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ABSTRACT
Many tools directly change programs, such as bug-fixing tools,

program migration tools, etc. We call them program-modification
tools. On the other hand, many programming languages use the C

preprocessor, such as C, C++, and Objective-C. Because of the com-

plexity of preprocessors, many program-modification tools either

fail to produce sound results under the presence of preprocessor

directives, or give up completely and deal only with preprocessed

code.

In this paper we propose a lightweight approach that enables

program-modification tools to work with the C preprocessor for

free. The idea is that program-modification tools now simply target

the preprocessed code, and our system, acting as a bidirectional C

preprocessor, automatically propagates the changes on the prepro-

cessed code back to the un-preprocessed code. The resulting source

code is guaranteed to be correct and is kept similar to the original

source as much as possible. We have evaluated our approach on

Linux kernel with a set of generated changes. The evaluation results

show the feasibility and effectiveness of our approach.
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1 INTRODUCTION
Many programming languages are provided with preprocessors [7,

18, 22]. The most widely used of all is the C preprocessor (CPP),

forming part of C, C++, and Objective-C. CPP is lexical, which

operates on tokenized source prior to any parsing. As a result, it

is not restricted to a particular syntax and can be used casually

in many languages as a general-purpose tool. For example, as an

HTML authoring tool [19], CPP may be used to capture shared code

pieces as macros.

∗
This work is supported by National Key Research and Development Program.

2016YFB1000105, the National Natural Science Foundation of China under Grant

No.61421091, 61332010 and 61672045. Yingfei Xiong is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Internetware’17, September 23, 2017, Shanghai, China
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5313-7/17/09. . . $15.00

https://doi.org/10.1145/3131704.3131715

This popularity of CPP causes a difficulty in program modifi-

cation tools, such as program-repair tools [20, 21, 31, 36] and API

evolution tools [23, 30, 35], where direct modification of source

code is involved. Such tools typically do not handle C preprocessor

directives. This is not only in the case for casual uses, where the

target languages bear no connection to C. We have investigated

the implementations of three influential bug-fixing tools on the C

programming language: GenProg [20, 21], RSRepair [36], and Sem-

Fix [31], and all of themwork only on preprocessed code. Users have

to manually inspect the preprocessed code, and copy the changes

to the original code—risking of introducing bugs in the process.

In this case, we are confronted with a classic problem in compila-

tion, in fact any program transformation, that the transformation is

one directional. Changes to the source are kept and propagated to

the target when the transformation is run, but there is no obvious

way to map changes of the target back to the source. This means

poor usability, as the tool outputs are obfuscated to programmers

who work on the source. Moreover, any change to target locks the

source: there is no point of fixing a bug in the preprocessed code

and only to have it overwritten when the source is compiled again.

Despite the evident necessity, the mapping from target to source

is not an easy task, as the tools must be able to understand both the

preprocessor directives and the target programming languages, and

make sure whatever changes made on both levels are consistent

with each other. A closely related area is refactoring [12, 28], where

tools are expected to directly manipulate preprocessor directives.

For example, one may well want to rename a macro or extract a

macro as part of the refactoring. In this case, tool builders have no

choice but to bite the bullet and confront the preprocessor directly.

Typically a new C grammar is designed such that it incorporates

both the original C grammar and the preprocessor directives. How-

ever, when applied to a more wider range of code editing tools,

such almost brute force approaches exhibit obvious shortcomings.

First, tool developers using such a grammar basically have to start

from scratch: they have to learn the new grammar and leave behind

the existing tool chains on C. Second, the effort spend on the new

grammars is specialized and cannot be reused for other languages,

which basically rules out casual uses of CPP.

In this paper we propose a lightweight approach to support CPP

in program-modification tools. Our system acts as a bidirectional

CPP: the original preprocessing can be considered as a forward

program transformation, and we add to it a corresponding back-

ward transformation that maps changes on the preprocessed code

back into the unpreprocessed source. As a result, tool builders can

now focus on what they set out to do, and have the results auto-

matically mapped to the source. We list a few examples here: 1) as

mentioned above the implementations of the three state-of-the-art

bug-fixing approaches only deal with preprocessed code; 2) the

https://doi.org/10.1145/3131704.3131715
https://doi.org/10.1145/3131704.3131715
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API evolution tools mentioned previously can also be implemented

more conveniently by only dealing with preprocessed code; 3) all

program-modification tools on languages that do not formally rely

on CPP naturally fall into this category because the programs may

be put under casual uses of CPP.

To sum up, our paper makes the following contributions:

• We propose a lightweight approach to handling the C prepro-

cessor in program-modification tools based on bidirectional

transformations. We analyze different design alternatives

and present our design decisions, as well as defining the

correctness laws (Section 2).

• We propose the first bidirectional algorithm that supports

the change of transformation steps. The current algorithm

is specifically designed for CPP, but we believe the idea is

general and can be applied to other systems whose backward

transformationmay break existing transformation steps (Sec-

tion 3).

• We evaluate our approach on the Linux kernel and compare

our approach with two baseline approaches: one reflecting

changes by copying back the entire changed file and one

reflecting changes by copying back the changed lines. We

also compared our approach with the variant which does not

break existing transformation steps. The evaluation results

show that our approach breaks much less macro invocations,

and always produces correct results while the other two do

not (Section 4).

