ —% ¢, hence (w', s)Rt'.v/ _
Case2 s, w=uw andanotinput. Tos = s’ and s —= ¢ repeatedly apply (182) toget ¢ = ¢’ and

s %% ¢/, hence (w, s"YRt' v

Case3: w ,Oum w,s =% s'anda = 7. Thenw = zw' and s Nz g Wy Bt by (1B3), s’ = s,
hence s' < ¢, therefore (w', s') Rt.v’ O
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6.2.3 Out-queued and in-queued agents

The results for buffers are easily adapted to queues. The relevant properties are given in Tables 6.3 and 6.4.
Notice that the conditions for commutativity and confluence differ from the respective rules in the buffered
case only in their side conditions. Different outputs (respectively, different inputs) no longer commute or
conflow. Output-determinacy is strengthened: from each state, thereis at most one possible output transition.

Note that (1B1)—184) imply (101)—(1Q4). Thisis due to the fact that every in-buffered agent is also in-
gueued as a conseguence of Lemma 6.5(3). On the other hand, no implication holds between (0Q1)—0Q3)
and (oB1)—0B3), since out-bufferedness and out-queuedness are incomparable notions dueto Lemma6.5(4).

Just like in the buffered case, the axioms for input are not independent: we have (1Q1) <= (1Q2) in the
presence of the other axioms.

Theorem 6.15 (Char acterization of in- and out-queued agents). An agent S is out-queued if and only if
S ~ T for some T satisfying (0Q1)-(0Q3). Moreover, S is in-queued if and only if S ~ T for some T
satisfying (1Q1)-(1Q4). |

6.3 Moreagent constructorsand asynchrony with feedback

6.3.1 Some operationson agents

In this section, we will introduce some operations on agents, such as renaming and hiding of actions, parallel
composition and feedback.

1. Domain extension. If Sisan LTS of type A, andif A C A’, then S can also be regarded as an LTS of
type A'.

2. Domain restriction (hiding). If Sisan LTS of type A, and if 7 € A’ C A, then S|4/ is defined to be
the LTS of type A’ which has the same states as S, and whose transitions are those of S restricted to
S| x A" x |S].

3. Composition with functions. Let S: X—gY,andlet f: X' - X andg: Y — Y’ befunctions. By
I S 9 we denote the agent of type X'— Y’ W|th the same sxates as S, and with mput transitions
s —>ng tif s LIog ¢, output transitions s —>f g tifs 2 o ¢, and with s % pisg tff
s g t when a isaninternal action.

Domain extension, domain restriction and composition with functions are special cases of the following,
general renaming construct:

4. General renaming and hiding. Let S bean LTS of type A and let r C A x A’ be arelation such that
rra’ iff T = o'. Define S, to be the LTS of type A’ that has the same states and initial state as S and
trangitionss g tiff s —»g t for some ara’.

Let us now turn to various forms of parallel composition.

5. Parallel composition without interaction. Let S and T be LTSs of type A. Then S|| T isthe LTS of type
A with states |S| x |T| and initial state (s, to), and whose transitions are given by the rules

@ ! @ '
S —s S t—rpt
(Sat> i>SHT (Slat> <Sat> i>S||T <Satl> -

6. Symmetric monoidal structure. Let X & X' be the digoint union of sets. For S: X—gY and
T: X'-»pY', defineS @ T: X & X'—gY @ Y’ to be the agent S,.||T,, where r and ¢ are the
inclusions of X — Y, respectively X'—gY" into X & X'—gY @ Y. Then @ defines a symmetric
monoidal structure on the categories Buf and Que. Thetensor unit is given by the agent I of type ) — ()
with one state and no transitions.
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The constructors we have considered so far, including sequential composition, are not sufficient to build
arbitrary networks. What is missing is the ability to construct loops. The next constructor allows the output
of an agent to be connected to its own input:

7. Self-composition (feedback). Let S: X —pY. Let O C Y x X beaset of pairs. DefineS & O, the
self-composition of S along O, to be the LTS of type X — Y whose states are identical with those of
S, and whose transitions are given by the rules

s Hgt SLty)ng—x)st (y,z) € O
S i)soo t S l)soo t '

In the common case where S: X —pX and O = {(z,z) | z € X}, we will write S° instead of
SOO0.

We can use self-composition to define both sequential and parallel composition.

8. Sequential composition. The sequential composition of agents was defined in Definition 6.2. Alter-
natively, one can define it from the more primitive notions of direct sum, feedback and hiding: Let
S: X—»pYadT:Y—pZ. ThenSaT: XY —-»pY @ Z, andwithAY = {{(y,y) | y € Y}, one
getSS;T ~ ((S D T) @) AY)|X—)BZ-

9. Parallel composition (with interaction). Let S, T: X — p X . The parallel composition S|T is defined
to bethe agent (S||T)°.

Proposition 6.16. All of the agent constructors in this section respect weak bisimulation. For instance, if
S~ S and T ~ T’ then S, ~ S/ and S||T ~ S’||T, etc. O

6.3.2 Asynchrony with feedback

In concurrent process calculi such as CCS or the 7-calculus, we do not think of channels as edgesin a data
flow graph, but rather we think of a single global ether through which all messages travel. Thisideais most
visible in the chemical semantics of these calculi [8]. There the ether is modeled as a “chemical solution”,
which is a multiset of processes, some of which are transient messages. As a consequence, messages that
are emitted from a process are immediately available asinput to all processes, including the sending process
itself. In our setting, thisis best modeled by requiring that all processes are of type X — X for one fixed set
X, and by using self-composition to feed the output back to the input.

In the presence of feedback, out-bufferedness takes a dightly different form, which is expressed in the
following definition.

