
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Spring 1992

Constrained completion: Theory, implementation, and results Constrained completion: Theory, implementation, and results

Daniel Patrick Murphy

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Computer Sciences Commons

Department: Computer Science Department: Computer Science

Recommended Citation Recommended Citation
Murphy, Daniel Patrick, "Constrained completion: Theory, implementation, and results" (1992). Doctoral
Dissertations. 887.
https://scholarsmine.mst.edu/doctoral_dissertations/887

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F887&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F887&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/887?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F887&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

CONSTRAINED COMPLETION:

THEORY, IMPLEMENTATION, AND RESULTS

DANIEL PATRICK MURPHY, 1966-

A DISSERTATION

Presented to the Faculty of the Graduate School of the

UNIVERSITY OF MISSOURI-ROLLA

In Partial Fulfillment of the Requirements for the Degree

by

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE T6409
Copy 1
142 p ag e s1992

Ralph Wilkerson, Advisor C.Y. Ho

Richard Smith

Leon HallGeorge Zobrist

Ill

ABSTRACT

The Knuth-Bendix completion procedure produces complete sets of reductions but

can not handle certain rewrite rules such as commutativity. In order to handle such

theories, completion procedure were created to find complete sets of reductions modulo an

equational theory. The major problem with this method is that it requires a specialized

unification algorithm for the equational theory. Although this method works well when

such an algorithm exists, these algorithms are not always available and thus alternative

methods are needed to attack problems. A way of doing this is to use a completion

procedure which finds complete sets of constrained reductions. This type of completion

procedure neither requires specialized unification algorithms nor will it fail due to un-

orientable identities.

We present a look at complete sets of reductions with constraints, developed by

Gerald Peterson, and the implementation of such a completion procedure for use with

HIPER - a fast completion system. The completion procedure code is given and shown

correct along with the various support procedures which are needed by the constrained

system. These support procedures include a procedure to find constraints using the

lexicographic path ordering and a normal form procedure for constraints.

The procedure has been implemented for use under the fast HIPER system,

developed by Jim Christian, and thus is quick. We apply this new system, HIPER-

extension, to attack a variety of word problems. Implementation alternatives are

discussed, developed, and compared with each other as well as with the HIPER system.

Finally, we look at the problem of finding a complete set of reductions for a ternary

boolean algebra. Given are alternatives to attacking this problem and the already known

solution along with its run in the HIPER-extension system.

IV

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Ralph Wilkerson for his guidance and patience

with me throughout my years at UMR. You have taught me a lot both in and out of the

classroom. I would also like to thank the rest of my committee: Dr. Leon Hall, Dr. C.Y.

Ho, Dr. Thomas Sager, Dr. Richard Smith, and Dr. George Zobrist for their teaching and

willingness to answer my questions.

Thank you to Dr. Gerald Peterson of the McDonnell-Douglas Corporation for

answering my many questions about his constrained reductions. Also, thank you to Dr.

DeKock and the computer science and math departments for giving me the chance to learn

so much and to the Generic Mineral Technology Center for Pyrometallurgy, the Intelligent

Systems Center, and Dr. Gary Leininger for supporting me while I did.

Thank you to Doug Meyer, Chris Merz, Steve Kern and many other graduate

students here for your friendship. Thank you Gary Larson and Bill Watterson for the

humor given to me during my stressful graduate years.

Thanks to my family and friends for all the good times. Finally thank you Mom and

Dad for the constant love and support that I needed - without it I could not have

accomplished half as much as I have.

V

Page

ABSTRACT.. iii

ACKNOWLEDGEMENTS... iv

LIST OF ILLUSTRATIONS... viii

LIST OF TABLES... x

SECTION

I. INTRODUCTION.. 1

A. STRUCTURE.. 1

B. MOTIVATION.. 2

II. DEFINITIONS AND NOTATION... 4

A. TERMS.. 4

B. SUBSTITUTIONS AND EQUATIONS.. 5

C. REDUCTIONS.. 6

III. LITERATURE REVIEW... 8

A. UNIFICATION.. 8

B. WORD PROBLEMS AND COMPLETE SETS OF

REDUCTIONS.. 10

C. COMPLETE SETS OF REDUCTIONS MODULO

EQUATIONAL THEORIES.. 17

1. Complete Sets of Reductions Modulo Associativity and

TABLE OF CONTENTS

Commutativity 17

vi

22

30

30

33

37

37

40

45

53

66

66

70

76

76

79

82

83

85

91

2. Complete Sets of Reductions Modulo an Equational

Theory...

ORDERINGS AND TERMINATION..

A. TERMINATION...

B. E-TERMINATION...

SOME EXTENSIONS TO COMPLETION.....................................

A. UNFAILING COMPLETION..

B. COMPLETION WITH CONDITIONAL REWRITE RULES.

SOLVING INEQUALITIES USING LEXICOGRAPHIC PATH

ORDERINGS...

COMPLETE SETS OF REDUCTIONS USING CONSTRAINTS

HIPER AND HIPER-EXTENSION...

A. HIPER...

B. HIPER-EXTENSION..

C. RESULTS...

1. OFF vs. BF...

2. Constrained reductions vs. other methods...........................

TERNARY BOOLEAN ALGEBRA - UNIFICATION AND

COMPLETION..

A. TERNARY BOOLEAN ALGEBRA UNIFICATION...........

B. TERNARY BOOLEAN ALGEBRA COMPLETION...........

CONCLUSIONS

APPENDIX A - SOME RUNS IN HIPER-EXTENSION.................................. 93

APPENDIX B - PROOFS IN TERNARY BOOLEAN ALGEBRA............................ 110

A. PROOF OF CORRECTNESS OF THE FUNCTION TERCOMB....... I l l

B. PROOF OF CORRECTNESS AND COMPLETENESS OF A

COMPLETE COMMUTATIVITY UNIFICATION ALGORITHM.... 113

REFERENCES.. 126

VITA... 132

vii

Vll l

Figure Page

1. Rewrite tree... 7

2. Robinson unification algorithm.. 8

3. Confluence... 13

4. Local Confluence... 14

5. Knuth-Bendix completion procedure... 18

6. Inter-reduce algorithm.. 19

7. E-completeness.. 20

8. E-compatibility.. 21

9. E-confluence.. 23

10. Local E-confluence... 23

11. E-Church-Rosser............... 24

12. Coherence modulo E.. 25

13. Local coherence modulo E... 25

14. E-completion procedure... 27

15. E-critical pair procedure... 28

16. Embedding... 31

17. E-Commutation... 34

18. Local E-Commutation.. 35

19. > is E-Commuting with —».................................... 35

20. Solving word problems with ground complete systems................................. 40

LIST OF ILLUSTRATIONS

21. Logical strengths of various conditional systems.. 44

22. Procedure for solving term problems... 46

23. Factor-out procedure.. 49

24. Normal form procedure.. 51

25. Constrained completion procedure.. 58

26. Procedure to add a reduction.. 59

27. Joinable procedure.. 60

28. Constrained inter-reduce procedure... 61

29. Redundant procedure.. 64

30. Flatterm representation... 67

31. A Discrimination net.. 68

32. Ordered first find strategy.. 75

33. Best find strategy.. 77

34. Algorithm to find combinators... 84

35. Ternary A+CC unification algorithm.. 85

36. Ternary term representation... 115

37. Ternary swap... 116

ix

X

LIST OF TABLES

Table Page

I. Classification of some unification problems.. 10

II. Comparison of HIPER and HIPER-extension... 71

III. Comparison of OFF and BF strategies.. 76

IV. 'F conversion table... 121

I. INTRODUCTION

A. STRUCTURE

Section II will present the definitions and notation which we wili use for our

discussion.

We will review previous work done in the field of unification theory and complete

sets of reductions in Section III. We include the Knuth-Bendix completion procedure and

the extensions of it modulo an equational theory as given by Peterson & Stickel and

Jouannand & Kirchner.

Various orderings used to prove termination, both with or without an equational

theory, are described in Section IV.

Section V gives additional extensions to the Knuth-Bendix procedure. This is given

so that we might see when our constrained completion procedure might be more

applicable.

In Section VI we describe an algorithm which produces the constraints we will need

for our completion procedure. The ordering relative to which we produce these constraints

is the lexicographic path ordering.

Constrained rewriting and the entire constrained completion procedure is given in

Section VII. We present the algorithms to make constrained reductions from identities,

prove joinability, and to inter-reduce constrained rewrite rules.

A very fast completion procedure called HIPER is described in Section VIII along

with our modified version of this procedure, HIPER-extension, which is a constrained

completion procedure. We discuss various implementation details and compare these

2

We present attempts at finding a complete set of reductions for a ternary boolean

algebra in Section IX. In it we describe a ternary associative-commutative unification

algorithm for use with HIPER to find the complete set and give a complete set of

constrained reductions using HIPER-extension.

Section X gives conclusions from this paper and directions for future work.

Finally, Appendix A contains runs in the HIPER-extension system while Appendix

B gives proofs mentioned but not presented in Section IX.

B. MOTIVATION

The problem of deciding whether two first order terms are equal with respect to an

equational theory is in general an undecidable process. If however, a complete set of

reductions exists for the equational theory then the problem is decidable. Completion

procedures not only determine if a set of reductions is complete but also tries to add

reductions in an attempt to make the resulting set complete. The process of proving

completeness has been well-studied and many variations have been developed. The most

important variation, in which completeness is proved modulo an equational theory,

requires the existence of a special unification algorithm. This is restrictive since, in

general, developing these algorithms is difficult. The variations, unfailing completion and

conditional completion do not have this restriction but are somewhat limited in their

applicability.

