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ABSTRACT

The Knuth-Bendix completion procedure produces complete sets of reductions but 

can not handle certain rewrite rules such as commutativity. In order to handle such 

theories, completion procedure were created to find complete sets of reductions modulo an 

equational theory. The major problem with this method is that it requires a specialized 

unification algorithm for the equational theory. Although this method works well when 

such an algorithm exists, these algorithms are not always available and thus alternative 

methods are needed to attack problems. A way of doing this is to use a completion 

procedure which finds complete sets of constrained reductions. This type of completion 

procedure neither requires specialized unification algorithms nor will it fail due to un- 

orientable identities.

We present a look at complete sets of reductions with constraints, developed by 

Gerald Peterson, and the implementation of such a completion procedure for use with 

HIPER - a fast completion system. The completion procedure code is given and shown 

correct along with the various support procedures which are needed by the constrained 

system. These support procedures include a procedure to find constraints using the 

lexicographic path ordering and a normal form procedure for constraints.

The procedure has been implemented for use under the fast HIPER system, 

developed by Jim Christian, and thus is quick. We apply this new system, HIPER- 

extension, to attack a variety of word problems. Implementation alternatives are 

discussed, developed, and compared with each other as well as with the HIPER system.

Finally, we look at the problem of finding a complete set of reductions for a ternary 

boolean algebra. Given are alternatives to attacking this problem and the already known 

solution along with its run in the HIPER-extension system.



IV

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Ralph Wilkerson for his guidance and patience 

with me throughout my years at UMR. You have taught me a lot both in and out of the 

classroom. I would also like to thank the rest of my committee: Dr. Leon Hall, Dr. C.Y. 

Ho, Dr. Thomas Sager, Dr. Richard Smith, and Dr. George Zobrist for their teaching and 

willingness to answer my questions.

Thank you to Dr. Gerald Peterson of the McDonnell-Douglas Corporation for 

answering my many questions about his constrained reductions. Also, thank you to Dr. 

DeKock and the computer science and math departments for giving me the chance to learn 

so much and to the Generic Mineral Technology Center for Pyrometallurgy, the Intelligent 

Systems Center, and Dr. Gary Leininger for supporting me while I did.

Thank you to Doug Meyer, Chris Merz, Steve Kern and many other graduate 

students here for your friendship. Thank you Gary Larson and Bill Watterson for the 

humor given to me during my stressful graduate years.

Thanks to my family and friends for all the good times. Finally thank you Mom and 

Dad for the constant love and support that I needed - without it I could not have 

accomplished half as much as I have.



V

Page

ABSTRACT..................................................................................................................  iii

ACKNOWLEDGEMENTS.........................................................................................  iv

LIST OF ILLUSTRATIONS.......................................................................................  viii

LIST OF TABLES......................................................................................................... x

SECTION

I. INTRODUCTION..................................................................................  1

A. STRUCTURE..................................................................................  1

B. MOTIVATION................................................................................  2

II. DEFINITIONS AND NOTATION.......................................................  4

A. TERMS............................................................................................  4

B. SUBSTITUTIONS AND EQUATIONS........................................ 5

C. REDUCTIONS................................................................................  6

III. LITERATURE REVIEW....................................................................... 8

A. UNIFICATION................................................................................ 8

B. WORD PROBLEMS AND COMPLETE SETS OF

REDUCTIONS................................................................................  10

C. COMPLETE SETS OF REDUCTIONS MODULO

EQUATIONAL THEORIES..........................................................  17

1. Complete Sets of Reductions Modulo Associativity and

TABLE OF CONTENTS

Commutativity 17



vi

22

30

30

33

37

37

40

45

53

66

66

70

76

76

79

82

83

85

91

2. Complete Sets of Reductions Modulo an Equational

Theory.....................................................................................

ORDERINGS AND TERMINATION..............................................

A. TERMINATION.........................................................................

B. E-TERMINATION.....................................................................

SOME EXTENSIONS TO COMPLETION.....................................

A. UNFAILING COMPLETION....................................................

B. COMPLETION WITH CONDITIONAL REWRITE RULES. 

SOLVING INEQUALITIES USING LEXICOGRAPHIC PATH

ORDERINGS.....................................................................................

COMPLETE SETS OF REDUCTIONS USING CONSTRAINTS 

HIPER AND HIPER-EXTENSION.................................................

A. HIPER.........................................................................................

B. HIPER-EXTENSION................................................................

C. RESULTS...................................................................................

1. OFF vs. BF.............................................................................

2. Constrained reductions vs. other methods...........................

TERNARY BOOLEAN ALGEBRA - UNIFICATION AND 

COMPLETION..................................................................................

A. TERNARY BOOLEAN ALGEBRA UNIFICATION...........

B. TERNARY BOOLEAN ALGEBRA COMPLETION...........

CONCLUSIONS



APPENDIX A - SOME RUNS IN HIPER-EXTENSION..................................  93

APPENDIX B - PROOFS IN TERNARY BOOLEAN ALGEBRA............................  110

A. PROOF OF CORRECTNESS OF THE FUNCTION TERCOMB.......  I l l

B. PROOF OF CORRECTNESS AND COMPLETENESS OF A

COMPLETE COMMUTATIVITY UNIFICATION ALGORITHM.... 113

REFERENCES................................................................................................................  126

VITA.................................................................................................................................  132

vii



Vll l

Figure Page

1. Rewrite tree.......................................................................................................  7

2. Robinson unification algorithm........................................................................  8

3. Confluence.........................................................................................................  13

4. Local Confluence............................................................................................... 14

5. Knuth-Bendix completion procedure............................................................... 18

6. Inter-reduce algorithm......................................................................................  19

7. E-completeness.................................................................................................. 20

8. E-compatibility.................................................................................................. 21

9. E-confluence......................................................................................................  23

10. Local E-confluence...........................................................................................  23

11. E-Church-Rosser...............    24

12. Coherence modulo E........................................................................................  25

13. Local coherence modulo E...............................................................................  25

14. E-completion procedure...................................................................................  27

15. E-critical pair procedure...................................................................................  28

16. Embedding.........................................................................................................  31

17. E-Commutation.................................................................................................  34

18. Local E-Commutation......................................................................................  35

19. > is E-Commuting with —»....................................   35

20. Solving word problems with ground complete systems.................................  40

LIST OF ILLUSTRATIONS



21. Logical strengths of various conditional systems............................................ 44

22. Procedure for solving term problems............................................................... 46

23. Factor-out procedure........................................................................................  49

24. Normal form procedure....................................................................................  51

25. Constrained completion procedure..................................................................  58

26. Procedure to add a reduction............................................................................ 59

27. Joinable procedure............................................................................................  60

28. Constrained inter-reduce procedure................................................................. 61

29. Redundant procedure........................................................................................  64

30. Flatterm representation.....................................................................................  67

31. A Discrimination net........................................................................................  68

32. Ordered first find strategy................................................................................  75

33. Best find strategy..............................................................................................  77

34. Algorithm to find combinators......................................................................... 84

35. Ternary A+CC unification algorithm..............................................................  85

36. Ternary term representation.............................................................................  115

37. Ternary swap..................................................................................................... 116

ix



X

LIST OF TABLES

Table Page

I. Classification of some unification problems.................................................... 10

II. Comparison of HIPER and HIPER-extension.................................................  71

III. Comparison of OFF and BF strategies.............................................................. 76

IV. 'F conversion table.............................................................................................  121



I. INTRODUCTION

A. STRUCTURE

Section II will present the definitions and notation which we wili use for our 

discussion.

We will review previous work done in the field of unification theory and complete 

sets of reductions in Section III. We include the Knuth-Bendix completion procedure and 

the extensions of it modulo an equational theory as given by Peterson & Stickel and 

Jouannand & Kirchner.

Various orderings used to prove termination, both with or without an equational 

theory, are described in Section IV.

Section V gives additional extensions to the Knuth-Bendix procedure. This is given 

so that we might see when our constrained completion procedure might be more 

applicable.

In Section VI we describe an algorithm which produces the constraints we will need 

for our completion procedure. The ordering relative to which we produce these constraints 

is the lexicographic path ordering.

Constrained rewriting and the entire constrained completion procedure is given in 

Section VII. We present the algorithms to make constrained reductions from identities, 

prove joinability, and to inter-reduce constrained rewrite rules.

A very fast completion procedure called HIPER is described in Section VIII along 

with our modified version of this procedure, HIPER-extension, which is a constrained 

completion procedure. We discuss various implementation details and compare these
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We present attempts at finding a complete set of reductions for a ternary boolean 

algebra in Section IX. In it we describe a ternary associative-commutative unification 

algorithm for use with HIPER to find the complete set and give a complete set of 

constrained reductions using HIPER-extension.

Section X gives conclusions from this paper and directions for future work.

Finally, Appendix A contains runs in the HIPER-extension system while Appendix 

B gives proofs mentioned but not presented in Section IX.

B. MOTIVATION

The problem of deciding whether two first order terms are equal with respect to an 

equational theory is in general an undecidable process. If however, a complete set of 

reductions exists for the equational theory then the problem is decidable. Completion 

procedures not only determine if a set of reductions is complete but also tries to add 

reductions in an attempt to make the resulting set complete. The process of proving 

completeness has been well-studied and many variations have been developed. The most 

important variation, in which completeness is proved modulo an equational theory, 

requires the existence of a special unification algorithm. This is restrictive since, in 

general, developing these algorithms is difficult. The variations, unfailing completion and 

conditional completion do not have this restriction but are somewhat limited in their 

applicability.

Constrained completion is more general and will, thus, work on a larger set of 

problems without the need for a specialized unification algorithm. This procedure is 

“unfailing” since we can always orient our equations. Thus the result is either successful 

or the procedure runs forever without finding a complete set of reductions. This paper 

presents this procedure, speedup considerations, and an implementation.
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Complete sets of reductions have many applications including use in symbolic math 

systems such as MACSYMA, abstract data type specifications, compiler optimization, 

software validation, and automated theorem proving. For references and other uses see 

[De89] and [JK86],
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II. DEFINITIONS AND NOTATION

A. TERMS

We will define terms in the usual fashion. We use an infinite set of variables Vand a 

finite set of function symbols f  such that ^F= 0 .  Each function symbol has a fixed 

arity > 0. The set of all terms over and V, denoted is defined below. We will

simply use Twhen no ambiguity can arise.

(1) If v e V, then v is a term.

(2) If c e and arity(c)=0 (i.e. c is a constant), then c is a term.

(3) If ..., t„ are terms, f e fu n d  arity(f) = n > 0, then f(t,, ..., t„) is a term.

(4) Tis the intersection of all sets satisfying 1, 2, and 3.

The domain of a term t, written dom(t), is the set of all subterm labels of t. (e.g. if t = 

f(g(a),x,h(y)) then dom(t) = {(), 1, 1.1, 2, 3, 3.1) where () is the root term, 1 is the first 

subterm, g(a), 1.1 is the first subterm of the first subterm, a, etc.) The strict domain of a 

term t, written sdom(t), is the set of all subterm labels of t which are not variables. For 

example, if f,g,h,a e J  and x,y e T'then sdom(f(g(a),x,h(y))) is {(), 1, 1.1, 3} which 

corresponds to {f(g(a),x,f(y)), g(a), a, h(y)}.

We write t/i to refer to a subterm i of a term t where i e dom(t). We write t[i <— s] to 

denote the term t with its subterm i replaced by s. For example, if t = f(g(f(a,y)),z,g(g(z))), 

t/i = f(a,y), and s = g(b) then t[i <- s] = f(g(g(b)),z,g(g(z))). Subterms t/i and t/j are disjoint 

if neither is a subterm of the other.

Var(t) is the set of all variables in a term t. A term t is ground if Var(t) = 0 . Two 

terms tj and t2 are variable disjoint if Var(t,) n  Var(t2) = 0 .
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B. SUBSTITUTIONS AND EQUATIONS

A substitution c  is a set of ordered pairs (v/t) with v e Vand t e Tsuch that for all 

(vj/tj), (vj/tj) 6 a  if i * j then vj * vj. Given a substitution G and a term t we apply o to t, 

written tor, as follows:

(1) If t is a constant, then to = t.

(2) If t is a variable not appearing in the left-hand side of a pair in a, then to = t.

(3) If t is a variable and there exists a t' such that (t/O e o, then to = t'.

(4) If t = f(tj, ....tn), then t a ^ t j o r ,  . . . , tna).

For example, if a  = {(x/f(a,z)), (y/g(b))} and t=h(x,x,y,z) then ta = h(f(a,z),f(a,z),g(b),z).

If Oj = {(xj/tj), ..., (Xn/tn)} and a 2 = {(yi/sj), ..., (ym/sm) } are substitutions, then 

the composition of the substitutions, written 0 j0 2, is {(xj/ti02), ..., (Xn/tna 2)} u  {(y/s) I 

(y/s) e a 2 and for all t e X (y/t) € Gj}. Composition is defined this way so that the result 

of applying OiG2 to t is the same as applying o2 to tap  That is, t(GiG2) = (ta i)a2.

Substitutions Oj and a 2 are equal if for all t e X tOi = ta2. If a j  = a 2S, then a 2 is an 

instance of Op If no variables in the ordered pairs of a j  appear in o 2 and vice versa (i.e. 

Oi and g2 are variable disjoint), then OjG2 = a 2ap

A substitution a  is a matcher for terms tj and t2 if tj = t2a. A substitution 0 is a two- 

way matcher or unifier of terms tj and t2 if tjG = t20. A unifier is most general if for all 

other unifiers 8 there exists a substitution a  such that 8=00. Thus, all other unifiers can be 

produced by further instantiating variables in 0.

A unification algorithm is an algorithm which produces a most general unifier for 

given terms or replies that no such unifier exists.
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An equational theory is a set of equations. We write tj t2 if and only if tj/u = Xa for 

some equation X == p in the equational theory E and t2 = tj[u<—pa]. We let =£ be the 

reflexive-transitive closure of =l£. If tj =£ t2, then tj and t2 are said to be E-equal. A 

congruence class [t]£ is the set of all terms which are E-equal to t.

A substitution a  is an E-matcher of tj and t2 if tj =£t2a. A substitution a  is an 

E-unifier of tj and t2 if t ja  = E t2a. For substitutions O) and a 2, ct\ =£ a 2 if and only if for 

all v g V, aj(v) =£ a 2(v).

E-unification algorithms produce sets of E-unifiers. A set of E-unifiers T for terms s 

and t is complete if

(1) If a  g r, then sa =£ ta. (correctness)

(2) If s0 =£ t0, then there exists a a  g T and a substitution 8 such that 0 = a5. 

(completeness)

A complete set of unifiers V is minimal if and only if

(3) For all pairs a Ea 2 g T, if there exists a substitution 8 such that a 2 =E aj8 , then 

o2 = Of. (minimality).

That is, no two E-unifiers in T are instances of the other.

C. REDUCTIONS

A reduction or rewrite rule is an ordered pair of terms X —> p (or p «— A,) such that 

X = p is an identity and p is in some sense simpler than X. When we make a rewrite rule 

from an equation we are orienting the equation from complex to simple. We apply a 

reduction X—> p to a term t if t/i = Xo giving the term t' = tfi <- pa]. We write this as t —> t' 

and say that t rewrites or reduces to t'. We write t if t rewrites to t' by application of
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some reduction in a set of reductions The relations —>+^and ->*^are, respectively, the

transitive and reflexive-transitive closure of the rewriting relation —

A term t is irreducible by if no reduction in ^.can reduce t. If t —> % and t' is 

irreducible by ^,then t' is the “Kznormal form of t, written t l ^  will be dropped from 

the notation when the context is clear.

A reduction X —» p e %E-rewrites s to t, written s t, if s/i Xo for some 

substitution a  and t = s[i <— pa]. The relations —»+^£  and —»*̂  are the transitive and 

reflexive-transitive closure of — respectively. A term t is E-irreducible if no reduction 

in l^can E-reduce it.

For a given term t a rewrite tree is the set of terms which t can rewrite to through any 

number of reductions. Its name comes form the familiar tree-like structure which can 

represent it with each branch representing a rewrite. See Figure 1.

Figure 1. Rewrite tree.
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in. LITERATURE REVIEW

A. UNIFICATION

Unification has been around since Post in the 1920s and Herbrand in the 1930s. J.A. 

Robinson gave the first practical algorithm to generate a most general unifier in his 1965 

paper [Ro65]. Remembering from the previous section that unification, simply put, is the 

replacement of variables by terms to make terms equal we can look at the unification

R-Unify(t,,t2)
a - 0
if t] = t2 then return (a) 
if variable(tt) then 

if occurs(tbt2) then 
return (FALSE) 

else
return ({t,/t2})

if variable(t2) then 
if occurs(t2,t!) then 

return (FALSE) 
else

return (it2/ t ,})

if top-level-symbol(ti)*top-level-symbol(t2) then return (FALSE) 
For i = 1 to arity (top-level-symboKb))

8 = R-Unify (subterm(t],i), subterm(t2,i)) 
if 8 = FALSE then return (FALSE) 
a  = 8g 
t, = t,a  
t2 = t2a  

end for 
retum(a)
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algorithm given in Figure 2. An almost linear time and space algorithm was given in 

[MM76] and the first linear time and space algorithm was given in [PW78].

Robinson (R-)unification has since been modified to find E-unifiers for a given 

equational theory. Equational unification was first done by Plotkin [P173], where he 

developed an associative unification algorithm. Siekmann created one for commutativity 

[Si79] and this was extended to n-ary complete commutativity in [Mu92], Associative- 

commutative (AC) unification has been described in [St81] and [CL88J. These are some 

important unification algorithms but many others exist.

E-unification problems fall into the following four classes:

(1) unitary - a single mgu is present (if it exists).

(2) finitary - a finite, minimal, complete set of E-unifiers exists.

(3) infinitary - an infinite, minimal, complete set of E-unifiers exists.

(4) nullary - no minimal, complete set of E-unifiers exists.

For example, when E = 0  unification is unitary, when E = commutativity unification is 

finitary, and when E = associativity unification is infinitary.

The combination of unification algorithms does not always work as expected. For 

example, AC-unification - a combination of an infinitary (A) to a finitary (C) theory - is 

finitary; Al-unification - a combination of an infinitary (A) to a finitary (I) theory - is 

nullary[Sc86]. See Table 3.1 for more theories. For further information on the cardinality 

of E-unification problems see [JK90] or !Si89|.
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Table I. Classification of some unification problems.

Theory Type Theory Type

0 unitary Cl finitary

A infinitary ACI finitary

C finitary D1 unitary

I finitary Dr unitary

AC finitary D infinitary

AI nullary

A=Associativity; C=Commutativity; I=Idempotenecy; Dr=right distributivity; 

Dl= left distributivity; D=Dr+Dl

We can also divide up the equational theories into different classes. For example, an 

equational theory is regular if equal terms have the same variables. A theory is collapse- 

free if non-variable terms are not equal to a variable (e.g. if E = {f(x) = x} then it is not 

collapse-free). A theory is permutative if all equal terms have the same symbols. Other 

classes exist. For an excellent look at how these classes relate to the E-unification problem 

see [BHS89],

Yelick [Ye85] presented a method for combining different E-unification algorithms 

but is restricted to collapse-free, regular theories. Claude Kirchner [Ki87] developed tools 

for automatically generating some unification algorithms which is modified and improved 

in [Ch89],

Although R-unification has been shown to have a linear time solution, most E- 

unification algorithms are NP-hard (see |KN86j). For two excellent survey articles on 

unification theory and its applications see [Kn89] and [Si89],

B. WORD PROBLEMS AND COMPLETE SETS OF REDUCTIONS

The word problem is the problem of deciding whether two terms are equal under a
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given equational theory. It is well known that the word problem is in general undecidable. 