Finally, we discuss related work in Section 5 and conclude the

paper in Section 6.

It might be worth mentioning that a non-goal of this paper is
to support software product lines written in CPP. In this work, we

focus only on one product but not a family of products, because

of the following reasons. (1) There is a wide range of applications

of CPP outside software product lines, which we target (2) It is

difficult, if not impossible, to know how to propagate the changes

on one product to other products in general, making any approach

domain-specific.

2 BACKGROUND AND OVERVIEW
We begin with an overview of the C preprocessor, and discuss the

high-level intuition of our approach.

2.1 The C Preprocessor
Table 1 shows the main preprocessor directives and operators. A

preprocessor directive starts with a # at the beginning of the line

and ends at the end of the line. There are four main types of prepro-

cessor directives: #pragma providing compilation options, #include for

including header files, #if for conditional compilation, and #define

for macro definitions. Additionally, within a macro definition, we

can use operators such as ## and #, for concatenating two variables

or quoting a variable. Finally, there are some pre-defined macros

such as __FILE__, which will be replaced by the current values of the

fields.

When the C preprocessor processes a source file, it transforms

the source file in the textual order according to the following rules:

• The #include and #if directives are first expanded, and then

the expanded token sequences are scanned.

• For each macro invocation, the arguments are first prepro-

cessed, and then the invocation is expanded.

• If an argument contains # or ##, the unpreprocessed argu-

ment is used, otherwise the preprocessed argument is used.

• After a macro invocation is expanded, the expanded token

stream is scanned again, where any newly introduced macro

invocations are again expanded.

• To avoid infinite expansion, if a macro has been expanded

during the expansion process, it will not be expanded again.

• Any new preprocessor directives produced in the expansions

will not be used in processing.

1 #if BIGENDIAN

2 #define BYTE4 0

3 #else

4 #define BYTE4 3

5 #endif

6 #define set_zero(number , byte , bit)

*(( char *)&( number )+byte) &= ~(0x1 << (bit))

7 float x = -100;

8 set_zero(x, BYTE4 , 8);

Figure 1: An example of code preprocessing

As a concrete example, let us consider the code in Figure 1, which

is taken from the standard C math library with some simplifications.

This piece of code intends to compute the absolute value of x. It

contains a conditional-compilation directive (with each branch an

object-like macro definition), a function-like macro definition (note

that line 6 is wrapped to fit the width), and a macro invocation

in line 8. When the code is scanned by the preprocessor, first the

arguments of set_zero are processed and BYTE4 is expanded into

3 on an Intel machine. Then the macro invocation to set_zero is

expanded, leading to the following code:

float x = -100;

*(( char *)&(x)+3) &= ~(0x1 << (8))

2.2 Backward CPP
Now suppose that a program-modification tool detects that the

shifting of 8 times in the preprocessed code is wrong and changed

it to 7 as below:

float x = -100;

*(( char *)&(x)+3) &= ~(0x1 << (7))

Most program-modification tools will simply stop here and leave

the modified code as it is. But this means we loose the modularity

and portability of the original code, a situation that is undesirable

at best.

Our system is designed to map such code back to the unprepro-

cessed source without losing the modifications made. That is to

say, when the new source is preprocessed again, we will get back

exactly the modified code — a property known as round-tripping. In
the above example, we will trace back the preprocessing steps and

fold back the macro expansions in the inverted order to produce

the following.
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Table 1: Main preprocessor directives and operators

Directives Functionality Example Result

#pragma Compiler options #pragma once removed from the preprocessed file

#include File Inclusion #include <stdio.h> the content of "stdio.h"

#if, #ifdef, . . . Conditional compila-

tion

#ifdef FEATURE1

x=x+1;

#endif

x=x+1;

#define X Object-like macro def-

inition

#define X 100

a = X;
a = 100;

#define X(a, b) Function-like macro

definition

#define F(x) x*100

F(10);
10*100;

a ## b Concatenation
#define X a_##100

X
a_100

#b Stringification
#define F(x) #x;

F(hello);
"hello";

__FILE__, __DATE__,

. . .

Predefined macros __FILE__ main.c

1 #if BIGENDIAN

2 #define BYTE4 0

3 #else

4 #define BYTE4 3

5 #endif

6 #define set_zero(number , byte , bit)

*(( char *)&( number )+byte) &= ~(0x1 << (bit))

7 float x = -100;

8 set_zero(x, BYTE4 , 7);

It is easily verifiable that the correction to the preprocessed code is

made ‘durable’ now. Any further preprocessing will simply produce

exactly the same corrected code.

This backward process is not always as straightforward. Since

we permit arbitrary changes to proprocessed code, it is well possible

that some of them may get in the way. Let us consider a variant of

the example in Figure 1.

1 #if BIGENDIAN

2 #define BYTE4 0

3 #else

4 #define BYTE4 3

5 #endif

6 #define set_zero(number , byte , bit)

((char)&( number )+byte) |= ~(0x1 << (bit))

7 float x = -100;

8 set_zero(x, BYTE4 , 7);

This time the bug is in the macro itself where the bitwise AND is

erroneously written as an OR.