Constrained completion is more general and will, thus, work on a larger set of

problems without the need for a specialized unification algorithm. This procedure is

“unfailing” since we can always orient our equations. Thus the result is either successful

or the procedure runs forever without finding a complete set of reductions. This paper

presents this procedure, speedup considerations, and an implementation.

3

Complete sets of reductions have many applications including use in symbolic math

systems such as MACSYMA, abstract data type specifications, compiler optimization,

software validation, and automated theorem proving. For references and other uses see

[De89] and [JK86],

4

II. DEFINITIONS AND NOTATION

A. TERMS

We will define terms in the usual fashion. We use an infinite set of variables Vand a

finite set of function symbols f such that ^F= 0 . Each function symbol has a fixed

arity > 0. The set of all terms over and V, denoted is defined below. We will

simply use Twhen no ambiguity can arise.

(1) If v e V, then v is a term.

(2) If c e and arity(c)=0 (i.e. c is a constant), then c is a term.

(3) If ..., t„ are terms, f e fu n d arity(f) = n > 0, then f(t,, ..., t„) is a term.

(4) Tis the intersection of all sets satisfying 1, 2, and 3.

The domain of a term t, written dom(t), is the set of all subterm labels of t. (e.g. if t =

f(g(a),x,h(y)) then dom(t) = {(), 1, 1.1, 2, 3, 3.1) where () is the root term, 1 is the first

subterm, g(a), 1.1 is the first subterm of the first subterm, a, etc.) The strict domain of a

term t, written sdom(t), is the set of all subterm labels of t which are not variables. For

example, if f,g,h,a e J and x,y e T'then sdom(f(g(a),x,h(y))) is {(), 1, 1.1, 3} which

corresponds to {f(g(a),x,f(y)), g(a), a, h(y)}.

We write t/i to refer to a subterm i of a term t where i e dom(t). We write t[i <— s] to

denote the term t with its subterm i replaced by s. For example, if t = f(g(f(a,y)),z,g(g(z))),

t/i = f(a,y), and s = g(b) then t[i <- s] = f(g(g(b)),z,g(g(z))). Subterms t/i and t/j are disjoint

if neither is a subterm of the other.

Var(t) is the set of all variables in a term t. A term t is ground if Var(t) = 0 . Two

terms tj and t2 are variable disjoint if Var(t,) n Var(t2) = 0 .

5

B. SUBSTITUTIONS AND EQUATIONS

A substitution c is a set of ordered pairs (v/t) with v e Vand t e Tsuch that for all

(vj/tj), (vj/tj) 6 a if i * j then vj * vj. Given a substitution G and a term t we apply o to t,

written tor, as follows:

(1) If t is a constant, then to = t.

(2) If t is a variable not appearing in the left-hand side of a pair in a, then to = t.

(3) If t is a variable and there exists a t' such that (t/O e o, then to = t'.

(4) If t = f(tj,tn), then t a ^ t j o r , . . . , tna).

For example, if a = {(x/f(a,z)), (y/g(b))} and t=h(x,x,y,z) then ta = h(f(a,z),f(a,z),g(b),z).

If Oj = {(xj/tj), ..., (Xn/tn)} and a 2 = {(yi/sj), ..., (ym/sm) } are substitutions, then

the composition of the substitutions, written 0 j0 2, is {(xj/ti02), ..., (Xn/tna 2)} u {(y/s) I

(y/s) e a 2 and for all t e X (y/t) € Gj}. Composition is defined this way so that the result

of applying OiG2 to t is the same as applying o2 to tap That is, t(GiG2) = (ta i)a2.

Substitutions Oj and a 2 are equal if for all t e X tOi = ta2. If a j = a 2S, then a 2 is an

instance of Op If no variables in the ordered pairs of a j appear in o 2 and vice versa (i.e.

Oi and g2 are variable disjoint), then OjG2 = a 2ap

A substitution a is a matcher for terms tj and t2 if tj = t2a. A substitution 0 is a two-

way matcher or unifier of terms tj and t2 if tjG = t20. A unifier is most general if for all

other unifiers 8 there exists a substitution a such that 8=00. Thus, all other unifiers can be

produced by further instantiating variables in 0.

A unification algorithm is an algorithm which produces a most general unifier for

given terms or replies that no such unifier exists.

6

An equational theory is a set of equations. We write tj t2 if and only if tj/u = Xa for

some equation X == p in the equational theory E and t2 = tj[u<—pa]. We let =£ be the

reflexive-transitive closure of =l£. If tj =£ t2, then tj and t2 are said to be E-equal. A

congruence class [t]£ is the set of all terms which are E-equal to t.

A substitution a is an E-matcher of tj and t2 if tj =£t2a. A substitution a is an

E-unifier of tj and t2 if t ja = E t2a. For substitutions O) and a 2, ct\ =£ a 2 if and only if for

all v g V, aj(v) =£ a 2(v).

E-unification algorithms produce sets of E-unifiers. A set of E-unifiers T for terms s

and t is complete if

(1) If a g r, then sa =£ ta. (correctness)

(2) If s0 =£ t0, then there exists a a g T and a substitution 8 such that 0 = a5.

(completeness)

A complete set of unifiers V is minimal if and only if

(3) For all pairs a Ea 2 g T, if there exists a substitution 8 such that a 2 =E aj8 , then

o2 = Of. (minimality).

That is, no two E-unifiers in T are instances of the other.

C. REDUCTIONS

A reduction or rewrite rule is an ordered pair of terms X —> p (or p «— A,) such that

X = p is an identity and p is in some sense simpler than X. When we make a rewrite rule

from an equation we are orienting the equation from complex to simple. We apply a

reduction X—> p to a term t if t/i = Xo giving the term t' = tfi <- pa]. We write this as t —> t'

and say that t rewrites or reduces to t'. We write t if t rewrites to t' by application of

7

some reduction in a set of reductions The relations —>+^and ->*^are, respectively, the

transitive and reflexive-transitive closure of the rewriting relation —

A term t is irreducible by if no reduction in ^.can reduce t. If t —> % and t' is

irreducible by ^,then t' is the “Kznormal form of t, written t l ^ will be dropped from

the notation when the context is clear.

A reduction X —» p e %E-rewrites s to t, written s t, if s/i Xo for some

substitution a and t = s[i <— pa]. The relations —»+^£ and —»*̂ are the transitive and

reflexive-transitive closure of — respectively. A term t is E-irreducible if no reduction

in l^can E-reduce it.

For a given term t a rewrite tree is the set of terms which t can rewrite to through any

number of reductions. Its name comes form the familiar tree-like structure which can

represent it with each branch representing a rewrite. See Figure 1.

Figure 1. Rewrite tree.

8

in. LITERATURE REVIEW

A. UNIFICATION

Unification has been around since Post in the 1920s and Herbrand in the 1930s. J.A.

Robinson gave the first practical algorithm to generate a most general unifier in his 1965

paper [Ro65]. Remembering from the previous section that unification, simply put, is the

replacement of variables by terms to make terms equal we can look at the unification

R-Unify(t,,t2)
a - 0
if t] = t2 then return (a)
if variable(tt) then

if occurs(tbt2) then
return (FALSE)

else
return ({t,/t2})

if variable(t2) then
if occurs(t2,t!) then

return (FALSE)
else

return (it2/ t ,})

if top-level-symbol(ti)*top-level-symbol(t2) then return (FALSE)
For i = 1 to arity (top-level-symboKb))

8 = R-Unify (subterm(t],i), subterm(t2,i))
if 8 = FALSE then return (FALSE)
a = 8g
t, = t,a
t2 = t2a

end for
retum(a)

9

algorithm given in Figure 2. An almost linear time and space algorithm was given in

[MM76] and the first linear time and space algorithm was given in [PW78].

Robinson (R-)unification has since been modified to find E-unifiers for a given

equational theory. Equational unification was first done by Plotkin [P173], where he

developed an associative unification algorithm. Siekmann created one for commutativity

[Si79] and this was extended to n-ary complete commutativity in [Mu92], Associative-

commutative (AC) unification has been described in [St81] and [CL88J. These are some

important unification algorithms but many others exist.

E-unification problems fall into the following four classes:

(1) unitary - a single mgu is present (if it exists).

(2) finitary - a finite, minimal, complete set of E-unifiers exists.

(3) infinitary - an infinite, minimal, complete set of E-unifiers exists.

(4) nullary - no minimal, complete set of E-unifiers exists.

For example, when E = 0 unification is unitary, when E = commutativity unification is

finitary, and when E = associativity unification is infinitary.

The combination of unification algorithms does not always work as expected. For

example, AC-unification - a combination of an infinitary (A) to a finitary (C) theory - is

finitary; Al-unification - a combination of an infinitary (A) to a finitary (I) theory - is

nullary[Sc86]. See Table 3.1 for more theories. For further information on the cardinality

of E-unification problems see [JK90] or !Si89|.

10

Table I. Classification of some unification problems.

Theory Type Theory Type

0 unitary Cl finitary

A infinitary ACI finitary

C finitary D1 unitary

I finitary Dr unitary

AC finitary D infinitary

AI nullary

A=Associativity; C=Commutativity; I=Idempotenecy; Dr=right distributivity;

Dl= left distributivity; D=Dr+Dl

We can also divide up the equational theories into different classes. For example, an

equational theory is regular if equal terms have the same variables. A theory is collapse-

free if non-variable terms are not equal to a variable (e.g. if E = {f(x) = x} then it is not

collapse-free). A theory is permutative if all equal terms have the same symbols. Other

classes exist. For an excellent look at how these classes relate to the E-unification problem

see [BHS89],

Yelick [Ye85] presented a method for combining different E-unification algorithms

but is restricted to collapse-free, regular theories. Claude Kirchner [Ki87] developed tools

for automatically generating some unification algorithms which is modified and improved

in [Ch89],

Although R-unification has been shown to have a linear time solution, most E-

unification algorithms are NP-hard (see |KN86j). For two excellent survey articles on

unification theory and its applications see [Kn89] and [Si89],

B. WORD PROBLEMS AND COMPLETE SETS OF REDUCTIONS

The word problem is the problem of deciding whether two terms are equal under a

11

given equational theory. It is well known that the word problem is in general undecidable.