However, if we have a complete set of reductions for the equational theory then the 

corresponding word problem is a finite, decidable process. A set of reductions is a 

complete set o f reductions if every term has one and only one irreducible form and terms 

are equal under the equational theory if and only if their irreducible forms are identical.

In 1970, Knuth and Bendix [KB70] presented a process which took an equational 

theory as input, transformed the equations into reductions, and determined whether the set 

of reductions was complete. Also, if the given set of reductions was not complete new 

reductions were added in an attempt to complete the set. This type of procedure is called a 

completion procedure. Three possible outcomes are possible with such a procedure: 

success while returning the complete set of reductions; failure due to a non-orientable 

equation; or the procedure continues forever, neither completing the set nor finding a non- 

orientable equation.

Theorem 3.1 (KB70) A set of reductions is complete if the following two properties

hold:

(1) The finite termination property.

(2) The Church-Rosser property.

A set of reductions has the finite termination property if there exists no infinite chain 

of rewrites tj —» t2 -» t3 ... This implies that every term has an irreducible form.

To show that this property holds an ordering over all terms is established. Knuth and 

Bendix developed a weighting function to establish a partial ordering on the terms.

Taking from [KB70], let Wj be the weight of function symbol i. All weights must be 

greater than 0 with the possible exception of a single unary operator which may have a 

weight of 0. Let n(x,t) be the number of occurrences of the symbol x in the term t. The
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weight of a ground term t, W(t) = £  w-/t (fj, t) . Let w0 be the minimum weight of a
i*  i

ground term. Letting Vj be a variable and fj be a function symbol, the weight for an

arbitrary term t, W(t) = w0 ^  n (v-, t) + £  Wjti (fj, t) .
j> i 7*1

Two terms are ordered, s >kb t, by the Knuth-Bendix ordering if and only if one of 

the following holds

(1) W(s) > W(t) and n (vj, s) > n (vj, t) for alii; or

(2) W(s) = W(t) and n(vj,s) = n(vj,t) for all i 

and either t is a variable and s = f(.. .t...), or 

s = fj(Si,..., sn), t = fj(tj, ..., tm), and either 

(2a) i > j; or

(2b) i = j and sj = t j , ..., s^.j = t^,j, s^ > tk for some k.

Thus terms can either be identical, s >KB t, t >^b s, or s and t are incomparable. If 

the last case happens we write s # t. As we shall see, when we are given incomparable 

terms the Knuth-Bendix procedure stops with failure since we cannot orient them into a 

reduction.

Knuth and Bendix proved that the above ordering has the finite termination property 

but it is not the only ordering which has this property. Others are presented in the section 

on termination, but all must have the following properties:

(1) There exists no infinite series of terms such that tj > t2 > t3 > ....

(2) If s > t, then sa > ta for any substitution a  (i.e. substitution preserves the ordering).

(3) If s > t, then f(...s...) > f(...t...) - this assures that if a subterm is reduced then the

entire term is reduced.
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Relations which exhibit property 1 are well-founded, relations which exhibit 

property 2 are subterm preserving, and relations which exhibit property 3 are monotonic. 

To show why we want these properties, recall that when a reduction X. —> p is applied to a 

term t at position i with substitution a  then the resulting term t' = t[i <— pa]. Thus by 

property 2 we know that k a  > pa and by monotonicity we thus have t > t'. Now since all 

reductions (k —» p) e !^are ordered such that X. > p we know that any application of a 

rewrite rule will result in a simpler term. Thus if well-foundedness holds for the relation 

we see that the finite termination property holds.

It is interesting to note that the finite termination property is enough to solve the 

related word problem. You need only search the rewrite trees of the two terms for a 

common (irreducible) term - a guaranteed finite process. This is likely to be a very 

expensive task, though, so we would like to have our set of reductions be Church-Rosser 

also.

A set of reductions is Church-Rosser if all terms which are equivalent with respect 

to the reductions have a common rewriting. In [Ne42], Newman, building on [CR36], 

showed that a set of reductions is Church-Rosser if and only if it is confluent.

A set of reductions is confluent if and only if for all terms if tj —>* t2 and tj —>* t3 

then there exists a term t4 such that t2 —>* t4 and t3 —»* t4- See Figure 3.

Figure 3. Confluence.
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This means that to show confluence we must pair-wise check that all terms in a 

term’s rewrite tree have a common rewriting. If the branching factor and depth of the 

rewrite tree are great this can easily become a very time consuming task. Luckily, 

Newman showed that proving local confluence is enough to show that the Church-Rosser 

property holds.

A set of reductions is locally confluent if and only if for all terms tj, if tj —» t2 and
3(C 3ft

t j—> t3 then there exists a term 14 such that t2 —> t4 and t3 —» t4- See Figure 4.

Theorem 3.2 (KB70) The following statements are true about finitely terminating sets

of reductions.

(1) The set is complete.

(2) The set has the Church-Rosser property.

(3) The set is confluent.

(4) The set is locally confluent.

The only difference between confluence and local confluence is that local 

confluence pair-wise checks for a common rewriting only between terms which are 

rewritten once from t while confluence pair-wise checks all rewritten terms. This will, in 

most cases, greatly reduce the number of checks which must be performed and might
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make the process computationally possible except that we must prove that local 

confluence holds for the infinite set of all terms. With our next discussion we will remove 

this severe problem.

Let us look at how we prove local confluence for any term t. Let rj = j —> p j) and 

X2 = (^2 —> P2) be two reductions which can be applied to t at positions i and j, 

respectively. If i and j are disjoint subterms then confluence is trivially shown since t — 

t[i <- P i^ i] ->P t[i <— Picn; j P2O2J n<-t|j P2°2) r*<“

If, however, i and j are not disjoint let us assume, without loss of generality that j is 

a subterm of i and that rj and r2 are variable disjoint. Thus for some position k of i we 

have t/i = = t/j = t/i.k = \jP2- 11 can be shown that there exists a position k' such that

(^iOi)/k = (Xi/k')Oi. Now since rj and r2 are variable disjoint (A.]/k')tfi = (A,j/k')C2a l and 

X2CT2 = 'k2°2C5\■ Thus (A-i/kO^CTt = ^ 020! which makes a 2a t a unifier for Xj/k' and X2. 

Let 0 be the most general unifier for the two terms. Thus the terms tj = t[i <— P jOj] and t2 

= t[i <- (X jk ' <- p2a2])°l] can be written as:

t} = t[i <— p i©]

t2 = t[i <— (A-i[k' <— p2)0]-

We can see now that the only position which the two rewritten terms differ at is i. 

Thus the terms t\ and t2 conflate (reduce to a common term) if and only if tj/i and t^ i  

conflate. We prove conflation by putting the terms into their normal forms and seeing if 

they are identical.

Thus, a term t is locally confluent if and only if for all pairs of reductions r[ = 

—>Pl and r2 = X-2 —> P2

(1) the resulting terms trivially have a common rewriting, or

(2) the pair <p10, (X jk ' <- p2])©> conflates.
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These pairs are called critical pairs and the process of forming and conflating 

critical pairs is called the superposition process.

Note that neither term in the critical pair depend on the initial term t. Instead they 

are dependent only on the two reductions. Thus if we can show local confluence for one 

term we show it for all terms and our process in computationally possible since we now 

need only consider the left-hand sides of reductions for superposition.

The superposition process is the heart of the Knuth-Bendix completion procedure. 

We need only generate these critical pairs and show conflation. If the terms do not conflate 

then we try to add a new rewrite rule if the normal forms of the two terms can be oriented 

and see if the resulting set of reductions is complete. If they cannot be oriented we stop 

with failure.

A complete proof of correctness of the Knuth-Bendix algorithm is given in [Hu81J.

Forgaard and Guttag [FG84] made the Knuth-Bendix completion procedure more 

failure resistant through a simple improvement. When a pair cannot be oriented it is 

‘shelved’ in case a new rewrite rule is later found which can then allow the shelved pair to 

be oriented.

Knuth and Bendix provided many examples of their completion procedure in use. 

For example, given the following rewrite rules from group theory

(1) e*x -4 x

(2) x'*x —» e

(3 )  (x»y)*z -4  x*(y*z)

the following reductions were added to make the set complete
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(4) x‘»(x*y) -»  y

(5) x*e —» x

(6) e' —» e

(7) x" -> x

(8) x«x" —> e

(9) x*(x'*y) -> y

(10) (x*y)~ —> y~»x\

The Knuth Bendix completion procedure can be seen in Figure 5. The function 

inter-reduce puts both sides of reductions into normal form. If this makes a reduction an 

identity we can delete it. Else we re-orient it if necessary. If this is not possible we abort 

the entire completion procedure with failure. See Figure 6.

C. COMPLETE SETS OF REDUCTIONS MODULO EOIJATIONAL THEORIES

1. Complete Sets of Reductions Modulo Associativity and Commutativity

Although the Knuth-Bendix procedure is a generic procedure the authors realized 

that it could not easily handle certain identities. Commutativity cannot be oriented with 

their ordering and associativity is not handled in a completely generic way [PS81], To 

overcome these problems Lankford and Ballantyne developed algorithms to handle 

commutative axioms [LB77a], permutative axioms |LB77b], and associative- 

commutative axioms [LB77c], Their method had the drawback that it was a semi-decision 

procedure since it was not guaranteed to terminate after finding a complete set of 

reductions.

Huet developed a decision procedure using methods like Lankford and Ballantyne’s
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KB-Completion (*E)
/* £  is a set of equations of the form A. == p */ 
%j= set of reductions formed from £  
repeat

Complete=TRUE 
for all reductions A,j -> pi e ^  

for all reductions A,2 —> p2 e 
for all subterms A-i/i which are not variables 

0 = mgu of A-j/i and A,2 
if 0 exists 

tl =
t2 = A-i[i <— p2] 0 i^  
if t! = t2

tj and t2 conflate; test next critical pair 
else if ti > t2 

%J= (tl -> t2) 
inter-reduce ^
Complete = REPEAT 
goto until statement 

else if t2 > ti

%S-> (t2 ~ > tj) 
inter-reduce ^
Complete = REPEAT 
goto until statement 

else /* ti and t2 are incomparable */ 
Complete = FALSE 
goto until statement 

end if 
end if 

end for 
end for 

end for
until (Complete = TRUE or Complete = FALSE) 
retum(Complete, ‘K}

Figure 5. Knuth-Bendix completion procedure.



Inter-reduce (!̂ )

for all rj (= Xj p j) e

l l = ^ 1 ^ - lr 'l  

h  = P l ^ n )  

if tj = t2

/* do not add a reduction to ^ ew*/ 

goto for statement 

else if tj < t2

^aew -  ^uew U (t2 tj }

else if t2 < tj

^ e w = ^ o e w  U U l  t2 J 

else /* tj # t2 */

Complete=FAILURE 

exit Inter-reduce 

end if 

end for

tK.~ ‘KiCVi

end Inter-reduce

Figure 6. Inter-reduce algorithm.



20

but required that the reductions be left linear (the left-hand side of the reduction must 

contain no variable more than once) [Hu80].

In 1981, Peterson and Stickel developed a Knuth-Bendix type algorithm which 

separates associative and commutative identities from the others and then attempts to find 

a complete set of reductions modulo the associative and commutative laws [PS81 ].

Actually, their formal treatment only assumes that a finite, complete unification 

algorithm exists for the given equational theory (which does exist for associativity and 

commutativity [St81], [CL88]). A set of reductions is then attempted to be made complete 

using the unification algorithm. A set of reductions !^ is  E-complete, where *£ is an 

equational theory for which a finite, complete unification algorithm exists, if for all terms s 

and t if s = ^ ^ t ,  s s', and t -V ^ Et', where s' and t' are irreducible, then s' =£ t'. See 

Figure 7.

To prove completeness Peterson and Stickel required that the set of reductions be E- 

compatible. A set of reductions ^ i s  E-compatible if whenever t — s, there exists a 

node m, substitution o, and a reduction X —> p € R such that t/i =,LA.O, s = t s , s  —> ^ t , 

and t' =£ t[i <- pa] for some terms s' and t'. See Figure 8.
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Critical pairs for R and E are defined similar to that in [KB70], Let —> p j and

X2—> P2 be reductions in If some subterm k of E-unifies with using substitution a ,

then <X,i(k <- p2]o, Pi<J> is a critical pair.

A set of reductions is E-terminating if there exists no infinite sequence of E- 

rewrites. This leads us to the theorem used to prove completeness.

Theorem 3.3 (PS81) Let ^  be an E-compatible set of reductions. If !^ is  E- 

terminating, then l^ is  E-complete if and only if for every critical pair <s,t> there 

exists terms s' and t' such that s —>^s', t —>^t', and s' =E t'.

Peterson and Stickel went on to show necessary conditions for E-compatibility and 

more importantly to show that when 'E is an associative-commutative theory then E- 

compatibility holds for all sets of reductions !^when certain extensions are added to
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Their algorithm for proving completeness is given in the paper and varies somewhat 

from the description given in the above theorem (e.g. only overlapping critical pairs need 

be checked). With this algorithm they produced complete sets of reductions for free 

commutative groups, free commutative rings with a unit element, distributive lattices, etc. 

Attempts were also made using incomplete associative unification algorithms with some 

success.

While success was gained by Peterson and Shekel, their method was not the most 

general treatment of the area. Indeed, their title said it was for “some equational theories”. 

In particular to show E-compatibility the axioms in £  had to have identical unique 

variables (i.e. permutative axioms with no repeating variables on a given side). Thus 

axioms such as x«x = x, x + 0 = x, and h(x,x,y) = h(y,x,x) could not be in £ . Jouannand 

and Kirchner removed these restrictions in their paper [JK86],

2. Complete Sets of Reductions Modulo an Equational Theory

Jouannand and Kirchner developed a general method for finding a complete set of 

reductions modulo an equational theory. Like with Peterson and Stickel’s method the 

identities are split up into two sets. The first set !^,is a set of reductions and the second set 

£  is an equational theory for which a finite, complete unification algorithm exists.

Let us now build up their results starting with some definitions. A complete set o f 

critical pairs is the set of all critical pairs using the complete set of E-unifiers. Note that 

these pairs are formed from £•

%\$> Trconfluent if and only if for all terms t, tj, and t2 if t — tj and t —>*̂  t2 

then there exist terms Sj and S2 such that t j —» * Sj, t2 kje s2’ ar*d sj S2. See Figure

9.
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Figure 9. E-Confluence.

!^is locally ‘E-confluent if and only if for all terms t, tj, and t2 if t — tj and 

t— t2 then there exist terms sj and S2 such that tj — Sj, t2 — ^  ar*d S] =£ S2- 

See Figure 10.

Note the similarity between local E-confluence and Theorem 3.3. A comparison of 

the two will be discussed later.

Let T b e  the equational theory associated with ^ i s  E-Church-Rosser if and 

only if for all terms tj and t2, if tj =rpJ <£ *2 then there exist terms Sj and S2 such that 

t i sh  t2 s2, and sj =£ s2. See Figure 11.
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From the previous discussion we might expect that E-termination and (local) E- 

confluence to imply E-Church-Rosser but in fact another property is needed to show this. 

This property is (local) coherence.

The reason why E-confluence is insufficient is that it only checks critical pairs 

formed between two reductions in What we need to add are critical pairs between 

reductions in ^ a n d  equations in *E- which coherence will do for us.

!^is coherent modulo £  if and only if for all terms t, tj, and t2 if t —»+^.£ tj and 

t=£t2 then there exists terms S\ and S2 such that t\ ->*2̂ 2; s j, t2 —»+^  S2, and sj =£ S2- See 

Figure 12.
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%js locally coherent modulo *E if and only if for all terms t, tj, and t2 if t — tj 

and t t2 then there exists terms and S2 such that tj — sj,  t2 — S2, and 

S1=ES2- See Figure 13.

Figure 13. Local coherence modulo E.
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Theorem 3.4 (JK86) The following properties are equivalent for an E-terminating set

of reductions

(1) 3Jjs E-Church-Rosser.

(2) ^ i s  E-confluent and coherent modulo E.

(3) ^ i s  locally E-confluent and locally coherent modulo E.

(4) All E-critical and coherence pairs of !^and Ereduce under ^,to E-identities.

The coherence property in the above equivalences can actually be removed when 

the equations in E are permutative. Christian [Ch89] showed this to be true in his 

dissertation by showing that E-confluence implied coherence for permutative equational 

theories and sped up his HIPER implementation by restricting it to permutative theories, 

thus not having to check for coherence. We will look at Christian’s HIPER system in more 

detail in Section VII since our system, HIPER-extension, is a modified version of this fast 

completion system.

With the above, the relationship of Theorem 3.3 to the E-confluence property can be 

appreciated. Since Peterson and Stickel worked with associative and commutative theories 

and these are permutative we would expect the results to coincide (that is, the coherence 

property to be removed).

Jouannand and Kirchner developed a completion procedure, seen in Figures 14 and 

15, which can find complete sets of reductions modulo an equational theory for more 

equational theories than that of [PS81] but it too has the problem that a finite, complete 

unification algorithm has to be provided for the equational theory.

The question of how we can prove completion modulo an equational theory which 

generates infinite congruence classes has been addressed by Bachmair and Dershowitz 

[BD89] but Baird [Ba88] noted, of the earlier version [BP87], that the finite termination
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E-Completion (% T )

/* £  is the equational theory for which a finite, complete unification algorithm exists;

!^is a set of reductions */ 

for all reductions r = A, -» p e ^

Pairs = Compute-critical-pairs(r, %, *£)

Start: for all <t,,t2> e  Pairs 

*1 = 

h  -

if t, = t2

tj and t2 conflate; goto Start 

else if tj > t2

£ =  (t,->ta)

inter-reduce

Pairs = Pairs u  Compute-critical-pairs(r,{t, —> t2}, 0 )  

else if t2 > tj

<K±J (t2 —> tj) 

inter-reduce

Pairs = Pairs u  Compute-critical-pairs(r,{t2 —> t , }, 0 )  

else /* t] and t2 are incomparable */

Stop with FAILURE 

end if 

end for 

end for

Stop with SUCCESS; Return ^

Figure 14. E-completion procedure.
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Compute-critical-pairs (r = A, -> p, ^  *£)

Pairs = 0

for all /  = A,'->p' e  ^  

for all i g  sdom(A,)

if not (r' = r and i = 0  (meaning the top-level term )) then 

for all 8 which are E-unifiers of A/i and A'

Pairs = Pairs u  (<8(p), 8(A.[i <- p'])>) 

end for 

end if 

end for 

end for

for all i g  sdom(A,) 

for all A.' =  p ' g  £

for all 5 which are E-unifiers of A/i and A/

Pairs = Pairs u  {<5(p), 8(A,[i <— p'])>} 

end for

for all 8 which are E-unifiers of A/i and p'

Pairs = Pairs u  |<8(p), 8(A.[i 4- A'])>} 

end for 

end for 

end for

Return (Pairs)

Figure 15. E-critical pair procedure.
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property needed in their model is usually lost, though, in their treatment. Baird then 

looked at the associative-commutative-identity equational theory. This theory generates 

infinite congruence classes, but Baird built an ACI-completion procedure which is finitely 

terminating.