In this case, there are two options: 1. change the definition of

the set_zero macro, 2. leave the set_zero macro expanded, while

folding other macro expansions. The former makes global changes,

affecting all invocation of set_zero, whereas the latter makes only

local changes, affecting the one expansion. Our philosophy is to be

conservative. Since it is in general unclear whether a local change is

meant to affect all similar sites, we do not change macro definitions.

Design Decision 1. Backward transformation shall not change
any macro definition.

Accordingly, the macro set_zerowill remain expanded in the new

source and its definition unchanged. But this does not mean that

we will give up on restoring modularity and portability. Instead, we

continue to fold the expansion of BYTE4 and restore the conditional-

compilation directive as the following

1 #if BIGENDIAN

2 #define BYTE4 0

3 #else

4 #define BYTE4 3

5 #endif

6 #define set_one(number , byte , bit)

((char)&( number )+byte) |= 0x1 << (bit)

7 float x = -100;

8 ((char)&(x)+BYTE4) &= ~(0x1 << (7))

which leads to our second design decision.

Design Decision 2. Backward transformation should aim to keep
existing macro invocations and not to leave them expanded.

Some might be tempted to go a step further by abstracting the

new code into a new macro so that an invocation (of a different

macro) will remain in place. This is too radical in our opinion as the

defining of new macros may have unforeseen global consequences.

Moreover, there is no evidence that such an effort will actually

improve the quality of the resulting code. We think creative under-

takings, such as designing new abstractions, is best left to human

programmers, and thus our third design decision.

Design Decision 3. Backward transformation shall not introduce
new macro invocations.

In addition to the three design decisions, our system satisfies

two correctness laws that establish the round-tripping property.

We call unpreprocessed code source and preprocessed code target.
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Law 1 (FwdBwd). If there is no change to target, backward trans-
formation will not change the source.

Law 2 (BwdFwd). Preprocessing source produced by backward
transforming a target will give back the same target.

We will formally define the above laws in Section 3.4, when

details of our approach is discussed.

2.3 Naive Solutions
For comparison, we list two baseline solutions. Despite being ob-

vious crude and unfit for purpose, they are more or less what are

available to tool users at the moment.

Naive solution I (per-file). The first naive solution is to directly copy

back the changed preprocessed files and replace the original unpre-

processed files. This solution is the easiest to implement but has

two major deficiencies. First, the original unpreprocessed source

files may contain macro definitions, which will be lost if we directly

copy back the preprocessed files, causing problems elsewhere. Sec-

ond, this will leads to the expansion of all macro invocations in the

source file, as well as all #include directives, destroying modularity

completely.

Naive solution II (per-line). The second solution is to use more fine-

grained units, copying back only the changed lines. This is doable

with the assumption that modern compilers keep a traceability

relationship between the lines in the unpreprocessed files and the

preprocessed files. For example, when GCC preprocess our running

example, it will replace lines 1-7 into empty lines, and put the three

statements expanded from line 9 in one line, so that a one-to-one

correspondence between lines are kept.

Although the second solution has the benefit of not removing

macro definitions, it still has problems. First, a lot of macros are

still unnecessarily expanded. The situation becomes even worse

when we consider tools that copy lines of code within source files,

e.g., GenProg [21] copies statements between two positions in the

source files to fix bugs. In such cases all macro invocations in the

copied lines will be lost. Second, if the original macro invocations

span several lines, the backward mapping produces wrong results.

For example, suppose there is a line break within the original macro

invocation, as follows.

RESIZE(GARRAY (2),

100, FREE);

In GCC, the macro invocation will be expanded into two lines,

where the first line contains the three expanded statements, and the

second line is empty. As a result, in the backward transformation

only the first line will be copied back, resulting in an incorrect

program.

3 APPROACH DETAILS
In this section, we present our approach to bidirectionalize CPP in

a more formal setting. For presentation clarity, we build the frame-

work considering only a subset of CPP, namely macro definition

and invocation, before extending the solution to full CPP.

Due to page limit, we shall consider a subset of C preproces-

sor: the only directive is #define and there is no # or ## operators

in macro bodies. This model could be expanded to cover full C

preprocessor.

3.1 Modelling forward preprocessing
We view program source as a sequence of tokens of type Token (a

synonym for String), and there is a global environment (of type

Env) containing a list of macro definitions that are in scope. Each

token is additionally annotated with its own expansion history as

a set of disabled macros to ensure termination. The augmented

tokens have type TokenS.
We use a functional model for CPP. The preprocessing can be

seen as a function from an environment and a token sequence to a

token sequence. We represent a sequence as a list. An empty list

is written as ‘[ ]’ and ‘:’ is used to ‘cons’ an element to a list. As a

result, we can write "C" : "C" : "P" : [ ], or simply ["C", "C", "P"].
These lists are of type [Token] (note the overloaded use of [ ] both

on the term and type level). Similarly, the list [1, 2, 3] is of type

[Int ]. Appending two lists is through infix operation ‘++’, so that

["C", "C"] ++ ["P"] gives ["C", "C", "P"].

forward :: (Env, [TokenS ]) → [TokenS ]
forward ( , [ ]) = [ ]
forward (env, ts@(skped ++ orgnl ++ rest)) =

skped ++ (forward (env′, prcssed ++ rest))
where (env′, prcssed) = step (env, ts)

This declaration defines a function named forward, which has type

(Env, [TokenS ]) → [TokenS ]. There are two cases in the definition

handling empty and non-empty token lists as inputs, which are

disinguished by the patterns of the formal parameters.

