23 research outputs found

    A Cyclic Distributed Garbage Collector for Network Objects

    Get PDF
    This paper presents an algorithm for distributed garbage collection and outlines its implementation within the Network Objects system. The algorithm is based on a reference listing scheme, which is augmented by partial tracing in order to collect distributed garbage cycles. Processes may be dynamically organised into groups, according to appropriate heuristics, to reclaim distributed garbage cycles. The algorithm places no overhead on local collectors and suspends local mutators only briefly. Partial tracing of the distributed graph involves only objects thought to be part of a garbage cycle: no collaboration with other processes is required. The algorithm offers considerable flexibility, allowing expediency and fault-tolerance to be traded against completeness

    Actor Semantics of PLANNER-73

    Get PDF
    This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology. Support for the laboratory's artificial intelligence research is provided in part by the Advanced Research Projects Agency of the Department of Defense under Office of Naval Research contract N00014-70-A-0362-0005.Work on PLANNER-73 and actors has led to the development of a basis for semantics of programming languages. Its value in describing programs with side-effects, parallelism, and synchronization is discussed. Formal definitions are written and explained for sequences, cells, and a simple synchronization primitive. In addition there is discussion of the implications of actor semantics for the controversy over elimination of side-effects.MIT Artificial Intelligence Laborator

    Reliable General Purpose Dynamic Memory Management for Real

    Get PDF
    Traditional dynamic memory management techniques for imperative programming languages are unsuitable for reliable real-time applications because their worst-case time and space requirements are insufficiently bounded. This is demonstrated by detailed measurements of several real-world workloads. A special hardware-assisted real-time garbage collection system has been designed to facilitate reliable use of dynamic memory in hard real-time systems. By analyzing the dynamic memory use of application software, the real-time developer can prove compliance with time and space constraints. Analysis techniques are presented and the real-time performance of the hardware-assisted garbage collection system is compared to that of traditional allocators

    Down for the Count? Getting Reference Counting Back in the Ring

    Get PDF
    Reference counting and tracing are the two fundamental approaches that have underpinned garbage collection since 1960. However, despite some compelling advantages, reference counting is almost completely ignored in implementations of high performance systems today. In this paper we take a detailed look at reference counting to understand its behavior and to improve its performance. We identify key design choices for reference counting and analyze how the behavior of a wide range of benchmarks might affect design decisions. As far as we are aware, this is the first such quantitative study of reference counting. We use insights gleaned from this analysis to introduce a number of optimizations that significantly improve the performance of reference counting. We find that an existing modern implementation of reference counting has an average 30% overhead compared to tracing, and that in combination, our optimizations are able to completely eliminate that overhead. This brings the performance of reference counting on par with that of a well tuned mark-sweep collector. We keep our in-depth analysis of reference counting as general as possible so that it may be useful to other garbage collector implementers. Our finding that reference counting can be made directly competitive with well tuned mark-sweep should shake the community's prejudices about reference counting and perhaps open new opportunities for exploiting reference counting's strengths, such as localization and immediacy of reclamation

    Preferred Embodiment of a Hardware-Assisted Garbage-Collection System

    Get PDF
    Hardware-assisted garbage collection combines the potential of high average-case allocation rates and memory bandwidth with fast worst-case allocation, fetch, and store times. This paper describes an architecture that allows memory fetch and store operations to execute, on the average, nearly as fast as traditional memory. It describes a feasible implementation of a garbage-collected memory module, but does not provide a thorough discussion of possible design alternatives, nor does it provide rigorous justification for choices between available design alternatives

