1,587 research outputs found

    RELEASE: A High-level Paradigm for Reliable Large-scale Server Software

    Get PDF
    Erlang is a functional language with a much-emulated model for building reliable distributed systems. This paper outlines the RELEASE project, and describes the progress in the first six months. The project aim is to scale the Erlang’s radical concurrency-oriented programming paradigm to build reliable general-purpose software, such as server-based systems, on massively parallel machines. Currently Erlang has inherently scalable computation and reliability models, but in practice scalability is constrained by aspects of the language and virtual machine. We are working at three levels to address these challenges: evolving the Erlang virtual machine so that it can work effectively on large scale multicore systems; evolving the language to Scalable Distributed (SD) Erlang; developing a scalable Erlang infrastructure to integrate multiple, heterogeneous clusters. We are also developing state of the art tools that allow programmers to understand the behaviour of massively parallel SD Erlang programs. We will demonstrate the effectiveness of the RELEASE approach using demonstrators and two large case studies on a Blue Gene

    RELEASE: A High-level Paradigm for Reliable Large-scale Server Software

    Get PDF
    Erlang is a functional language with a much-emulated model for building reliable distributed systems. This paper outlines the RELEASE project, and describes the progress in the rst six months. The project aim is to scale the Erlang's radical concurrency-oriented programming paradigm to build reliable general-purpose software, such as server-based systems, on massively parallel machines. Currently Erlang has inherently scalable computation and reliability models, but in practice scalability is constrained by aspects of the language and virtual machine. We are working at three levels to address these challenges: evolving the Erlang virtual machine so that it can work effectively on large scale multicore systems; evolving the language to Scalable Distributed (SD) Erlang; developing a scalable Erlang infrastructure to integrate multiple, heterogeneous clusters. We are also developing state of the art tools that allow programmers to understand the behaviour of massively parallel SD Erlang programs. We will demonstrate the e ectiveness of the RELEASE approach using demonstrators and two large case studies on a Blue Gene

    Refactoring Sequential Java Code for Concurrency via Concurrent Libraries

    Get PDF
    Parallelizing existing sequential programs to run efficiently on multicores is hard. The Java 5 packagejava.util.concurrent (j.u.c.) supports writing concurrent programs: much of the complexity of writing threads-safe and scalable programs is hidden in the library. To use this package, programmers still need to reengineer existing code. This is tedious because it requires changing many lines of code, is error-prone because programmers can use the wrong APIs, and is omission-prone because programmers can miss opportunities to use the enhanced APIs. This paper presents our tool, CONCURRENCER, which enables programmers to refactor sequential code into parallel code that uses j.u.c. concurrent utilities. CONCURRENCER does not require any program annotations, although the transformations are very involved: they span multiple program statements and use custom program analysis. A find-and-replace tool can not perform such transformations. Empirical evaluation shows that CONCURRENCER refactors code effectively: CONCURRENCER correctly identifies and applies transformations that some open-source developers overlooked, and the converted code exhibits good speedup

    Formal Verification of Security Protocol Implementations: A Survey

    Get PDF
    Automated formal verification of security protocols has been mostly focused on analyzing high-level abstract models which, however, are significantly different from real protocol implementations written in programming languages. Recently, some researchers have started investigating techniques that bring automated formal proofs closer to real implementations. This paper surveys these attempts, focusing on approaches that target the application code that implements protocol logic, rather than the libraries that implement cryptography. According to these approaches, libraries are assumed to correctly implement some models. The aim is to derive formal proofs that, under this assumption, give assurance about the application code that implements the protocol logic. The two main approaches of model extraction and code generation are presented, along with the main techniques adopted for each approac

    Proactive Empirical Assessment of New Language Feature Adoption via Automated Refactoring: The Case of Java 8 Default Methods

    Full text link
    Programming languages and platforms improve over time, sometimes resulting in new language features that offer many benefits. However, despite these benefits, developers may not always be willing to adopt them in their projects for various reasons. In this paper, we describe an empirical study where we assess the adoption of a particular new language feature. Studying how developers use (or do not use) new language features is important in programming language research and engineering because it gives designers insight into the usability of the language to create meaning programs in that language. This knowledge, in turn, can drive future innovations in the area. Here, we explore Java 8 default methods, which allow interfaces to contain (instance) method implementations. Default methods can ease interface evolution, make certain ubiquitous design patterns redundant, and improve both modularity and maintainability. A focus of this work is to discover, through a scientific approach and a novel technique, situations where developers found these constructs useful and where they did not, and the reasons for each. Although several studies center around assessing new language features, to the best of our knowledge, this kind of construct has not been previously considered. Despite their benefits, we found that developers did not adopt default methods in all situations. Our study consisted of submitting pull requests introducing the language feature to 19 real-world, open source Java projects without altering original program semantics. This novel assessment technique is proactive in that the adoption was driven by an automatic refactoring approach rather than waiting for developers to discover and integrate the feature themselves. In this way, we set forth best practices and patterns of using the language feature effectively earlier rather than later and are able to possibly guide (near) future language evolution. We foresee this technique to be useful in assessing other new language features, design patterns, and other programming idioms