Patterns are similar in syntax to expressions, but appear on the

left-hand side of ‘=’, which match the input and bind the variables

within. For example, the patten [ ] matches the empty list, and the

patten (c : cs) matches a nonempty list with c bound to the head of

the list and cs bound to the tail of the list. Base on the matching

of the input to the patterns, the right clause is executed and the

expression on the right hand of the = is returned. For the sake of

brevity in presentation, we also make use of non-standard patterns

involving the append operator ++, which binds variables to different

segments of an input list. For example, ts@(skped ++ orgnl ++ rest)
says that the input list is divided into three parts namely skped,
orgnl and rest, and collectively the whole list is named ts. With this

pattern, we omit the operational details of how the list is divided.

Lastly, the underscore in pattern is known as wild-card, which
independently matches value, but each binds nothing.

The above definition of forward states (in the first clause) that

if the token list is empty ([ ]), the the output is an empty list, re-

gardless of the environment input. If the token list is non-empty (in

the second clause), then through simple scanning and environment

lookup, the list is divided into three parts, which are the part that

doesn’t require processing (skped), the first part requires process-
ing (orgnl) and the rest of the tokens (rest). The algorithm then

processes orgnl, through function step, into prcssed and a probably

updated environment (thewhere clause introduces a local binding),
before passing both to a recursive call.

This process is best explained through an example. Consider the

following source,

#define inc(x) x++

inc(a)
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which is processed into a++. We list the steps of forward execution

below (The parts in {-_ -} are explanations.).

forward ([ ], [ ] ++ ["#", "define"... ]
++ ["inc", "(", "a", ")"])

↪→ {-Macro defined -}

[ ] ++ forward ([ inc ], [ ] ++ ["inc", "(", "a", ")"]
++ [ ])

↪→ {-inc(a) is expanded into a++ -}

[ ] ++ forward ([ inc ], ["a"] ++ [ ] ++ ["++"])
↪→ {-a is skipped -}

["a"] ++ forward ([ inc ], ["++"] ++ [ ] ++ [ ])
↪→ {-++ is skipped. -}

["a", "++"] ++ [ ]

At each step, the current token sequence is splited into skped, orgnl
and rest. Then skped is appended to the final output, and orgnl is
processed to prcssed

Function forward models the behaviour of CPP, but it is not suf-

ficient for building backward processing. forward’s return result

does not contain all information necessary for reverting the pro-

cess. Instead, we work with an enriched function which is similar

to forward but keeps more processing information.

complement :: (Env, [TokenS ]) → [Action]
complement ( , [ ]) = [ ]
complement (env, act.skped ++ act.orgnl ++ rest) =
[act ] ++ (complement (act.aftEnv, act.prcssed ++ rest))

where act = step (env, tokens)

The function is called complement because it records information

of the forward processing (all the actions), in addition to the target

token sequence.

In the above example of inc macro, complement produces three
actions, namely defInc, ivkInc and skp, corresponding to the three

execution steps. Roughly speaking defInc introduces macro inc into

the environment, ivkInc expands the macro invocation inc(a) and

produces a++, and skp moves a++ to the final output.

We treat the action type Action abstract and only specify it with

a set of operations.

bfrEnv :: Action→ Env
aftEnv :: Action→ Env
skped :: Action→ [TokenS ]
orgnl :: Action→ [TokenS ]
prcssed :: Action→ [TokenS ]
dsbles :: Action→ [Macro ]
step :: (Env, [TokenS ]) → Action

The step function is the construction function for actions, which

performs a step of forward processing. We also use the short hand

act.xxx (where x is an accesser function) instead of xxx (act). In
general, an action may:

• (the cases of #define and #undef) update the environment

from bfrEnv to aftEnv.

• (the cases of #if and macro invocation) process the token-

sequence prefix into prcessd, which is then added to the front
of the remaining token sequence for further processing. The

original prefix is stored as orgnl. It may also extend the

disabled macro list dsbles in the case of macro invocation to

prevent recursive invocation.

• do nothing else but add the prefix the final output skped.
(This happens when the prefix is ‘ordinary’ tokens, neither

a directive nor a macro invocation)

A particular subtlety we hide behind the interface is the non-

linear nature of function-like macro invocation: the arguments are

processed first before substituted into the body, and therefore there

is a number of sub-actions generated in supporting of the main

action.

As a last point, function forward is subsumed by complement
as it is simply the concatenation of all the skipped tokens of the

actions:

forward (e, ts) = concat (complement (e, ts).skped)

3.2 Modeling changes
Program-modifications tools can change the programwith a variety

of operations. In this paper we consider a unified type of operation:

replacement.