For a list of known complete sets of reductions see [Hul81],
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IV. ORDERINGS AND TERMINATION

In Section III the problem of proving termination was not directly addressed. This 

section will consider E-termination both when E = 0  (in which case we will talk simply of 

‘termination’) and E * 0 .  First we will look at the case when E = 0 .

A. TERMINATION

In Section III we gave one ordering which had the finite termination property - the 

Knuth-Bendix ordering - but there are many other orderings which could have been used 

instead. The existence of other orderings is quite useful since a set of reductions could be 

found not to be complete with one ordering but found to be complete with another 

ordering. Thus different efficiently implemented orderings which have the finite 

termination property are needed when searching for a complete set of reductions.

Termination is normally proved by using the following theorem [MN70]:

Theorem 4.1 (MN70) A set of reductions ^ i s  terminating, if there exists a well- 

founded ordering > over all terms such that

t > s implies f(.. . t . ..) > f( .. .s ...) (monotonic) 

for terms t, s, f( .. . t . ..), f ( .. .s ...).

and if \  -»  p e  !^then Xg  > po for all substitutions o  (substitution preserving).

Well-foundedness was defined in Section III.

Dershowitz [De79] presented an important class of orderings called simplification 

orderings. An ordering is a simplification ordering if it is a reduction ordering which has 

the subterm property (i.e. f( ...t...)  > t, for all terms t). An ordering is a reduction ordering 

if it is monotonic. The Knuth-Bendix ordering is a simplification ordering.
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A property of a simplification ordering is that it contains the embedding relation. Let 

'Ht) be the set of all variables in t. If s and t are terms then s is embedded in t, written s ** 

t, if and only if

(1) s e  1^t), or

(2) s = f( .. .Sj...) and t = f( .. .tj...) and s, tj for any i, or

(3) s t; for tj a subterm of t.

Example:

Note that a simplification ordering > does not require > to be well-founded. Despite 

this Dershowitz proved the following theorem:

Theorem 4.2 (De79) A set of reductions ^term inates if there exists a simplification 

ordering > such that

for all X -»  p e !^then Xa > p a  for all substitutions a.
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To help in proving termination for other orderings, Dershowitz also showed the 

following [De79]:

Theorem 4.3 (De79) A set of reductions R terminates if there exists a quasi

simplification ordering > such that

for all A. —> p g ^ th en  A.o > pa  for all substitutions a.

An ordering is a quasi-simplification ordering if it is

(1) transitive,

(2) reflexive,

(3) subterm preserving, and

(4) f( .. . t . ..) > t, for all terms t.

Dershowitz presented a class of simplification orderings in his paper called 

recursive path orderings. The recursive path ordering, >[po, is defined as follows: If > is a 

partial ordering of the function symbols then s = f( s ,, ..., sm) >[po t = g ( t , , ..., t j  if and only 

if

(1) f = g and {s,,..., s j  »ipo {tj,...^}, or

(2) f > g and s >ipoti, for all i in {1 ,..., n}, or

(3) f ^ g  and Sj ^  tfo r some i in {1 ,..., m}.

The relation ^  is a multiset ordering defined as M »rpo N if and only if M *  N and for all 

y e N - M there exists an x e  M - N such that x >[po y is a partial ordering.

The recursive path ordering can sometimes orient equations that the KB-ordering 

cannot. For example, if has a weight of 0 then (-x) + (-y) = y + x cannot be ordered by 

the KB-ordering but can be ordered left to right by the recursive path ordering.



33

Another simplification ordering which we are concerned with is the lexicographic 

path ordering (lpo) [De87]. This ordering will be discussed in more detail in the next 

section so we will only briefly state its definition here.

Let s = f ( s j , s m) and t = g(tj, ...,tn), s >1̂  t if and only if

(1) Sj > ^  t for some i e  { l , . . . ,m } .

(2) f  > g and s >lpo tj for all j e  { 1 ,..., n }.

(3) f = g and for some k e  { 1 ,..., n}, sj = tj for all i < k, sk >lpo tk, and s >lpo tj when 

k < i  <n .

Other orderings include the recursive decomposition ordering [Le82], and the path 

of subterms ordering [P178]. For surveys on orderings see [De87] and [DJ90].

B. E-TERMINATION

Lets now look at E-termination where E  * 0 .  A definition of “E-termination is: !^is 

E-terminating if and only if there exist no infinite sequence of terms tj, t2, t3, ... such that 

tj =£ t i '  —>3^2 =<£ t-2 “ 5*3^3 =£ l3 •••• Note that —>3̂ 2: ^  =£°~>3̂  since in —>3̂ 2; equations 

can only be applied on a term at or below the subterm !^is applied while equations can be 

applied anywhere in =£°—̂

Example:

Let {x+e —> x} and E  = {x+(y+z) = (x+y)+z} then y+(e+x) is in normal form for

—>3̂ 2: but is equal to y+x using

E-termination has been shown using polynomial orderings [HO80] and associative 

path orderings [BP85] but are limited to associative, commutative, and associative- 

commutative theories. Christian [Ch89] also gives two new orderings for simple, linear, 

permutative theories. A more general investigation of the problem of E-termination was
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given in [JM84]. Though no orderings were given in the paper, general criteria were given 

for (E-termination to hold for a relation.

Let us look at the results of [JM84]. First, restrictions for E-termination to hold were

noted.

(1) For equations X == p, = 'Ftp). This prevents the following from happening. 

Given f(x,y) = g(x) and I(x) -4- e then f(x,y) -4  f(x,l(x)) = g(x) = f(x ,y )....

(2) If a term s has more than one occurrence in t then equations cannot be of the form s 

== t. This prevents the following from happening. Given f(x) = g(f(x),f(x)) and 

f(x) -4  e then f(x) = g(f(x),f(x)) -4  g(e,f(x)) = g(e,g(f(x),f(x))....

For the rest of this discussion let -4 be a rewriting relation such that — -4 c  

=£°—»;£>=£. The relation -4 is E-commuting if and only if for all terms t, t2, and Sj if t2= ^ t 

and t —»+ si then there exists a term S2 such that t2 —>+ S2 and S2 =£Sj. See Figure 17.

+

_
'£
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+

' ' 1

Si _ _  s 2 
•E

Figure 17. E-Commutation.

The relation -4  is locally E-commuting if and only if for all terms t, t2, and Sj if 

t2=, E t and t —> Si then there exists a term S2 such that t2 -4+ S2 and S2 =£ Sj. See Figure

18.
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Theorem 4.4 (JM84) For R, a set of reductions, and E, a set of equations, R is 

£-terminating if -» is terminating and (locally) E-commuting.

Note that commutation is stronger than coherence and thus:

Theorem 4.5 (JM84) The relation —» is £-Church-Rosser if and only if it is 

terminating, (locally) £-confluent, and (locally) £-commuting.

If —> is not E-commuting then E-termination can still be shown if we can find 

another relation > which is E-commuting with — A relation > is E-commuting with —> if 

and only if > contains the embedding relation and for all t, t2, and sj if t2 =.L t and t -» S] 

then there exists a term S2 such that t2 > S2 and S2 =£Sj. If such a relation exists then is 

£-terminating. See Figure 19.

Figure 19. > is E-Commuting with —
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For another method of proving termination of rewriting systems see |DM79], in 

which Dershowitz and Manna use multiset orderings for its termination proofs and also 

present other types of orderings
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V. SOME EXTENSIONS TO COMPLETION 

A. UNFAILING COMPLETION

An alternative to standard KB-compIetion is the notion of unfailing completion. In 

this method un-orientable equations can be handled in such a way as to guarantee the 

existence of a decision procedure for the associated word problem, if one exists.

The KB-completion procedure will not always find a complete set of reductions 

when one exists since the sequence of attempted completion can affect its outcome. An 

example taken from [De89] in which k > m, k > n, m # n, m > c, and n > c (where m # n 

means that m and n are incomparable through the ordering >) has a sequence which forms 

a complete set of reductions with

({k = m, k = n, f(k) = c}, (f(m) -» m}) =>

({k = n, f(k) = c), {k —> m, f(m) —» m}) =>+

({m = n, m = c}, {k —» m, f(m) —> m}) =>+

({m = n}, {m —> c, k —> m, f(m) —» m() =>+

({f(c) = c, c = n}, {m —» c, k —»c}) =>+

(0 , {f(c) —» c, n —» c, m -» c, k —» c }) 

and one which does not form a complete set of reductions

({k = m, k = n, f(k) = c }, {f(m) —> m )) =>

({k = m, f(k) = c }, {k —> n, f(m) —> m }) =>+

((n = m), (f(n) —> c, k —> n, f(m) —> m).

Thus a backtracking algorithm might be useful but sometimes the initial problem 

fails so backtracking over sequences will not help. Function symbol introduction (see



38

[KB70]) sometimes helps but will not work on many types of permutative theories such as 

commutativity. If we can totally order the ground terms with a reduction ordering, which 

we always can, we can handle un-orientable equations by carrying them along in an 

unfailing completion procedure.

Hsiang and Rusinowitch presented such a completion procedure which does not fail 

in their 1987 paper [HR87|. Their results build on Huet’s [Hu81| who produced semi

decision procedures for the word problem for non-confluent rewriting systems. His idea 

was that given an equational theory E and an equation s = t then letting s' ^  t' be the 

skolemized inequality of the negation of s = t then s = t is a result of E if and only if the 

KB-completion procedure eventually reduces s' ^  t' to some r ^  r. Skolemization of 

not(s=t) results in s' and t' being ground terms since variables are replaced by skolem 

constants in s' and t'.

Hsiang and Rusinowitch required that a ground-linear simplification ordering exist 

on the terms T for their unfailing completion procedure. An ordering is a ground-linear 

simplification ordering > if it is an ordering such that

(1) it has the subterm property (f(.. .t ...) > t),

(2) it is monotonic (if s > t then f(...s...) > f(...t...)),

(3) it is substitution preserving (if s > t then so > to), and

(4) > is total on the set of ground terms.

For their method the notions of critical pairs and rewriting are slightly changed. 

Given two equations s = t and I = r if i E sdom(s) and a  is a mgu of s/i and 1 and

(1 ) rc r^ lc , and

(2) to  £  so,

then <to, sfi <— ro]> is an extended critical pair.
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The new extended superposition process now must generate these extended critical 

pairs. We should note that if the equations s = t and 1 = r are orientable then (1) becomes 

la  > ra  and (2) becomes so  > to and the process is the same as that for KB-completion.

Reductions are modified so that s—»t if there exists an equation 1 = r such that 

s/i = la, la  > ra , and t = s[i <— ra] for some i €  sdom(s) and some substitution a. Note 

that we do not require 1 > r, only la  > ra.

There are three basic steps in the unfailing completion procedure.

(1) Generate extended critical pairs and put into normal form - using existing 

equations. If the pair does not conflate, add it as a rewrite rule if possible.

(2) Reduce s' ^  t' using the new equation, if possible.

(3) If r ^  r is generated, then use r ^  r and x = x to produce a contradiction.

Assuming that the above procedure (UKB) is fair then the following theorem holds:

Theorem 5.1 (HR87) Given E and s = t, s = t is a result of E if and only if UKB, 

applied to E u  (s' ^  t'), produces a contradiction.

This says that we can prove s =E t by proving a contradiction in UKB for E u ( s '^  t').

To work on word problems with the above we need to know the following

Theorem 5.2 (HR87) If all equations are orientable and the system is confluent then 

the set of reductions is complete.

But if we have non-orientable equations we can use this

Theorem 5.3 (HR87) If the system is confluent then the set of equations is complete 

on ground terms.

Confluence in the above two theorems being modified for our new ideas on reductions and
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critical pairs.

If Theorem 5.2 holds the word problem can be solved as with the KB-completion 

procedure, but what about if only Theorem 5.3 holds - i.e. only ground completeness 

holds. For this case we see that unique normal forms do not always exist but that a linear 

decision procedure exists to solve the word problem even for non-ground terms. The 

procedure is listed below in Figure 20.

Solve-Word-Problem (E, s = t)

/* E is our ground complete set of equations; s = t is our problem */

(s' ^  t') := Skolemize( not(s = t))

/* s' and t' have unique normal forms since they are ground and E is ground 
confluent */

s' := s 'l  

t' := t ' i  

if s' = t' then 

return (TRUE) 

else

retum(FALSE) 

end if

end Solve-Word-Problem

Figure 20. Solving word problems with ground complete systems.

Other treatments of unfailing completion appear in [BDP89| and |MN90|.

B. COMPLETION WITH CONDITIONAL REWRITE RULES

Conditional rewrite systems have been investigated for application in the area of 

abstract data type specification. We will look at it now to note how it relates to the 

constrained systems described in Section VII. A (positive-)conditional equation is of the
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form:

s = t if A 5) — .... AJ„ = t„ n n

where n > 0 and where s = t can be thought of as the result and

II > 05 to CIIC03<<C4II the conditions. Given s = t if

-  /[ a j 2 -  t2 a  . . .  A S n = tn , u u[j <— t2], if u/j =  so for some substitution o 

and Sj(7 <-> * q a  for all i.

A conditional rule is a conditional equation in which the right-hand side is oriented 

(e.g. s —> t if s { = t\ a  s2 = t2 a  . . .  a  sn = tn ). A set of conditional rules is called a 

conditional rewrite system. We define conditional rewriting as follows: u —> u[j <— rol, if 

u/j = la, 1 —> r if c is a conditional rule, and co meets the test for the conditions. This test 

can be one of several and the different types will be listed below.

3fc

If s and t are joinable, written s i t ,  then s —> v and t —> v for some term v. The 

notions of irreducibility, termination, and (local) confluence are the same as before except 

that they are defined relative to the new relation —>.

Seven different types of tests for conditions are listed in |DOS88]. In the below a  is 

the substitution mentioned in the rewriting relation. The different types are:

(1) Semi-equational systems

- Conditions s, = r, a j 2 = t2 a  . . .  a  sn = tn are checked for truth by seeing 

if SjG tjG for all i.

(2) Join systems

- Conditions Sj = t j a  s 2 = t2 a  . . .  a  sn = tn are checked for truth by seeing 

if SjO i  tjO for all i.



42

(3) Normal-join systems

- Conditions s l = t, a  s2 = t2 a  ... A sn = tn are checked for truth by seeing 

if SjO i ! tjC for all i. We write Sj i ! tj is the same as Sj4-tj except there must also 

exist a term v which is irreducible such that both Sj and tj both rewrite to v.

(4) Normal systems

- Conditions 5, = t, a s 2 = t2 a ••• a sn = tn are checked for truth by seeing 

if SjCt — tja for all i. We let Sj —>' tj, if Sj t, and tj is an irreducible ground 

term.

(5) Inner-join systems

- Conditions = t x a s2 = t2 a ••• a sn = tn are checked for truth by seeing 

if Sj a  | ' n tjCt for all i. We write Sj 4,n tj if sj and tj are joinable by innermost 

rewriting. Innermost rewriting requires that rewriting can occur only if all 

subterms are irreducible.

(6) Outer-join systems

- Conditions = t\ a  s 2 = t2 a  . . .  a  sn = tn are checked for truth by seeing 

if SjO i out tja  for all i. We write Sj 4oul tj if s; and tj are joinable by outermost 

rewriting. Outermost rewriting requires that rewriting can occur only if no 

superterm can be reduced.

(7) Meta-conditional systems

- Other types of conditions are allowed in the condition such as x e X, s > t, s —> t, 

etc.

Join systems are the types of systems most commonly used.

Critical pairs between conditional rewrite rules Sj = tj if cj and S2 = t2 if C2 are
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formed as we would expect: <tjG = S j O [ i  <- t2Gl i f  (cj a  c2)a> is a critical pair if 

sj/i = s2a. The critical pair is an overlay if i = (). A critical pair s = t if c is feasible if
4c

co—> true for some substitution o. A critical pair s = t if c is joinable if for all feasible 

solutions so ito .

For unconditional rewrite systems we have, from Section III, that the system is 

confluent if and only if every critical pair is joinable. To prove confluence for the various 

types of conditional systems Dershowitz, et. al. |DOS88| showed the following are 

sufficient conditions:

(1) Semi-equational systems

- Termination and all critical pairs are joinable.

(2) Join systems

- Termination and all critical pairs are overlays and joinable.

(3) Inner systems

- Termination and all critical pairs are joinable.

Let E be an equational system and R be a rewrite system. E |— s = t if and only if 

s <-> * t is provable from E. R (— s i t  means that s and t are joinable using R. E and R 

have the same logical strength if E |— s = t if and only if R (— s i t .  If one system is 

stronger than the other then if the weaker system is complete then so is the stronger 

system. Dershowitz, et. al. [DOS881 gave the relationships between the various systems 

and we depict this in Figure 21. In the figure, A —» B if A is stronger that B, in general.

Confluency conditions for some of the other systems are also presented in the paper. 

For a look at conditional rewriting when restricted to left-linear systems without any 

critical pairs see [BK86].
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For another look at conditional rewrite systems see |ZRX5|.
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VI. SOLVING INEQUALITIES USING LEXICOGRAPHIC PATH ORDERINGS

Eor the next section on constrained completion we need to have method for deriving 

constraints for a given inequality problem. That is, we want to derive a constraint using an 

ordering which tells us when we can apply a reduction (e.g for a commutativity axiom, 

f(x,y) > f(y,x), the constraint using the lexicographic path ordering is x >y)-

To do this we first need to state some definitions. If s and t are terms, a term 

inequality is a relation of the form s > t; term equalities are relations of the form s = t. A 

term problem consists of term equalities, term inequalities, and the logical operators not 

(—i), and ( a ) ,  and or ( v ) .  In the discussion which follows > will be interpreted as the 

lexicographic path ordering.

Comon [Co90] studied this problem of term inequalities to apply to unfailing 

completion by showing the existence of a ground substitution for a term inequality is a 

decidable problem. This is useful in the generation of critical pairs. Comon’s treatment of 

the subject is well-presented but we will look at Peterson’s work |Pe90al since his is 

oriented towards a machine implementation and is the work which our implementation is 

based upon.

Some definitions from [Pe90a] are: A simple term (in)equality is an (in)equality of 

the form x = t (x > t) where x & V and x £  Var(t). A simple component is T (true) or a 

logically independent conjunction of simple term inequalities. A component is a pair 

<0,a> where 0 is a substitution, a  is a simple component, and if (x/t) €  0 then 

x £  K j V a r  (c) where c is an inequality in a . A partition is a disjunction of components
C

in which the disjuncts are pair-wise disjoint (i.e. C| a  C2 1= F (false)).