However, if we have a complete set of reductions for the equational theory then the

corresponding word problem is a finite, decidable process. A set of reductions is a

complete set o f reductions if every term has one and only one irreducible form and terms

are equal under the equational theory if and only if their irreducible forms are identical.

In 1970, Knuth and Bendix [KB70] presented a process which took an equational

theory as input, transformed the equations into reductions, and determined whether the set

of reductions was complete. Also, if the given set of reductions was not complete new

reductions were added in an attempt to complete the set. This type of procedure is called a

completion procedure. Three possible outcomes are possible with such a procedure:

success while returning the complete set of reductions; failure due to a non-orientable

equation; or the procedure continues forever, neither completing the set nor finding a non-

orientable equation.

Theorem 3.1 (KB70) A set of reductions is complete if the following two properties

hold:

(1) The finite termination property.

(2) The Church-Rosser property.

A set of reductions has the finite termination property if there exists no infinite chain

of rewrites tj —» t2 -» t3 ... This implies that every term has an irreducible form.

To show that this property holds an ordering over all terms is established. Knuth and

Bendix developed a weighting function to establish a partial ordering on the terms.

Taking from [KB70], let Wj be the weight of function symbol i. All weights must be

greater than 0 with the possible exception of a single unary operator which may have a

weight of 0. Let n(x,t) be the number of occurrences of the symbol x in the term t. The

12

weight of a ground term t, W(t) = £ w-/t (fj, t) . Let w0 be the minimum weight of a
i* i

ground term. Letting Vj be a variable and fj be a function symbol, the weight for an

arbitrary term t, W(t) = w0 ^ n (v-, t) + £ Wjti (fj, t) .
j> i 7*1

Two terms are ordered, s >kb t, by the Knuth-Bendix ordering if and only if one of

the following holds

(1) W(s) > W(t) and n (vj, s) > n (vj, t) for alii; or

(2) W(s) = W(t) and n(vj,s) = n(vj,t) for all i

and either t is a variable and s = f(.. .t...), or

s = fj(Si,..., sn), t = fj(tj, ..., tm), and either

(2a) i > j; or

(2b) i = j and sj = t j , ..., s^.j = t^,j, s^ > tk for some k.

Thus terms can either be identical, s >KB t, t >^b s, or s and t are incomparable. If

the last case happens we write s # t. As we shall see, when we are given incomparable

terms the Knuth-Bendix procedure stops with failure since we cannot orient them into a

reduction.

Knuth and Bendix proved that the above ordering has the finite termination property

but it is not the only ordering which has this property. Others are presented in the section

on termination, but all must have the following properties:

(1) There exists no infinite series of terms such that tj > t2 > t3 >

(2) If s > t, then sa > ta for any substitution a (i.e. substitution preserves the ordering).

(3) If s > t, then f(...s...) > f(...t...) - this assures that if a subterm is reduced then the

entire term is reduced.

13

Relations which exhibit property 1 are well-founded, relations which exhibit

property 2 are subterm preserving, and relations which exhibit property 3 are monotonic.

To show why we want these properties, recall that when a reduction X. —> p is applied to a

term t at position i with substitution a then the resulting term t' = t[i <— pa]. Thus by

property 2 we know that k a > pa and by monotonicity we thus have t > t'. Now since all

reductions (k —» p) e !^are ordered such that X. > p we know that any application of a

rewrite rule will result in a simpler term. Thus if well-foundedness holds for the relation

we see that the finite termination property holds.

It is interesting to note that the finite termination property is enough to solve the

related word problem. You need only search the rewrite trees of the two terms for a

common (irreducible) term - a guaranteed finite process. This is likely to be a very

expensive task, though, so we would like to have our set of reductions be Church-Rosser

also.

A set of reductions is Church-Rosser if all terms which are equivalent with respect

to the reductions have a common rewriting. In [Ne42], Newman, building on [CR36],

showed that a set of reductions is Church-Rosser if and only if it is confluent.

A set of reductions is confluent if and only if for all terms if tj —>* t2 and tj —>* t3

then there exists a term t4 such that t2 —>* t4 and t3 —»* t4- See Figure 3.

Figure 3. Confluence.

14

This means that to show confluence we must pair-wise check that all terms in a

term’s rewrite tree have a common rewriting. If the branching factor and depth of the

rewrite tree are great this can easily become a very time consuming task. Luckily,

Newman showed that proving local confluence is enough to show that the Church-Rosser

property holds.

A set of reductions is locally confluent if and only if for all terms tj, if tj —» t2 and
3(C 3ft

t j—> t3 then there exists a term 14 such that t2 —> t4 and t3 —» t4- See Figure 4.

Theorem 3.2 (KB70) The following statements are true about finitely terminating sets

of reductions.

(1) The set is complete.

(2) The set has the Church-Rosser property.

(3) The set is confluent.

(4) The set is locally confluent.

The only difference between confluence and local confluence is that local

confluence pair-wise checks for a common rewriting only between terms which are

rewritten once from t while confluence pair-wise checks all rewritten terms. This will, in

most cases, greatly reduce the number of checks which must be performed and might

15

make the process computationally possible except that we must prove that local

confluence holds for the infinite set of all terms. With our next discussion we will remove

this severe problem.

Let us look at how we prove local confluence for any term t. Let rj = j —> p j) and

X2 = (^2 —> P2) be two reductions which can be applied to t at positions i and j,

respectively. If i and j are disjoint subterms then confluence is trivially shown since t —

t[i <- P i^ i] ->P t[i <— Picn; j P2O2J n<-t|j P2°2) r*<“

If, however, i and j are not disjoint let us assume, without loss of generality that j is

a subterm of i and that rj and r2 are variable disjoint. Thus for some position k of i we

have t/i = = t/j = t/i.k = \jP2- 11 can be shown that there exists a position k' such that

(^iOi)/k = (Xi/k')Oi. Now since rj and r2 are variable disjoint (A.]/k')tfi = (A,j/k')C2a l and

X2CT2 = 'k2°2C5\■ Thus (A-i/kO^CTt = ^ 020! which makes a 2a t a unifier for Xj/k' and X2.

Let 0 be the most general unifier for the two terms. Thus the terms tj = t[i <— P jOj] and t2

= t[i <- (X jk ' <- p2a2])°l] can be written as:

t} = t[i <— p i©]

t2 = t[i <— (A-i[k' <— p2)0]-

We can see now that the only position which the two rewritten terms differ at is i.

Thus the terms t\ and t2 conflate (reduce to a common term) if and only if tj/i and t^ i

conflate. We prove conflation by putting the terms into their normal forms and seeing if

they are identical.

Thus, a term t is locally confluent if and only if for all pairs of reductions r[=

—>Pl and r2 = X-2 —> P2

(1) the resulting terms trivially have a common rewriting, or

(2) the pair <p10, (X jk ' <- p2])©> conflates.

16

These pairs are called critical pairs and the process of forming and conflating

critical pairs is called the superposition process.

Note that neither term in the critical pair depend on the initial term t. Instead they

are dependent only on the two reductions. Thus if we can show local confluence for one

term we show it for all terms and our process in computationally possible since we now

need only consider the left-hand sides of reductions for superposition.

The superposition process is the heart of the Knuth-Bendix completion procedure.

We need only generate these critical pairs and show conflation. If the terms do not conflate

then we try to add a new rewrite rule if the normal forms of the two terms can be oriented

and see if the resulting set of reductions is complete. If they cannot be oriented we stop

with failure.

A complete proof of correctness of the Knuth-Bendix algorithm is given in [Hu81J.

Forgaard and Guttag [FG84] made the Knuth-Bendix completion procedure more

failure resistant through a simple improvement. When a pair cannot be oriented it is

‘shelved’ in case a new rewrite rule is later found which can then allow the shelved pair to

be oriented.

Knuth and Bendix provided many examples of their completion procedure in use.

For example, given the following rewrite rules from group theory

(1) e*x -4 x

(2) x'*x —» e

(3) (x»y)*z -4 x*(y*z)

the following reductions were added to make the set complete

17

(4) x‘»(x*y) -» y

(5) x*e —» x

(6) e' —» e

(7) x" -> x

(8) x«x" —> e

(9) x*(x'*y) -> y

(10) (x*y)~ —> y~»x\

The Knuth Bendix completion procedure can be seen in Figure 5. The function

inter-reduce puts both sides of reductions into normal form. If this makes a reduction an

identity we can delete it. Else we re-orient it if necessary. If this is not possible we abort

the entire completion procedure with failure. See Figure 6.

C. COMPLETE SETS OF REDUCTIONS MODULO EOIJATIONAL THEORIES

1. Complete Sets of Reductions Modulo Associativity and Commutativity

Although the Knuth-Bendix procedure is a generic procedure the authors realized

that it could not easily handle certain identities. Commutativity cannot be oriented with

their ordering and associativity is not handled in a completely generic way [PS81], To

overcome these problems Lankford and Ballantyne developed algorithms to handle

commutative axioms [LB77a], permutative axioms |LB77b], and associative-

commutative axioms [LB77c], Their method had the drawback that it was a semi-decision

procedure since it was not guaranteed to terminate after finding a complete set of

reductions.