Definition. Anagent S: X — X isout-buffered with feedback if S ~ R° for some out-buffered agent R..
Example 6.17. Thefollowing agent S is out-buffered with feedback, but not out-buffered:

out x outx
o ——>
T T
S = inz : J/K inz
o ——

o ——>
outz outz

o<~ o

Remark. Recently, Amadio, Castellani and Sangiorgi [4] have given a definition of asynchronous bisimula-
tion, which accountsfor the fact that an agent of type X — X might recelve a message, and then immediately
send it again, without this interaction being observable on the outside. Feedback is concerned with the dual
phenomenon, namely a process that sends a message and then immediately receivesit again.

Out-bufferedness with feedback is characterized up to weak bisimulation by the first-order axioms that are
listed in Table 6.5.
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Table 6.5: First-order axioms for out-buffered agents with feedback

outz , outz f outz f out z ,
S —— _— S — —g

S S S s s
\La :> Ozl \LOZ Ozl :> al la
t ’ outz t Sl outz

Sl > S” ! > t

wherea # outz and o # 7

output-commutativity (FB1) output-confluence (FB2)
outz outz outz
S§—>3s s ——g s —— g
outxl =g =g" linx = \\Linx
s" t t
output-determinacy (FB3) feedback (FB4)
outz f outz f outz '
E— S S — S S —— S

S
l - l
" , outw

S A —— S
output-tau (FB5)

Theorem 6.18 (Char acterization of out-buffered agentswith feedback). AnagentS: X — g X is out-buf-
fered with feedback if and only if S &~ T for some agent T satisfying (FB1)—(FB5).

Before we prove this theorem, we need two lemmas. The first one gives a useful consequence of the axioms
for out-bufferednesswith or without feedback.

Lemma 6.19. Suppose an agent S satisfies either (0B1)—(0B3) or (FB1)—(FB5). Then it satisfies the follow-
ing property, which we call backwards output-determinacy:

!
outz = s~ s'.

S S
OUtI\L
t~t

outz

Proof. The proof is straightforward. Therelation R := {(s,s") | s = s’ or (3t,t')s

N t, laoutac Sl}
isweak bisimulation that relates s and s'. O

The next lemma establishes a technical property needed in the proof of Theorem 6.18. Recall that an agent
T is=-reduced if T = T/=~.

Lemma 6.20. Assume T is ~-reduced and satisfies (FB1)—(FB5). Define a subset A C {(s,t) | s — t} as
follows: (s,t) € A iff for all sequences w € X*,

out w out w

Then the following hold:

1. Whenever s = ¢ 2% ¢ and s 222 ' Ty ¢/ then (s, t) € A iff (s',t') € A.
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2. 1fs 5 tand (s, t) & A, then s 2251 ¢ for some z € X.

Proof. 1. =: Assume(s,t) € Aands’ 2% u. Thentherearev andt” withu = vandt 255 7 21 4
By (FB3), s' = 5", hence s’ 2% v andu = v. Thisshows (s',') € A.

«<: Conversely, assume (s',#') € A and s 2% u. We show that there exists v with u - v and ¢ 2%

v.

Casel: =z ¢ w. We get s Uy and w2 gy by (FB2), and t' 2y and u' D o by
the assumption that (s',#') € A, thenu = v; 2% o' and also ¢ 2% v, 2% o/ by (FB1). By

Lemma6.19, v; ~ vs, hence, since T is ~-reduced, v; = vy. We cantakev = v;.

Case2 =z € w. Letzw' beapermutation of w that beginswith z. By (FB1), s 2% 5" 2%, 4, and

by (FB3), s’ = s". Since (s',') € A, one hasu T ovandt’ 2 o for some v, hencet 2225 v and
out w,

again by (FB3),t —— v.

2. Assume s — t and (s,t) ¢ A. By definition of A, there existsw € X* with s oty such that there
exists no v with t 2% v and u 5 . Choose such aw of minimal length, and let w = w'z (note w

cannot be the empty sequence). Then s 225 o 242, 4, ¢ MY, ¢/ and s’ 5 #/, and thereis no v with

# 2% y andu - v. By (FB5), thereis atransiion u % #'. From s 2 o 2% o, 1% 4 gnd
(FB1), one gets s 1%, 1%,y MWy By | emma6.19, t” ~ t, hencet” = t since T is as-reduced.

This shows s 2% N7, 4. O

Proof of Theorem 6.18: Consider the following auxiliary operation on agents: For R: X — g X, define R*®
by

« outz inz

s =Rt S —R—R 1
23 T

S —Re S —Re t

In general, (—)* does not respect weak bisimulation. Notice that if R satisfies (0B1) or (1B1), then R° ~
R°.

=: Suppose S: X —pX is out-buffered with feedback. Then there is some R. satisfying (oB1)—(0B3),
suchthat S ~ R°. It is straightforward to verify that R*® satisfies (FB1)—(FB5), and wecantake T = R*® ~
R° =~ S.

<: Suppose T: X—pX sdisfies (FBL)—(FB5). We will show T is out-buffered with feedback. Notice
that T/~ aso satisfies (FB1)—FB5), hence we can without loss of generality assume that T is ~-reduced.
Defineasubset A C {(s,t) | s — t} asinLemma6.20. Let R: X — 5 X be the agent obtained from T by
removing al transitions of the form s = ¢ where (s,t) ¢ A. More precisely, |R| = |T| and s g t iff
a#rands Spt,ora=7and (s, t) € A. Weclam that R satisfies (0B1)—(0B3). Indeed, (0B1) and
(oB2) follow from the respective properties of T in the case where « # 7. In the case wherea = 7, (0B1)
for R followsfrom (FB1) for T and Lemma 6.20(1,<); whereas (oB2) follows from the definition of A and
Lemma6.20(1,=). Finaly, (oB3) for R. follows directly from (F83) for T.

We now show that T = R*. The two agents have the same states. For transitions, first note that —g C
—r, and hence »g. C —1. = —, With the latter equality holding because of (FB4). For the converse,
assume s s t. If a # 7 or (s,t) € A, thens g t andwe aredone. Elsea = 7 and (s, t) € A, and by
Lemma6.20(2), s 2% "% ¢ holdsin T, hencein R. Thisshows s D ge L.