Peterson [Pe91 b] gives thirty-four different rules to produce a constraint for a given 

term inequality based on the lexicographic path ordering (see Section IV for its definition).
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Solve-Term-ProbIem(P,C,p,E)

/* we will abbreviate this by STP(P,C,p,E) */

(1) STP(T, C, p, E) -4  T

(2) STP(P, T, T, T) -4 T 

(3a) STP(P, F, p, E) -> P 

(3b) STP(P, C, F, E) -> P 

(3c) STP(P, C, p, F) —> P

(4) STP(P, C, T, T) -> P v  C

(5) STP(P, C, T, E) -> STP(P, C, E, T)

(6) STP(P, C, p Aq, T) -4  STP(P, C, p, q)

(7) STP(P, C, p  a  q, E) - 4  STP(P, C, p, q a  E)

(8) STP(P, C, p v  q, E) —> STP( STP(P, C, p, E), C, q, E a  ( ip ) )

(9) STP(P, C, iF ,  E) -4 STP(P, C, E, T)

(10) STP(P, C, iT ,  E) —> P

(11) STP(P, C, u p ,  E) -4  STP(P, C, p, E)

(12) STP(P, C, i ( p  a  q), E) -4  STP(P, C, i p  v  i q ,  E)

(13) STP(P, C, i ( p  v q), E) -4 STP(P, C, i p ,  i q  a E)

(14) STP(P, C, i ( p  = q), E) -4 STP( STP(P, C, (p > q), E), C, q > p, E)

(15) STP(P, C, i ( p  > q), E) -4  STP( STP(P, C, (p = q), E), C, q > p, E)

For rules 16-18, let 0 be the mgu of p and q

(16) if 0 does not exist, then STP(P, C, p = q, E) -4 P

(17) STP(P, T, p = q, E)—»STP(P, (0,T), T, E0)

(18) STP(P, (<|),a), p = q, E)->STP(P, (0<>,T), a0 , E0)

(19) if u G Var(v), then STP(P, C, u > v, E) -4 P

(20) if v e  Var(u), then STP(P, C, u > v, E) -> STP(P, C, E, T)

(21) if u or v is a variable and C => u > v, then STP(P, C, u > v, E) —> STP(P, C, E, T)

(22) if u or v is a variable and C => v > u, then STP(P, C, u > v, E) -4 P

(23) if u or v is a variable, then STP(P,C,u > v,E) -4 STP(P,AndTogether(u >v,C),E,T)

Figure 22. a.) Procedure for solving term problems (continued).
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For rules 24-26 let u = f ( u i , u n) and v = g(vi, ...,vn)

(24) if f > g, then STP(P, C, u > v, E) -»  STP(P, C, (all u (vj, . . vm)), E)

(25) if g > f, then STP(P, C, u > v, E) —» STP(P, C, (some (uj, un) v), E)

(26) if f  = g, then STP(P, C, u > v, E) -4

STP( STP(P, C, (lex u ( u j , u n) ( v j , v m)), E),
C, (lexsome v (v,) (uj) (v2, v n) (u2, un)), E)

(27) STP(P, C, (all u nil), E) -> STP(P, C, E, T)

(28) STP(P, C, (all u ( v , , v m)), E) -> STP(P, C, (u > v,) a  (all u (v2, vm)), E)

(29) STP(P, C, (some nil v), E) -> P

(30) STP(P, C, (some ( u j , u n) v), E) ->

STP( STP( STP(P, C, (u! = v), E),
C, (ut >v), E),

C, (some (u2, u n) v)), E a ( v  > uj))

(31) STP(P, C, (lex u nil nil), E) -»  P

(32) STP(P, C, (lex u ( u j , u n) ( v j , v n)), E) ->

STP( STP(P, C, (u, > v j) a  (all u (v2, ...,vn)), E),
C, (uj =  V i )  A  (lex u (u2, un) (v2, v n), E)

(33) STP(P, C, (lexsome v ( v j , v n) ( u j , u n) nil nil), E) —■» P

(34) STP(P, C, (lexsome v ( v j , ..., v ^ )  (uj, . . . ,11̂ ! )  (vk, ..., vn) (uk, ..., un)), E) -> 

STP( STP( STP(P, C, uk = v, E a  (lex v (v j , . . . ,  vk. ,) (u j , ..., uk. i))),

C, (uk > v), E a  (lex v ( v j , ..., v ^ )  (ub ..., uk.j))),

C, (lexsome v (vb  ..., vk) (uj, ... uk) (vk+1, ..., vn) (uk+i, ..., un)), E)

Figure 22 (continued), b.) Procedure for solving term problems.
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These are listed in Figure 22. The initial input is STP(F,T,p,T) where p is the term 

problem. In general, STP(P,C,p,E) has parts P, for the accumulating partition; C, for 

simple equality and inequality components; p, for the current part of the problem; and E, 

for the rest of the problem. In rule 23, AndTogether(u > v, C) is (u > v) a  C reduced to 

make it logically independent. Peterson also gives a method to determine if a  => s > t in 

his paper [ Pe91 b].

Examples using STP (in the below • > +):

- For the term problem x • (y +z) > x + (z • y), the constraint is (x = z) v (x > z).

- For the term problem x + (y • z) > y + (z + x), the constraint is (y > x) v (x = y) v 

(x > y a  z > x) v (x = z a  z > y) v (x > y a  x > z).

- For the term problem, x • (y • (x • z)) > x • (x • (y • z)) the constraint is y > x.

Peterson also wished to keep the constraints in a reduced form so he performed two 

operations on constraints gotten from the STP procedure. First, he ‘factored’ the 

constraints. A factor of a component C is a simple (in)equality E such that C => E. The 

process of factoring E out of C gives a component D such that E a  D = C and D is 

logically independent relative to E. This process is shown in Figure 23. The actual code 

for this is written in LISP (see [St84]) for use with many of Christian’s HIPER functions 

[Ch89].

To factor a component P we take a factor G and get Pj v  (G a  P2) where Pj is made 

up of components which G does not factor while P2 has G as a factor. If P2 reduces to true 

(i.e. it is of the form (s > t) v  (s = t) v (t > s)) then we are left with P jv  G and we try to find 

more factors. Else, we try to factor P2 further with factor G2 giving Pj v (G a  P21) v 

(G a  G2 a  P22) where P2j is not factored by G2 and P22 is. Factoring in the presence of G 

is slightly different, it means that we find a G2 such that G a  C => G2 and P22 is made up 

of components such that G a  G2 a  P22 => C and P22 is logically independent relative to
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factor-out(E,D)
/* This is initially called with factor(E,C) */ 

found = false

for all d such that D=d a  D' for some D' 

if Dr a  E => d then 

found = true 

break from loop 

end if 

end for

if found = true then 

return factor-out(E,Dr) 

else

return (D) 

end if

Figure 23. Factor-out procedure.

G a  G2. The term P21 is the conjunction of the components of P2 which are not factored 

by G2 in the presence of G.

The benefit of this factoring can be seen in the below examples which significantly 

reduces the complexity of constraints.

Examples using the factor procedure (in the below • > +):

- For the term problem x + (y • z) > y + (z + x) the constraint from STP is (y > x) v

(x = y) v (x > y a  z > x) v (x = z a  z > y) v (x > y a  x > z). After factoring this 

constraint is simply T (meaning that the constraint is unconditionally applied).

- For the term problem x + (y + z) • x > z + (y + x • z) the constraint from STP is

(z > x) v  (x = z) v  (x > z a  y > x) v (x = y a  y >  z) v  (x = y +  z) v (x >  y a  x >  z a  

y + z > x). After factoring this constraint is (x = y + z) v (y + z > x).
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Peterson also presents a normal form for constraints in [Pe90b] to further simplify 

the constraints and the process is similar to that in [Co90], The following steps will be 

referred to as the normalform function in the next section. First, NOTs are eliminated 

using the usual equalities from logic

(1) -.T  —> F.

(2) -,F  -4 T.

(3) i iX -4 X.

(4) i(x > y) -> (x = y) v (y > x).

(5) —i(x a  y) —> —ix v -iy.

( 6 )  —i(x v y) —> -ix a  -iy.

Then the constraints are put in disjunctive normal form using

(1) x a  (y v z) —> (x a  y) v (x a  z) , and

( 2 )  (x v y) a  z —> (x a  z) v (y a  z).

Next, an equation is made for each disjunct (i.e. s = t if Cj v c2 v ... v cn => s = t if 

Cj, s = t if c2, s  = t if cn). The reason for this will be explained in the next section. The 

constants T and F are removed now with

(1) x a  T —> x, and

(2) T a  x -» x, and

(3) F a  x —> F, and

(4) x a  F —> F.
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Equalities are removed next with

(1) (s = t) a  C —» F if s and t do not unify, and

(2) (s = t) a  C —» Cct if s and t have mgu a.

Again the justification of this will be given in the next section. Notice that now the 

constraint is either T or a conjunction of inequalities. We will now eliminate redundancies 

(x > y => x»l > y), tautologies (x*l > x => T), inconsistencies (x > y a  y > x => F), and

add transitive implications (x > y a  y > z =4> x > z). This function is shown in Figure 24.

The initial input is greater-than-normal(0,C).

greater-than-normal(c t ,02)
if C2 = 0  then return cj 

/* else C2 = s > t a  C */

while ((s > t) = u[i <— 1] > u[i <— r] AND i ^  ()) 

s > t = 1 > r 

if t/i = s then return F

if s/i = t then return greater-than-normal(C],c)

if u/i = t for some s > u £  Cj then return greater-than-normal(ci,c)

if s/i = u for some u > t £  Cj then return greater-than-normal(ci,c)

if s > u G Cj AND t/i = u then cj = cj - (s > u) I

if u > t e  ci AND u/i = s then ci = ci - (u > t)

if u > v G ci AND v/i = s then C2 = C2 u  (u > v[i <— t]}

if u > v G ci AND t/i = u then C2 = C2 u  {s > t[i <— v ]}

return greater-than-normal(ci a  (s > t), c)

Figure 24. Normal form procedure.

Peterson mentions that he has no proof that this function always terminates but that 

it has always done so for him. Our experiments concur with his and agree that it will likely
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always do so. A proof of this though would be desirable. More interestingly, though, the 

above methods for reducing constraints does not guarantee that all inconsistencies are 

found. In particular if a > b and a and b are adjacent then (x < a) a  (x > b) should reduce to 

false but this will not be found with the above method. Comon gives a method to solve this 

oversight [Co90] but his solution makes the problem NP-hard. Since Peterson’s 

completion procedure (and thus ours) does not seriously degrade by not checking for this 

it is correct not to search for these inconsistencies in the implementation.
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VII. COMPLETE SETS OF REDUCTIONS WITH CONSTRAINTS

The biggest problem with completion procedures modulo an equational theory is the 

requirement that a finite, complete unification algorithm exist for the equational theory. 

These unification algorithms must normally be created as they are needed and thus much 

time must be spent creating and optimizing these algorithms (along with matching 

algorithms) before completion can even be attempted. This can be a daunting task when it 

is not known whether or not we will find a complete set of reductions and especially if the 

algorithms are so specialized that it is unlikely that they can be used on other problems 

too. Although specialized unification algorithms will normally work better when they 

exist, we will eliminate the need for specialized unification algorithms by putting 

constraints on the rewrite rules.

A constraint will restrict the applicability of a rewrite rule but not its truth. For 

example, the constraint for commutativity, f(x,y) —» f(y,x), is x > y. By writing our rewrite 

rules as f(x,y) —» f(y,x) if x > y we can restrict the application of it as long as we can 

determine if the constraint is true. We avoid rewriting f(a,b) -» f(b,a) —> f(a,b) —» ... since 

either a > b or b > a and thus only one of these rewrites can be performed. Thus we can 

orient identities which could not be oriented by the KB-ordering (and all of the other 

orderings we have studied). We are then not forced to use a specialized unification 

algorithms ever since, from Section VI, we showed that every identity is orientable using 

the lexicographic path ordering (the ordering we will use).

Note that constraints are not the same as conditions since constraints only restrict 

when we can apply the reduction while conditions tell us when the identity is true. Using 

our commutativity example, we know that f(x,y) = f(y,x) at all times while the constraint 

on when we apply it is if x > y. But if we have the equation x + y = x (under normal 

algebraic rules), we see that the condition on this rule is that y = 0. When we define
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constraints formally we will see that their forms also differ since conditions are only 

disjunctions of equations while constraints allow a wider selection of symbols. Thus 

conditional and constrained completion are only loosely related.

Unfailing completion handled rules like commutativity by carrying them along 

through the procedure but, as Kirchner, et. al. noted in [KKR90], constrained completion 

often finds a complete set of reductions when unfailing completion will not.

Peterson introduced constrained completion in his 1990 paper [Pe90b] and said that 

his inspiration for this came from working on the ACI-completion procedure ([ Ba88] and 

[BPW89]) in which constraints were needed in some places. He wanted to back up and 

apply these constraints to a completion procedure in general.

We will now formally define what we mean by a constraint. A constraint is a 

formula made up of terms, logical connectives (a , v , —i), >, =, T, and F. For example 

(x > y) v  —>(y = x*z) is a constraint. Thus a constrained equation is of the form (X = p if c) 

where X = p is an identity and c is a constraint. We will require that Var(p) kJ Var(c) c  

Var(X), where Var(c) is the union of Var applied to each term in c. The constraints for the 

identities which will be given to our completion procedure will be generated using the 

STP procedure from Section VI.

A ground instance of a constraint c0 is one in which Var(c0) = 0 . Ground instances 

of equations ( \0  = p0 if c0) are true ground instances if c0 = T. Two constraints are 

equivalent, C| s  c2, if for all 0 such that Cj0 and c20 are ground instances, then Cj0 = c20. 

We write c x => c2 if for all 0 such that c t0 and c20 are ground instances, then c,0 =4> c20. 

We will determine equivalence and implications using our normalform function of Section 

VI.

Constrained reductions are constrained equations which are ordered, written
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X, —» p if c, and all true ground instances of which must have X.0 > p0. We apply a 

constrained reduction X. -» p if c to a term t —» t[i <— p0| if t/i = X.0 for some substitution 0, 

and c0 s  T.

Other definitions such as <-> and I  have the same meanings but is now defined

relative to this new type of rewriting. The relation =R is defined as before without regard

to the constraints in R. Note that this means that =R is not equivalent to <-» , as before,
*

because we must consider the constraints in <-> but not in =R.

We again have the notions of confluence and complete set of reductions in our 

constrained form. A set of reductions is complete if t =R s if and only if t l  = s i .  Since

constraints can only be guaranteed to have truth values when they are ground we will
*restrict ourselves to ground confluence. If for any two terms, s and t, s <-> t implies

s —̂ u <— t for some term u, then the set of reductions is ground confluent. The condition
 ̂  ̂ • • • 

s —> u <— t is called the joinability condition and the process of showing joinability for

all terms is how we will prove completeness. In [Pe90b], Peterson showed that, when

showing completeness, working over ground terms is equivalent to working over all terms

provided that we have ‘enough’ constants to work with.

Our constrained completion procedure will be equivalent to the unconstrained 

procedure when the constraints on the rewrite rules are always T. The notion of critical 

pairs (or critical equations [Pe90b]) is therefore similar. A critical pair o f the hard type is 

formed between reductions X-j —> p j if Cj and X2 —> P2 if c2 (X[/i)o = X.2o for some 

substitution a  and i e sdom(X.]) and gives the critical pair:

P jO =  A-i [i <— P2I0 if C)0  a  C jO .

Critical pairs o f the easy type are formed from equations X —» p if c in R and are of 

the form:

'll r. I f
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An equation is joinable if all true ground instances are joinable. An equation s = t is 

connected below u if s <-> tj tn <-» t and u > s,t,tj for all i. A constrained equation, 

s = t if c, is subconnected if for every true ground instance s0 = t9, if s0 +<— u —>+ t0 then 

s0 = t0 is connected below u.

Theorem 7.1 (Pe90b) A set of constrained reductions is complete if

(1) every critical pair (both hard and easy types) is joinable.

(2) every critical pair (both hard and easy types) is subconnected.

We will concern ourselves with the joinability test to prove completeness. Peterson 

included the subconnected test in hopes that we could find a method of excluding some 

critical pairs from consideration akin to that which can be done for KB-completion 

[ZK89] and [WB83],

An equation s = t if c is joinable if one of the following conditions hold

(1) s and t are identical.

(2) c = F.

(3) s = t if c can be reduced into equations all of which are joinable.

To prove joinability through (3) we need to first state some theorems given in 

[Pe90b],

Theorem 7.2 (Pe90b) If c = c then s = t if c is joinable if and only if s = t if c' is

joinable.

Theorem 7.3 (Pe90b) The constrained equation s = t if cj v C2 is joinable if and only if

s = t if cj and s = t if C2 are joinable.
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Theorem 7.4 (Pe90b) The constrained equation s = t if (tj = t2) a c is joinable if and 

only if tj and t2 are not unifiable or s0 = t0 if c0 is joinable where 0 is the mgu of s and 

t.

The above theorems give justifications to some of the actions taken in the 

normalform procedure of Section VI.

Now we will state how we prove joinability through (3) (Theorem 5.5 in |Pe90b|). 

Given an equation s = t if c then we rewrite it if there exists a reduction X —> p if c ' which 

reduces s = t if c to

(el) (s = t)[i <— pa] if c a c'a, and 

(e2) s = t if c a —ic'c

where (s = t)/i = \<3 for some substitution a, i e sdom(s) U  sdom(t), and c a  g' g  ^ F. 

Note that if c => c 'o  then (e2) is trivially joinable since c a - ic' c  = F, also the constraint in 

(el) becomes simply c.

Theorem 7.5 (Pe90b) If an equation e reduces to e t and C2 , then e is joinable if and 

only if ei and e2 are joinable.

Peterson stated in his paper that we show completeness in the above way and that 

the constrained completion procedure was similar to KB-completion but he did not give 

the constrained completion procedure. He said that “some theory necessary to actually 

automatically prove completeness” was not present in his paper |Pe90b] and that he would 

later present this in a paper. He has since stated that he did not see himself doing this any 

time soon |Pe91a| although he has actually implemented the procedure. We hope to (ill in 

this gap with the following presentation.

Presented in Figures 25 through 28 is the constrained completion procedure. The function
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constr-complete (E)

/* E is the set of identities (with no constraints) */

for all A = p e  E

add-reduction( A. = p) 

end for

for all A| —> pi if C| e R 

for all A.2 —> P2 if c2 e R 

for all i e sdom ^!)

if X\/\ and A2 unify with substitution a  then 

joinable(p2Ct = Aj[i <— P20I if C |(i a  C20) 

end if 

end for 

end for 

end for

end constr-complete

Figure 25. Constrained completion procedure.

add-reduction takes an equation and attempts to find the constraint needed to rewrite an 

equation A = p both ways. The constraint Cj is the result of orienting A —> p and C2 from 

orienting p -» A. We must attempt to orient both ways since we may be given x = x + 0 

and orienting x -» x + 0 yields a result of F and thus no rewrite rule would be added which 

means R will not accurately reflect the equational theory given in E. If we try x + 0 -> x 

we get a constraint of T and R is correct. The constraints cq and c*2 are, in general, not 

merely the negation of one another. For example, the commutative law f(x,y) = f(y,x) will 

give ci = x > y and C2 = y > x but —iC| = (x = y) v (y > x) and —1C2 = (x = y) v (x > y). Note,
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add-reduction(A = p)

Ci = noimalform(factor(STP(F, T, A > p, T))) 

C2 = normalform(factor(STP(F, T, p > A, T)))

if c i $  F then

R = R k J { A —> p i f c | )

Pairs = Pairs {A —» p if - c  i (

end if

if C2 ^  F then

R = R {p —> X. if C2}

Pairs = Pairs U  {p —> A if - 1C2 ) 

end if

end add-reduction

Figure 26. Procedure to add a reduction.

however, for the commutative law we do not want to add both f(x,y) —> f(y,x) it x > y and 

f(y,x) -> f(x,y) if y > x since they are merely instances of one another. For the same 

reason, we would not want to add f(x,0) —> f(0,x) if x > 0 in the presence of a commutative 

law. Thus we assume that when we add to R (and Pairs) we do not add equations which 

can be subsumed in this manner. An equation Xj —> p 1 if Cj is subsumed by (A2 —» P2 if c2) 

if (A,! -> p j)0 = A2 -> P2 for some substitution 0. Easy critical pairs are also added to Pairs 

in the procedure but if the original constraint isT then we need not add the critical pair to 

Pairs. Notice that this formulation of add-reductions will coincide with KB-completion 

since the constraints will be T and F, and the easy critical pairs (having a constraint of —>T)
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joinable(e = (s = t if c ) ) 

if s and t are identical then 

return ()

c = normalform(c)

if c = F then 

return()

If e reduces to ej and then

/* the form of ej and are stated in (ej) and (e2) on page 57 */ 

joinable(e)) 

if C2 ^  F then 

joinable(e2) 

end if 

else

/* e is in normal form so we must add a new constrained reduction to R */ 

add-reduction( X -  p ) 

constr-inter-reduce(R) 

end if

end joinable

Figure 27. Joinable procedure.
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constr-inter-reduce(R)

/* R is a set of constrained reductions */ 

for e = X —> p if c e  R

for A.j —> pj if Cj s  R - {A, —̂ p if c} 

for all i e sdom(X) u  sdom(p)

if (A. —» p)/i = ^ 0 , for some substitution o  then 

if c => CjCT then

(X —> p)| i <— po| if c 

end if 

end if 

end for 

end for

if e was reduced then 

R = R - {X —> p if c }

Pairs = Pairs - {p I p is a pair formed with e } 

if X' * p ' then

add-reduction(A/ -  p') 

end if 

end if 

end for

end constr-inter-reduce

Figure 28. Constrained inter-reduce procedure.
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will trivially be found joinable.