    Dynamically typed languages

    Get PDF
    Dynamically typed languages such as Python and Ruby have experienced a rapid grown in popularity in recent times. However, there is much confusion as to what makes these languages interesting relative to statically typed languages, and little knowledge of their rich history. In this chapter I explore the general topic of dynamically typed languages, how they differ from statically typed languages, their history, and their defining features

    A heuristic-based approach to code-smell detection

    Get PDF
    Encapsulation and data hiding are central tenets of the object oriented paradigm. Deciding what data and behaviour to form into a class and where to draw the line between its public and private details can make the difference between a class that is an understandable, flexible and reusable abstraction and one which is not. This decision is a difficult one and may easily result in poor encapsulation which can then have serious implications for a number of system qualities. It is often hard to identify such encapsulation problems within large software systems until they cause a maintenance problem (which is usually too late) and attempting to perform such analysis manually can also be tedious and error prone. Two of the common encapsulation problems that can arise as a consequence of this decomposition process are data classes and god classes. Typically, these two problems occur together – data classes are lacking in functionality that has typically been sucked into an over-complicated and domineering god class. This paper describes the architecture of a tool which automatically detects data and god classes that has been developed as a plug-in for the Eclipse IDE. The technique has been evaluated in a controlled study on two large open source systems which compare the tool results to similar work by Marinescu, who employs a metrics-based approach to detecting such features. The study provides some valuable insights into the strengths and weaknesses of the two approache

    Safe Automated Refactoring for Intelligent Parallelization of Java 8 Streams

    Full text link
    Streaming APIs are becoming more pervasive in mainstream Object-Oriented programming languages and platforms. For example, the Stream API introduced in Java 8 allows for functional-like, MapReduce-style operations in processing both finite, e.g., collections, and infinite data structures. However, using this API efficiently involves subtle considerations such as determining when it is best for stream operations to run in parallel, when running operations in parallel can be less efficient, and when it is safe to run in parallel due to possible lambda expression side-effects. Also, streams may not run all operations in parallel depending on particular collectors used in reductions. In this paper, we present an automated refactoring approach that assists developers in writing efficient stream code in a semantics-preserving fashion. The approach, based on a novel data ordering and typestate analysis, consists of preconditions and transformations for automatically determining when it is safe and possibly advantageous to convert sequential streams to parallel, unorder or de-parallelize already parallel streams, and optimize streams involving complex reductions. The approach was implemented as a plug-in to the popular Eclipse IDE, uses the WALA and SAFE analysis frameworks, and was evaluated on 11 Java projects consisting of ∼642K lines of code. We found that 57 of 157 candidate streams (36.31%) were refactorable, and an average speedup of 3.49 on performance tests was observed. The results indicate that the approach is useful in optimizing stream code to their full potential

    Refactoring for parameterizing Java classes

    Get PDF
    Type safety and expressiveness of many existing Java libraries and theirclient applications would improve, if the libraries were upgraded to definegeneric classes. Efficient and accurate tools exist to assist clientapplications to use generics libraries, but so far the libraries themselvesmust be parameterized manually, which is a tedious, time-consuming, anderror-prone task. We present a type-constraint-based algorithm forconverting non-generic libraries to add type parameters. The algorithmhandles the full Java language and preserves backward compatibility, thusmaking it safe for existing clients. Among other features, it is capableof inferring wildcard types and introducing type parameters formutually-dependent classes. We have implemented the algorithm as a fullyautomatic refactoring in Eclipse.We evaluated our work in two ways. First, our tool parameterized code thatwas lacking type parameters. We contacted the developers of several ofthese applications, and in all cases where we received a response, theyconfirmed that the resulting parameterizations were correct and useful.Second, to better quantify its effectiveness, our tool parameterizedclasses from already-generic libraries, and we compared the results tothose that were created by the libraries' authors. Our tool performed therefactoring accurately -- in 87% of cases the results were as good as thosecreated manually by a human expert, in 9% of cases the tool results werebetter, and in 4% of cases the tool results were worse
    • …
    corecore