For each token in a sequence, it can be replaced by a sequence

of tokens. For example, token "a" can be changed to ["b"]. Note
that since the replacing token sequence can be of arbitrary length

(including zero), this notion of replacement naturally covers dele-

tion. Furthmore, we can replace a token into itself plus additional

tokens, thus insertion is covered as well.

We represent changes to a token sequence as a sequence of

changes to individual token, with one-to-one matching of replaced

token and the replacing token sequence. In this representation, if a

token sequence ts is changed to a token sequence ts′ with changes

cs, we have length (ts) = length (cs) and ts′ = concat (cs). The
tokens in the replacing sequence also inherits the disable macro set

from the replaced token.

3.3 Backward processing
Backward processing traverses, in the reversed order, the actions

taken in the forward processing, and tries to map changes in the

target to changes in the source.

backward :: ([Change ], [Action], [Token]) → [Change ]
backward (cs, [ ], ) = cs
backward (cs, a : racts, tgt) = backward (cs′, racts, tgt)

where cs′ = fstSucc (res)
res = [back (stgy, a, cs, tgt) | stgy ← strategies ]

Function backward iteratively traverses the reversed action list (the

second parameter), and succeeds when there is no more action

left. The first parameter is the changed target but represented as

changes, which is updated during execution. Another copy of the

changed target is passed in as the third argument, which remains

constant during execution and is used for correctness checking.

For each action, the one-step-function back is called with different
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strategies and the first succeeding one is returned as the result.

The list comprehension [back (stgy, a, cs, tgt) | stgy ← strategies ]
is conceptually similar to set comprehension, which applies back
with each strategy and returns all the results as a list.

back :: (Strategy,Action, [Change ], [Token]) → [Change ]
back (stgy, act, pre ++ skped ++ prcssed ++ rest, tgt) =

if check (act.bfrEnv, pre ++ new, tgt)
then pre ++ new else fail

where new = skped ++ stgy (act, prcssed) ++ rest

Function back finds the target segment that are the processing

result of the action, and uses a given strategy, which is a function

of type (Action, [Change ]) → [Change ], to construct a new source

segment. Let us consider the inc example, which is reproduced

below.

#define inc(x) x++

inc(a)

Forward processing produces three top level actions defInc, ivkInc
and skp. Now consider the simple case of changing a++ to b++. We

have the following execution steps of backward (The part in {-_ -}

are the splited sequence passed to back). We omit the third argu-

ment that is used for correctness checking for now.

backward (["b", "+", "+"], [skp, ivkInc, defInc ], )
↪→ {-[ ] ++ ["b", "+", "+"] ++ [ ] ++ [ ] -}

backward (["b", "+", "+"], [ ivkInc, defInc ], )
↪→ {-[ ] ++ [ ] ++ ["b", "+", "+"] ++ [ ] -}

backward (["inc", "(", "b", ")"], [defInc ], )
↪→ {-[ ] ++ [ ] ++ [ ] ++ ["inc", "(", "b", ")"] -}

backward (["#", "define", ...,
"inc", "(", "b", ")"], [ ], )

↪→

["#", "define" ... "inc", "(", "b", ")"]

The strategy passed to back decides how a new source segment

can be constructed from the changed target segment according to

the current action (i.e., How b++ is turned into inc(b)).

The most obvious strategy of backward processing a macro ex-

pansion is to fold it. For object-like macros, this is simply to replace

the body by the name of the macro. For function-like macros, we

additionally need to extract the parts of the body that came from

argument subsitution, recursively process those parts to recover

the arguments, and finally replace the body with an invocation.

There is nothing non-standard of this folding process. But there

are plenty of opportunities for it to get stuck. In fact, the simple

strategy of folding back every macro expansion fails every time

when a change affects the ‘non-parameter’ part of the macro body.

For example, in the above if we have changed a++ to a--, there is

no way to fold it back to inc. Moreover, even if a macro folding is

successful, we still need to check the validity of the result, which

will be explained later.

To recover from the failure in macro folding, we can try to cancel

the folding and leave the modified expansion as it is. For example,

the following steps backward process a--.

backward (["a", "-", "-"], [skp, ivkInc, defInc ], )
↪→

backward (["a", "-", "-"], [ ivkInc, defInc ], )
↪→ {-folding cancelled -}

backward (["a", "-", "-"], [defInc ], )
↪→ {-macro definition restored -}

backward (["#", "define", ..., "a", "-", "-"], [ ], )
↪→

["#", "define", ..., "a", "-", "-"]

Note that instead of recreating a macro invocation, the expansion

a-- is left as expanded in the final result. A particular tricky part in

the implementation of this folding cancellation is the maintaining

of alignment between actions and their corresponding segments in

the token list. But we do not go into details here.

This strategy of keeping macro invocations expanded may ap-

pear to be a silver bullet, avoiding failing of backward processing

altogether. However, the fact that one may produce some source

does not mean it is correct. For example, consider the following

source.

#define L x L

L

Forward processing produces x L, and suppose it is changed to y L.

Since the body of the macro is changed, there is no way to fold the

expansion. However, leaving the expansion as it is is also wrong. If

we forward process

#define L x L

y L

it will produce y x L instead of y L, violating the round-tripping law.