The procedure joinable takes an equation and uses our constrained reduction rules to 

reduce it to an identity or an equation with a constraint of F. If this cannot be done then we 

must add the equation as a reduction using add-reduction. This procedure, when restricted 

to equations whose constraints are T, is equivalent to the process of putting the left- and 

right-hand sides into normal form, seeing if they are identical, and adding a reduction if 

not. This, again, shows us that when reduced to only equations which have true constraints 

our procedure is equivalent to the KB-completion procedure.

Our constr-inter-reduce procedure keeps the constrained reductions in a type of 

normal form. Peterson only defined normal forms for ground terms but we will define a 

normal form fo r  constrained reductions as follows:

Given a reduction r = X -> p if c we let r —»  r \  using ^.| —> Pi if c j, if there exists 

an i e sdom(X) U  sdom(p) such that (k  -» p)/i = >qa, for some substitution a  and if 

c => qG , then r' = (A. —> p)[i <— pal if c. A reduction r is in normal form relative to R if 

—»  cannot be applied to r by any reduction in R.

The procedure constr-inter-reduce produces normal forms for each r relative to R - 

{r } and re-orients the reduction r if necessary. To see why we generate a new constraint 

rather than keeping old constraints consider the following:

Given r| = x + y —» x if T:

(0 • y) + (x • 1) —> x if T r|

0 • y —» x if T

but using STP we get 0 • y -> x if 0 • y > x
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Given rj = 0 + x —» x if T: 

x + y —»0 + y i f x >0  rj

x + y —> y i f x >0

but using STP we get x + y —> y if T

Again, our inter-reduce procedure corresponds to KB-compIetion when only true 

constraints are generated. This is because our constr-inter-reduce procedure puts both 

sides into normal form and if changes were made we delete the old rule and insert the new. 

In constr-inter-reduce we are actually a little over-aggressive since we try to re orient 

when only the right-hand side is rewritten in addition to when the left-hand side is 

rewritten which is not necessary in KB-completion.

Finally, we see that the overall procedure constr-complete performs the necessary 

checking of joinability for all critical pairs and we can now compare it to the KB- 

completion given in Figure 5. Remember that it is not enough that the input reductions 

have constraints T for the two procedures to give the same results; we must also have any 

reductions which are generated by our procedure result in constraints which are T.

We will check for c2 = c a  - iq o  # F when generating critical pairs, by seeing if 

greater-than-normal(c,c^a) (shown in Figure 23) returns F. This way of checking for 

equivalence to F is not complete. We mentioned in Section VI why this is so but the 

consequence of this is simply that we will reduce e to ej and e2 and it will still hold that e 

is reducible if and only if ej and e2 are joinable but if we cannot show this we may end up 

not showing completeness when it really exists. We will check for c => c'o, to see if we 

can eliminate e2, by putting c 'o  into normal form and seeing if for every s > t e c'o, 

c a  (s > t) = c. This procedure is shown in Figure 29.
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redundant (c, ci)

/* returns T if c => Ci and F otherwise */ 

cj-conjuncts = {set of conjuncts in C(} 

while C]-conjuncts * 0

cj-conjuncts = cpconjuncts - current 

/* current = s > t */ 

for all S2 > t2 in c

if x = S2 AND t is a subterm of t2 OR 

t = t2 AND S2 is a subterm of s then 

return (T) 

end if 

end for 

end while 

return(F) 

end redundant

Figure 29. Redundant procedure.

We now present a correctness proof.

Theorem 7.6 Whenever the constr-complete procedure stops with success the final set 

of reductions R is complete.

Proof This is not a particularly deep result. Peterson showed that if all critical pairs are 

joinable then the set is complete (Theorem 7.1). We generate the critical pairs in the
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correct manner. Also, joinable procedure is correct by the following reasoning: First, 

the normalform procedure was shown to be valid using Theorems 7.2 through 7.4. 

Theorem 7.5 tells us that we prove joinability of e by showing joinability of e] and 

and therefore joinable and the entire procedure is correct. ■

The implementation of the joinable procedure, as we shall see in the next section, is 

important. Obviously we want to avoid proving joinability on as many equations as 

possible. Thus if we have two rewrite rules which can rewrite our equation and the first 

produces an ej and e2 while the second produces an only ej then the second rewrite rule 

should be chosen. Flowever, we do not want to check for a rewrite rule which only 

produces an ei for so long that the time saved, by avoiding a joinability proof tor 02 is 

lost. Thus we want to order the reductions in R so that we find the second type of rewrite 

rules quickly. These and other implementation details will be discussed in the next section.

For a look at using constraints in other logic programming environments and in

completion see [KKR90],
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VIII. HIPER AND HIPER-EXTENSION

This section describes our implementation of constrained completion. We wished to 

make our implementation as fast as possible and thus decided to try to modify what is 

probably the fastest completion procedure in existence, when applicable - a system called 

HIPER. HIPER stands for High PERformance permutative completion and was developed 

by Jim Christian at the University of Texas-Austin |Ch89| (HIPER is available through ftp 

at rascal.ics.utexas.edu (128.83.144.1) in “pub/jimc”). We decided to use this system’s 

many quick procedures and to add more functionality (the constraints) to produce our 

HIPER -extension system.

Since we built our system on top of HIPER we will first describe it and why it is so

fast.

A. HIPER

HIPER is a completion procedure designed to find complete sets of reductions 

modulo an equational theory. HIPER gains some easy speed up by restricting itself to 

simple, linear permutative equational theories (described below) because Christian 

showed that when dealing with these theories confluence implies coherence (the 

properties which along with termination prove completeness). By restricting the theories 

like this Christian did not have to generate coherence pairs or show that they reduced to 

identities. The fact that HIPER does not generate coherence pairs does not hurt our 

implementation since we are not concerned with them either - indeed we have no separate 

equational theory to speak of.

Let #(p,t) be the number of occurrences of p in t, where p e ‘J. A term is

simple if all non-root subterms are variables. A term t is linear if #(x,t) < 1  lor all x < ‘V. A 

term s is a permutation of t if #(p,s) = #(p,t) for all p <= T 'u  ‘J. An equational theory E is a
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simple, linear permutative theory if for all s == t e E, s is a simple, linear permutation of t. 

Note that although commutativity is a simple, linear permutation, associativity is not.

Christian also improved his speed by using ‘flatterms’ to store terms. A flatterm is a 

data structure with fields symbol, next, prev, and end so that each record contains a 

function symbol or variable name, pointers to the next and previous symbols, and a 

pointer to the end of the subterm which this symbol starts. Constants and variables have 

their end pointers pointing to themselves. Thus flatterms are doubly-linked lists with end 

pointers added. A flatterm is visualized in Figure 30.

g(f(x), a, f(b))

Figure 30. Flatterm representation.

The traditional a tree-like structures used to represent terms would not be as efficient 

in traversing terms in HIPER. Traversing is important since traversing forward is used 

when generating critical pairs while traversing backward is used in rewriting and copying.
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Christian [Ch89] claims that the use of these flatterms causes a 25 to 30 percent

speedup, although unification and matching procedures do not change their run times

much.

The most time spent in completion procedures is, however, taken up in trying to find 

a rule which will reduce a given term (to get our normal forms) or in finding rules which 

are reduced by a given rule. To do these operations quickly Christian used discrimination 

nets to hold the left-hand sides of rules. These discrimination nets are tree-1 ike structures 

which have, at each level, all function symbols listed plus a wild card spot, *, to stand for 

any variable and term structure can be determined by following a path through the net. See 

Figure 31.

Figure 31. A Discrimination net.

By putting terms in this data structure we can check for structure compatibility 

quickly. We use wild cards for the variables because matching rarely fails due to variable 

binding inconsistency but, rather, fail often due to structure incompatibility. When
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variables are encountered at a level we keep ‘choicepoints’ so that if variable binding does 

fail we can go back to this choicepoint to find a different rule which matches the given 

subterm.

This process of searching for rules to reduce a given subterm takes about 20 percent 

of the overall time ]Ch89] so it is important that we find this type of fast procedure.

Another procedure, which uses 10 to 20 percent of the total time [Ch89], is the 

searching for terms which can be reduced by a rule which has just been added. This is 

needed so that we can inter-reduce our reductions. To do this we need to add the right- 

hand side of terms into a net also since we want to keep both sides of the reductions 

reduced. This procedure generally takes more time since more choicepoints are needed 

because a new reduction’s variables will be able to make many matches.

Subsumption of rewrite rules is also performed using these discrimination nets.

Christian also tries to avoid garbage collecting by the LISP interpreter in his system. 

Garbage collecting is a process in LISP which periodically checks for values which are no 

longer referenced and collects them to have their memory re-used by the system later. He, 

in effect, does much of the garbage collecting himself and thus does not need to allocate 

memory for new structures very often.

Since LISP does not offer pointers or ‘C’-like arrays Christian also takes advantage 

of his knowledge of Austin Kyoto Common LISP CAKCL) to implement these data 

structures and thus speed up his implementation. When using other versions of Common 

LISP, though, these enhancements are left out.

Christian [Ch89] claims that discrimination nets are the key to the speed up he 

achieved. Using them has resulted in an increase of speed of 20 to 30 times.
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B. HIPER-extension

We will now look at our implementation of constrained completion using HIPER. 

We first need a structure to represent our constraints in HIPER. To do this we modified 

Christian’s existing ‘eqn’ data structure which took a left- and right-hand side (called ‘lhs’ 

and ‘rhs’ respectively) of an equation each of which had flatterms stored in them. To this 

we added an operator field in which we could put in T, F, =, >, a , v , and -i to make up our 

constraints. We let our constraints and our reductions share the same data structure with 

the reductions using the added ‘constraint’ field

We also let the operator field take on values of ‘lex’, ‘all’, ‘some’, and ‘lexsome’ for 

use in the STP procedure. Since ‘lexsome’ takes five arguments we added ‘term3’, 

‘term4’, and ‘term5’ to the structure and store the first and second arguments in ‘lhs’ and 

‘rhs’, respectively.

We have also modified HIPER so that we can garbage collect our new equations. 

This must be done carefully since they may be deeply nested and end in flatterms which 

we also want to garbage collect. Also, code was deleted from HIPER which pertained to 

unfailing completion, different orderings, dynamic permutative unification, function 

symbol introduction, etc.

We gave the basic algorithms for the constrained completion procedure in Section 

VI and these were implemented in HIPER-extension. We said that it should correspond to 

KB-completion under certain conditions and thus we might wonder if the functionality we 

added when implementing this procedure caused the system to slow down when they 

should produce the same results. The table below shows that it degrades somewhat. We 

suspect this is because we did not always use the discrimination nets in our 

implementation and that time was spent while checking and generating constraints.
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Table II. Comparison of HIPER and HIPER-extension.

Problem HIPER-extension HIPER

(seconds) (seconds)

Pi 0.2333 0.0667

lesc 0.1667 0.1667

kbinv 0.05 0.01667

kbgcl 0.1667 0.0333

kbcancel 0.08333 0.05

The above runs were made on a Sun SparcStation I running AKCL and are listed 

fully in Appendix A.

For a sample run of HIPER we will look at run on a associativity-commutativity 

problem:

> (constr-complete “actest2”)

Declaring symbol */2 with weight 2

Input equation (* XO X I) = (* XI XO)

2:(* X 0 X 1 )~ >  (*X1 XO)

Input equation (* (* XO XI) X2) = (* XO (* XI X2))

1: (* (* XO X I) X2) ~> (* XO (* XI X2))

Pair

= (* XO (* XI X2)) (* X2 (* XO XI)) IF (* XO XI) > X2 from 1 on 2

Pair

= (* (* XO XI) X2) (* XI (* XO X2)) IF XI > XO from 2 on 1

Pair

(commutativity) 

IF XO > XI 

(associativity) 

IF TRUE

= (* (* XO (* X1 X2A XT) (* f* XO X ll (* X2 X3)V IF TRUE from 1 on 1
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Pair

= (* XO (* XI X2)) (* (* XO X2) XI) IF XI > (* XO X2) from 3 on 2

Pair

= (* XO (* XI X2)) (* X2 (* XO XI))

IF XO > XI AND X2 > XI AND XO > X2 from 2 on 3 

Pair

= (* XO (* (* XI X2) X3)) (* XI (* X2 (* XO X3))) IF (* XI X2) > XO from 3 on 1 

Pair

= (* (* XO (* XI X2)) X3) (* XI (* (* XO X2) X3)) IF XI > XO from 3 on 1 

Pair

= (* XO (* XI (* X2 X3))) (* (* XI X2) (* XO X3)) IF XO > (* XI X2) from 1 on 3 

Pair

= (* XO (* XI (* X2 X3))) (* X2 (* XO (* XI X3)))

IF XO > XI AND X2 > XI AND XO > X2 from 3 on 3

*** Completion terminated ***

Rules/Failures:

2: (* XO XI) ~> (* XI XO) IF XO > XI

1: (* (* XO XI) X2) —> (* XO (* XI X2)) IF TRUE

3: (* XO (* X2 XI)) --> (* X2 (* XO XI)) IF XO > X2

Run time: 4.5 seconds 

3 Equations retained 

9 Pairs generated 

17 Equations processed
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For runs on other problems see Appendix A.

As was mentioned in Section VII, we found that our implementation of the joinable 

procedure was important in achieving a quick completion procedure. We want to avoid 

partially reducing an equation e into e) and e2, instead we would like to reduce e into ej. 

Remember that if e = (s = t if c) and r = X —> p if c | then e reduces to

ej = (s = t)[i <r- pa] if c 

if (s = t)/i = A.G and c => cjG

and partially reduces to

ei = (s = t)[i <— pa] if c a cjo  

e2 = s = t if c a - c i a  

if (s = t)/i = and c a CjO ^ F.

If we can find a reduction rj which non-partially reduces e then not only do we 

avoid proving joinability for two equations, we also keep the constraint in a simpler form. 

This is important since our checking for Cj => C2 and our putting new terms into normal 

form takes more time when the constraints are larger.

The most obvious way to check for reducibility is to simply check the reductions 

one at a time and reduce as soon as we can, whether the reduction is partial or not. If we do 

not order the reductions so that it is more likely to non-partially reduce than partially 

reduce then we can waste much time proving joinability. As an extreme example, a run 

which can be done in HIPER-extension in ~32 seconds with an ordering on the reductions 

to try small constraints (fewest conjuncts) first was tried with the inverse of this ordering - 

trying reductions with constraints with the largest number of conjuncts first. I his run was 

aborted after ~15 minutes after generating 93 of the 124 critical pairs needed and seemed
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The most obvious ordering to apply is to check reductions whose constraints are T 

first. This way we know that when these reductions are applied that c => cjO (= T o = T) 

and thus we do not partially reduce. Reductions without true constraints could be ordered 

so that the reduction with the least number of conjuncts is attempted first. This will help 

keep the size of the constraint small in most cases. We will call this strategy for proving 

joinability the Ordered First Find (OFF) strategy. See Figure 32 for its pseudo-code.

Although the OFF strategy will keep constraint size down in most cases it will not 

always produce a non-partial reduction. If, for example, the constraint C[ has fewer 

conjuncts than C2 but only C2 is implied by the original conjunct we would use the 

reduction with constraint cj, call it rj, before the one with C2, call it r2, even though r| 

partially reduces while r2 non-partially reduces. To avoid this we could try to check for 

reducibility and when we find a non-partial reduction we reduce immediately while if we 

find a partial reduction we ‘shelve’ it and try to find a non-partial reduction with the other 

rules. If we cannot find a non-partial reduction then we use the best partial reduction (least 

number of conjuncts) which partially reduces our equation e. If we implement this way we 

are assured of non-partially reducing when it is possible. We will call this strategy the Best 

Find (BF) strategy.

The OFF strategy cannot use the discrimination nets since we cannot order the 

matching done in them. This is disappointing since Christian said that the discrimination 

nets were important to his speed up. We will, however, use them in the BF method since it 

is not necessary to keep them ordered when we check the reductions for a non-partial 

reduction. Our hope in doing this is that use of the discrimination nets in BF will offset the

to be having trouble proving joinability at this point since no new pairs were generated for

~5 minutes when we aborted. This example is the ternary boolean algebra example and

will be listed in Section IX.
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OFF-strategy(R, s = t if c)

/* The reductions in R are assumed to be ordered form smallest constraint to largest 
constraint so that when we loop over R we attempt the reductions in this order. */ 

c = normalform(c)

if s and t are identical then 
return ()

if c = F then 
return ()

for all X -» p if C] e R
if X -> p if cj reduces s = t if c on the left-hand side then 

if c => cjO then
OFF(R, ej = (s = t)[i <— pa] if c) 
exit (OFF-strategy) 

else
OFF(R, ej = (s = t)[i <— pa] if c a c'a)
OFF(R, Cj = s = t if c a - c 'a )  

end if
else if A, —> p if c i reduces s = t if c on the right-hand side then 

if c => cjO then
OFF(R, ej = (s = t)|i <— pa] if c) 
exit (OFF-strategy) 

else
OFF(R, ei = (s = t)[i <— pa] if c a c'a)
OFF(R, e2 = s = t if c a - c 'a )  

end if 
end if 

end for

add-reduction(s = t) 
constr-inter-reduce(R)

end OFF-strategy

Figure 32. Ordered first find strategy.
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non-ordering of reductions.

Something we must consider is: Given an equation e do we try each reduction first 

on the left-hand side of e and then on the right-hand side of e or do we try to reduce the 

left-hand side of e by all reductions and then the right-hand side of e by all reductions. 

Obviously if the reductions were ordered we would want to try each reduction on the left- 

and right-hand sides before trying the next reduction. We do this in OFF but not in BF. In 

BF we use the other method since the reductions are not ordered and the matching routines 

are not designed to handle this method.

We present the BF strategy in Figure 33.

C. RESULTS

1. OFF vs. BF

We will now compare the results of our two implementations and suggest 

improvements to the strategies. We first show a comparison of the OFF and BF strategies 

using a Sun SparcStation I running AKCL in the below table.

Table III. Comparison of OFF and BF strategies.