We have shownthat T = R* = R° for some R satisfying (0B1)—-0B3). Hence, T is out-buffered with
feedback, which finishes the proof of Theorem 6.18. O

6.4 Example: Asynchronous CCS

In this section, we will show that an asynchronous version of Milner’s calculus of communicating systems
(CCS9) [40, 41] fitsinto the framework of out-buffered labeled transition systems with feedback.
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Table 6.6: Transitions rules for asynchronous CCS

(act)

aP 5P PSP Q35Q
o synch =
oGP (synch) P05 P|Q
G+G 5P (res) P3P a¢LUL
(sum) G' 5P P\L > P'\L
G+G 5P (rel PP
comp) —L 2T P LS P
PIQ % P'|Q (rec) PSP A¥p
(comp) Q% Q AS P
P|Q = P|Q'

Let X = {a,b,c,...} beaninfinite set of names, andlet X = {a, b, ¢, ...} beacorresponding set of co-
names, such that X and X are digoint and in one-to-one correspondencevia (7). Weaso write @ = a. Names
correspond to input-actions, and co-names to output-actions. Let 7 ¢ X + X, andlet Act = X + X + {7}
be the set of actions. We use the letters «, 3, . . . for actions. We use the letter L for sets of names, and we
write L for {a | a € L}. We usethe letter f for relabeling functions, which are functions f : X — X. Any
relabeling function extendsto f : Act — Act by letting fa = fa and fr = 7.

Let A, B,C,... rangeover afixed set of process constants. Asynchronous CCS processes P, @, ... and
guardsG, H, . .. aregiven by the following grammars:

P:=a0|PP|Q\L|P[f]|A|G
Gu=aP|rP|G+H|O

Notice that the choice operator + is restricted to input- and 7-guarded processes. Output-guarded choice
is traditionally disallowed in asynchronous process calculi. This is in accordance with the results of this
chapter, since output-guarded choice violates the two asynchronous principles of output-determinacy and
output-confluence. For the w-calculus, Nestmann and Pierce [44] have recently shown that input-guarded
choice can be encoded from the other constructs; hence they include it in their version of the asynchronous
m-calculus, and we include it here for asynchronous CCS as well.

Assume a set of defining equations A% P, onefor each process constant A. The operational semantics
of asynchronous CCSis given in terms of alabeled transition system Sccs = (S, Act, —), which is defined
in Table 6.6. The states are CCS processes. Notice that we have not specified a distinguished initial state;
this is more convenient in this context, and no harm is done. Also notice that thereis no rule for 0. Thisis
because the process O isinert, i.e. there are no transitions 0 = P.

Lemma6.21. If G = P foraguard G, then a ¢ X, i.e. « is not an output action.
Proof. By induction on the derivation of G = P. O

To fit the labeled transition system Sccs into our framework of Iabe_led transition systems with input and
output, we simply identify the set X of nameswith In X, and the set X of co-nameswith Out X. Then Sccs
isalabeled transition system of type X — X. Before we provethat this system is out-buffered with feedback,
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observe that output-determinacy fails for Sccs:

and Oa # a|0. The following lemma hel ps to remedy the situation:

Lemma 6.22. An agent S is out-buffered with feedback if it satisfies (FB1), (FB2), (FB5), (FB4) and the
following property (WeAK-FB3), which we call weak output-determinacy:

outy outy
s — g s — g/
"
outy = outyl louty or s =s
outy
s s >t

Proof. First noticethat if S satisfies the hypothesis, then so does S /=, hence one can without loss of gener-
ality assumethat S is ~-reduced. Next, one shows backwards output-determinacy asin Lemma 6.19. For a
~-reduced process, backwards output-determinacy and (WEAK-FB3) aready implies (FB3), and therefore S
is out-buffered with feedback by Theorem 6.18. O

Theorem 6.23. The labeled transition system Sccs is out-buffered with feedback.

Proof. By Lemma6.22, it suffices to show that Sccs sdtisfies the axioms (FB1), (FB2), (WEAK-FB3), (FB5),
and (FB4). Each of these is proved in asimilar fashion. (FB1), (FB2), (WEAK-FB3) and (FB4) can be proved
independently, while (FB5) relies on (FB2) and (WEAK-FB3) as hypotheses. Since thisisthe most interesting
case, we show only the proof of (FB5). Suppose therefore that (FB2) and (WEAK-FB3) have already been
proved. We want to show

P09 pr.oq P—loq

T
B b

R R—'>38 R

We show this by induction on the derivation of P 2, Q. We distinguish six cases based on the last rule in
that derivation. Remember that this last rule cannot have been (sum) or (sum’) by Lemma 6.21.

(act): P =b.0and Q = 0. Thisisimpossible, since .0 £+ R.

(comp): P = P'|P" and@ = Q'|P", where P’ 2, Q'. Then P =+ R must have been inferred by one of the
rules (comp), (comp’) or (synch). Therefore, R = R'|R", and one of the following holds:

Casel: P' 5 R and P” = R". By induction hypothesison P’ = R’ and P’ EA @’, either there is
S" with R % S and Q" = S', in which case we can choose S = S’|P"; or else Q' - R', and hence
Q=Q'|P" LN R'|P" = R.

Case2: P'= R andP" — R". Thenonecan choose S = Q'|R".
Case3: P' = R'and P" = R".Incasea # b, wecan use (FB2) to get R’ 2 S" and c%' 5 5, and
welet S = S'|R". In case a = b, we can use (WEAK-FB3) tobgg either R % S' and Q' — S', andwe

letagain S = S'|R"; orelse R’ = Q',andhence Q = Q'|P" — Q'|R" = R.

