3,132 research outputs found

    Mutual Interlacing and Eulerian-like Polynomials for Weyl Groups

    Full text link
    We use the method of mutual interlacing to prove two conjectures on the real-rootedness of Eulerian-like polynomials: Brenti's conjecture on qq-Eulerian polynomials for Weyl groups of type DD, and Dilks, Petersen, and Stembridge's conjecture on affine Eulerian polynomials for irreducible finite Weyl groups. For the former, we obtain a refinement of Brenti's qq-Eulerian polynomials of type DD, and then show that these refined Eulerian polynomials satisfy certain recurrence relation. By using the Routh--Hurwitz theory and the recurrence relation, we prove that these polynomials form a mutually interlacing sequence for any positive qq, and hence prove Brenti's conjecture. For q=1q=1, our result reduces to the real-rootedness of the Eulerian polynomials of type DD, which were originally conjectured by Brenti and recently proved by Savage and Visontai. For the latter, we introduce a family of polynomials based on Savage and Visontai's refinement of Eulerian polynomials of type DD. We show that these new polynomials satisfy the same recurrence relation as Savage and Visontai's refined Eulerian polynomials. As a result, we get the real-rootedness of the affine Eulerian polynomials of type DD. Combining the previous results for other types, we completely prove Dilks, Petersen, and Stembridge's conjecture, which states that, for every irreducible finite Weyl group, the affine descent polynomial has only real zeros.Comment: 28 page

    Refined matrix models from BPS counting

    Get PDF
    We construct a free fermion and matrix model representation of refined BPS generating functions of D2 and D0 branes bound to a single D6 brane, in a class of toric manifolds without compact four-cycles. In appropriate limit we obtain a matrix model representation of refined topological string amplitudes. We consider a few explicit examples which include a matrix model for the refined resolved conifold, or equivalently five-dimensional U(1) gauge theory, as well as a matrix representation of the refined MacMahon function. Matrix models which we construct have ordinary unitary measure, while their potentials are modified to incorporate the effect of the refinement.Comment: 27 pages, 4 figures, published versio

    Refined Topological Vertex, Cylindric Partitions and the U(1) Adjoint Theory

    Full text link
    We study the partition function of the compactified 5D U(1) gauge theory (in the Omega-background) with a single adjoint hypermultiplet, calculated using the refined topological vertex. We show that this partition function is an example a periodic Schur process and is a refinement of the generating function of cylindric plane partitions. The size of the cylinder is given by the mass of adjoint hypermultiplet and the parameters of the Omega-background. We also show that this partition function can be written as a trace of operators which are generalizations of vertex operators studied by Carlsson and Okounkov. In the last part of the paper we describe a way to obtain (q,t) identities using the refined topological vertex.Comment: 40 Page

    Refined Cauchy/Littlewood identities and six-vertex model partition functions: II. Proofs and new conjectures

    Full text link
    We prove two identities of Hall-Littlewood polynomials, which appeared recently in a paper by two of the authors. We also conjecture, and in some cases prove, new identities which relate infinite sums of symmetric polynomials and partition functions associated with symmetry classes of alternating sign matrices. These identities generalize those already found in our earlier paper, via the introduction of additional parameters. The left hand side of each of our identities is a simple refinement of a relevant Cauchy or Littlewood identity. The right hand side of each identity is (one of the two factors present in) the partition function of the six-vertex model on a relevant domain.Comment: 34 pages, 14 figure
    • …
    corecore