Huet developed a decision procedure using methods like Lankford and Ballantyne’s

18

KB-Completion (*E)
/* £ is a set of equations of the form A. == p */
%j= set of reductions formed from £
repeat

Complete=TRUE
for all reductions A,j -> pi e ^

for all reductions A,2 —> p2 e
for all subterms A-i/i which are not variables

0 = mgu of A-j/i and A,2
if 0 exists

tl =
t2 = A-i[i <— p2] 0 i^
if t! = t2

tj and t2 conflate; test next critical pair
else if ti > t2

%J= (tl -> t2)
inter-reduce ^
Complete = REPEAT
goto until statement

else if t2 > ti

%S-> (t2 ~ > tj)
inter-reduce ^
Complete = REPEAT
goto until statement

else /* ti and t2 are incomparable */
Complete = FALSE
goto until statement

end if
end if

end for
end for

end for
until (Complete = TRUE or Complete = FALSE)
retum(Complete, ‘K}

Figure 5. Knuth-Bendix completion procedure.

Inter-reduce (!̂)

for all rj (= Xj p j) e

l l = ^ 1 ^ - lr 'l

h = P l ^ n)

if tj = t2

/* do not add a reduction to ^ ew*/

goto for statement

else if tj < t2

^aew - ^uew U (t2 tj }

else if t2 < tj

^ e w = ^ o e w U U l t2 J

else /* tj # t2 */

Complete=FAILURE

exit Inter-reduce

end if

end for

tK.~ ‘KiCVi

end Inter-reduce

Figure 6. Inter-reduce algorithm.

20

but required that the reductions be left linear (the left-hand side of the reduction must

contain no variable more than once) [Hu80].

In 1981, Peterson and Stickel developed a Knuth-Bendix type algorithm which

separates associative and commutative identities from the others and then attempts to find

a complete set of reductions modulo the associative and commutative laws [PS81].

Actually, their formal treatment only assumes that a finite, complete unification

algorithm exists for the given equational theory (which does exist for associativity and

commutativity [St81], [CL88]). A set of reductions is then attempted to be made complete

using the unification algorithm. A set of reductions !^ is E-complete, where *£ is an

equational theory for which a finite, complete unification algorithm exists, if for all terms s

and t if s = ^ ^ t , s s', and t -V ^ Et', where s' and t' are irreducible, then s' =£ t'. See

Figure 7.

To prove completeness Peterson and Stickel required that the set of reductions be E-

compatible. A set of reductions ^ i s E-compatible if whenever t — s, there exists a

node m, substitution o, and a reduction X —> p € R such that t/i =,LA.O, s = t s , s —> ^ t ,

and t' =£ t[i <- pa] for some terms s' and t'. See Figure 8.

21

Critical pairs for R and E are defined similar to that in [KB70], Let —> p j and

X2—> P2 be reductions in If some subterm k of E-unifies with using substitution a ,

then <X,i(k <- p2]o, Pi<J> is a critical pair.

A set of reductions is E-terminating if there exists no infinite sequence of E-

rewrites. This leads us to the theorem used to prove completeness.

Theorem 3.3 (PS81) Let ^ be an E-compatible set of reductions. If !^ is E-

terminating, then l^ is E-complete if and only if for every critical pair <s,t> there

exists terms s' and t' such that s —>^s', t —>^t', and s' =E t'.

Peterson and Stickel went on to show necessary conditions for E-compatibility and

more importantly to show that when 'E is an associative-commutative theory then E-

compatibility holds for all sets of reductions !^when certain extensions are added to

22

Their algorithm for proving completeness is given in the paper and varies somewhat

from the description given in the above theorem (e.g. only overlapping critical pairs need

be checked). With this algorithm they produced complete sets of reductions for free

commutative groups, free commutative rings with a unit element, distributive lattices, etc.

Attempts were also made using incomplete associative unification algorithms with some

success.

While success was gained by Peterson and Shekel, their method was not the most

general treatment of the area. Indeed, their title said it was for “some equational theories”.

In particular to show E-compatibility the axioms in £ had to have identical unique

variables (i.e. permutative axioms with no repeating variables on a given side). Thus

axioms such as x«x = x, x + 0 = x, and h(x,x,y) = h(y,x,x) could not be in £ . Jouannand

and Kirchner removed these restrictions in their paper [JK86],

2. Complete Sets of Reductions Modulo an Equational Theory

Jouannand and Kirchner developed a general method for finding a complete set of

reductions modulo an equational theory. Like with Peterson and Stickel’s method the

identities are split up into two sets. The first set !^,is a set of reductions and the second set

£ is an equational theory for which a finite, complete unification algorithm exists.

Let us now build up their results starting with some definitions. A complete set o f

critical pairs is the set of all critical pairs using the complete set of E-unifiers. Note that

these pairs are formed from £•

%\$> Trconfluent if and only if for all terms t, tj, and t2 if t — tj and t —>*̂ t2

then there exist terms Sj and S2 such that t j —» * Sj, t2 kje s2’ ar*d sj S2. See Figure

9.

23

Figure 9. E-Confluence.

!^is locally ‘E-confluent if and only if for all terms t, tj, and t2 if t — tj and

t— t2 then there exist terms sj and S2 such that tj — Sj, t2 — ^ ar*d S] =£ S2-

See Figure 10.

Note the similarity between local E-confluence and Theorem 3.3. A comparison of

the two will be discussed later.

Let T b e the equational theory associated with ^ i s E-Church-Rosser if and

only if for all terms tj and t2, if tj =rpJ <£ *2 then there exist terms Sj and S2 such that

t i sh t2 s2, and sj =£ s2. See Figure 11.

24

From the previous discussion we might expect that E-termination and (local) E-

confluence to imply E-Church-Rosser but in fact another property is needed to show this.

This property is (local) coherence.

The reason why E-confluence is insufficient is that it only checks critical pairs

formed between two reductions in What we need to add are critical pairs between

reductions in ^ a n d equations in *E- which coherence will do for us.

!^is coherent modulo £ if and only if for all terms t, tj, and t2 if t —»+^.£ tj and

t=£t2 then there exists terms S\ and S2 such that t\ ->*2̂ 2; s j, t2 —»+^ S2, and sj =£ S2- See

Figure 12.

25

%js locally coherent modulo *E if and only if for all terms t, tj, and t2 if t — tj

and t t2 then there exists terms and S2 such that tj — sj, t2 — S2, and

S1=ES2- See Figure 13.

Figure 13. Local coherence modulo E.

26

Theorem 3.4 (JK86) The following properties are equivalent for an E-terminating set

of reductions

(1) 3Jjs E-Church-Rosser.

(2) ^ i s E-confluent and coherent modulo E.

(3) ^ i s locally E-confluent and locally coherent modulo E.

(4) All E-critical and coherence pairs of !^and Ereduce under ^,to E-identities.

The coherence property in the above equivalences can actually be removed when

the equations in E are permutative. Christian [Ch89] showed this to be true in his

dissertation by showing that E-confluence implied coherence for permutative equational

theories and sped up his HIPER implementation by restricting it to permutative theories,

thus not having to check for coherence. We will look at Christian’s HIPER system in more

detail in Section VII since our system, HIPER-extension, is a modified version of this fast

completion system.

With the above, the relationship of Theorem 3.3 to the E-confluence property can be

appreciated. Since Peterson and Stickel worked with associative and commutative theories

and these are permutative we would expect the results to coincide (that is, the coherence

property to be removed).

Jouannand and Kirchner developed a completion procedure, seen in Figures 14 and

15, which can find complete sets of reductions modulo an equational theory for more

equational theories than that of [PS81] but it too has the problem that a finite, complete

unification algorithm has to be provided for the equational theory.

The question of how we can prove completion modulo an equational theory which

generates infinite congruence classes has been addressed by Bachmair and Dershowitz

[BD89] but Baird [Ba88] noted, of the earlier version [BP87], that the finite termination

27

E-Completion (% T)

/* £ is the equational theory for which a finite, complete unification algorithm exists;

!^is a set of reductions */

for all reductions r = A, -» p e ^

Pairs = Compute-critical-pairs(r, %, *£)

Start: for all <t,,t2> e Pairs

*1 =

h -

if t, = t2

tj and t2 conflate; goto Start

else if tj > t2

£ = (t,->ta)

inter-reduce

Pairs = Pairs u Compute-critical-pairs(r,{t, —> t2}, 0)

else if t2 > tj

<K±J (t2 —> tj)

inter-reduce

Pairs = Pairs u Compute-critical-pairs(r,{t2 —> t , }, 0)

else /* t] and t2 are incomparable */

Stop with FAILURE

end if

end for

end for

Stop with SUCCESS; Return ^

Figure 14. E-completion procedure.

28

Compute-critical-pairs (r = A, -> p, ^ *£)

Pairs = 0

for all / = A,'->p' e ^

for all i g sdom(A,)

if not (r' = r and i = 0 (meaning the top-level term)) then

for all 8 which are E-unifiers of A/i and A'

Pairs = Pairs u (<8(p), 8(A.[i <- p'])>)

end for

end if

end for

end for

for all i g sdom(A,)

for all A.' = p ' g £

for all 5 which are E-unifiers of A/i and A/

Pairs = Pairs u {<5(p), 8(A,[i <— p'])>}

end for

for all 8 which are E-unifiers of A/i and p'

Pairs = Pairs u |<8(p), 8(A.[i 4- A'])>}

end for

end for

end for

Return (Pairs)

Figure 15. E-critical pair procedure.

29

property needed in their model is usually lost, though, in their treatment. Baird then

looked at the associative-commutative-identity equational theory. This theory generates

infinite congruence classes, but Baird built an ACI-completion procedure which is finitely

terminating.

For a list of known complete sets of reductions see [Hul81],

30

IV. ORDERINGS AND TERMINATION

In Section III the problem of proving termination was not directly addressed. This

section will consider E-termination both when E = 0 (in which case we will talk simply of

‘termination’) and E * 0 . First we will look at the case when E = 0 .