Problem OFF BF

(seconds) (seconds)

Pi 0.36 0.2333

lesc 0.1667 0.1667

kbinv 0.05 0.08333

kbgcl 0.1667 0.18333

kbcancel 0.08333 0.0667

ac 4.5 6.2333
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BF-strategy(R, s = t if c)

/* The reductions in R are not in any particular order */

/* We will keep the best partial reduction in ‘best-partial’ */

c = normalform(c) 

if s and t are identical then 

return () 

end if

if c = F then 

return () 

end if

for all A p if c j e R

/* let the reduction we are working with be called ‘current’ */

if A. —» p if Cj reduces s = t if c on the left-hand side then

if c => CjO then

BF(R, ej = (s = t)|i <— po | if c) 
exit (BF-strategy)

else

if current is a ‘better’ partial reduction than best-partial OR 
best-partial does not exist then

best-partial = current

end if

end if

end if

end for

Figure 33. a.) Best find strategy (continued).
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for all A. —> p if c | g R

/* let the reduction we are working with be called ‘current’ */

if A. -> p if cj reduces s = t if c on the right-hand side then

if c => CjO then

BF(R, ej = (s = t)[i <— pa] if c) 
exit (BF-strategy)

else

if current is a ‘better’ partial reduction than best-partial OR 
best-partial does not exist then

best-partial = current

end if

end if

end if

end for

if best-partial exists then

/* prove joinability using this partial reduction */

BF(R, e] = (s = t)|i <- pa] if c a c'a)

BF(R, cj = s = t if c a -ic 'a) 
exit(BF-strategy)

end if

/* The equation was not joinable */ 

add-reduction(s = t) 

constr-inter-reduce(R) 

end BF-strategy

Figure 33 (continued), b.) Best find strategy.
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The above problems are fully presented in Appendix A.

As we can see the results are actually disappointing for our BF method. We expected 

it to outperform OFF since it does not partially reduce as much and because we were using 

discrimination nets. We suspect that the lack of ordering on the terms presented the 

greatest degradation since it causes us to attempt too many reductions than in OFF. Also, 

the fact that we try all reductions on the left-hand side before trying any on the right-hand 

side also contributes to the wasted time.

Two modifications can be thought of which could make the completion procedure 

run faster. First, we can try our BF strategy without the use of discrimination nets. This 

way we can order our reductions when trying to find non-partial reductions so that we find 

the non-partial reductions quicker.

The other modification we can make is to have some sort of ordering when using 

discrimination nets. To do this though we will need multiple nets with each net only 

containing the left-hand side rewrite rules whose constraints have a given length, we 

probably need to only have four such nets: a T constraint net and nets for constraints with 

1, 2 and > 3 conjuncts (not many naturally occurring rewrite rules have constraints with 

more than three conjuncts).

This implementation must be carefully done since it will take up more space and 

since we do not want to search multiple nets often in order to find a reducing rule. The 

implementation of this in HIPER will thus take some time since we would be modifying 

the heart of the system and do not want to introduce inefficiencies.

2. Constrained reductions vs. other methods

Earlier, we gave a comparison of HIPER and HIPER-extension when the procedures 

produced the same results but we will now compare the methods when HIPER-extension
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can use its constraints to its advantage and HIPER can use its dynamic unification 

algorithms and function symbol introduction.

Before we do this let us look at the original set of axioms which prompted Peterson 

to look at constrained completion - ACI completion. Here is the run from HIPER- 

extension used to find a complete set of reductions for this theory.

> (constr-complete “aci”)

Declaring symbol */2 with weight 2 

Declaring symbol ZERO/O with weight 1

Input equation 

(* X0X1)>(*X1 X0)

Input equation

(* (* X0 XI) X2) > (* X0 (* XI X2))

Input equation 

(* (ZERO) X0) > X0

1: (* (ZERO) X0) > XO 

2: (* (* XO XI) X2) ~> (* XO (* XI X2))

3: (* X 0 X l ) - >  (*X1 XO)

IF TRUE 

IF TRUE 

IF > XO XI

*** Completion terminated ***
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R u le s /F a i lu r e s :

4: (*  XO ( Z E R O ) )  >  XO I F  T R U E

1: (*  ( Z E R O )  XO) >  XO I F  T R U E

2: (*  (* XO X I )  X 2 )  ~ >  (* XO (* X I  X 2 ) ) IF  T R U E

5: (*  XO (* X 2  X I ) )  ~ >  (* X 2  (* XO X I ) ) IF  >  XO X 2

3: (*  X 0 X l ) - >  ( * X 1  XO) I F  >  XO X I

Run time: 7.35 seconds 

5 Equations retained 

18 Pairs generated 

28 Equations processed

We have thus provided a complete set of reductions for this theory without even 

producing the unification algorithm which the original completion procedure required.

Let us now compare our completion procedure to HIPER when the two do not 

produce the same results: in cases such as the “i f ’ problem (listed in Appendix A) we 

produce a much smaller set of reductions, ten compared to thirty-five, and do not require 

function symbol introduction to be used. In other problems such as “ct” and “aci” (again, 

listed in Appendix A) we produce roughly the same number of reductions but HIPER 

requires a unification algorithm to be generated for some of the axioms. HIPER was 

consistently faster in these runs. Our method, however, is more general since we can never 

fail due to an un-orientable equation.
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IX. TERNARY BOOLEAN ALGEBRA - UNIFICATION AND COMPLETION

Part of the author’s initial motivation for looking at constrained completion was to 

find a complete set of reductions for ternary boolean algebras. This problem was presented 

in [W088] as Test problem 14. Although its applicability in the real world might be 

questionable, Wos suspected that it was a very difficult problem to solve and figured that 

the attempt of solving this problem would help advance the field of automated reasoning.

Ternary boolean algebra was first presented by Grau in |Gr47|. A ternary boolean 

algebra is a non-empty set satisfying the following five axioms:

(1) h(u,v,h(x,y,z)) = h(h(u,v,x),y,h(u,v,z)).

(2) h(y,x,x) = x

(3) h(x,y,i(y)) = x

(4) h(x,x,y) = x

(5) h(i(y),y,x) = x

It has been shown that axioms 4 and 5 are dependent on the other axioms while each 

of axioms 1, 2, and 3 are independent of the rest [WW82], Thus to find a complete set of 

reductions for these axioms we need only give the first three as input.

Christian [Ch89] attacked this problem with his HIPER system but was not able to 

come up with a complete set of reductions. HIPER ran for a long time on this problem and 

Christian noted that many permuters were found in his runs and hypothesized that a 

unification algorithm encompassing the following equational theory was needed to find 

the complete set of reductions:

(1) h(x,y,z) = h(x,z,y)

(2) h(x,y,z) = h(y,x,z)
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(3) h(x,y,z) = h(y,z,x)

(4) h(x,y,z) = h(z,x,y)

(5) h(x,y,z) = h(z,y,x)

(6) h(x,y,h(z,y,w)) = h(h(x,y,z),y,w)

Identities 1 through 5 tells us that h is completely commutative and identity 6 is an 

associative law. These identities are actually proved in |Gr47|.

Such a ‘ternary boolean algebra’ or ‘ternary associative-commutative’ unification 

algorithm was created in [WMJ90] and will now be presented.

A. TERNARY BOOLEAN ALGEBRA UNIFICATION

Formally stated the ternary boolean algebra unification algorithm needs to produce a 

complete set of unifiers T for the unification problem <s,t>A+cc such that if o  e F then 

g ( s) = a+cc G(t) where A+CC is the equational theory for ternary associativity (A) and 

ternary complete commutativity (CC). To solve this problem we will produce the two sets 

{s' I s' =A's} and {t' I t'=A+cct} and find the set of all Robinson unifiers from the cross 

product of these sets. The theory A' is the theory of associative laws which allows the 

bridge element (‘y’ in identity 6 above) to be in any term - not just the middle term since h 

is completely commutative. This would give us 36 (3!3!) different associative laws. We 

will collectively call these associative laws the cc-associative laws.

To produce this set of unifiers we must first produce the set {s' I s' =A- s} and 

{t' I t'=A+cc t}. Producing these sets is more difficult than it might seem at first glance.

To apply the associative law to a term h(x,y,h(z,y,w)) we need to have the bridge 

element y to produce the combinators h(z,y,h(x,y,w)) and h(w,y,h(z,y,x)). It becomes more 

difficult to produce these combinators when many bridges occur such as in
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h(x,h(x,y,z),h(x,w,h(x,y,z))) since the bridges are nested and cycling can occur. This term 

produces sixty-three combinators while h(h(x,y, h(z,w,y)),x,h(h(x,y,h(z,w,y)),z,w)) 

produces 1062 combinators!

These combinators will produce our set {t' I t'=A-1).

To produce the combinators we sort our terms so that the subterms are ordered with 

the deeper nested subterms put on the right. This means that the bridge element always 

occurs to the left of the subterm in which it appears.

We need two functions to produce the combinators. First, the function depth will 

return the nesting depths of a term (e.g. depthi h(x,y,z)) = 0 and

dcpt/i(h(x,h(x,y,z),h(u,v,w))) = 1). Second, the function swap-at-depth finds all 

combinators at a given depth. The function to produce the combinators, tercomh, can now 

be shown in Figure 34.

Tercomb(t)

[1] toprocess := {t };

[2] processed := 0 ;

[3] while toprocess * 0  do

[4] term := Pop(toprocess);

[5] temp := 0 ;

[6] if Depth(term) * 0 then

[7] for i := 1 to Depth(term) do

[8] temp := temp u cc Swap-at-depth(i,term);

[9] processed := processed u cc (term};

[10] toprocess := toprocess u cc {temp -cc processed};

[11] return (processed);

Figure 34. Algorithm to find combinators.

In the tercomb algorithm, u cc means that we do not add terms which are =cc to 

already found combinators. The function -cc takes out terms which are =cx- t0 *he stated
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term. This algorithm’s correctness is given in Appendix B.

Now to produce our set {t' 1t' =A+cc U we produce it as ft' 11' =cc t" where t" e 

tercomb(t)}. Producing j t ' 11' =cc U is relatively simple: we simply recursively permute 

all subterms in s.

Let 11 Ij, denote the number of occurrences of h in t. Let allperms(t) produce the set 

(t' I t' =cc t} and R-unify produce Robinson mgus. Now we give the ternary A+CC- 

unification algorithm in Figure 35. Remember that the method is to find all mgus from 

{s' I s' =cc s) and |t ' I t '= A+cct}.

TBA-unify(s,t)
if I s If, > 11 If, then swap(s,t) 
listj = nil
for all x in tercomb(s)

listj = listj u  allperms(s) 

list2 = tercomb(t) 
unifiers = nil 
for all x in list2 

for all y in listj
unifiers = unifiers u  R-unify(x,y) 

return (unifiers)

Figure 35. Ternary A+CC unification algorithm.

This algorithm is certainly not minimal but we believe it is complete, yet no proof of 

this exists. In Appendix B we present work towards this completeness proof. Namely, we 

show the completeness and correctness of an algorithm to produce a set of unifiers under 

complete commutativity.

B. TERNARY BOOLEAN ALGF.BRA COMPLETION

This ternary A+CC unification algorithm was implemented to work both inside and
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outside of HIPER but our results were disappointing since no complete set of reductions 

was found using it. These attempts have not met with success due to the large computing 

time necessary to produce the combinators. An algorithm which produces a closer to 

minimal set of unifiers is needed to make another attempt. Also, the attempts in HIPER 

were early attempts and a better understanding of the system may make another attempt 

worthwhile.

Since we could not find a complete set of reductions using HIPER we might wonder 

if we can do so in HIPER-extension (i.e. using constraints). Indeed we can, but not in a 

straight-forward way.

Peterson presented the first such set (that we know of) in his paper [Pe90b]. To 

create the set however he first produced a complete set of reductions for boolean algebras 

which is listed below with ‘a ’ as and, and ‘©’ as exclusive or.

(x a  y) a y -> x a (y a z)

X A y - > y A x i f x > y  

x a  (y a  z) -» y a (x a z) if x >y 

x a  x —> x

X A ( x A y ) — > X A y

(x © y) © z -» x © (y © z)

x f f i y - » y © x i f x > y

x © (y © z) -> y © (x © z) if x >y

x © x —> F

x © (x © y) —> y

x a  T - >  x
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T A  X - >  X 

x © F - > x  

F © X -4  X 

x a  F —> F 

F a x -> F

x a (y © z) —> (x a y) © (x a z)

(x © y) a z -> (x a z) © (y a z)

Peterson then added the following two axioms:

h(x,y,z) —> (x a  y) © (y a z) © (z a y) 

i(x) —> T © x

These twenty axioms form a complete set of reductions and since the last two 

axioms present the only realization of a ternary boolean algebra in a boolean algebra 

(Theorem III in [Gr47]) it fonns a complete set of reductions for a ternary boolean 

algebra.

Below is a run in HIPER-extension showing that this set is complete.

> (constr-complete “tba”)

Declaring symbol */2 with weight 3 

Declaring symbol +/2 with weight 2 

Declaring symbol ZERO/O with weight 0 

Declaring symbol ONE/O with weight 1 

Declaring symbol -/I with weight 4 

Declaring symbol F/3 with weight 5



IF TRUE11: (+ XO (+ XOX1)) ~>X1 

16: (* XO (* XO XI)) --> (* XO XI) IF TRUE

17: (* XO XO) ~>  XO IF TRUE

12: (+ XO XO) - >  (ZERO) IF TRUE

10: (* XO (ONE)) - >  XO IF TRUE

9: (* (ONE) XO) ~> XO IF TRUE

8: (+ XO (ZERO)) - >  XO IF TRUE

7: ( + (ZERO) XO)- >  XO IF TRUE

6: (* XO (ZERO)) - >  (ZERO) IF TRUE

5: (* (ZERO) XO) ~> (ZERO) IF TRUE

20: (* (* XO XI) X2) --> (* XO (* XI X2)) IF TRUE

15: (+ (+ XO X I) X2) —> (+ XO (+ XI X2)) IF TRUE

4: (* XO (+ XI X2)) - >  (+ (* XO XI) (* XO X2)) IF TRUE

3: (* (+ XO XI) X2) - >  (+ (* XO X2) (* XI X2)) IF TRUE

1: (- XO) —> (+ (ONE) XO) IF TRUE

2: (F XO XI X2) - > (+ (* XO XI) (+ (* XI X2) (* X2 XO))) IF TRUE 

18: (* XO (* XI X2)) ->  (* XI (* XO X2)) IF XO > XI

13: (+X 0(+X 1 X2)) --> (+ XI (+X0X2)) IFX 0>X 1

19: (* XO XI) —> (* XI XO) IF XO > XI

14: (+ XO XI) ~> (+ XI XO) IF XO > XI

Pair

= (+ X O X l)(+ X O X l) “IF “ TRUE from 11 on 11

Pair

= (* XO (* XO XI)) (* XO (* XO XI)) “IF “ TRUE from 16 on 16
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Pair

= (* xo XO) (* XO XO) “IF “ TRUE from 17 on 16

Pair

= (+ XO (ZERO)) XO IF “ TRUE from 12 on 11

Pair

= (+ (+ XO XI) X2) (+ XO (+ X2 XI)) IF “ X2 > (+ XO XI) from 14 on 13

Pair

= (+ XO (+ XI X2)) (+ X2 (+ XO XI))

“IF “ X 0>X 1 AND X2 > XI AND XO > X2 from Mon 13

*** Completion terminated ***

Rules/Failures:

11: (+ XO (+ XO XI)) —> XI IF TRUE

16: (* X 0 (* X 0 X 1 ))~ > (* X 0 X 1 ) IF TRUE

5: (* (ZERO) XO) - >  (ZERO) IF TRUE

6: (* XO (ZERO)) - >  (ZERO) IF TRUE

7: (+ (ZERO) XO) - >  XO IF TRUE

8: (+ XO (ZERO)) -> XO IF TRUE

9: (* (ONE) XO) ~> XO IF TRUE

10: (* XO (ONE)) > XO IF TRUE

12: (+ XO XO) --> (ZERO) IF TRUE
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17: (* X0 XO) -> X 0  IF TRUE

15: (+ (+ X 0 X l)X 2 )~ > (+ X 0 (+ X l X2)) IF TRUE

20: (* (* XO XI) X2) ->  (* XO (* XI X2)) IF TRUE

3: (* (+ XO XI) X2) - >  (+ (* XO X2) (* X1 X2)) IF TRUE

4 :(* X 0 (+ X 1  X 2))--> (+ (*  XO XI) (*X 0X 2)) IF TRUE

1: (- XO) ~> (+ (ONE) XO) IF TRUE

2: (F XO XI X2) - >  (+ (* XO XI) (+ (* XI X2) (* X2 XO))) IF TRUE 

13: (+ XO (+ XI X2)) ->  (+ XI (+ XO X2)) IF > XO XI

18: (* XO (* XI X2)) --> (* XI (* XO X2)) IF > XO XI

14: (+ XO XI) —> (+ XI XO) IF > XO X I

19: (* XO XI) --> (* XI XO) IF > XO XI

Run time: 33.78333 seconds 

20 Equations retained 

124 Pairs generated 

159 Equations processed

Although we have thus found a complete set of reductions for ternary boolean 

algebra this does not mean that finding the set using HIPER and the unification algorithm 

is a useless cause. Again, the research and not the result is what is more important. Thus, 

an interesting research problem still remains: find a complete set of reductions using the 

three axioms for ternary boolean algebras rather than Peterson’s roundabout method.
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X. CONCLUSIONS

This paper has accomplished several goals along the way to developing an efficient 

constrained completion system.

First, we presented standard completion methods and have seen their inadequacies 

when dealing with certain types of problems which has lead us to constrained completion.

In this paper we present the constrained completion procedure which was previously 

left out of the literature. In so doing we reviewed how we produce constraints for the 

lexicographic path ordering and discuss how we should keep our constrained reductions in 

their simplest forms. Also, we discussed the joinable procedure and its importance for 

efficiency considerations. Alternatives to implementing the procedure were discussed and 

two were implemented.

We looked at the HIPER system and our modification, HIPER-extension, which 

implements constrained completion. Results are shown comparing it to HIPER and 

comparing it against itself with the two main strategies we have discussed. Some complete 

sets of constrained reductions are given in the text and the appendices.

Finally, we presented our attack at finding a complete set of reductions for ternary 

boolean algebras - including a specialized unification algorithm. A complete set is given 

but is not derived directly from the ternary boolean algebra axioms.

Several interesting problems still exist:

• We need to implement a quicker joinable procedure so that we can attack the 

harder problems better.

♦ Also a criterion for eliminating unnecessary critical pairs would help speed up 

our completion proofs. This has already been done for KB-completion and



92

needs to be extended for constrained completion.

• Currently we only have one algorithm to generate our constraints and it is based 

on the lexicographic path ordering. We need to try to implement other orderings 

so that we can find a greater number of complete sets.

• A theorem prover using the constrained completion procedure should prove 

interesting and should be considered.

• A complete set of reductions using only Grau’s original axioms for a ternary 

boolean algebra still does not exist. The attempt at finding one should increase 

our knowledge about completion procedures.



APPENDIX A

SOME RUNS IN HIPER-EXTENSION
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***************************************************************** 

Problem “pi.comp” given with the HIPER system.