(comp’): Thiscaseis symmetric to the previous one.
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Table 6.7: Transitionsrules for the core join calculus

(str1) AFyILPIQ — AFNILPQ

(str?) AI_NH,dele/\/\lenP - A,Rl,...,le_N/ I, P

where N' = N +dn(Ry,... ,Ry)

(join) Ay Lz (Wh), - zo(Un) — AFENILYL/01,. ..  Un/On]P

where (21 (31)] . . . |zn (3) > P) € A

(res): P =P'\Land @ = Q' \ L, where P’ LN Q' andb ¢ L. ThenR = R'\ Land P' = R'. By
induction hypotheas we get elther Q' 5 S and R’ 2y S for some S',andwecanlet S = S'\ L. Or
elsewe get Q' LN R, hence R

(rel): P=P'[fland Q = Q'[f], where P’ N Q'andb = fé. ThenR = R'[f] and P’ = R'. By induction

hypothesis, we get elther Q"5 S"and R 5 S' for some S’, and we can let S = S'[f]. Or else we get
Q" % R, henceQ > R.

T

(rec): P = Awhere A % pand P! L Q. SinceA 5 R, wemust also have P’ =+ R, and the claim follows
by induction hypothesis. O

6.5 Example: Thecorejoin calculus

The join calculus was introduced by Fournet and Gonthier in [17] and further developed in [18]. Itisa
concurrent, message passing calculus like the r-calculus. However, the reaction rule is simpler and closer
to the semantics of a chemical abstract machine. Moreover, the scoping rules of the join calculus are such
that locality can be easily modeled. The full join calculus deals with a distributed system of locations, and it
contains features that deal with such issues as migration and failure. Here, we will only be concerned with
the core join calculus, which is the fragment of the join calculus that pertainsto a single location.

Let A be a countable set of names. Weuse z,y, ... to denote names, and z, 7, . . . to denote sequences
of names. Corejoin calculusprocesses P, ), ... andrule R, S, ... aregiven by the following grammars:

Pu=z(j) | PIQ | def Ry A...ARyinP  Ru=a1(th)|...|20,(0,) > P

A process of theform z:(9) iscalled amessage. Intherule R = x (¢1)] . . . |2, (0, ) > P, thenamesd; ... oy,
are bound, and they are assumed to be distinct. The names z; ...z, are called the defined names of R,
denoted dn(R). Findly, al of the defined names of Ry, ... ,Rm are bound in the processdef Ry A ... A
R,, in P. For amore comprehensive treatment, see [17, 18].

The semantics of the core join calculus is given in the style of a chemical abstract machine. A state
A Fy ITisamultiset A of rules together with a multiset IT of processes. N is a set of names, such that
fn(A,ITI) C N. Weidentify states up to a-equivalence, i.e. up to renaming of bound variables. Thetransitions
of thismachinefollow asimpleidea: the processes on the right hand side evolve according to the rules on the
left-hand side. There are two kinds of transitions: structural transitions, denoted —, and reactions, denoted
. Thetransition rulesare shownin Table 6.7. Therule (join) isof course only applicableisthelength of y;
and ¢; are the same, for all 7. Note that in therule (str2), thesets N and dn(Ry, ... , R,;) must be digoint;
this may necessitate renaming some bound variablesindef Ry A ... A R, in P.
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Remark. In the original formulation of the join-calculus [17, 18], the structural rules are assumed to be
reversible. We adopt a different convention here. Especially the inverse of rule str2 causes problemsin our
setting, asit allows a state under certain conditions to rename its free names.

To make make the join calculusinto alabeled transition system with input and output, let X = {«(g) | = €
N, 5 € N*} bethe set of messages. We add input and output transitions:

(in) Aby T 20 Ak T a()
(out) AFyILaz(g) 220 Apy

Further, we let = = — U . With these definitions, the join calculus defines a labeled transition system
Sjoin: X—X.

Theorem 6.24. The labeled transition system S;uin defined by the core join calculus is out-buffered with
feedback.

6.6 Other characterizations of asynchrony

In Sections 6.2 and 6.3, we have characterized notions of asynchrony by first-order axioms up to weak bisim-
ulation. Itis possible to removethe words* up to weak bisimulation”, i.e. to characterize asynchrony directly.
Thishappensat the cost of introducing second-order axioms. The shift to second-order seemsto beinevitable,
since weak bisimulation itself is a second-order notion.

6.6.1 Out-buffered agents
Consider the two different output transitionsin

outy

— U.
T t outy

The transition s 2%  has the implicit effect of disabling the action inz. The transition ¢ MY w has
no such side effect. Roughly, out-bufferednessis characterized by the fact that every output transition oy,

factorsinto asilent part = and a part gﬁ without side effects.

The second-order axiomsfor out-buffered agentsare givenin Table 6.8. A state s inan LTSS isreachable
if there exist transitions sy —» ... —= s fromtheinitia state so. If S & T, then for every reachable s € S,
thereisreachablet € T with s ~ t.

t
Theorem 6.25. An agent S: X—pgY is out-buffered if and only if there exists a binary relation gﬁ -

|S| x |S| for each y € Y, satisfying (0B1*)—(0B5*).