A. TERMINATION

In Section III we gave one ordering which had the finite termination property - the

Knuth-Bendix ordering - but there are many other orderings which could have been used

instead. The existence of other orderings is quite useful since a set of reductions could be

found not to be complete with one ordering but found to be complete with another

ordering. Thus different efficiently implemented orderings which have the finite

termination property are needed when searching for a complete set of reductions.

Termination is normally proved by using the following theorem [MN70]:

Theorem 4.1 (MN70) A set of reductions ^ i s terminating, if there exists a well-

founded ordering > over all terms such that

t > s implies f(.. . t . ..) > f(.. .s ...) (monotonic)

for terms t, s, f(.. . t . ..), f (.. .s ...).

and if \ -» p e !^then Xg > po for all substitutions o (substitution preserving).

Well-foundedness was defined in Section III.

Dershowitz [De79] presented an important class of orderings called simplification

orderings. An ordering is a simplification ordering if it is a reduction ordering which has

the subterm property (i.e. f(...t...) > t, for all terms t). An ordering is a reduction ordering

if it is monotonic. The Knuth-Bendix ordering is a simplification ordering.

31

A property of a simplification ordering is that it contains the embedding relation. Let

'Ht) be the set of all variables in t. If s and t are terms then s is embedded in t, written s **

t, if and only if

(1) s e 1^t), or

(2) s = f(.. .Sj...) and t = f(.. .tj...) and s, tj for any i, or

(3) s t; for tj a subterm of t.

Example:

Note that a simplification ordering > does not require > to be well-founded. Despite

this Dershowitz proved the following theorem:

Theorem 4.2 (De79) A set of reductions ^term inates if there exists a simplification

ordering > such that

for all X -» p e !^then Xa > p a for all substitutions a.

32

To help in proving termination for other orderings, Dershowitz also showed the

following [De79]:

Theorem 4.3 (De79) A set of reductions R terminates if there exists a quasi

simplification ordering > such that

for all A. —> p g ^ th en A.o > pa for all substitutions a.

An ordering is a quasi-simplification ordering if it is

(1) transitive,

(2) reflexive,

(3) subterm preserving, and

(4) f(.. . t . ..) > t, for all terms t.

Dershowitz presented a class of simplification orderings in his paper called

recursive path orderings. The recursive path ordering, >[po, is defined as follows: If > is a

partial ordering of the function symbols then s = f(s ,, ..., sm) >[po t = g (t , , ..., t j if and only

if

(1) f = g and {s,,..., s j »ipo {tj,...^}, or

(2) f > g and s >ipoti, for all i in {1 ,..., n}, or

(3) f ^ g and Sj ^ tfo r some i in {1 ,..., m}.

The relation ^ is a multiset ordering defined as M »rpo N if and only if M * N and for all

y e N - M there exists an x e M - N such that x >[po y is a partial ordering.

The recursive path ordering can sometimes orient equations that the KB-ordering

cannot. For example, if has a weight of 0 then (-x) + (-y) = y + x cannot be ordered by

the KB-ordering but can be ordered left to right by the recursive path ordering.

33

Another simplification ordering which we are concerned with is the lexicographic

path ordering (lpo) [De87]. This ordering will be discussed in more detail in the next

section so we will only briefly state its definition here.

Let s = f (s j , s m) and t = g(tj, ...,tn), s >1̂ t if and only if

(1) Sj > ^ t for some i e { l , . . . ,m } .

(2) f > g and s >lpo tj for all j e { 1 ,..., n }.

(3) f = g and for some k e { 1 ,..., n}, sj = tj for all i < k, sk >lpo tk, and s >lpo tj when

k < i <n .

Other orderings include the recursive decomposition ordering [Le82], and the path

of subterms ordering [P178]. For surveys on orderings see [De87] and [DJ90].

B. E-TERMINATION

Lets now look at E-termination where E * 0 . A definition of “E-termination is: !^is

E-terminating if and only if there exist no infinite sequence of terms tj, t2, t3, ... such that

tj =£ t i ' —>3^2 =<£ t-2 “ 5*3^3 =£ l3 •••• Note that —>3̂ 2: ^ =£°~>3̂ since in —>3̂ 2; equations

can only be applied on a term at or below the subterm !^is applied while equations can be

applied anywhere in =£°—̂

Example:

Let {x+e —> x} and E = {x+(y+z) = (x+y)+z} then y+(e+x) is in normal form for

—>3̂ 2: but is equal to y+x using

E-termination has been shown using polynomial orderings [HO80] and associative

path orderings [BP85] but are limited to associative, commutative, and associative-

commutative theories. Christian [Ch89] also gives two new orderings for simple, linear,

permutative theories. A more general investigation of the problem of E-termination was

34

given in [JM84]. Though no orderings were given in the paper, general criteria were given

for (E-termination to hold for a relation.

Let us look at the results of [JM84]. First, restrictions for E-termination to hold were

noted.

(1) For equations X == p, = 'Ftp). This prevents the following from happening.

Given f(x,y) = g(x) and I(x) -4- e then f(x,y) -4 f(x,l(x)) = g(x) = f(x ,y)....

(2) If a term s has more than one occurrence in t then equations cannot be of the form s

== t. This prevents the following from happening. Given f(x) = g(f(x),f(x)) and

f(x) -4 e then f(x) = g(f(x),f(x)) -4 g(e,f(x)) = g(e,g(f(x),f(x))....

For the rest of this discussion let -4 be a rewriting relation such that — -4 c

=£°—»;£>=£. The relation -4 is E-commuting if and only if for all terms t, t2, and Sj if t2= ^ t

and t —»+ si then there exists a term S2 such that t2 —>+ S2 and S2 =£Sj. See Figure 17.

+

_
'£

2

+

' ' 1

Si _ _ s 2
•E

Figure 17. E-Commutation.

The relation -4 is locally E-commuting if and only if for all terms t, t2, and Sj if

t2=, E t and t —> Si then there exists a term S2 such that t2 -4+ S2 and S2 =£ Sj. See Figure

18.

35

Theorem 4.4 (JM84) For R, a set of reductions, and E, a set of equations, R is

£-terminating if -» is terminating and (locally) E-commuting.

Note that commutation is stronger than coherence and thus:

Theorem 4.5 (JM84) The relation —» is £-Church-Rosser if and only if it is

terminating, (locally) £-confluent, and (locally) £-commuting.

If —> is not E-commuting then E-termination can still be shown if we can find

another relation > which is E-commuting with — A relation > is E-commuting with —> if

and only if > contains the embedding relation and for all t, t2, and sj if t2 =.L t and t -» S]

then there exists a term S2 such that t2 > S2 and S2 =£Sj. If such a relation exists then is

£-terminating. See Figure 19.

Figure 19. > is E-Commuting with —

36

For another method of proving termination of rewriting systems see |DM79], in

which Dershowitz and Manna use multiset orderings for its termination proofs and also

present other types of orderings

37

V. SOME EXTENSIONS TO COMPLETION

A. UNFAILING COMPLETION

An alternative to standard KB-compIetion is the notion of unfailing completion. In

this method un-orientable equations can be handled in such a way as to guarantee the

existence of a decision procedure for the associated word problem, if one exists.

The KB-completion procedure will not always find a complete set of reductions

when one exists since the sequence of attempted completion can affect its outcome. An

example taken from [De89] in which k > m, k > n, m # n, m > c, and n > c (where m # n

means that m and n are incomparable through the ordering >) has a sequence which forms

a complete set of reductions with

({k = m, k = n, f(k) = c}, (f(m) -» m}) =>

({k = n, f(k) = c), {k —> m, f(m) —» m}) =>+

({m = n, m = c}, {k —» m, f(m) —> m}) =>+

({m = n}, {m —> c, k —> m, f(m) —» m() =>+

({f(c) = c, c = n}, {m —» c, k —»c}) =>+

(0 , {f(c) —» c, n —» c, m -» c, k —» c })

and one which does not form a complete set of reductions

({k = m, k = n, f(k) = c }, {f(m) —> m)) =>

({k = m, f(k) = c }, {k —> n, f(m) —> m }) =>+

((n = m), (f(n) —> c, k —> n, f(m) —> m).

Thus a backtracking algorithm might be useful but sometimes the initial problem

fails so backtracking over sequences will not help. Function symbol introduction (see

38

[KB70]) sometimes helps but will not work on many types of permutative theories such as

commutativity. If we can totally order the ground terms with a reduction ordering, which

we always can, we can handle un-orientable equations by carrying them along in an

unfailing completion procedure.

Hsiang and Rusinowitch presented such a completion procedure which does not fail

in their 1987 paper [HR87|. Their results build on Huet’s [Hu81| who produced semi

decision procedures for the word problem for non-confluent rewriting systems. His idea

was that given an equational theory E and an equation s = t then letting s' ^ t' be the

skolemized inequality of the negation of s = t then s = t is a result of E if and only if the

KB-completion procedure eventually reduces s' ^ t' to some r ^ r. Skolemization of

not(s=t) results in s' and t' being ground terms since variables are replaced by skolem

constants in s' and t'.

Hsiang and Rusinowitch required that a ground-linear simplification ordering exist

on the terms T for their unfailing completion procedure. An ordering is a ground-linear

simplification ordering > if it is an ordering such that

(1) it has the subterm property (f(.. .t ...) > t),

(2) it is monotonic (if s > t then f(...s...) > f(...t...)),

(3) it is substitution preserving (if s > t then so > to), and

(4) > is total on the set of ground terms.

For their method the notions of critical pairs and rewriting are slightly changed.

Given two equations s = t and I = r if i E sdom(s) and a is a mgu of s/i and 1 and

(1) rc r^ lc , and

(2) to £ so,

then <to, sfi <— ro]> is an extended critical pair.