> (constr-complete “p i”)

Declaring symbol E/0 with weight 1 

Declaring symbol H/2 with weight 3 

Declaring symbol G/2 with weight 2 

Declaring symbol F/2 with weight 4

Input equation

> (F XO (G X0X1))X1 

Input equation

> (F (H XO X 1) X 1) XO 

Input equation

> (G XO (F XO XI)) X 1 

Input equation

> (H (F X 0X 1)X 1)X 0 

Input equation

> (F XO (E)) XO 

Input equation

> (F (E) XO) XO

6: (F XO (G X 0X 1))-> X 1  IF TRUE 

5: (F (H XO XI) XI) -> XO IF TRUE 

4: (G XO (F XO XI)) --> XI IF TRUE 

3: (H (F XO XI) XI) ~> XO IF TRUE 

2: (F XO (E)) ~> XO IF TRUE
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1: (F (E) XO) ~> XO IF TRUE 

Pair

= (G (H XO XI) XO) XI “IF “ TRUE from 5 on 4 

Pair

= (F XO XI) (F XO XI) “IF “ TRUE from 4 on 6 

Pair

= (G XO XI) (G XO XI) “IF “ TRUE from 6 on 4 

Pair

= (F (E) XO) XO “IF “ TRUE from 11 on 5 

Pair

= (E) (E) “IF “ TRUE from 11 on 9 

*** Completion terminated ***

Rules/Failures:

8: (FI XO (G XI X 0))-> X 1 IF TRUE 

3: (H (F XO XI) X I) - >  XO IF TRUE 

7: (G (H X0X 1)X 0) -> X 1  IF TRUE 

4: (G XO (F XO XI)) --> XI IF TRUE 

5: (F (H XO XI) X I) ~> XO IF TRUE 

6: (F XO (G XO XI)) ~> XI IF TRUE 

11: (H XO XO) ~> (E) IF TRUE 

12: (G (E) XO) -> X 0  IF TRUE 

1: (F (E) XO) - >  XO IF TRUE 

9: (H XO (E)) - >  XO IF TRUE



10: (G X0 XO) ~>  (E) IF TRUE 

2: (F XO (E)) ~> XO IF TRUE

Unprocessed pairs:

Run time: 0.3666667 seconds 

12 Equations retained 

31 Pairs generated 

45 Equations processed

***************************************************************

Easy problem given with the HIPER system (“lesc.comp”) 

***************************************************************

> (constr-complete “lesc”)

Declaring symbol F/l with weight 1 

Declaring symbol H/l with weight 2 

Declaring symbol G/l with weight 3

Input equation

> (F (G (H XO))) (F (H XO))

Input equation

> (G (H (H XO))) (G (G (H XO)))

2: (F (G (H XO))) ~> (F (H XO)) IF TRUE 

1: (G (G (H XO))) > (G (H (H XO))) IF TRUE

*** Completion terminated ***
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Rules/Failures:

2: (F (G (H XO))) - >  (F (H XO)) IF TRUE 

1: (G (G (H XO))) ~> (G (H (H XO))) IF TRUE

Unprocessed pairs:

Run time: 0.016667 seconds

2 Equations retained 

0 Pairs generated

3 Equations processed
)jc Hi ^  ^  ̂  ^  ^ ^  ^ ^  ̂  ̂  ̂  ̂  ̂  ^  sjj ^  ̂  ^  ̂  ̂  ^  vj. *j. ^  ^ ^  ^  ^ ^  ^

Boyer-Moore axiomatization of if-then-else

- This system needs function symbol introduction to complete the set in HIPER.

> (constr-complete “i f ’)

Declaring symbol T/0 with weight 1 

Declaring symbol F/0 with weight 2 

Declaring symbol IF/3 with weight 3

Input equation

> (IF XO XO X 1) (IF XO (T) X1)

Input equation

> (IF XO XI XO) (IF XO XI (F))

Input equation

> (IF XO XO (F)) (IF XO (T) XO)
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Input equation

> (IF XO XO XO) (IF XO (T) (F))

Input equation

> (IF (T) XOXl)XO 

Input equation 

>(IF(F) X0X1)X1 

Input equation

> (IF XO (IF XO XI X2) X3) (IF XO XI X3)

Input equation

> (IF XO X 1 (IF XO X2 X3)) (IF X0X1 X3)

2: (IF XO (IF XO XI X2) X3) - >  (IF XO XI X3) IF TRUE

1: (IF XO XI (IF XO X2 X3)) —> (IF XO X 1 X3) IF TRUE

4: (IF (T) XO XI) ~> XO IF TRUE

3: (IF (F) XO X 1) ~> X 1 IF TRUE

10: (IF XO (T) XI) - >  (IF XO XO XI) IF > (T) XO

9: (IF XO XO XI) ~> (IF XO (T) XI) IF > XO (T)

8: (IF XO XI (F)) ~> (IF XO XI XO) IF > (F) XO 

7: (IF XO XI XO) ~> (IF XO XI (F)) IF > XO (F)

6: (IF XO (T) XO) > (IF XO XO (F)) IF > (T) XO 

5: (IF XO XO XO) ~> (IF XO (T) (F)) IF > XO (T)

Pair

= (IF XO (IF XO XI X2) X3) (IF XO (IF XO XI X4) X3) “IF “ TRUE from 2 on 2 

Pair

= (IF XO XI (IF XO X2 X3)) (IF XO XI (IF XO X4 X3)) “IF “ TRUE from I on 1
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= (IF XO (IF XO XI X2)X3) (IFXOX1 X3) “IF “ TRUE from 1 on 2

Pair

= (IF XO (IF XO XI X2) X3) (IF XO XI (IF XO X4 X3)) “IF “ TRUE from 1 on 2

Pair

Pair

= (IF XO (T) (F)) (IF XO (T) XO) “ IF “ > XO (T) from 5 on 9 

Pair

= (IF (T) (T) (F)) (IF (T) (T) (T)) “IF “ FALSE from 5 on 10

*** Completion terminated ***

Rules/Failures:

1: (IF XO XI (IFX 0X 2 X3)) ->  (IFX0X1 X3) IF TRUE 

2: (IF XO (IF XO XI X2) X3) ->  (IF XO XI X3) IF TRUE 

3: (IF (F) XO XI) —> XI IF TRUE 

4: (IF (T) XO XI) - > XO IF TRUE 

5: (IF XO XO XO) ~> (IF XO (T) (F)) IF > XO (T)

6: (IF XO (T) XO) ~> (IF XO XO (F)) IF > (T> XO 

7: (IF XO XI XO) - >  (IF XO XI (F)) IF > XO (F)

8: (IF XO XI (F)) - >  (IF XO XI XO) IF > (F) XO 

9: (IF XO XO XI) ~> (IF XO (T) XI) IF > XO (T)

10: (IF XO (T) XI) - >  (IF XO XO XI) IF > (T) XO



1 0 0

Run time: 3.35 seconds 

10 Equations retained 

56 Pairs generated 

86 Equations processed

Commutativity-Transitivity example

> (constr-complete “ct”)

Declaring symbol R/2 with weight 2 

Declaring symbol */2 with weight 1

Input equation

> (* (R XO XI) (R XI X2)) (* (R XO XI) (R XO X2)>

Input equation

> (R XO XI) (R XI XO)

Input equation

> (* (R XO XI) (R XO X2)) (* (R XO XI) (R X2 XI))

Input equation

> (* (R XO XI) (R XI X2)) (* (R XO XI) (R X2 XI))

5: (* (R XO XI) (R XO X2)) - >  (* (R XO X 1) (R X 1 X2)) IF > XO XI

4: (* (R XO XI) (R XI X2)) ->  (* (R XO X I) (R XO X2)) IF > X I XO

2: (* (R XO X 1) (R X2 X 1)) —> (* (R X 0X 1)(R  XI X2)) IF > X 2 XI

1: (* (R XO X 1) (R X 1 X2)) —> (* (R XO X I) (R X2 XI)) IF>  XI X2

3: (R XO X I) —> (R XI X 0)IF >X 0X 1
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= (* (R XO XO) (R XI XO)) (* (R XO XO) (R XI XO)) “IF “ FALSE from 7 on X 

Pair

= (* (R XO (R XO XO)) (R (R XO XO) (R XO XO))) (* (R XO (R XO XO)) (R XO XO)) 

“IF “ FALSE from 5 on 6

Pair

= (* (R X0 (R XI XO)) (R XI XO)) (* (R XO (R XI XO)) (R XI XO)) “IF “ TRUE

from 7 on 6

Pair

Rules/Failures:

6: (* (R XO (R X2 XO)) (R X2 (R X2 XO))) - >  (* (R XO (R X2 XO)) (R X2 XO)) IE

TRUE

1: (* (R XO XI) (R XI X2)) -> (* (R XO X I) (R X2 X I)) IF > XI X2

2: (* (R XO X I) (R X2 X I))- -> (* (R XO X I) (R XI X2)) IF > X2 XI

4: (* (R XO X I) (R XI X2)) -> (* (R XO X I) (R XO X2)) IF > XI XO

5: (* (R XO X I) (R XO X2)) -> (* (R XO X I) (R XI X2)) IF > XO XI

7: (* (R XO XI) (R X2 X I))- ->(* (R XO X I) (R X2 XO)) IF > XI XO

8: (* (R XO X I) (R X2 XO))- -> (* (R XO X I) (R X2 X I)) IF > XO XI

(R X O X l) ->  (R XI XO) IF > XO X 1

Run time: 13.56667 seconds 

8 Equations retained 

34 Pairs generated 

76 Equations processed
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Inverse property problem (Example 4) in |KB7()|.

>(constr-complete “kbinv”)

Declaring symbol */2 with weight 2 

Declaring symbol -/I with weight 1

Input equation

>(* (- X0) (* X0X1))X1

! :(* ( -  XO) (* X 0 X 1))-> X 1  IF TRUE

Pair

= (* (- (- XO)) X I) (* XO XI) “IF “ TRUE from 1 on 1 

Pair

= (* XO (* (- XO) XI)) XI “IF “ TRUE from 2 on 1 

Pair

= (* (- (- (- XO))) (* XO XI)) XI “IF “ TRUE from 2 on 1 

Pair

= (* XO XI) (* (- (- XO)) XI) “IF “ TRUE from 3 on 3 

Pair

= (* (- XO) XI) (* (- XO) XI) “IF “ TRUE from 3 on 1 

Pair

= (* X 0X 1)(* XO XI) “IF “ TRUE from 1 on 3 

Pair

= XO (* XI (* (- (- (- XI))) XO)) “IF “ TRUE from 3 on 2
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= (* (- X0) (* XO XI)) XI “IF “ TRUE from 2 on 3 

*** Completion terminated ***

Rules/Failures:

3: (* XO (* (- XO) X 1)) - >  X 1 IF TRUE 

1: (* (-X0) (* X0X1)) -> X 1  IF TRUE 

2: (* (- (- XO)) X I) ~> (* XO XI) IF TRUE

Unprocessed pairs:

Run time: 0.05 seconds 

3 Equations retained 

8 Pairs generated 

11 Equations processed

********************************************************************

Knuth-Bendix |KB70] commutative group problem. 

********************************************************************

> (constr-complete “kbcgl”)

Declaring symbol *12 with weight 2

Input equation

>(* (* X 0X 1)(*X 1 X2))X1

Pair

1: (* (* X0X1) (* XI X2)) —> X 1 IF TRUE
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= (* (* XO (* XI X2)) X2) (* XI X2) “IF “ TRUE from 1 on 1 

Pair

-  (* (* XO X 1) (* (* (* XO X 1) X2) X3)) (* (* XO X 1) X2) “ IF “ TRUE from 3 on 1 

Pair

= (* (* XO XI) (* XI X2)) X I “IF “ TRUE from 3 on 1 

Pair

= (* XO X I) (* XO XI) “ IF “ TRUE from 1 on 3 

Pair

= (* (* XO X I) (* XI X2)) (* (* XO XI) (* XI X3)) “ IF “ TRUE from 1 on 3 

Pair

= (* XO (* (* XO XI) X2)) (* XO XI) “ IF “ TRUE from 3 on 3 

Pair

= (* XO (* (* XO XI) X2)) (* XO (* (* XO XI) X3)) “ IF “ TRUE from 3 on 3 

Pair

= (* (* XO X I) (* XI X2)) X 1 “IF “ TRUE from 2 on 1 

Pair

= (* (* XO (* X 1 (* X2 X3)» (* X2 X3)) (* X 1 <* X2 X3» "IF “ TRUK Iron. 2 on 1 

Pair

= (* XO X I) (* XO XI) “IF “ TRUE from 1 on 2 

Pair
= (* (* X0 X 1)(*  XI X2))(* (* X3X1) (* XI X2)) IF I RUE from 1 on 2 

Pair

Pair

= (* X0 (* (* XO XI) X2)) (* XO X I )“IF “ TRUE from 1 on 1

Pair

= ( .  (» XO (* XI X2)) X2) (* X 1 X2) "IF “ TRUE from 2 on 2
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= (* XO (* XI X2)) (* XO (* XI X2)) “IF “ TRUE from 2 on 3 

Pair

= (* (* XO (* XI X2)) (* (* XI X2) X3)) (* (* XO (* XI X2)) X2) “IF “ TRUE from

2 on 3

Pair

=1 (* (* XO XI) X2) (* (* XO XI) X2) “IF “ TRUE from 3 on 2 

Pair

= (* (* XO (* x i  X2)) (* (* XI X2) X3)) (* XI (* (* XI X2) X3)) “IF “ TRUE from

3 on 2

*** Completion terminated ***

Rules/Failures:

Pair

= (* (* XO (* XI X2)) X2) (* (* X3 (* XI X2)) X2) “ IF “ TRUE from 2 on 2

Pair

1: (* (* X 0X 1)(*X 1 X 2))-> X 1  IF TRUE 

2: (* (* XO (* XI X2)) X2) - >  (* XI X2) IF TRUE 

3: (* XO (* (* XO XI) X2)) - >  (* XO XI) IF TRUE

Run time: 0.1667 seconds 

3 Equations retained 

18 Pairs generated 

21 Equations processed
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The below system is the cancellation law (Example 9) from |KB7()|

> (constr-complete “kbcancel”)

Declaring symbol */2 with weight 2 

Declaring symbol E/0 with weight 1 

Declaring symbol F/2 with weight 3 

Declaring symbol G/2 with weight 4

Input equation

> (F XO (* X0X1))X1 

Input equation

> (G (* X 0X 1)X 1)X 0 

Input equation

> (* (E) XO) XO 

Input equation

> (* XO (E)) XO

4: (F XO (* X0X1)) ~>X1 IF TRUE 

3: (G (* XO XI) XI) - >  XO IF TRUE 

2: (* (E) XO) ~> XO IF TRUE 

1: (* XO (E)) - >  XO IF TRUE

Pair

= (G XO XO) (E) “IF “ TRUE from 2 on 3 

Pair

= (F (E) XO) XO “IF “ TRUE from 2 on 4
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= (* (E) X0) XO “IF “ TRUE from 6 on 4

Pair

Pair

= (G XO (E)) XO “IF “ TRUE from 1 on 3 

Pair

= (F XO XO) (E) “IF “ TRUE from 1 on 4 

Pair

= (E) (E) “IF “ TRUE from 1 on 2 

Pair

= (E) (E) “IF “ TRUE from 8 on 6 

Pair

= (* XO (E)) XO “IF “ TRUE from 7 on 3 

Pair

= (E) (E) “IF “ TRUE from 7 on 5 

*** Completion terminated ***

Rules/Failures:

3: (G (* XO X I) XI) - >  XO IF TRUE 

4: (F XO (* X0X1)) ~>X1 IF TRUE 

7: (G XO (E))--> XO IF TRUE 

8: (F XO XO) ~> (E) IF TRUE 

1:(*X 0 (E)) - >  XO IF TRUE 

5: (G XO XO) ~> (E) IF TRUE 

6: (F (E) XO) - >  XO IF TRUE 

2: (* (E) XO) ~> XO IF TRUE
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Run time: 0.08333 seconds

8 Equations retained

9 Pairs generated

19 Equations processed

jjc i|c jjc 5#C ijc jjc jjc 5§C 5jc 5|C 5|c ̂jc 3jc ̂  jjc 5jc 5jc 5jc 5jc 5jc 3jc 3jc ijc 5jc 3§C 5$C 5jc 5jc 5jc jjc 3|c 5|c ?|C jjc 5jc 5|C 5fc 3jc 5$C 3jc 5jc 5jc ijc jjc jjc 5fc 5}c 5jc jfc ijc 5j< )|c }Jc 5|c 5jc

Axioms for an associative-commutative-identity function

fc************************************************* *-********************

> (constr-complete “aci”)

Declaring symbol *12 with weight 2 

Declaring symbol ZERO/O with weight 1

Input equation 

(* X 0 X 1 )> (* X 1  XO)

Input equation

(* (* XO X I) X2) > (* XO (* XI X2))

Input equation 

(* (ZERO) XO) > XO

1: (* (ZERO) XO) ~> XO IF TRUE

2: (* (* XO XI) X2) -> (* XO (* XI X2)) IF TRUE

3: (* X O X l)->  (*X1 XO) IF > XO XI

Pair

= (* XO X I) (* (ZERO) (* XO XI)) IF TRUE from 1 on 2 

Pair

= (* (* XO (* XI X2)) X3) (* (* XO XI) (* X2 X3)) IF TRUE from 2 on 2
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Pair

= (* X0 (* XI X2)) (* X2 (* XO XI)) IF XO > XI AND X2 > X 1 AND XO > X2 

from 3 on 5

*** Completion terminated ***

Rules/Failures:

4: (* XO (ZERO)) - >  XO IF TRUE 

1: (* (ZERO) XO) --> XO IF TRUE 

2: (* (* XO XI) X2) ~> (* XO (* XI X2)) IF TRUE 

5: (* XO (* X2 XI)) ->  (* X2 (* XO XI)) IF > XO X2 

3: (* XO XI) - >  (* XI XO) IF > XO XI

Run time: 7.35 seconds 

5 Equations retained 

18 Pairs generated 

28 Equations processed



APPENDIX B

PROOFS IN TERNARY BOOLEAN ALGEBRA
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A. PROOF OF CORRECTNESS OF THE FUNCTION TERCOMB

It will now be shown that the function Tercombii) produces all terms equivalent to t 

by the cc-associative laws. Remembering from Section IX: this function will allow us to 

use complete commutativity when trying to find a bridge element but no terms which are 

=cc will be returned. The terms returned will be called combinators. Temis which are 

equal using complete commutativity will be added later.

Let tj and ^  be terms which can be made equal by applying the cc-associative laws 

some number of times. We define a distance function ditj.tj) as follows:

d(tj,t2) = minimum number of applications of the cc-associative laws (to tj) that it 

takes to make the resulting term =cc to t2 (thus, d(t(,t2) > 0).

Again, remembering from Section IX Tercomb uses the functions Depth and 

Swap-at-depth. The Depth function returns the number of levels of nested subexpressions. 

For instance, Depth(h(\,y,z)) returns 0 while Dep///(h(x,y,h(u,v,w))) and 

Dept/z(h(h(x,y,z),h(x,q,y),h(z,b,c))) both return 1. Swap-at-depth finds all possible 

combinators for a term at a specified depth. Note that the distance between the given term 

and the resulting terms from Swap-at-Depth is at most 1 (the resulting terms may actually 

be =cc to the original term and thus the distance would be 0).

It will first be shown that the statements 4-10 in Tercomb in Figure 34 find all 

combinators of term which have a distance of 1. Statements 4-10 do the above as follows: 

term is set and temp is initialized to the null set (it will contain all of term's combinators 

when completed). First, clearly if the term is of the form h(x,y,z) (i.e. Depth(term) = 0) 

then we cannot use the associative law so temp remains null. Otherwise, we check at each 

depth for bridges and generate new terms with Swap-at-depth(i,term). Since all new terms 

generated by Swap-at-depth have distance < 1 and since checking at each level tor bridges



Now we have shown that we can find all combinators of term with distance = 1. This 

is not enough, we need to find all combinators of term with distance < max distance (the 

existence of such a bound will be established later). This is done with the rest of the 

algorithm by using a processed and toprocess list.

