112 research outputs found

    Refined large deviations asymptotics for Markov-modulated infinite-server systems

    Get PDF
    Many networking-related settings can be modeled by Markov-modulated infinite-server systems. In such models, the customers’ arrival rates and service rates are modulated by a Markovian background process; additionally, there are infinitely many servers (and consequently the resulting model is often used as a proxy for the corresponding many-server model). The Markov-modulated infinite-server model hardly allows any explicit analysis, apart from results in terms of systems of (ordinary or partial) differential equations for the underlying probability generating functions, and recursions to obtain all moments. As a consequence, recent research efforts have pursued an asymptotic analysis in various limiting regimes, notably the central-limit regime (describing fluctuations around the average behavior) and the large-deviations regime (focusing on rare events). Many of these results use the property that the number of customers in the system obeys a Poisson distribution with a random parameter. The objective of this paper is to develop techniques to accurately approximate tail probabilities in the large-deviations regime. We consider the scaling in which the arrival rates are inflated by a factor N, and we are interested in the probability that the number of customers exceeds a given level Na. Where earlier contributions focused on so-called logarithmic asymptotics of this exceedance probability (which are inherently imprecise), the present paper improves upon those results in that exact asymptotics are established. These are found in two steps: first the distribution of the random parameter of the Poisson distribution is characterized, and then this knowledge is used to identify the exact asymptotics. The paper is concluded by a set of numerical experiments, in which the accuracy of the asymptotic results is assessed

    Linear Stochastic Fluid Networks: Rare-Event Simulation and Markov Modulation

    Get PDF
    We consider a linear stochastic fluid network under Markov modulation, with a focus on the probability that the joint storage level attains a value in a rare set at a given point in time. The main objective is to develop efficient importance sampling algorithms with provable performance guarantees. For linear stochastic fluid networks without modulation, we prove that the number of runs needed (so as to obtain an estimate with a given precision) increases polynomially (whereas the probability under consideration decays essentially exponentially); for networks operating in the slow modulation regime, our algorithm is asymptotically efficient. Our techniques are in the tradition of the rare-event simulation procedures that were developed for the sample-mean of i.i.d. one-dimensional light-tailed random variables, and intensively use the idea of exponential twisting. In passing, we also point out how to set up a recursion to evaluate the (transient and stationary) moments of the joint storage level in Markov-modulated linear stochastic fluid networks

    Rare-event analysis of mixed Poisson random variables, and applications in staffing

    Get PDF
    A common assumption when modeling queuing systems is that arrivals behave like a Poisson process with constant parameter. In practice, however, call arrivals are often observed to be significantly overdispersed. This motivates that in this paper we consider a mixed Poisson arrival process with arrival rates that are resampled every NaN^{a} time units, where a>0a> 0 and NN a scaling parameter. In the first part of the paper we analyse the asymptotic tail distribution of this doubly stochastic arrival process. That is, for large NN and i.i.d. arrival rates X1,,XNX_1, \dots, X_N, we focus on the evaluation of PN(A)P_N(A), the probability that the scaled number of arrivals exceeds NANA. Relying on elementary techniques, we derive the exact asymptotics of PN(A)P_N(A): For a3a 3 we identify (in closed-form) a function P~N(A)\tilde{P}_N(A) such that PN(A)/PN(A)P_N(A) / P_N(A) tends to 11 as NN \to \infty. For a[13,12)a \in [\frac{1}{3},\frac{1}{2}) and a[2,3)a\in [2, 3) we find a partial solution in terms of an asymptotic lower bound. For the special case that the XiX_is are gamma distributed, we establish the exact asymptotics across all a>0a> 0. In addition, we set up an asymptotically efficient importance sampling procedure that produces reliable estimates at low computational cost. The second part of the paper considers an infinite-server queue assumed to be fed by such a mixed Poisson arrival process. Applying a scaling similar to the one in the definition of PN(A)P_N(A), we focus on the asymptotics of the probability that the number of clients in the system exceeds NANA. The resulting approximations can be useful in the context of staffing. Our numerical experiments show that, astoundingly, the required staffing level can actually decrease when service times are more variable

    An Infinite-Server System with Lévy Shot-Noise Modulation:Moments and Asymptotics

    Get PDF
    We consider an infinite-server system with as input process a non-homogeneous Poisson process with rate function Λ(t) = a⊺ X(t). Here {X(t): t ≥ 0} is a generalized multivariate shot-noise process fed by a Lévy subordi-nator rather than by just a compound Poisson process. We study the transient behavior of the model, analyzing the joint distribution of the number of cus-tomers in the queueing system jointly with the multivariate shot-noise process. We also provide a recursive procedure that explicitly identifies transient as well as stationary moments and correlations. Various heavy-tail and heavy-traffic asymptotic results are also derived, and numerical results are presented to provide further insight into the model behavior

    Time-scaling limits for Markov-modulated infinite-server queues

    Get PDF
    In this paper we study semi-Markov modulated M/M/\infty queues, which are to be understood as infinite-server systems in which the Poisson input rate is modulated by a Markovian background process (where the times spent in each of its states are assumed deterministic), and the service times are exponential. Two specific scalings are considered, both in terms of transient and steady-state behavior. In the former the transition times of the background process are divided by NN, and then NN is sent to \infty; a Poisson limit is obtained. In the latter both the transition times and the Poissonian input rates are scaled, but the background process is sped up more than the arrival process; here a central-limit type regime applies. The accuracy and convergence rate of the limiting results are demonstrated with numerical experiments

    Markov-modulated infinite-server queues driven by a common background process

    Get PDF
    International audienceThis paper studies a system with multiple infinite-server queues which are modulated by a common background process. If this background process, being modeled as a finite-state continuous-time Markov chain, is in state j, then the arrival rate into the i-th queue is λi,j, whereas the service times of customers present in this queue are exponentially distributed with mean µ −1 i,j ; at each of the individual queues all customers present are served in parallel (thus reflecting their infinite-server nature). Three types of results are presented: in the first place (i) we derive differential equations for the probability generating functions corresponding to the distributions of the transient and stationary numbers of customers (jointly in all queues), then (ii) we set up recursions for the (joint) moments, and finally (iii) we establish a central limit theorem in the asymptotic regime in which the arrival rates as well as the transition rates of the background process are simultaneously growing large

    Many-Sources Large Deviations for Max-Weight Scheduling

    Get PDF
    In this paper, a many-sources large deviations principle (LDP) for the transient workload of a multi-queue single-server system is established where the service rates are chosen from a compact, convex and coordinate-convex rate region and where the service discipline is the max-weight policy. Under the assumption that the arrival processes satisfy a many-sources LDP, this is accomplished by employing Garcia's extended contraction principle that is applicable to quasi-continuous mappings. For the simplex rate-region, an LDP for the stationary workload is also established under the additional requirements that the scheduling policy be work-conserving and that the arrival processes satisfy certain mixing conditions. The LDP results can be used to calculate asymptotic buffer overflow probabilities accounting for the multiplexing gain, when the arrival process is an average of \emph{i.i.d.} processes. The rate function for the stationary workload is expressed in term of the rate functions of the finite-horizon workloads when the arrival processes have \emph{i.i.d.} increments.Comment: 44 page

    Queueing Systems with Heavy Tails

    Get PDF
    corecore