39

The new extended superposition process now must generate these extended critical

pairs. We should note that if the equations s = t and 1 = r are orientable then (1) becomes

la > ra and (2) becomes so > to and the process is the same as that for KB-completion.

Reductions are modified so that s—»t if there exists an equation 1 = r such that

s/i = la, la > ra , and t = s[i <— ra] for some i € sdom(s) and some substitution a. Note

that we do not require 1 > r, only la > ra.

There are three basic steps in the unfailing completion procedure.

(1) Generate extended critical pairs and put into normal form - using existing

equations. If the pair does not conflate, add it as a rewrite rule if possible.

(2) Reduce s' ^ t' using the new equation, if possible.

(3) If r ^ r is generated, then use r ^ r and x = x to produce a contradiction.

Assuming that the above procedure (UKB) is fair then the following theorem holds:

Theorem 5.1 (HR87) Given E and s = t, s = t is a result of E if and only if UKB,

applied to E u (s' ^ t'), produces a contradiction.

This says that we can prove s =E t by proving a contradiction in UKB for E u (s '^ t').

To work on word problems with the above we need to know the following

Theorem 5.2 (HR87) If all equations are orientable and the system is confluent then

the set of reductions is complete.

But if we have non-orientable equations we can use this

Theorem 5.3 (HR87) If the system is confluent then the set of equations is complete

on ground terms.

Confluence in the above two theorems being modified for our new ideas on reductions and

40

critical pairs.

If Theorem 5.2 holds the word problem can be solved as with the KB-completion

procedure, but what about if only Theorem 5.3 holds - i.e. only ground completeness

holds. For this case we see that unique normal forms do not always exist but that a linear

decision procedure exists to solve the word problem even for non-ground terms. The

procedure is listed below in Figure 20.

Solve-Word-Problem (E, s = t)

/* E is our ground complete set of equations; s = t is our problem */

(s' ^ t') := Skolemize(not(s = t))

/* s' and t' have unique normal forms since they are ground and E is ground
confluent */

s' := s 'l

t' := t ' i

if s' = t' then

return (TRUE)

else

retum(FALSE)

end if

end Solve-Word-Problem

Figure 20. Solving word problems with ground complete systems.

Other treatments of unfailing completion appear in [BDP89| and |MN90|.

B. COMPLETION WITH CONDITIONAL REWRITE RULES

Conditional rewrite systems have been investigated for application in the area of

abstract data type specification. We will look at it now to note how it relates to the

constrained systems described in Section VII. A (positive-)conditional equation is of the

41

form:

s = t if A 5) — AJ„ = t„ n n

where n > 0 and where s = t can be thought of as the result and

II > 05 to CIIC03<<C4II the conditions. Given s = t if

- /[a j 2 - t2 a . . . A S n = tn , u u[j <— t2], if u/j = so for some substitution o

and Sj(7 <-> * q a for all i.

A conditional rule is a conditional equation in which the right-hand side is oriented

(e.g. s —> t if s { = t\ a s2 = t2 a . . . a sn = tn). A set of conditional rules is called a

conditional rewrite system. We define conditional rewriting as follows: u —> u[j <— rol, if

u/j = la, 1 —> r if c is a conditional rule, and co meets the test for the conditions. This test

can be one of several and the different types will be listed below.

3fc

If s and t are joinable, written s i t , then s —> v and t —> v for some term v. The

notions of irreducibility, termination, and (local) confluence are the same as before except

that they are defined relative to the new relation —>.

Seven different types of tests for conditions are listed in |DOS88]. In the below a is

the substitution mentioned in the rewriting relation. The different types are:

(1) Semi-equational systems

- Conditions s, = r, a j 2 = t2 a . . . a sn = tn are checked for truth by seeing

if SjG tjG for all i.

(2) Join systems

- Conditions Sj = t j a s 2 = t2 a . . . a sn = tn are checked for truth by seeing

if SjO i tjO for all i.

42

(3) Normal-join systems

- Conditions s l = t, a s2 = t2 a ... A sn = tn are checked for truth by seeing

if SjO i ! tjC for all i. We write Sj i ! tj is the same as Sj4-tj except there must also

exist a term v which is irreducible such that both Sj and tj both rewrite to v.

(4) Normal systems

- Conditions 5, = t, a s 2 = t2 a ••• a sn = tn are checked for truth by seeing

if SjCt — tja for all i. We let Sj —>' tj, if Sj t, and tj is an irreducible ground

term.

(5) Inner-join systems

- Conditions = t x a s2 = t2 a ••• a sn = tn are checked for truth by seeing

if Sj a | ' n tjCt for all i. We write Sj 4,n tj if sj and tj are joinable by innermost

rewriting. Innermost rewriting requires that rewriting can occur only if all

subterms are irreducible.

(6) Outer-join systems

- Conditions = t\ a s 2 = t2 a . . . a sn = tn are checked for truth by seeing

if SjO i out tja for all i. We write Sj 4oul tj if s; and tj are joinable by outermost

rewriting. Outermost rewriting requires that rewriting can occur only if no

superterm can be reduced.

(7) Meta-conditional systems

- Other types of conditions are allowed in the condition such as x e X, s > t, s —> t,

etc.

Join systems are the types of systems most commonly used.

Critical pairs between conditional rewrite rules Sj = tj if cj and S2 = t2 if C2 are

43

formed as we would expect: <tjG = S j O [i <- t2Gl i f (cj a c2)a> is a critical pair if

sj/i = s2a. The critical pair is an overlay if i = (). A critical pair s = t if c is feasible if
4c

co—> true for some substitution o. A critical pair s = t if c is joinable if for all feasible

solutions so ito .

For unconditional rewrite systems we have, from Section III, that the system is

confluent if and only if every critical pair is joinable. To prove confluence for the various

types of conditional systems Dershowitz, et. al. |DOS88| showed the following are

sufficient conditions:

(1) Semi-equational systems

- Termination and all critical pairs are joinable.

(2) Join systems

- Termination and all critical pairs are overlays and joinable.

(3) Inner systems

- Termination and all critical pairs are joinable.

Let E be an equational system and R be a rewrite system. E |— s = t if and only if

s <-> * t is provable from E. R (— s i t means that s and t are joinable using R. E and R

have the same logical strength if E |— s = t if and only if R (— s i t . If one system is

stronger than the other then if the weaker system is complete then so is the stronger

system. Dershowitz, et. al. [DOS881 gave the relationships between the various systems

and we depict this in Figure 21. In the figure, A —» B if A is stronger that B, in general.

Confluency conditions for some of the other systems are also presented in the paper.

For a look at conditional rewriting when restricted to left-linear systems without any

critical pairs see [BK86].

44

For another look at conditional rewrite systems see |ZRX5|.

45

VI. SOLVING INEQUALITIES USING LEXICOGRAPHIC PATH ORDERINGS

Eor the next section on constrained completion we need to have method for deriving

constraints for a given inequality problem. That is, we want to derive a constraint using an

ordering which tells us when we can apply a reduction (e.g for a commutativity axiom,

f(x,y) > f(y,x), the constraint using the lexicographic path ordering is x >y)-

To do this we first need to state some definitions. If s and t are terms, a term

inequality is a relation of the form s > t; term equalities are relations of the form s = t. A

term problem consists of term equalities, term inequalities, and the logical operators not

(—i), and (a) , and or (v) . In the discussion which follows > will be interpreted as the

lexicographic path ordering.

Comon [Co90] studied this problem of term inequalities to apply to unfailing

completion by showing the existence of a ground substitution for a term inequality is a

decidable problem. This is useful in the generation of critical pairs. Comon’s treatment of

the subject is well-presented but we will look at Peterson’s work |Pe90al since his is

oriented towards a machine implementation and is the work which our implementation is

based upon.

Some definitions from [Pe90a] are: A simple term (in)equality is an (in)equality of

the form x = t (x > t) where x & V and x £ Var(t). A simple component is T (true) or a

logically independent conjunction of simple term inequalities. A component is a pair

<0,a> where 0 is a substitution, a is a simple component, and if (x/t) € 0 then

x £ K j V a r (c) where c is an inequality in a . A partition is a disjunction of components
C

in which the disjuncts are pair-wise disjoint (i.e. C| a C2 1= F (false)).

Peterson [Pe91 b] gives thirty-four different rules to produce a constraint for a given

term inequality based on the lexicographic path ordering (see Section IV for its definition).

46

Solve-Term-ProbIem(P,C,p,E)

/* we will abbreviate this by STP(P,C,p,E) */

(1) STP(T, C, p, E) -4 T

(2) STP(P, T, T, T) -4 T

(3a) STP(P, F, p, E) -> P

(3b) STP(P, C, F, E) -> P

(3c) STP(P, C, p, F) —> P

(4) STP(P, C, T, T) -> P v C

(5) STP(P, C, T, E) -> STP(P, C, E, T)

(6) STP(P, C, p Aq, T) -4 STP(P, C, p, q)

(7) STP(P, C, p a q, E) - 4 STP(P, C, p, q a E)

(8) STP(P, C, p v q, E) —> STP(STP(P, C, p, E), C, q, E a (ip))

(9) STP(P, C, iF , E) -4 STP(P, C, E, T)

(10) STP(P, C, iT , E) —> P

(11) STP(P, C, u p , E) -4 STP(P, C, p, E)

(12) STP(P, C, i (p a q), E) -4 STP(P, C, i p v i q , E)

(13) STP(P, C, i (p v q), E) -4 STP(P, C, i p , i q a E)

(14) STP(P, C, i (p = q), E) -4 STP(STP(P, C, (p > q), E), C, q > p, E)

(15) STP(P, C, i (p > q), E) -4 STP(STP(P, C, (p = q), E), C, q > p, E)

For rules 16-18, let 0 be the mgu of p and q

(16) if 0 does not exist, then STP(P, C, p = q, E) -4 P

(17) STP(P, T, p = q, E)—»STP(P, (0,T), T, E0)

(18) STP(P, (<|),a), p = q, E)->STP(P, (0<>,T), a0 , E0)

(19) if u G Var(v), then STP(P, C, u > v, E) -4 P

(20) if v e Var(u), then STP(P, C, u > v, E) -> STP(P, C, E, T)

(21) if u or v is a variable and C => u > v, then STP(P, C, u > v, E) —> STP(P, C, E, T)

(22) if u or v is a variable and C => v > u, then STP(P, C, u > v, E) -4 P

(23) if u or v is a variable, then STP(P,C,u > v,E) -4 STP(P,AndTogether(u >v,C),E,T)

Figure 22. a.) Procedure for solving term problems (continued).