First, note that once a term has been processed by statements 4-10 in order to find 

combinators with distance = 2 we merely need to put the generated combinators through 

statements 4-10. Next, these newly generated combinators are used to find all combinators 

with distance = 3 and so on. Cycling is prevented by controlling a toprocess list which 

holds only newly generated combinators which are not =cc to existing ones

The rest of the statements do the above as follows. Initially, toprocess is set to |t j  

and processed is set to 0 ,  the null set. While there are still terms which have not gone 

through statements 4-10 (i.e. while toprocess ^  0 ) , we take a combinator from toprocess, 

find its combinators of distance < 1, put it on the processed list, and put the generated 

terms in toprocess if they are not already in toprocess or processed (since no new terms 

can be generated if the term is all ready in one of these lists). Thus on each pass of 

combinators through statements 4-10 only combinators of distance one greater than the 

current term are added to toprocess. This filtering prevents the algorithm from cycling. 

When toprocess is empty the processed list, which contains all combinators, is returned.

We can now say that Tercomb generates all combinators of any distance from the 

original term t. Also, since it only allows new combinators to be processed the algorithm 

will not cycle and therefore if a max distance exists, then the algorithm is guaranteed to

insures that all bridges will be found (and the resulting combinators generated) then upon

exiting statements 6-8 tem p  contains all terms equal to term  with distance < 1. Statement

10 insures that only terms with distance = 1 will be put on the toprocess  list.

terminate.
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To show that m axdistance  exists let us first look a the original term t with the 

ternary operators removed. The term t then has two types of symbols parentheses (right 

and left) and ternary elements such as x, y, and z. Let j equal the number of ternary 

elements in t, we can show that the number of pairs of parentheses in t must be (j-3)/2 + 1. 

Using this result we see that there are (j + 2*((j-3)/2 + 1))! arrangements of ternary 

elements and parentheses and thus there are at most that many combinators. Actually there 

are far fewer than this since the terms must have matching parentheses, be a ternary 

expression, and actually be =cc to t after applying the cc-associative laws some number of 

times. Now to get our max distance we note that as a worst case scenario all possible 

arrangements are valid ternary expressions, none of the terms are =cc to each other, and 

each can be generated by applying the associative law so that our bound, max distance, in 

this worst case scenario is (j + 2*((j-3)/2 + 1))!. Again, this bound is much greater than 

what would actually occur but it does show that a bound exists. Since the bound exists we 

can conclude that the process is finite and thus is guaranteed to stop.

B. PROOF OF CORRECTNESS AND COMPLETENESS OF A COMPLETE 

COMMUTATIVITY UNIFICATION ALGORITHM

We present here a proof that an obvious solution to unification for completely 

commutative theories is both complete and correct. This proof may help us prove that the 

A+CC-unification algorithm is complete and correct. This proof is taken from [Mu92|.

The cc-unification problem <s,t>cc is to find a complete set of unifiers F such that if 

o e T then so =cc to. We start by looking at =tc.

Given two ternary terms t) and t2, // =(T U

i) t t = t2

or
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ii) tj = h(x1,x2,X3) and t2 = h(y i ,y2,y3) and one of the following is true:

*0 x i _cc y i»x2 _cc y2» ar*d x3 cc y.i 

k) X1 —cc yi> x2 =cc y3. and x3 —cc y2

c) X1 =cc y2’ x2 =cc y  1» and x3 =cc y3

d ) X1 =cc y2> x2 =cc y3» and x3 =cc y i

e) xi =cc y3» x2 ~cc y i ’ and x3 =cc yi

o  X 1 =cc V3’ x2 =cc y i '  and x3 =cc y i

Let <tj,t2>cc be a cc-unification problem. A substitution 5 is a cc -unifier of t| and t2 iff 

8(tj) =cc 8(t2). Given a term t, let T(t) = {t' 11' =cc t }. Given substitutions 5) and 52,

8j =cc 82 iff for all v e 8i(v) =cc 82(v). Given a substitution 5, A(5) = (5' I 5' =ct 5}.

Now we will formally give the obvious solution (OS) to any cc-unification problem 

<tl ’t2>cc- The OS finds the set of all mgu’s using R-unification for the problems < t|',t2'> 

where tj ' e  T(tj) and t2' g  T(t2). We will name this set Z<t|,t2>cc-

Theorem 1 (Correctness)

S<tj,t2>cc £  <̂/<tj,t2>cc- (*-e- obvious solution is correct).

Proof

Let o  g  X<tj,t2>cc. Thus o (tj') = o(t2') where tj ' =cc t| and t2' =cc t2. a (tj) =tc a(tj')  

= a(t2') =cc a(t2) and therefore a (tj) =cc o(t2). Thus a  e ^/<tj,t2>Cc and so ^ f i ^ c c

c  U< t 1,t2>cc- ■

To prove completeness of OS we will first need to label and manipulate our terms. 

We will label terms as follows:

i) the root node is 2.



ii) the left child of a node is pO, the middle child p i , and the right child p2 where p is
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the parent node label.

Definition:

Let k be an ordered pair<r,vF>. Let 1 = the number of ternary digits in m and p = the 

number of ternary digits in F. Let a^b; e {0,1,2} and T e  {012,021,102,120,201,210). 

Also let H'j be the number of the subtemi containing i (e.g. if M7 = 120, then 'l '() = 2, 

'Fj = 0, and ^ 2 = 1).

1 p
Let m = £  ai 3,-1 and k = < £  . 3̂ - ,,vF/>

i = 0 i = 0
A ternary node transformation, k®m, is defined as follows:

k®m =

if T > m then m

else if by = ag and b ( = a[ and ... and bp = ap then

^  ‘ Vi
1 =  0

/- (/>+D) t £  v 3
i = p + 2

l-t

else m
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The idea is that if T is equal to m for the first p digits (the length of T) then change the 

next position in m according to T.

Examples

m = 20, k = <21,120>, k®m = 20 

m = 212, k = <21,120>, k®m -  211 

m = 211112, k = <211,201>, k®m = 211212 

Definition:

A single (ternary) swap p is a mapping p :T -*  if t e % p = <T, VH> then p(t) is the 

term obtained from t by replacing every node, n, of t by p®n.

Example

If p = <21,021> and t = h(v,h(x,y,z),w), then 

p(t) = h(v,h(x,z,y),w).

Figure 37. Ternary swap.

Definitions:

i) Let P! and p2 be two single swaps, Piop2(t) = P |(p 2(t)).

ii) A (ternary) swap p is a p:T  -» Tdenoted by the tuple < p |,p 2,...,pn> such 1,1 at

P = P l°P20"°Pn-
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iii)  pl = p2 iff for all t e % p,(t) = p2(t).

iv) pj(j is the identical swap (i.e. for all nodes n, p j(j(n) = n).

(Note that any single swap of the form p = <r,()12> is an identical swap).

This lemma shows some interesting properties of swaps:

Lemma 1

i) 3 (single)swaps p | , p2 such that p i °p2 * P2°P l

(e.g. pi = <2,120>, p2 = <2,21()>).

ii) 3 a (single) swap such that pop^Pjj 

(e.g. p = <2,120>).

iii) 3 a (single) swap such that p°p = pitj 

(e.g. p = <2,012>).

Definitions:

i) Let p i = <T1, 4 '1>, P2 = <T2, T 2> be single swaps, p|<P2 iff T 1 < T2 or (L 1 = L2 

an d 'T 1 < V 2).

ii) A swap p = <pi,...,pn> is in normal form  iff P i< P 2< -<Pn.

iii) p is the ordered form  of p = <pi,p2,...,pn> iff p = < a |,a 2,...,an> is in normal form

and the sequence a (......ot,, is a permutation of the sequence p | ........pn. In other

words, p is p with the members ordered from lowest (nearest to the root) to 

highest (farthest from the root). Note, p is not necessarily equal to p.

Here is a useful property relating =cc and swaps that shows why we use swaps in our 

proof of completeness.

Lemma 2

Let ti =cc t2. Then there exists a swap p such that p(t j) = t2.
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We will do a proof by construction. If t] = t2 then let p = pjd and we are done. 

Otherwise, t | = h(xj,x2,X3) and t2 = h(yi,y2,y3) and (at least) one of the following is 

true:

1) X1 “ cc yi- x2 =cc Y2» and x3 ~cc Y3

2) x i =cC yp x2 =cc y3»and x3 =cc y2

3) x i ~cc y i’ x2 =cc yi - and x3 =cc y3

4) X1 =cc y2- x2 =cc y3> and x3 =cc yi

5) xi ~cc y3> x2 =cc y i >and x3 =cc yi

6) x i =cc y3- x2 =cc y2>and x3 =cc yi

Let p be the ordered form of p ,oPrcst where

p' = pj(j if 1) is true 

= <n,021> if 2) is true 

= <n,102> if 3) is true 

= <n,201> if 4) is true 

= <n,120> if 5) is true 

= <n,210> if 6) is true

where n is the node whose subterms we are trying to make equal (at the top level

n=2).

prest is a swap and is the composition of the swaps p(), P |, and p 2 where p, is the swap 

constructed from the ith subterm equality using the method above.

By inspection it can be seen that p(tj) = t2. ■

The following lemmas will help us produce equal swaps which are ordered.

Proof
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Lemma 3

Let pj = <r1,4il>, P2 = <r2,T2> be single swaps. If F 1 > F2 and T1 * r 2a  where 

a e  {0,1,2}+ then p)°p2 = P2°Pi-

Proof

Let p,p' e (0,1,2 J-*" in the following. Suppose Pi°P2 *  P2°Pl- Phen there exists a t e ' /  

such that Pi(p2(0) *  P2CP1 CO)- Let n be a node in t in which P i(p2(n)) * p2(p[(n)). 

Then at least one of pj or p2 changes n’s value. If p2 changes n’s value then n = 

and p2(n) = T2P'. Now since T1 *  T2a , p i(p2(n)) = p2(n) and p t(n) = n. Thus 

p2(Pl(n)) = P2(n)- Therefore p i(p2(n)) = p2(Pi(n)) - a contradiction. Otherwise, if pi 

changes the value of n then n = F*P and pj(n) = f 'P '. T 1 * F2a  and thus 

p2(Pl(n)) = pi(n) and p2(n) = n. Thus p j(p 2(n)) = p t(n) and therefore p 1 (p2(n)) = 

p2(pi(n)) - a contradiction. Thus all nodes are the same. All terms are therefore also 

the same and we have our proof.®

Definition:

Let k®m be defined the same as k®m except that 4^ is defined as the number in the 

ith position of 4* (e.g. if 4* = 120, 4/q = 1, 4*i = 2, 4*2 = 0).

Lemma 4

Let k! = <r1,4/1> and k2 = <r2,4*2> be single swaps. If k, = k2 or (k2<k| and 

T 1 * T2) then <kj>o<k2> = k2o<k2®r’, 4/1>.

Proof (bv cases)

If kj = k2 then k2®r' = T1 and thus k2o<k2® F 1,T l> = k2 c F 1̂ ^  = <k2> <kj> -  

<kj>o<k2> (since kl = k2).

Else if k2 < kj and T 1 ^  T2 then 

k^r1 = T 1 (if r1 *r2a with a  g  {0,1 ,2 }+), or 

= r2p (if r1 = r2a with a,p G {0,1 ,2)+)
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(Note here, for Corollary 1, that T2 < k2® r ’).

If k2© r 1 = r* then k2o<k2© r*,vP1> = k2o<T*,Mi l> = <k2>o<ki>. Now since r* > r 2 

and T 1 * r2a, by Lemma 3 <k2>°<ki>

(= k2o<k2© r 1,'P1>) = <ki>o<k2> and we are done.

Else r  = r  a . By inspecting k2© P  we see that the process modifies V to take into 

account that k2 will not be applied before k] and thus the swaps are equal.H

Corollary 1

i

After using Lemma 4 on <k]>°<k2>, the result < k |',k2'> is in normal form or (T = r  

and VF2 < 4 '1).

Proof

First, note that if kj < k 2 or(k2 < k , and L 1 = T2) then k |' = kj and k2' = k2 and we are 

done. Otherwise, k2 < kj, T 1 ^ T2, k]' = k2 and k2' = <k2© F ,,Mi l >. Now by the 

parenthesized note in Lemma 4 we see that it must be that k j' < k2' and we are done.®

Definitions:

Let p = <pi,p2—-Pm> and P = <oci,a2,...,an> be two swaps.

i) p c  p iff p = p and m < n.

ii) p is maximal iff for all p with p = p: p c  p.

The following two lemmas help produce swaps which are maximal.

Lemma 5

If kj = <r,012> and k2 is a swap then kiok2 = k2ok] = k2. 

Proof

Comes from the fact that <r,012> = p̂.
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Lemma 6

If kj = <r,vF1> and k2 = <r,T2> then there exist a 4* such that <k|>o<k2> = < r ,y > . 

Proof

The following table gives the necessary conversions.

Table IV. 4* conversion table.

vpl 4* V 1 v|>2 y

012 vj#2 vj/2 120 120 201

vpl 012 T 1 120 201 012

021 021 012 120 210 021

021 102 201 201 021 210

021 120 210 201 102 021

021 201 102 201 120 012

021 210 120 201 201 120

102 021 120 201 210 102

102 102 012 210 021 201

102 120 021 210 102 120

102 201 210 210 120 102

102 210 201 201 021

120 021 102 210 210 012

120 102 210

The next two lemmas allow us to find maximal swaps in normal form. 

Lemma 7

For every swap p there exists a swap p such that

i) p is in normal form

ii) p = p
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Let p = <pj,...,pn>. If we apply Lemma 4 to p until it cannot be applied anymore 

(giving us pO then, by Corollary 1, either p' is in normal form or there exist a pj, p i+] 

such that T1 = ri+1 but H/i+l < 'P*. (Note that single swaps with the same F must be 

consecutive). If such Pj and pj+] exist we apply the Ixmma 6 repeatedly until this no 

longer exists (giving p). All T ’s in p are then unique and in order and thus p = p and 

is in normal form. ■

Lemma 8

To every swap p there exist a unique maximal swap p in normal form such that 

p = p .

Proof

By the Lemma 7 there exist a p' in normal form such that p ' = p. Ix t p be a maximal 

swap with p = p'. Suppose, by way of contradiction, that p is not unique, then there 

exist a p" such that p" = p', p"  is maximal, and p"  is not syntactically equal to p. 

p" = p by transitivity of equal swaps, p" c  p and p c  p" and thus the number of 

single swaps is the same. Letting p" = <pj,...,pm>, p = < a |,.. . ,a m>, suppose pm* a m 

then assume, without loss of generality, pm < a m. Since a m > oq for i < m, oq # pm for 

all 1 < i < m. Thus the single swap pm has no equivalent in p (i.e. swaps performed 

higher up will not produce the same results). But this is contrary to p = p", therefore 

Pm = CW Clearly, now using p" = <pi, -,p m-l>0Pm and P = <(X|,..,am -i>0P m  we can 

use the above arguments to show pm_i = (tq^i and so on until p | = ocj and thus p" = 

<pj,...,pm> = p and thus p" is syntactically equal to p - a contradiction- and thus p is 

unique. ■

Corollary 2

Let tj =cc \-2- Then there exists a unique maximal swap p in normal form such that 

p(ti) = t2. ■

Proof
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This follows directly from Lemma 2 and Lemma 8.

The following definition is tedious but will help us in our completeness proof.

Definition:

Let 5(tj) =cc 5(t2) and pj and p2 be swaps such that p j(8(tj)) = p2(5(t2)) then P| and 

p2 are compatible with 8 i f f  for all v g  Var(t|)uVar(t2),

Sub(v,ti,pi(5(ti))) u  Sub(v,t2,p2(8(t2))) is a singleton.

where Sub(v,t,p(8(t))) returns: if v g Var(t) and (v/t') e 8 return what t' looks like at 

every location of v g  t after p is applied to 8(t).

Example

Let 8 = {x/h(u,v,w)}, p i = <20,021 >°<21,210> then 

Sub(x,h(u,v,w),p[(8(h(x,x,y)))) =

Sub(x,h(u,v,w),p!(h(h(u,v,w),h(u,v,w),y))) =

Sub(x,h(u,v,w),h(h(u,w,v),h(w,v,u),y)) =

{h(u,w,v),h(w,v,u)}.

Lemma 9

Let <tj,t2>cc be a cc-unification problem with cc-unitier 8:S(tj) =cc S(t2). Let p t and 

p2 be swaps compatible with 8 such that p j(8( tj)) = p2(8(t2)). Then there exists 

8 g A(8) such that 8 is a R-unifier fo r< p j(t|) ,p 2(t2)>: 8(p |( t |))  = 8(p2(t2))

Proof

Let 8 = {v/t I v g Var(t|) u  Var(t2), t is the unique term described in the definition of 

compatibility}. 8 g  A(8) since, because pj and p2 are compatible swaps, the new t’s 

can only be commutative terms of the original t’s in 8. 8 (p |(tj)) = 8(p2(t2)) because

Proof
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Pl and P2 are compatible and thus the terms will be made as alike as possible before 

R-unification is applied and variables can thus be replaced by a single term. ■

Example

t! = h(x,x,x) and t2 = h(h(x\y,z),h(z,y,x’),x)

5 = {x/(h(z,x’,y )} and 5(tj) =cc 5(t2)

Pi = <20,201 >o<21,201 >°<22,201 > and p2 = <2 1 ,210>°<22,201> 

pl(5(tj)) = h(h(x’,y,z),h(x\y,z),h(x’,y,z)) = p2(5(t2))

Pl(t!) = h(x,x,x) and p2(t2) = h(h(x’,y,z),h(x’,y,z),x)

5 = (x/h(x’,y,z)} e A(8)

5(Pi(ti)) = S(p2(t2))

Note that if pj and p2 were not compatible then we could not find an R-unifier of 

p 1 (tj) and p2(t2) since we would need both (x/h(x’,y,z)) and (x/h(z,y,x’)) or some similarly 

cc-equal terms.

The correctness of I< ti ,t2>cc was previously presented. The completeness of 

obvious solution follows.

Theorem2 (Completeness)

Let tj,t2e  Tand Z<tj,t2>cc be the set of unifiers generated by OS. Then, for all 8 with 

5(tj) =cc S(t2), there exists cr e 22<tj,t2>cc and a X such that 5 =cc Xoo.

Proof

Let 8(ti) =cc 5(t2) and pj and p2 be swaps compatible with 5 such that P |(5(t|)) = 

p2(5(t2)). By Lemma 9 there exist 5 e A(5) such that 5 is a R-unitier for 

< p l(t l),p2(t2)>: 8(pi(ti)) = 8(p2(t2)). Let o  be the mgu of < p I(t1),p2(t2)> and X be 

the substitution such that 5 = A.°o, which exists by the definition of a mgu. Note that
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Pl(ti) e  r ( t ,)  and P2(t2) e  T(t2) and thus cr e £< ti,t2>cc. Since t a a  = 8 e  A(8),

=cc 8 and thus we have our proof. ■

This proof is an extension of the results of Siekmannn. Siekmann’s paper |Si79] not 

only proved completeness and correctness for binary commutative unification but also 

presented an algorithm which did not produce so many dependent unifiers (i.e. a closer to 

minimal set of unifiers). This needs to be done for the presented solution also. Doing so 

will greatly speed up any implemented unification algorithm for complete commutativity.
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