    Garbage-Free Abstract Interpretation Through Abstract Reference Counting

    Get PDF
    Abstract garbage collection is the application of garbage collection to an abstract interpreter. Existing work has shown that abstract garbage collection can improve both the interpreter\u27s precision and performance. Current approaches rely on heuristics to decide when to apply abstract garbage collection. Garbage will build up and impact precision and performance when the collection is applied infrequently, while too frequent applications will bring about their own performance overhead. A balance between these tradeoffs is often difficult to strike. We propose a new approach to cope with the buildup of garbage in the results of an abstract interpreter. Our approach is able to eliminate all garbage, therefore obtaining the maximum precision and performance benefits of abstract garbage collection. At the same time, our approach does not require frequent heap traversals, and therefore adds little to the interpreters\u27s running time. The core of our approach uses reference counting to detect and eliminate garbage as soon as it arises. However, reference counting cannot deal with cycles, and we show that cycles are much more common in an abstract interpreter than in its concrete counterpart. To alleviate this problem, our approach detects cycles and employs reference counting at the level of strongly connected components. While this technique in general works for any system that uses reference counting, we argue that it works particularly well for an abstract interpreter. In fact, we show formally that for the continuation store, where most of the cycles occur, the cycle detection technique only requires O(1) amortized operations per continuation push. We present our approach formally, and provide a proof-of-concept implementation in the Scala-AM framework. We empirically show our approach achieves both the optimal precision and significantly better performance compared to existing approaches to abstract garbage collection

    Another implementation technique for applicative languages

    Full text link

    Garbage Collection for General Graphs

    Get PDF
    Garbage collection is moving from being a utility to a requirement of every modern programming language. With multi-core and distributed systems, most programs written recently are heavily multi-threaded and distributed. Distributed and multi-threaded programs are called concurrent programs. Manual memory management is cumbersome and difficult in concurrent programs. Concurrent programming is characterized by multiple independent processes/threads, communication between processes/threads, and uncertainty in the order of concurrent operations. The uncertainty in the order of operations makes manual memory management of concurrent programs difficult. A popular alternative to garbage collection in concurrent programs is to use smart pointers. Smart pointers can collect all garbage only if developer identifies cycles being created in the reference graph. Smart pointer usage does not guarantee protection from memory leaks unless cycle can be detected as process/thread create them. General garbage collectors, on the other hand, can avoid memory leaks, dangling pointers, and double deletion problems in any programming environment without help from the programmer. Concurrent programming is used in shared memory and distributed memory systems. State of the art shared memory systems use a single concurrent garbage collector thread that processes the reference graph. Distributed memory systems have very few complete garbage collection algorithms and those that exist use global barriers, are centralized and do not scale well. This thesis focuses on designing garbage collection algorithms for shared memory and distributed memory systems that satisfy the following properties: concurrent, parallel, scalable, localized (decentralized), low pause time, high promptness, no global synchronization, safe, complete, and operates in linear time

    Exploiting the Weak Generational Hypothesis for Write Reduction and Object Recycling

    Get PDF
    Programming languages with automatic memory management are continuing to grow in popularity due to ease of programming. However, these languages tend to allocate objects excessively, leading to inefficient use of memory and large garbage collection and allocation overheads. The weak generational hypothesis notes that objects tend to die young in languages with automatic dynamic memory management. Much work has been done to optimize allocation and garbage collection algorithms based on this observation. Previous work has largely focused on developing efficient software algorithms for allocation and collection. However, much less work has studied architectural solutions. In this work, we propose and evaluate architectural support for assisting allocation and garbage collection. We first study the effects of languages with automatic memory management on the memory system. As objects often die young, it is likely many objects die while in the processor\u27s caches. Writes of dead data back to main memory are unnecessary, as the data will never be used again. To study this, we develop and present architecture support to identify dead objects while they remain resident in cache and eliminate any unnecessary writes. We show that many writes out of the caches are unnecessary, and can be avoided using our hardware additions. Next, we study the effects of using dead data in cache to assist with allocation and garbage collection. Logic is developed and presented to allow for reuse of cache space found dead to satisfy future allocation requests. We show that dead cache space can be recycled at a high rate, reducing pressure on the allocator and reducing cache miss rates. However, a full implementation of our initial approach is shown to be unscalable. We propose and study limitations to our approach, trading object coverage for scalability. Third, we present a new approach for identifying objects that die young based on a limitation of our previous approach. We show this approach has much lower storage and logic requirements and is scalable, while only slightly decreasing overall object coverage
    corecore