47

For rules 24-26 let u = f (u i , u n) and v = g(vi, ...,vn)

(24) if f > g, then STP(P, C, u > v, E) -» STP(P, C, (all u (vj, . . vm)), E)

(25) if g > f, then STP(P, C, u > v, E) —» STP(P, C, (some (uj, un) v), E)

(26) if f = g, then STP(P, C, u > v, E) -4

STP(STP(P, C, (lex u (u j , u n) (v j , v m)), E),
C, (lexsome v (v,) (uj) (v2, v n) (u2, un)), E)

(27) STP(P, C, (all u nil), E) -> STP(P, C, E, T)

(28) STP(P, C, (all u (v , , v m)), E) -> STP(P, C, (u > v,) a (all u (v2, vm)), E)

(29) STP(P, C, (some nil v), E) -> P

(30) STP(P, C, (some (u j , u n) v), E) ->

STP(STP(STP(P, C, (u! = v), E),
C, (ut >v), E),

C, (some (u2, u n) v)), E a (v > uj))

(31) STP(P, C, (lex u nil nil), E) -» P

(32) STP(P, C, (lex u (u j , u n) (v j , v n)), E) ->

STP(STP(P, C, (u, > v j) a (all u (v2, ...,vn)), E),
C, (uj = V i) A (lex u (u2, un) (v2, v n), E)

(33) STP(P, C, (lexsome v (v j , v n) (u j , u n) nil nil), E) —■» P

(34) STP(P, C, (lexsome v (v j , ..., v ^) (uj, . . . ,11̂ !) (vk, ..., vn) (uk, ..., un)), E) ->

STP(STP(STP(P, C, uk = v, E a (lex v (v j , . . . , vk. ,) (u j , ..., uk. i))),

C, (uk > v), E a (lex v (v j , ..., v ^) (ub ..., uk.j))),

C, (lexsome v (vb ..., vk) (uj, ... uk) (vk+1, ..., vn) (uk+i, ..., un)), E)

Figure 22 (continued), b.) Procedure for solving term problems.

48

These are listed in Figure 22. The initial input is STP(F,T,p,T) where p is the term

problem. In general, STP(P,C,p,E) has parts P, for the accumulating partition; C, for

simple equality and inequality components; p, for the current part of the problem; and E,

for the rest of the problem. In rule 23, AndTogether(u > v, C) is (u > v) a C reduced to

make it logically independent. Peterson also gives a method to determine if a => s > t in

his paper [Pe91 b].

Examples using STP (in the below • > +):

- For the term problem x • (y +z) > x + (z • y), the constraint is (x = z) v (x > z).

- For the term problem x + (y • z) > y + (z + x), the constraint is (y > x) v (x = y) v

(x > y a z > x) v (x = z a z > y) v (x > y a x > z).

- For the term problem, x • (y • (x • z)) > x • (x • (y • z)) the constraint is y > x.

Peterson also wished to keep the constraints in a reduced form so he performed two

operations on constraints gotten from the STP procedure. First, he ‘factored’ the

constraints. A factor of a component C is a simple (in)equality E such that C => E. The

process of factoring E out of C gives a component D such that E a D = C and D is

logically independent relative to E. This process is shown in Figure 23. The actual code

for this is written in LISP (see [St84]) for use with many of Christian’s HIPER functions

[Ch89].

To factor a component P we take a factor G and get Pj v (G a P2) where Pj is made

up of components which G does not factor while P2 has G as a factor. If P2 reduces to true

(i.e. it is of the form (s > t) v (s = t) v (t > s)) then we are left with P jv G and we try to find

more factors. Else, we try to factor P2 further with factor G2 giving Pj v (G a P21) v

(G a G2 a P22) where P2j is not factored by G2 and P22 is. Factoring in the presence of G

is slightly different, it means that we find a G2 such that G a C => G2 and P22 is made up

of components such that G a G2 a P22 => C and P22 is logically independent relative to

49

factor-out(E,D)
/* This is initially called with factor(E,C) */

found = false

for all d such that D=d a D' for some D'

if Dr a E => d then

found = true

break from loop

end if

end for

if found = true then

return factor-out(E,Dr)

else

return (D)

end if

Figure 23. Factor-out procedure.

G a G2. The term P21 is the conjunction of the components of P2 which are not factored

by G2 in the presence of G.

The benefit of this factoring can be seen in the below examples which significantly

reduces the complexity of constraints.

Examples using the factor procedure (in the below • > +):

- For the term problem x + (y • z) > y + (z + x) the constraint from STP is (y > x) v

(x = y) v (x > y a z > x) v (x = z a z > y) v (x > y a x > z). After factoring this

constraint is simply T (meaning that the constraint is unconditionally applied).

- For the term problem x + (y + z) • x > z + (y + x • z) the constraint from STP is

(z > x) v (x = z) v (x > z a y > x) v (x = y a y > z) v (x = y + z) v (x > y a x > z a

y + z > x). After factoring this constraint is (x = y + z) v (y + z > x).

50

Peterson also presents a normal form for constraints in [Pe90b] to further simplify

the constraints and the process is similar to that in [Co90], The following steps will be

referred to as the normalform function in the next section. First, NOTs are eliminated

using the usual equalities from logic

(1) -.T —> F.

(2) -,F -4 T.

(3) i iX -4 X.

(4) i(x > y) -> (x = y) v (y > x).

(5) —i(x a y) —> —ix v -iy.

(6) —i(x v y) —> -ix a -iy.

Then the constraints are put in disjunctive normal form using

(1) x a (y v z) —> (x a y) v (x a z) , and

(2) (x v y) a z —> (x a z) v (y a z).

Next, an equation is made for each disjunct (i.e. s = t if Cj v c2 v ... v cn => s = t if

Cj, s = t if c2, s = t if cn). The reason for this will be explained in the next section. The

constants T and F are removed now with

(1) x a T —> x, and

(2) T a x -» x, and

(3) F a x —> F, and

(4) x a F —> F.

51

Equalities are removed next with

(1) (s = t) a C —» F if s and t do not unify, and

(2) (s = t) a C —» Cct if s and t have mgu a.

Again the justification of this will be given in the next section. Notice that now the

constraint is either T or a conjunction of inequalities. We will now eliminate redundancies

(x > y => x»l > y), tautologies (x*l > x => T), inconsistencies (x > y a y > x => F), and

add transitive implications (x > y a y > z =4> x > z). This function is shown in Figure 24.

The initial input is greater-than-normal(0,C).

greater-than-normal(c t ,02)
if C2 = 0 then return cj

/* else C2 = s > t a C */

while ((s > t) = u[i <— 1] > u[i <— r] AND i ^ ())

s > t = 1 > r

if t/i = s then return F

if s/i = t then return greater-than-normal(C],c)

if u/i = t for some s > u £ Cj then return greater-than-normal(ci,c)

if s/i = u for some u > t £ Cj then return greater-than-normal(ci,c)

if s > u G Cj AND t/i = u then cj = cj - (s > u) I

if u > t e ci AND u/i = s then ci = ci - (u > t)

if u > v G ci AND v/i = s then C2 = C2 u (u > v[i <— t]}

if u > v G ci AND t/i = u then C2 = C2 u {s > t[i <— v]}

return greater-than-normal(ci a (s > t), c)

Figure 24. Normal form procedure.

Peterson mentions that he has no proof that this function always terminates but that

it has always done so for him. Our experiments concur with his and agree that it will likely

52

always do so. A proof of this though would be desirable. More interestingly, though, the

above methods for reducing constraints does not guarantee that all inconsistencies are

found. In particular if a > b and a and b are adjacent then (x < a) a (x > b) should reduce to

false but this will not be found with the above method. Comon gives a method to solve this

oversight [Co90] but his solution makes the problem NP-hard. Since Peterson’s

completion procedure (and thus ours) does not seriously degrade by not checking for this

it is correct not to search for these inconsistencies in the implementation.

53

VII. COMPLETE SETS OF REDUCTIONS WITH CONSTRAINTS

The biggest problem with completion procedures modulo an equational theory is the

requirement that a finite, complete unification algorithm exist for the equational theory.

These unification algorithms must normally be created as they are needed and thus much

time must be spent creating and optimizing these algorithms (along with matching

algorithms) before completion can even be attempted. This can be a daunting task when it

is not known whether or not we will find a complete set of reductions and especially if the

algorithms are so specialized that it is unlikely that they can be used on other problems

too. Although specialized unification algorithms will normally work better when they

exist, we will eliminate the need for specialized unification algorithms by putting

constraints on the rewrite rules.

