210 research outputs found

    Automated Termination Proofs for Logic Programs by Term Rewriting

    Full text link
    There are two kinds of approaches for termination analysis of logic programs: "transformational" and "direct" ones. Direct approaches prove termination directly on the basis of the logic program. Transformational approaches transform a logic program into a term rewrite system (TRS) and then analyze termination of the resulting TRS instead. Thus, transformational approaches make all methods previously developed for TRSs available for logic programs as well. However, the applicability of most existing transformations is quite restricted, as they can only be used for certain subclasses of logic programs. (Most of them are restricted to well-moded programs.) In this paper we improve these transformations such that they become applicable for any definite logic program. To simulate the behavior of logic programs by TRSs, we slightly modify the notion of rewriting by permitting infinite terms. We show that our transformation results in TRSs which are indeed suitable for automated termination analysis. In contrast to most other methods for termination of logic programs, our technique is also sound for logic programming without occur check, which is typically used in practice. We implemented our approach in the termination prover AProVE and successfully evaluated it on a large collection of examples.Comment: 49 page

    Proving Looping and Non-Looping Non-Termination by Finite Automata

    Get PDF
    A new technique is presented to prove non-termination of term rewriting. The basic idea is to find a non-empty regular language of terms that is closed under rewriting and does not contain normal forms. It is automated by representing the language by a tree automaton with a fixed number of states, and expressing the mentioned requirements in a SAT formula. Satisfiability of this formula implies non-termination. Our approach succeeds for many examples where all earlier techniques fail, for instance for the S-rule from combinatory logic

    On the Limits of Second-Order Unification

    Get PDF
    Second-Order Unification is a problem that naturally arises when applying automated deduction techniques with variables denoting predicates. The problem is undecidable, but a considerable effort has been made in order to find decidable fragments, and understand the deep reasons of its complexity. Two variants of the problem, Bounded Second-Order Unification and Linear Second-Order Unification ¿where the use of bound variables in the instantiations is restricted¿, have been extensively studied in the last two decades. In this paper we summarize some decidability/undecidability/complexity results, trying to focus on those that could be more interesting for a wider audience, and involving less technical details.Peer Reviewe

    Initial Algebra Semantics for Cyclic Sharing Tree Structures

    Full text link
    Terms are a concise representation of tree structures. Since they can be naturally defined by an inductive type, they offer data structures in functional programming and mechanised reasoning with useful principles such as structural induction and structural recursion. However, for graphs or "tree-like" structures - trees involving cycles and sharing - it remains unclear what kind of inductive structures exists and how we can faithfully assign a term representation of them. In this paper we propose a simple term syntax for cyclic sharing structures that admits structural induction and recursion principles. We show that the obtained syntax is directly usable in the functional language Haskell and the proof assistant Agda, as well as ordinary data structures such as lists and trees. To achieve this goal, we use a categorical approach to initial algebra semantics in a presheaf category. That approach follows the line of Fiore, Plotkin and Turi's models of abstract syntax with variable binding

    Constrained completion: Theory, implementation, and results

    Get PDF
    The Knuth-Bendix completion procedure produces complete sets of reductions but can not handle certain rewrite rules such as commutativity. In order to handle such theories, completion procedure were created to find complete sets of reductions modulo an equational theory. The major problem with this method is that it requires a specialized unification algorithm for the equational theory. Although this method works well when such an algorithm exists, these algorithms are not always available and thus alternative methods are needed to attack problems. A way of doing this is to use a completion procedure which finds complete sets of constrained reductions. This type of completion procedure neither requires specialized unification algorithms nor will it fail due to unorientable identities. We present a look at complete sets of reductions with constraints, developed by Gerald Peterson, and the implementation of such a completion procedure for use with HIPER - a fast completion system. The completion procedure code is given and shown correct along with the various support procedures which are needed by the constrained system. These support procedures include a procedure to find constraints using the lexicographic path ordering and a normal form procedure for constraints. The procedure has been implemented for use under the fast HIPER system, developed by Jim Christian, and thus is quick. We apply this new system, HIPER- extension, to attack a variety of word problems. Implementation alternatives are discussed, developed, and compared with each other as well as with the HIPER system. Finally, we look at the problem of finding a complete set of reductions for a ternary boolean algebra. Given are alternatives to attacking this problem and the already known solution along with its run in the HIPER-extension system --Abstract, page iii

    The Role of Term Symmetry in E-Unification and E-Completion

    Get PDF
    A major portion of the work and time involved in completing an incomplete set of reductions using an E-completion procedure such as the one described by Knuth and Bendix [070] or its extension to associative-commutative equational theories as described by Peterson and Stickel [PS81] is spent calculating critical pairs and subsequently testing them for coherence. A pruning technique which removes from consideration those critical pairs that represent redundant or superfluous information, either before, during, or after their calculation, can therefore make a marked difference in the run time and efficiency of an E-completion procedure to which it is applied. The exploitation of term symmetry is one such pruning technique. The calculation of redundant critical pairs can be avoided by detecting the term symmetries that can occur between the subterms of the left-hand side of the major reduction being used, and later between the unifiers of these subterms with the left-hand side of the minor reduction. After calculation, and even after reduction to normal form, the observation of term symmetries can lead to significant savings. The results in this paper were achieved through the development and use of a flexible E-unification algorithm which is currently written to process pairs of terms which may contain any combination of Null-E, C (Commutative), AC (Associative-Commutative) and ACI (Associative-Commutative with Identity) operators. One characteristic of this E-unification algorithm that we have not observed in any other to date is the ability to process a pair of terms which have different ACI top-level operators. In addition, the algorithm is a modular design which is a variation of the Yelick model [Ye85], and is easily extended to process terms containing operators of additional equational theories by simply plugging in a unification module for the new theory
    • …
    corecore