This is because the disabled recursive invocation of L is accidentally

enabled by the change.

There is no easy way to detect such problems by just looking

at the changes made. We therefore employ a generate-and-check

strategy: after every step of backward processing, we forward pro-

cess the new source and verifies whether the same changed target

is produced. This is where the third argument of backward is used.

check :: (Env, [Change ], [Token]) → Bool
check (e, pre ++ new, tgt) =

concat (pre) ++ (forward (e, concat (new))) ≡ tgt

This checking mechanism guarantees correctness, but is not effi-

cient: it takes at least linear time with respect to the number of

actions. In the implementation, we perform certain optimisations

to speed up the process. The details are omitted here for space

reasons.

We can further improve this recovery strategy by making the

cancellation of macro folding more delicate. For example, consider

the following source program.

#define double(x) x+x

#define inc(x) ++x

double(inc(a))
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Forward processing produces ++a + ++a. If the change is ++a + ++b,

the folding of double will fail in the backward direction, and the

simple strategy above will leave the expansion as it is.

#define double(x) x+x

#define inc(x) ++x

++a + ++b

But it is not difficult to see in this case that although the root action

of expanding double has to be cancelled, its sub-actions handling

the arguments can still be inverted. Therefore, our refined strategy

returns

#define double(x) x+x

#define inc(x) ++x

inc(a)+inc(b)

Perhaps unsurprisingly, there are plenty of opportunities for

things to go wrong here too. Let us consider this source program.

#define a(x) c

#define p (1)

#define inc(x) ++x

inc(a p)

In the forward process, a p will firstly be processed as inc’s ar-

gument with p expanded to (1). Next, inc is expanded, and a (1)

is substituted into inc’s macro body, resulting in ++a (1). Finally,

++a (1) is preprocessed to ++cwith the expansion of macro a. In the

backward direction for a modified target +c, we first fold the expan-

sion of a. Then if we cancel the folding of inc, without cancelling

that of p, we will get a new source +a p. This is wrong because

forward processing the new source produces +a (1) instead of +c,

as the +a part, not being the result of an expansion, will not be

processed again despite the later replacement of p with (1).

This is another example showing the intricacy in guarantee-

ing correctness, and the necessity of the check performed at each

backward step. Our algorithm will realise the folding of p in the

above described backward process is wrong, and will fall back to the

default strategy of keeping the expansion, and return the correct

result +a (1).

3.4 Correctness
We are now in a position to formally define the rounde-trip laws

introduced in Section . To convert between token lists to change

lists, we use a function idChg that creates identity changes for its

input where each token is changed to itself.

Property 1 (FwdBwd). For any token list ts, let
acts = complement ([ ], ts)
tgt = forward ([ ], ts)

Then
backward (idChg (tgt), acts, tgt) ≡ idChg (ts).

2

Property 2 (BwdFwd). For any token list ts and change list
chg. Let

acts = complement ([ ], ts)
tgt = forward ([ ], ts)
chgS = backward (chg, acts, tgt)

If chgS is not failure, then

forward ([ ], concat (chgS)) ≡ tgt.

2

Giving the correctness checks that are performed at each step of

backward processing, we can see that the above properties hold.

4 EVALUATION
4.1 Research Questions
In this section we focus on the following research questions.

• RQ1:MacroPreservation. According toDesignDecision 2,
our approach aims to preserve existing macro invocations.

How does the strategy perform on actual programs? How

does it compare to other techniques?

• RQ2: Correctness. Our approach is guaranteed to be cor-

rect according to Law 1 and 2. How important is this correct-

ness? How does our approach compare to other techniques

that do not ensure correctness?

• RQ3: Failures. Our approach may report a failure when

it cannot find a proper way to propagate the change. How

often does this happen? Are the failures false alarms (there

exists a suitable change but our approach cannot find it)?

To answer these questions, we conducted a controlled experi-

ment to compare our approach with the two baseline approaches

described in Section 2.3 on a set of generated changes on Linux

kernel source code. Moreover, since a large part of effort is spend

on the macro-folding cancellation strategies, we also compare our

solution with the variant without cancellation to see whether the

effort has paid off. In the rest of the section we describe the details

of the experiment.

4.2 Setup
4.2.1 Implementation. We have implemented our approach in

Java by modifying JCPP
1
, an open source C Preprocessor. We also

implemented the two naive approaches in Section 2.3 and the

method without cancellation for comparison. Our implementation

and experimental data can be found on our repository
2
.

4.2.2 Benchmark. Our experiment was conducted on the Linux

kernel version 3.19. We chose Linux source code because Linux

kernel is one of themost widely used software projects implemented

in C. It contains contributions from many developers, and has a lot

of preprocessor directives and macro invocations.

To conduct our experiment, we need a set of changes on the

Linux kernel code. Since we concern about how different backward

transformations affect preprocessing, we generated changes only

in functions that contain macro invocations. To do this, we first ran-

domly selected 180 macros definitions from the kernel code. Since

there are far more object-like macros than function-like macros,

we would select very few function-like macros if we use pure ran-

dom selection. So we controlled the ratio between object-like and

function-like macros to be 1.5 : 1. Based on the selected macros,

we randomly selected a set of functions which contain invocations

to the macros. Finally, we randomly selected 8000 lines from the

1
http://www.anarres.org/projects/jcpp/

2
|https://github.com/harouwu/BXCPP|

http://www.anarres.org/projects/jcpp/
|
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functions. There are in total 133 macro invocations in the selected

lines.

