12 research outputs found

    Renaming Global Variables in C Mechanically Proved Correct

    Get PDF
    Most integrated development environments are shipped with refactoring tools. However, their refactoring operations are often known to be unreliable. As a consequence, developers have to test their code after applying an automatic refactoring. In this article, we consider a refactoring operation (renaming of global variables in C), and we prove that its core implementation preserves the set of possible behaviors of transformed programs. That proof of correctness relies on the operational semantics of C provided by CompCert C in Coq.Comment: In Proceedings VPT 2016, arXiv:1607.0183

    The Love/Hate Relationship with the C Preprocessor: An Interview Study

    Get PDF
    The C preprocessor has received strong criticism in academia, among others regarding separation of concerns, error proneness, and code obfuscation, but is widely used in practice. Many (mostly academic) alternatives to the preprocessor exist, but have not been adopted in practice. Since developers continue to use the preprocessor despite all criticism and research, we ask how practitioners perceive the C preprocessor. We performed interviews with 40 developers, used grounded theory to analyze the data, and cross-validated the results with data from a survey among 202 developers, repository mining, and results from previous studies. In particular, we investigated four research questions related to why the preprocessor is still widely used in practice, common problems, alternatives, and the impact of undisciplined annotations. Our study shows that developers are aware of the criticism the C preprocessor receives, but use it nonetheless, mainly for portability and variability. Many developers indicate that they regularly face preprocessor-related problems and preprocessor-related bugs. The majority of our interviewees do not see any current C-native technologies that can entirely replace the C preprocessor. However, developers tend to mitigate problems with guidelines, even though those guidelines are not enforced consistently. We report the key insights gained from our study and discuss implications for practitioners and researchers on how to better use the C preprocessor to minimize its negative impact

    A Correct Refactoring Operation to Rename Global Variables in C Programs

    Get PDF
    GALLINETTE_HCERES2020Most integrated development environments are shipped with refactoring tools. However, their refactoring operations are often known to be unreliable. As a consequence, developers have to test their code after applying an automatic refactoring. In this report, we consider a refactoring operation (renaming of global variables in C), and we prove that its core implementation preserves the set of possible behaviors of transformed programs. That proof of correctness relies on the operational semantics of C provided by Compcert C in Coq. We also prove some static properties of the considered refactoring operation and we use them to find properties of some composed refactoring operations

    A Correct Refactoring Operation to Rename Global Variables in C Programs

    Get PDF
    GALLINETTE_HCERES2020Most integrated development environments are shipped with refactoring tools. However, their refactoring operations are often known to be unreliable. As a consequence, developers have to test their code after applying an automatic refactoring. In this report, we consider a refactoring operation (renaming of global variables in C), and we prove that its core implementation preserves the set of possible behaviors of transformed programs. That proof of correctness relies on the operational semantics of C provided by Compcert C in Coq. We also prove some static properties of the considered refactoring operation and we use them to find properties of some composed refactoring operations

    Un-preprocessing:Extended CPP that works with your tools

    Get PDF

    Rejuvenating C++ Programs through Demacrofictation

    Get PDF
    As we migrate software to new versions of programming languages, we would like to improve the style of its design and implementation by replacing brittle idioms and abstractions with the more robust features of the language and its libraries. This process is called source code rejuvenation. In this context, we are interested in replacing C preprocessor macros in C++ programs with C++11 declarations. The kinds of problems engendered by the C preprocessor are many and well known. Because the C preprocessor operates on the token stream independently from the host language’s syntax, its extensive use can lead to hard-to-debug semantic errors. In C++11, the use of generalized constant expressions, type deduction, perfect forwarding, lambda expressions, and alias templates eliminate the need for many previous preprocessor-based idioms and solutions. Additionally, these features can be used to replace macros from legacy code providing better type safety and reducing software-maintenance efforts. In order to remove the macros, we have established a correspondence between different kinds of macros and the C++11 declarations to which they could be trans- formed. We have also developed a set of tools to automate the task of demacrofying C++ programs. One of the tools suggest a one-to-one mapping between a macro and its corresponding C++11 declaration. Other tools assist in carrying out iterative application of refactorings into a software build and generating rejuvenated programs. We have applied the tools to seven C++ libraries to assess the extent to which these libraries might be improved by demacrofication. Results indicate that between 52% and 98% of potentially refactorable macros could be transformed into C++11 declarations