Proof. =: Suppose S is out-buffered. By Theorem 6.10, S =~ T for some T satisfying (0B1)—0B3). For

t t
s,t € |S], define s ~~ 1 iff there exist s',t' € |T| withs = s 2, 4~ t. Itis easy to verify that ~
satisfies (0B1*)—0B5*).

t
<: SupposeS sdtisfies (oB1*)—(0oB5*). Noticethat if arelation gﬁ satisfies (0B1*)—(0B5*), then so does

out out
~ o A o ~v. Hence assume without loss of generality that ~» isinvariant under weak bisimulation. For any
. out . out yq out outy,, i i
sequencew = y1ys - -Yn € Y, Write s e tif s ~e Ae - ~e ~ t. Notethat in the case n = 0 this
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Table 6.8: Second-order axioms for out-buffered agents

outy outy outy outy
st s &t s~ t s A~ t ?E};/t %;y ¢
au = au ua ua = au ua 5 N 5
outy outy OutyU/ OUty‘U \U/T
SI SI » tl tl SI » tl 8/ S, N t/
wherea # outy where o # outy -
oB3*
(oB1¥) (0B2%) ( )
ty - outy
outy out s Bh ¢t = gDt
~—t =t
s~ - ¢ where s reachable
(oB4*)

(oB5*)

means s ~ t. Consider the relation R C |S| x |S; B| defined by R = {{s, (t,w)) | s ~~ ¢ and ¢ reachable}.
Clearly, R relatesinitial states: so R(sg, (). We show that R is aweak bisimulation. Suppose

s R (t,w)

“
SI
wherew =y - - - yn.
Casel: «aisouty; forsomel < i < n. Taketheminimal suchi. Then

outyy outy; 1 out y; out y; 41 out yy,

S R 0 RS> 0 A~ e RS> - R e =~ ¢t
outy; \L out yiu T\H/ T\U/ TU,
, out y1 outy;—1 outy; 41 out yn, f

s A s A e X e R - R e &t

by (0B1*) and (0B3*). With w' = y; - yi_1¥i+1 - - - yn We hence have s'R(t',w'), and also (¢, w) T4
' w'h.v

Case2. a # outy; forali. Froms % s’ and s %};U t, by repeated application of (0B3*), we get s’ OQUJE;U t'
andt = ' for somet’, hence s' R(t', w) and (t,w) = (', w).v'

Now suppose

s R (t,w)
(', w').
We distinguish three cases for (t,w) = (¢',w') by Definition 6.2:
Casel: t = t',w = w' and a not output. Then s PSRN implies s = s o by repeated
application of (0B2*),i.e. s = s'R(t', w).v

Case2: t=1t,w— w anda notinput. If w = y; - --y,, then a = outy; for somel < i < n. Leti be
the minimal such index. Then

out yq outy;_1 out y; outy; 41 out y,,
S RS> - R e RS> e R - A e Xt
OUtyU outyﬂ
, out yq outy; 1
S KR - R e ~ °

by (0B4*) and (0B2*), hence s Z¥ s'R(t, w').v/
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Case3: t M ', w 2% o anda = 7. Thenw' = wy. By (OB5*), since t is reachable, there iis "
t - t out

with t = ¢ » #. Thens ~~ tand repeated application of (0B2*) gives = s e "~ ¢!, hence

sR(t',w'y.v O

Remark. Notice that Principle 6.1 can be applied to obtain a unique maximal relation ?éﬁ’ for every y,
satisfying (oB1*)—(0oB4*). Thus, S is out-buffered if this unique relation also satisfies (0B5*). Noticein
particular how (oB1*) and (0B2*) resembl e the definition of weak bisimulation; one may think of therelation

out . .
~~ asaweak bisimulation up to a suspended outpuit.

6.6.2 In-buffered agents

The second-order axioms for in-buffered agents are given in Table 6.9. This is similar to the axioms for
out-buffered agents, but notice that there is no analogue to (0B2*). This reflects the fact that unlike output
transitions, input transitions can enable, but not disable other transitions.

Theorem 6.26. An agent S: X —gY is in-buffered if and only if there exists a binary relation g; for each
x € X, satisfying (1B1*)—(184*).
Proof. =: Asinthe proof of Theorem 6.25.

<: SupposeS satisfies (1IB1*)—(184*). Again, we can without |oss of generahtyassumethat*% isinvariant
under weak bisimulation. For any sequencew = x1xo---x, € X*, write s ~> t |f_ s '23”;'2,”;’ 'l ~t
(n > 0). Consider therelation R C |B;S| x |S| defined by R = {{{w, s),t) | s e t and ¢ reachable}.
Noticethat R relatesinitial states: (f), so) Rso. To seethat R isaweak bisimulation, suppose

(w,s) Rt
t\ﬁ
wherew = 21 - - 2,,. From s ~= ¢, with (183*) and weak bisimulation we get s % s’ ~ ¢, hence s’ 2 5"
for some s” ~ t'. Consequently (w, s) = (0, s') = (0, s")Rt'. Conversely, suppose

(w,s) Rt
°}

(w', s"y.
Again, we distinguish three cases:
Casel s =5, w > w anda not output. Then a = inz andw = wax for some z e X. By (1B4%),
t e 1 for some t”, and by (1B3*), ¢ % 4~ ¢, hence also ¢ ~ t', and we get s ot t', i.e.
(', s)Rt' and t 2% ¢ v/
Case2: s = s',w = w' and o not input. From s o by repeated application of (1B1*), we get t = ¢
and s' A= ¢/, i.e. (w,s")Rt'.v

Case3: w Lm)w',.‘s D% sanda = 7. If w = 129 - - - 7,0, then z must be z; for some 1 < i < n. Let

such 7 be minimal and construct

inay inz; 1 ina; inz;y inz,
S RS> - RS> e RS> e R - R e =~ ¢t
inx\L . inzﬂ/ Tu . TU/ TU/
, inzy nw;_1 nNx;41 inz, /
s R - A e A e R e R e &t
by (1B1*) and (1B2*). Thisshows (s', w')Rt'.v/ O
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Table 6.9:

Second-order axioms for in-buffered agents

. . inz in e
sg’;t slkn;t in inz Rt S s=s s~
= s~ t s~ t (|B3~k)
Q\U’ a\U/ : U’a in = in T .
! ! n ! * r inx
S 5_ Rt s s~ f s = s~=s
wherea # inx 57 where s reachable
(IBl*) (|B4*)
Table 6.10: Second-order axioms for out-queued agents
outy outy outy outy
s >t s -t s At s -t
= =
CVU/ CVU outy U,Of ua CVU outy Ua
s' s~ t ' s' -t
where o not output where o not output
(0Q1%) (0Q2*)
outy outy
s At s At oty t
outzu =>y=zand outzu ur s>t s %% t
s s~ t (0Q4*)
(0Q3*)
out
PR NP G e
where s reachable
(0Q5%)
Table 6.11: Second-order axioms for in-queued agents
. in inz inz
sg’];-t 5 %;_ ¢ e ine st = s —==~t
= s At s At (1Q3%)
au aU/ Ua _ N
, , inz in wu in zu uT inz
S s -t s s o~ s = s~ s
where o not input ) where s reachable
1Q
(1Q1%) (1Q4%)
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6.6.3 Out-queued and in-queued agents

The second-order axiomsfor out- and in-queued agentsare givenin Tables 6.10 and 6.11, respectively. Notice
that the only difference to the buffered case are the side conditions.

t
Theorem 6.27. AnagentS: X— Y is out-queued if and only if there are relations i?~>ﬁ satisfying (0Q1*)-
(0Q5*). S is in-queued if and only if there are relations Q'?; satisfying (1Q1*)—(1Q4*). O
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| ndex

absolute interpretation term algebra, 14
in an algebra, 27, 39 algebraic signature, 13
of the lambda calculus, 26 algebraic variety, 14
absolutely unorderable algebra, 39 of combinatory algebras, 22
action, 84 of lambda algebras, 24
in CCS, 97 v-diagram, 73
input and output, 85 a-equivalence, 20
internal, 85 antisymmetry, 10
silent or unobhservable, 84 applicative structure, 22
adjunction, 7 extensional, 30
agent, 85 order-extensional, 49
buffer 5, 87 ordered, 47
buffered, 87 partial, 51
composition with function, 93 unorderable, 36
domain extension and restriction, 93 arity, 13
feedback, 94 asynchronous CCS, 96
hiding, 93 asynchrony, 83, 87
in-buffered, 87
in-queued, 87 backwards output-determinacy, 95
input and output action, 85 base category, 72
internal action, 85 Beck-Chevalley condition, 73
isomorphism of, 86 Berry order, 11
operationson, 93 (B-conversion, 20
out-buffered, 87 (B-reduction, 21
out-buffered with feedback, 94 bilimit, 12
out-queued, 87 binary product, 8
output action, 85 bismulation
parallel composition strong, 84
with interaction, 94 weak, 84
without interaction, 93 bound name, in join calculus, 99
queue Q, 87 bound variable, in lambda calculus, 20, 64, 78
queued, 87 bound, upper and lower, 10
renaming, 93 bounded complete cpo, 11
self-composition, 94 bounded tree, 50
sequential composition, 85 buffer B, 87
silent action, 84 buffered agent, 87
symmetric monoidal structure, 93 o
algebra, 13 ca cuI.us of communicating systems, 96
dcpo-algebra, 17, 41 cartesian-closed category, see ccc
free, 14 categorical model
ordered, 16, 40 of conversion, 30
polynomial, 15 of .reducti on, 48
quotient, 13 categories
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equivalence of, 7
category, 5
cartesian-closed, see ccc
cocomplete, 8
complete, 8
discrete, 5
dominated by a poset, 64
dua, 5
functor category, 7
of complete partial orders CPO, 11
of directed complete partial orders DCPO,
11
of non-empty sets .+, 62
of presheaves.# <", 9
of presheaves over aposet .77, 63
of sets.¥, 5, 62
PL -category, 72
small, 5 B
standard structure D, 75
cce, 9
associated to a theory, 67
congruence, 58
free, 67
representation, 9
Henkin representation, 58
specid, 62, 70
CCS, 96
chain, 11
channel
asynchronous, 83, 87
synchronous, 83
Church numerals, 21
Church-Rosser property, 21
closed combinatory term, 22
closed lambdaterm, 20
closed term algebra, 22, 36
co-name, in CCS, 97
co-unit of adjunction, 7
cocomplete category, 8
cocone, 8
codomain of amorphism, 5
colimit, 8
collectively monic, 6
combinator, 22
combinatory algebra, 22
homomorphism of, 22
unorderable, 36
valuationin, 22
combinatory completeness, 23
combinatory logic, 22
derived lambda abstractor, 23
combinatory term, 22
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communication
asynchronous, 83, 87
synchronous, 83
commutativity
input, 90
output, 89
compatible elements, 10, 38, 50
compatiblerelation, 13
preorder, 36, 39
complete category, 8
complete lattice, 10
complete partial order, 11
bounded complete, 11
meet cpo, 11
composition, 5
agent and function, 93
parallel
with interaction, 94
without interaction, 93
sequential, 85, 94
cone, 7
collectively monic, 6
limiting, 8
confluence
Church-Rosser, 21
input, 90
output, 89
congruence
on algebra, 13
on ccc, 58
on PL -category, 74
consistency
of the lambda calculus, 22
of the Ma’cev axioms, 42
constant, 20
individual, 64, 78
process, 97
type, 64
continuity
w-continuity, 11
Scott-continuity, 11
continuous functor, 12
locally, 13
continuously complete model, 38
contravariant functor, 6
conversion, 20
categorical model of, 30
syntactical model of, 48
corejoin calculus, 99
core of an extended theory, 70
covariant functor, 6
cover, 60



split, 60
cpo, 11
bounded complete, 11
meet cpo, 11
Curry agebra, 30
Curry axiomsfor lambda al gebras, 24
currying, 9