Next we generated a set of changes on the selected lines. To

simulate real world changes, we randomly generated two types of

changes. The first type is token-level change, in which we randomly

replace/delete/insert a token. The second type is statement-level

change, in which we delete a statement or copy another statement

to the current location. These two types of changes are summarized

from popular bug-fixing approaches [17, 21, 36]. The statement-

level changes are directly used by GenProg [21] and RSRepair[36].

The token-level changes simulate small changes such as replac-

ing the argument of a method or change an operators used in

approaches such as PAR [17].

More concretely, we had a probability p to perform an operation

on each token, where the operation is one of insertion, replacement

and deletion, which had equal probability. The replacement was

performed by randomly mutating some characters in the token.

The insertion was performed by randomly copying a token from

somewhere else. Similarly, we had a probability q to perform an

operation on each statement, where the operation is copy or dele-

tion. The copied statement was directly obtained from the previous

statement. We recognized a statement by semicolon.

Different tools may have different editing patterns: a migration

tool typically changes many places in a program, whereas a bug-

fixing tool may change a few places to fix a bug. To simulate these

two different densities of changes, we used two different set of

probabilities. For the high-density changes, we set p = 0.33 and

q = 0.1. For the low-density changes, we set p = 0.1 and q = 0.05.

We generated ten sets of changes, five with high-density and

five with low-density. The number of the changes generated for

each set is shown in Table 2.

Table 2: Changes generated for the experiment

Low

Density

Set 1 2 3 4 5

Changes 952 885 956 967 884

High

Density

Set 6 7 8 9 10

Changes 3133 3136 3088 3123 3048

4.2.3 Independent variables. We considered the following in-

dependent variables. (1) Techniques, we compared our approach

with the two naive solutions, per-file and per-line and the variant

without cancellation called no-cancellation. (2) Density of changes,
we evaluated both on the five high-density change sets and the five

low-density change sets.

4.2.4 Dependent variables. We considered two dependent vari-

ables. (1) Number of remaining macro invocations. We re-ran the

preprocessor after the backward transformation, and counted how

macro invocations are expanded during preprocessing. Since none

of the techniques will actively introduce new macro invocations,

the number of expanded invocations is the number of remaining

invocations. To avoid noise from included files, we count only the

macro invocations in the current file. (2) Number of errors. We re-

ran the preprocessor, and compared the new preprocessed program

with the previously changed program by Unix file-comparing tool

f c . Every time f c reported a difference, we counted it as an error.

(3) Failures. Our approach may fail to propagate the changes, and

we record whether a failure is reported for each change set.

4.3 Threats to Validity
A threat to external validity is whether the results on generated

changes can be generalized to real world changes. To alleviate this

threat, we used different types of changes and different density

of changes, in the hope of covering a good variety of real-world

changes.

A threat to internal validity is that our implementation of the

three approaches may be wrong. To alleviate this threat, we in-

vestigated all errors we found in the experiments, to make sure it

is a true defect of the respective approach but not a defect in our

implementation.

4.4 Results

Table 3: Experimental Results

Low Density Set 1 2 3 4 5

Our Approach

Macros 73 75 72 80 81

Errors 0 0 0 0 0

Failures n n n n n

Per-Line

Macros 23 25 23 20 26

Errors 6 7 6 7 7

Per-File

Macros 0 0 0 0 0

Errors 0 0 0 0 0

No-Cancellation

Macros 71 72 70 78 79

Failures 62 61 63 55 54

High Density Set 6 7 8 9 10

Our Approach

Macros 47 51 53 48 44

Errors 0 0 0 0 0

Failures n n n n n

Per-Line

Macros 9 7 7 8 10

Errors 6 6 7 6 6

Per-File

Macros 0 0 0 0 0

Errors 0 0 0 0 0

No-Cancellation

Macros 46 49 51 47 43

Failures 87 84 82 86 90

Row “Macros” shows the number of remainingmacros. Row “Errors” shows the number

of errors caused. Row “Failures” indicates whether a failure is reported in the backward

transformation.

The result of our evaluation is shown in Table 3. We discuss the

results with respect to the research questions below.

4.4.1 RQ1 Macro Preservation. As we can see, our approach

preserves macro invocations. Per-line preserves very few macro in-

vocations, while per-file, as we expected, preserves nomacro invoca-

tions. It is interesting that macro invocations which no-cancellation

preserves are just a bit less than our approach.

We further investigated why per-line preserves so few macro

invocations. One main reason we found is that some other tokens

usually come with the macro invocations on the same line and

per-line will expand the macros when any tokens in this line is

changed even if there is no token changed in the expansion of the

macro.
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Our system uniformly outperforms, in term of macro preserva-

tion, the simpler approach No-Cancellation. The difference happens

when there is a nested invocation of macros (macro invocations

inside the parameters of a macro invocation), and a change has

lead to the folding of the main invocation to be cancelled. Then

No-Cancellation fails, while our system succeeds with cancelling

the main invocation, but preserves the sub-invocations. Such a com-

bination of situations is not very common, but still notably present

in all of our experiment sets.