    Graph Based Verification of Software Evolution Requirements

    Get PDF
    Due to market demands and changes in the environment, software systems have to evolve. However, the size and complexity of the current software systems make it time consuming to incorporate changes. During our collaboration with the industry, we observed that the developers spend much time on the following evolution problems: designing runtime reconfigurable software, obeying software design constraints while coping with evolution, reusing old software solutions for new evolution problems. This thesis presents 3 processes and tool suits that aid the developers/designers when tackling these problems.\ud The first process and tool set allow early verification of runtime reconfiguration requirements. In this process the UML models are converted into a graph-based model. The execution semantics of UML are modeled by graph transformation rules. Using these graph transformation rules, the execution of the UML models is simulated. The simulation generates a state-space showing all possible reconfigurations. The runtime reconfiguration requirements are expressed by computational tree logic or with a visual state-based language, which are verified over the generated state-space. When the verification fails a feedback on the problem is provided.\ud The second process and tool set are developed for computer aided detection of static program constraint violations. We developed a modeling language called Source Code Modeling Language (SCML) in which program elements from the source code can be represented. In the proposed process for constraint violation detection, the source code is converted into SCML models. The constraint detection is realized by graph transformation rules. The rules detect the violation and extract information from the SCML model to provide feedback on the location of the problem.\ud The third process and tool set provide computer aided verification of whether a design idiom can be used to implement a change request. The developers tend to implement evolution requests using software structures that are familiar to them; called design idioms. Graph transformations are used for detecting whether the constraints of the design idiom are satisfied or not. For a given design idiom and given source files in SCML, the implementation of the idiom is simulated. If the simulation succeeds, then the models are converted to source code.\u

    An approach to safely evolve preprocessor-based C program families.

    Get PDF
    Desde os anos 70, o pré-processador C é amplamente utilizado na prática para adaptar sistemas para diferentes plataformas e cenários de aplicação. Na academia, no entanto, o pré-processador tem recebido fortes críticas desde o início dos anos 90. Os pesquisadores têm criticado a sua falta de modularidade, a sua propensão para introduzir erros sutis e sua ofuscação do código fonte. Para entender melhor os problemas de usar o pré-processador C,considerando a percepção dos desenvolvedores, realizamos 40 entrevistas e uma pesquisa entre 202 desenvolvedores. Descobrimos que os desenvolvedores lidam com três problemas comuns na prática: erros relacionados à configuração, testes combinatórios e compreensão do código. Os desenvolvedores agravam estes problemas ao usar diretivas não disciplinadas, as quais não respeitam a estrutura sintática do código. Para evoluir famílias de programas de forma segura, foram propostas duas estratégias para a detecção de erros relacionados à configuração e um conjunto de 14 refatoramentos para remover diretivas não disciplinadas. Para lidar melhor com a grande quantidade de configurações do código fonte, a primeira estratégia considera todo o conjunto de configurações do código fonte e a segunda estratégia utiliza amostragem. Para propor um algoritmo de amostragem adequado, foram comparados 10 algoritmos com relação ao esforço (número de configurações para testar) e capacidade de detecção de erros (número de erros detectados nas configurações da amostra). Com base nos resultados deste estudo, foi proposto um algoritmo de amostragem. Estudos empíricos foram realizados usando 40 sistemas C do mundo real. Detectamos 128 erros relacionados à configuração, enviamos 43 correções para erros ainda não corrigidos e os desenvolvedores aceitaram 65% das correções. Os resultados de nossa pesquisa mostram que a maioria dos desenvolvedores preferem usar a versão refatorada,ou seja,disciplinada do código fonte,ao invés do código original com as diretivas não disciplinadas. Além disso,os desenvolvedores aceitaram 21 (75%) das 28 sugestões enviadas para transformar diretivas não disciplinadas em disciplinadas. Nossa pesquisa apresenta resultados úteis para desenvolvedores de código C durante suas tarefas de desenvolvimento, contribuindo para minimizar o número de erros relacionados à configuração, melhorar a compreensão e a manutenção do código fonte e orientar os desenvolvedores para realizar testes combinatórios.Since the 70s, the C preprocessor is still widely used in practice in a numbers of projects, including Apache,Linux ,and Libssh, totail or systems to different platforms and application scenarios. In academia,however, the preprocess or has received strong critic is msinceatl east the early 90s. Researchers have criticized its lack of separation of concerns, its proneness to introduce subtle errors, and its obfuscation of the source code. To better understand the problems of using the C preprocessor, taking the perception of developers into account, we conducted 40 interviewsandasurveyamong 202 developers. We found that developers deal with three common problems in practice: configuration-related bugs, combinatorial testing, and code comprehension. Developers aggravate these problems when using undisciplined directives (i.e., bad smells regarding preprocessor use), which are preprocessor directives thatdo notrespect thesyntactic structureof thesource code. To safely evolve preprocessor based program families, we proposed strategies to detect configuration-relatedbugs and bad smells, and a set of 14 refactorings to remove bad smells. To better deal with exponential configuration spaces, our strategies uses variability-aware analysis that considers the entire set of possible configurations, and sampling, which allows to reuse C tools that consider only one configuration at a time to detect bugs. To propose a suitable sampling algorithm, we compared 10 algorithms with respect to effort (i.e., number of configurations to test) andbug-detection capabilities (i.e.,numberofbugs detected in the sampled configurations). Based on the results, we proposed a sampling algorithm with an useful balance between effort and bug-detection capability. We performed empirical studies using a corpus of 40 C real-world systems. We detected 128 configuration-related bugs, submitted 43 patches to fix bugs not fixed yet, and developers accepted 65% of the patches. The results of our survey show that most developers prefer to use the refactored (i.e., disciplined) version of the code instead of the original code with undisciplined directives. Furthermore, developers accepted 21 (75%) out of 28 patches submitted to refactor undisciplined into disciplined directives. Our work presents useful findings for C developers during their development tasks, contributing to minimize the chances of introducing configuration-related bugs and bad smells, improve code comprehension, and guide developers to perform combinatorial testing
    corecore