D.,-moddl, 13, 54
dcpo, 11
dcpo-algebra, 17, 41
dcpo-variety, 17, 41
defined name, in join calculus, 99
derived lambda abstractor, 23
determinacy
input, 90
output, 89
backwards, 95
weak, 98
diagonal axiom, 42
diagram, 7
V-diagram, 73
binary product, 8
exponential, 9
limit of, 8
partia V-diagram, 74
partial exponential, 59
product, 8
diamond property, 21
directed complete partia order, 11
directed equality, 51
directed poset, 11
discrete category, 5
discrete preorder, 36
domain, 12
domain equations, 12
domain extension and restriction, 93
domain of amorphism, 5
dominated category, 64
downdeal, 10
downward closed set, 10
dua category, 5
dummy functor, 73, 74

embedding
Henkin, 62—71
Henkin-PL, 75
of categories, 7
Yoneda, 9
embedding-projection pair, 12
emptiness assertion, 69
empty types, 68, 69, 82
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epic, 6

split, 6
epimorphism, 6
equalizer, 8
equation

defining CCS process, 97

extended, 70

in algebra, 14

inequation, 16

of polymorphic lambdacalculus, 78

of simply-typed lambda calculus, 65
equivalence of categories, 7
n-conversion, 20
n-reduction, 21
expanding sequence, 12
exponential diagram, 9
extended equation, 70
extended theory, 70

core of, 70

principal, 70
extensionality, 30

order, 49

strong, 50

weak, 29

faithful functor, 7

faithful subcategory, 7

feedback, 94

fiber, 72

finitely separable lambda algebra, 36

flat poset, 10

free
algebra, 14
cce, 67
dcpo-algebra, 17
ordered algebra, 16, 40
variable, 20, 64, 78

full functor, 7

full subcategory, 7

function
continuous, 11
monotone, 10
stable, 11

function symbol, 13

functor, 6
adjoint, 7
cce-representation, 9
continuous, 12
contravariant, 6
covariant, 6
embedding, 7
faithful, 7



full, 7
Henkin representation, 58
Henkin-PL -representation, 74
inclusion, 7
kernel, 58
left-full, 63
locally continuous, 13
PL -representation, 73
representable, 7
Yoneda, 9
functor category, 7

generalized Mal'cev operators, 40
greatest lower bound, 10
guardin CCS, 97

height of a bounded tree, 50
Henkin natural transformation, 74
Henkin representation, 58
in.?, 62
in.%, 63
in.*, 62
Henkin-PL -embedding, 75
Henkin-PL -representation, 74
in/P, 77
in.+, 77
hiding, 93
hom-set, 5
homomorphism, 13

ideal completion, 41
ideal in aposet, 41
identity morphism, 5
in-buffered agent, 87
first-order axiomsfor, 90
second-order axioms for, 103
in-queued agent, 87
first-order axiomsfor, 90
second-order axioms for, 103
inclusion functor, 7
indeterminate, 15
indiscrete preorder, 36
individual constant, 64, 78
individual variable, 78
inequation, 16
infimum, 10
initial state of labeled transition system, 84
input actions, 85
input and output
labeled transition system with, see agent
input-commutativity, 90
input-confluence, 90

input-determinacy, 90
input-receptivity, 90
internal actions, 85
interpretation
in ccc, 65
non-strict, 67
in PL -category, 79
non-strict, 81
inverse, 6
iso, 6
isomorphism, 6
natural, 7
of labeled transition systems, 86

join and meet, 10
join calculus, 99

kernel
of afunctor, 58
of a Henkin representation, 58
of aHenkin-PL -representation, 74
of ahomomorphism, 13
of a PL -representation, 74
Kleene equality, 52
Kripke lambda model
polymorphic, 82
simply-typed, 72

labeled transition system, 84
with input and output, see agent
lambda algebra, 24
and reflexive ccc models, 31
finitely separable, 36
homomaorphism of, 24
soundness and compl eteness, 28
soundness of (£)-rule, 27
lambda calculus
absolute interpretation, 26
closed term algebra, 22
consistency, 22
conversion, 20
local interpretation, 24
model, see model
open term algebra, 22
polymorphic, 78
reduction, 21
simply-typed, 64
untyped, 20
lambda conversion, 20
categorical model of, 30
syntactical mode of, 48
lambda model, 29
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lambdareduction, 21
lambdaterm
boolean, 21
Church numeral, 21
closed, 20
normal form of, 21
raw, 20, 64, 78
substitution of, 20
untyped, 20
lambdatheories
category of, 28
lambda theory, 20
AB, 20
ABn, 20
pure, 20, 65
lambda-order, 43
lambda-preorder, 43
lattice, 10
complete, 10
least upper bound, 10
left-full functor, 63
lift of amodel of reduction, 54
limit, 8
limit-colimit coincidence, 12
limiting cone, 8
limiting morphism, 8
linear order, 11
local interpretation
failure of rule (&), 25
of combinatory logic, 23
of thelambdacalculus, 24
locally continuous functor, 13
locally well-pointed object, 32
lower bound, 10
LTS, see labeled transition system

Mal'cev axioms, 40
Mal'cev operator, 40
Mal'cev variety, 40
map, see function
maximum and minimum, 10
meet and join, 10
meet cpo, 11
message, in join calculus, 99
Meyer-Scott axiom, 29
minimum and maximum, 10
model
continuously complete, 38
D, 13
finitely separable, 36
Kripke, 72, 82
non-strict, 67, 81

of lambda conversion
categorical, 30
syntactical, 48

of lambdareduction
categorical, 48
syntactical, 48

of polymorphic lambdacalculus, 79, 81
of simply-typed lambda calculus, 65, 67

partial, 51
reflexive ccc model, 30
set-theoretic, 68, 82
standard models of polymorphism, 82
strict, 65, 79
topological, 38
tree model, 50
with empty types, 68, 69, 82
with non-empty types, 69, 82
monic, 6
collective, 6
cone, 6
split, 6
monomorphism, 6
monotone function, 10
morphism, 5
colimiting, 8
cover, 60
currying, 9
epic, 6
identity, 5
inverse, 6
is0, 6
limiting, 8
monic, 6
pairing, 9
projection, 8
uncurrying, 9