4.4.2 RQ2Correctness. Our approach, per-file and no-cancellation
lead to no errors while several errors are caused by per-line. This

is because there are a few macro invocations that cross multiple

lines. These macros take expressions or statements as argument,

which are usually too long to be included in one line. If a change is

generated on any one of the lines, per-file produces an error. On the

other hand, such macro invocations usually have a larger expanded

form, and are more likely to be changed in our experiment. As a

matter of fact, most of such invocations were changed in all change

sets.

4.4.3 RQ3 Failures. As we can notice, no-cancellation reports a

large number of failures, while the one with cancellation has none.

This stark contrast shows that our carefully crafted cancellation,

which is arguably a major contribution of our work, has achieved

its intended purpose.

Though not shown in the experiment, it is known that our ap-

proach with cancellation may fail to backward process a target

too. This is usually because the changes accidentally introduce a

new macro invocation in the preprocessed code, where there is no

way to satisfy the roundtrip laws. However, we do not observe any

such cases in our experiment. The reason is that macros usually

have special names and it is not easy to collide with a macro name.

Note the two baseline approaches never report a failure, so their

numbers are not included in Table 3.

Also note that theoretically our approachmay report false alarms:

our approach reports a failure but a correct change on the source

program exists. For example, let consider the following code piece,

#define p (x)

plus p

where plus is a function-like macro. After preprocessing, this code

piece becomes plus (x). If we change the last parenthesis into

) hello, our approach reports a failure because first p will be ex-

panded and then the expanded content forms a new macro invoca-

tion with plus. However, there exists a feasible change: replacing

p with p hello. Nevertheless, such cases are probably rare, and

should not be a problem in practice.

5 RELATEDWORK
5.1 Bidirectional Transformation
Our work is inspired by research on bidirectional transformation.

A classical scenario is the view-update problem [2, 5, 6, 8, 14] from

database design: a view represents a database computed for a source

by a query, and the problem comes when translating an update of

the view back to a corresponding update on the source.

Languages have been designed to streamline the development of

such applications involving transformations running bidirectionally.

Notably the lenses framework [9], covering a number of languages

that provide bidirectional combinators as language constructs.

A different approach is to mechanically transform existing uni-

directional programs to obtain a backward counterpart, a tech-

nique known as bidirectionalization [27, 42]. In the software model

transformation literature, the underlying data to be transformed

are usually in the form of graphs (instead of trees), and a rela-

tional (as oppose to functional) approach that specifies the bidi-

rectional mappings between different model formats is more com-

mon [15, 32, 37, 40] However, the requirement of our work goes

beyond what these languages offer: in our framework, not only

data, but also transformations (macros) are subject to bidirectional

updates.

5.2 Analyzing and editing unpreprocessed C
code

The C preprocessor poses a great challenge for static program anal-

yses. The ability of producing a number of possible preprocessed

variants causes a combinatorial explosion, rendering it infeasible

to employee traditional tools that are designed to analyze a sin-

gle variant at a time. Only until very recently, sound parsing and

analyzing unpreprocessed C code is made possible through family-
based analyses [13, 16, 25]. Earlier tools have to resort to unsound

heuristics or restrict to specific usage patterns [3, 11, 34].

Similarly, a lot of efforts in refactoring C code are devoted into

dealing with multiple variants. Most approaches [10, 12, 39, 41]

try to find a suitable model that represent both the C program and

the preprocessor directives. A recent approach [33] suggests an

alternative: perform refactoring on one variant and prevent the

refactoring if problems may be caused in other variants. This is

based on the observation that changes on one variant seldom causes

problems in other variant.

Unlike these approaches, our approach currently considers only

one variant. In the future we may combine our approach with these

approaches to deal with multiple variants. However, handling only

one variant is already useful in many cases: (1) many programs,

though with conditional compilation, do not have many variants;

(2) as revealed by Overbey et al. [33], changes in one variant often

do not cause problems in other variants.

5.3 Empirical studies on the C preprocessors
Over the years, there has been no shortage of academic empirical

studies that are critical towards the C preprocessor [7, 24, 38], and

replacements of CPP are proposed such as syntactical preproces-

sors [28, 43] and aspect-oriented programming [1, 4, 26] are plenty.

However until present, there is no sign of any adoption of these

alternatives in industry, with the C preprocessor is still being seen

as the tool of the trade [29].

6 CONCLUSION
Handling the C preprocessor in program-modification tools is diffi-

cult, as a result many tools either produce unsound results or give

up on handling CPP entirely. In this paper we show that we can

separate the concerns by using bidirectional transformations to
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deal with the preprocessor, so that program-modification tools may

focus only on the preprocessed code, achieving a more modular

design.

We have conducted an experiment with Linux kernel source to

test the effectiveness of our approach. The result shows our system

(1) maintains the modularity of the source by not expanding macro

invocations unnecessarily, (2) always produces correct results, (3)

and never fails.
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