n-permutability, 40
name
defined, 99
free and bound, 99
in CCS, 97
injoin calculus, 99
natural isomorphism, 7
natural transformation, 7
Henkin, 74
(non-empty) rule, 68
non-empty types, 69, 82
non-strict interpretation
of polymorphic lambdacalculus, 81
of simply-typed lambdacalculus, 67
normal form, 21



object in category, 5
w-chain, 11
w-complete poset, see cpo
w-continuity, 11
open term algebra, 22, 36
operationin algebra, 14
order, 10
Berry, 11
complete, see cpo
directed, 11
directed complete, 11
linear, 11
w-compl ete, see cpo
partial, 10
pointwise, 10
preorder, 10
stable, 11
order-extensionality, 49
ordered algebra, 16, 40
ordered applicative structure, 47
order-extensional, 49
strongly extensional, 50
ordered variety, 16, 40
out-buffered agent, 87
first-order axiomsfor, 89

second-order axioms for, 101

with feedback, 94
first-order axiomsfor, 95
out-queued agent, 87
first-order axiomsfor, 90

second-order axioms for, 103

output actions, 85

output-commutativity, 89

output-confluence, 89

output-determinacy, 89
backwards, 95
weak, 98

pairing, 9

parallel composition
with interaction, 94
without interaction, 93

partia V-diagram, 74

partial applicative structure, 51

partial exponential diagram, 59

partia initial object, 60

partial model, 51

partial order, see order
complete, see cpo
directed complete, 11

partial syntactical lambdamodel, 51

PL -category, 72

base, 72
congruence, 74
fiber, 72
representation of, 73

Henkin-PL -representation, 74

pointed poset, 10
pointwise order, 10
polymorphic Kripke model, 82
polymorphic lambda calculus, 78
polymorphic signature, 78
polynomial, 15
polynomial algebra, 15
poset, see order
directed, 11
directed complete, 11
flat, 10
linearly ordered, 11
w-complete, see cpo
pointed, 10
pre-structure, 74
preorder, 10
discrete, 36
indiscrete, 36
symmetric, 36
trivial, 36
presheaf, 9, 63
principa extended theory, 70
process
in CCS, 97
injoin calculus, 99
process constant in CCS, 97
product, 8
binary, 8
of categories, 5
projection morphism, 8
projection-embedding pair, 12
pullback, 8
pure lambda theory, 20
polymorphic, 79
simply-typed, 65

queue Q, 87
queued agent, 87
quotient algebra, 13

raw lambdaterm, 20
polymorphic, 78
simply-typed, 64

reachable state, 100

reaction in join calculus, 99

receptivity, 90

redex, 21



~-reduced agent, 84
~-reduced agent, 84, 95
reduction, 21

categorical model of, 48

syntactical model of, 48
reflexive ccc model, 30, 37

and lambda agebras, 31
reflexive object, 30
reflexivity, 10
relabeling functionin CCS, 97
relation

compatible, 13

congruence, 13
representable functor, 7
representation

Henkin-PL , 74

of ccc's, 9

of PL -categories, 73
rule (non-empty), 68
rule, injoin calculus, 99

Scott-continuity, 11
self-composition of agent, 94
separable subset of lambda algebra, 36
seguence, expanding, 12
sequential composition, 85, 94
set-theoretic model
of polymorphism, 82
of simply-typed lambda calculus, 68
with empty types, 68, 69, 82
with non-empty types, 69, 82
Y-agebra, 13
Y-term, 14
signature
algebraic, 13
polymorphic, 78
simply-typed, 64
silent action, 84
simple type, 64
simply-typed lambda calculus, 64
simply-typed signature, 64
small category, 5
source of amorphism, 5
specia ccc, 62, 70
split cover, 60
split epic, 6
split monic, 6
stable function, 11
stable order, 11
standard model, 82
standard structure, 75
standard term algebra, 22, 36
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State
injoin calculus, 99
initial, 84
of labeled transition system, 84
reachable, 100
strict interpretation
of polymorphic lambdacalculus, 79
of simply-typed lambdacalculus, 65
strong bisimulation, 84
strong extensionality, 50
structura transitionin join calculus, 99
subalgebra, 13
subcategory, 7
faithful, 7
full, 7
substitution, 20
supremum, 10
symmetric preorder, 36
synchrony, 83
syntactical model
of conversion, 48
of reduction, 48

T-algebra, 14
target of amorphism, 5
term
combinatory, 22
lambda, 20
Y-term, 14
term algebra, 14
open and closed, 22, 36
terminal object, 8
terminator, 8
theory
extended, 70
of combinatory logic, 22
polymorphic, 79
simply-typed, 65
untyped, 20
topological completeness problem, 38
topological model, 38
transition relation, 84
injoin calculus, 99
transition system, see labeled transition system
transitivity, 10
tranglation of lambda theories, 28
tree, 50
bounded, 50
tree model, 50
trivial preorder, 36
type
constant, 64, 78



of alabeled transition system, 84
polymorphic, 78
simple, 64
variable, 78
type assignment
polymorphic, 78
simply-typed, 65
typed lambda calculus, 64, 78
typing judgment
polymorphic, 78
simply-typed, 65

un-A-orderable, 43
un-\-preorderable, 43
un-preorderable, 43
uncurrying, 9
unit of adjunction, 7
unobservable action, 84
unorderable
absolutely, 39
combinatory algebra, 36, 43
T-algebra, 39
untyped lambda calculus, 20
updeal, 10
upper bound, 10

valid typing judgment
polymorphic, 78
simply-typed, 65
valuation
inalgebra, 14
in applicative structure, 22

in ordered applicative structure, 47

variable, 14, 20, 64
free and bound, 20, 64, 78
individual, 78
type, 78
variety
algebraic, 14
dcpo, 17, 41
ordered, 16, 40

weak bisimulation, 84

weak extensionality, 29

weak output-determinacy, 98

well-pointed object, 32, 59
locally, 32

well-supported object, 60

Yoneda embedding, 9

O-fiber, 73
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