A constraint will restrict the applicability of a rewrite rule but not its truth. For

example, the constraint for commutativity, f(x,y) —» f(y,x), is x > y. By writing our rewrite

rules as f(x,y) —» f(y,x) if x > y we can restrict the application of it as long as we can

determine if the constraint is true. We avoid rewriting f(a,b) -» f(b,a) —> f(a,b) —» ... since

either a > b or b > a and thus only one of these rewrites can be performed. Thus we can

orient identities which could not be oriented by the KB-ordering (and all of the other

orderings we have studied). We are then not forced to use a specialized unification

algorithms ever since, from Section VI, we showed that every identity is orientable using

the lexicographic path ordering (the ordering we will use).

Note that constraints are not the same as conditions since constraints only restrict

when we can apply the reduction while conditions tell us when the identity is true. Using

our commutativity example, we know that f(x,y) = f(y,x) at all times while the constraint

on when we apply it is if x > y. But if we have the equation x + y = x (under normal

algebraic rules), we see that the condition on this rule is that y = 0. When we define

54

constraints formally we will see that their forms also differ since conditions are only

disjunctions of equations while constraints allow a wider selection of symbols. Thus

conditional and constrained completion are only loosely related.

Unfailing completion handled rules like commutativity by carrying them along

through the procedure but, as Kirchner, et. al. noted in [KKR90], constrained completion

often finds a complete set of reductions when unfailing completion will not.

Peterson introduced constrained completion in his 1990 paper [Pe90b] and said that

his inspiration for this came from working on the ACI-completion procedure ([Ba88] and

[BPW89]) in which constraints were needed in some places. He wanted to back up and

apply these constraints to a completion procedure in general.

We will now formally define what we mean by a constraint. A constraint is a

formula made up of terms, logical connectives (a , v , —i), >, =, T, and F. For example

(x > y) v —>(y = x*z) is a constraint. Thus a constrained equation is of the form (X = p if c)

where X = p is an identity and c is a constraint. We will require that Var(p) kJ Var(c) c

Var(X), where Var(c) is the union of Var applied to each term in c. The constraints for the

identities which will be given to our completion procedure will be generated using the

STP procedure from Section VI.

A ground instance of a constraint c0 is one in which Var(c0) = 0 . Ground instances

of equations (\0 = p0 if c0) are true ground instances if c0 = T. Two constraints are

equivalent, C| s c2, if for all 0 such that Cj0 and c20 are ground instances, then Cj0 = c20.

We write c x => c2 if for all 0 such that c t0 and c20 are ground instances, then c,0 =4> c20.

We will determine equivalence and implications using our normalform function of Section

VI.

Constrained reductions are constrained equations which are ordered, written

55

X, —» p if c, and all true ground instances of which must have X.0 > p0. We apply a

constrained reduction X. -» p if c to a term t —» t[i <— p0| if t/i = X.0 for some substitution 0,

and c0 s T.

Other definitions such as <-> and I have the same meanings but is now defined

relative to this new type of rewriting. The relation =R is defined as before without regard

to the constraints in R. Note that this means that =R is not equivalent to <-» , as before,
*

because we must consider the constraints in <-> but not in =R.

We again have the notions of confluence and complete set of reductions in our

constrained form. A set of reductions is complete if t =R s if and only if t l = s i . Since

constraints can only be guaranteed to have truth values when they are ground we will
*restrict ourselves to ground confluence. If for any two terms, s and t, s <-> t implies

s —̂ u <— t for some term u, then the set of reductions is ground confluent. The condition
 ̂ ̂ • • •

s —> u <— t is called the joinability condition and the process of showing joinability for

all terms is how we will prove completeness. In [Pe90b], Peterson showed that, when

showing completeness, working over ground terms is equivalent to working over all terms

provided that we have ‘enough’ constants to work with.

Our constrained completion procedure will be equivalent to the unconstrained

procedure when the constraints on the rewrite rules are always T. The notion of critical

pairs (or critical equations [Pe90b]) is therefore similar. A critical pair o f the hard type is

formed between reductions X-j —> p j if Cj and X2 —> P2 if c2 (X[/i)o = X.2o for some

substitution a and i e sdom(X.]) and gives the critical pair:

P jO = A-i [i <— P2I0 if C)0 a C jO .

Critical pairs o f the easy type are formed from equations X —» p if c in R and are of

the form:

'll r. I f

56

An equation is joinable if all true ground instances are joinable. An equation s = t is

connected below u if s <-> tj tn <-» t and u > s,t,tj for all i. A constrained equation,

s = t if c, is subconnected if for every true ground instance s0 = t9, if s0 +<— u —>+ t0 then

s0 = t0 is connected below u.

Theorem 7.1 (Pe90b) A set of constrained reductions is complete if

(1) every critical pair (both hard and easy types) is joinable.

(2) every critical pair (both hard and easy types) is subconnected.

We will concern ourselves with the joinability test to prove completeness. Peterson

included the subconnected test in hopes that we could find a method of excluding some

critical pairs from consideration akin to that which can be done for KB-completion

[ZK89] and [WB83],

An equation s = t if c is joinable if one of the following conditions hold

(1) s and t are identical.

(2) c = F.

(3) s = t if c can be reduced into equations all of which are joinable.

To prove joinability through (3) we need to first state some theorems given in

[Pe90b],

Theorem 7.2 (Pe90b) If c = c then s = t if c is joinable if and only if s = t if c' is

joinable.

Theorem 7.3 (Pe90b) The constrained equation s = t if cj v C2 is joinable if and only if

s = t if cj and s = t if C2 are joinable.

57

Theorem 7.4 (Pe90b) The constrained equation s = t if (tj = t2) a c is joinable if and

only if tj and t2 are not unifiable or s0 = t0 if c0 is joinable where 0 is the mgu of s and

t.

The above theorems give justifications to some of the actions taken in the

normalform procedure of Section VI.

Now we will state how we prove joinability through (3) (Theorem 5.5 in |Pe90b|).

Given an equation s = t if c then we rewrite it if there exists a reduction X —> p if c ' which

reduces s = t if c to

(el) (s = t)[i <— pa] if c a c'a, and

(e2) s = t if c a —ic'c

where (s = t)/i = \<3 for some substitution a, i e sdom(s) U sdom(t), and c a g' g ^ F.

Note that if c => c 'o then (e2) is trivially joinable since c a - ic' c = F, also the constraint in

(el) becomes simply c.

Theorem 7.5 (Pe90b) If an equation e reduces to e t and C2 , then e is joinable if and

only if ei and e2 are joinable.

Peterson stated in his paper that we show completeness in the above way and that

the constrained completion procedure was similar to KB-completion but he did not give

the constrained completion procedure. He said that “some theory necessary to actually

automatically prove completeness” was not present in his paper |Pe90b] and that he would

later present this in a paper. He has since stated that he did not see himself doing this any

time soon |Pe91a| although he has actually implemented the procedure. We hope to (ill in

this gap with the following presentation.

Presented in Figures 25 through 28 is the constrained completion procedure. The function

58

constr-complete (E)

/* E is the set of identities (with no constraints) */

for all A = p e E

add-reduction(A. = p)

end for

for all A| —> pi if C| e R

for all A.2 —> P2 if c2 e R

for all i e sdom ^!)

if X\/\ and A2 unify with substitution a then

joinable(p2Ct = Aj[i <— P20I if C |(i a C20)

end if

end for

end for

end for

end constr-complete

Figure 25. Constrained completion procedure.

add-reduction takes an equation and attempts to find the constraint needed to rewrite an

equation A = p both ways. The constraint Cj is the result of orienting A —> p and C2 from

orienting p -» A. We must attempt to orient both ways since we may be given x = x + 0

and orienting x -» x + 0 yields a result of F and thus no rewrite rule would be added which

means R will not accurately reflect the equational theory given in E. If we try x + 0 -> x

we get a constraint of T and R is correct. The constraints cq and c*2 are, in general, not

merely the negation of one another. For example, the commutative law f(x,y) = f(y,x) will

give ci = x > y and C2 = y > x but —iC| = (x = y) v (y > x) and —1C2 = (x = y) v (x > y). Note,

59

add-reduction(A = p)

Ci = noimalform(factor(STP(F, T, A > p, T)))

C2 = normalform(factor(STP(F, T, p > A, T)))

if c i $ F then

R = R k J { A —> p i f c |)

Pairs = Pairs {A —» p if - c i (

end if

if C2 ^ F then

R = R {p —> X. if C2}

Pairs = Pairs U {p —> A if - 1C2)

end if

end add-reduction

Figure 26. Procedure to add a reduction.

however, for the commutative law we do not want to add both f(x,y) —> f(y,x) it x > y and

f(y,x) -> f(x,y) if y > x since they are merely instances of one another. For the same

reason, we would not want to add f(x,0) —> f(0,x) if x > 0 in the presence of a commutative

law. Thus we assume that when we add to R (and Pairs) we do not add equations which

can be subsumed in this manner. An equation Xj —> p 1 if Cj is subsumed by (A2 —» P2 if c2)

if (A,! -> p j)0 = A2 -> P2 for some substitution 0. Easy critical pairs are also added to Pairs

in the procedure but if the original constraint isT then we need not add the critical pair to

Pairs. Notice that this formulation of add-reductions will coincide with KB-completion

since the constraints will be T and F, and the easy critical pairs (having a constraint of —>T)

60

joinable(e = (s = t if c))

if s and t are identical then

return ()

c = normalform(c)

if c = F then

return()

If e reduces to ej and then

/* the form of ej and are stated in (ej) and (e2) on page 57 */

joinable(e))

if C2 ^ F then

joinable(e2)

end if

else

/* e is in normal form so we must add a new constrained reduction to R */

add-reduction(X - p)

constr-inter-reduce(R)

end if

end joinable

Figure 27. Joinable procedure.

61

constr-inter-reduce(R)

/* R is a set of constrained reductions */

for e = X —> p if c e R

for A.j —> pj if Cj s R - {A, —̂ p if c}

for all i e sdom(X) u sdom(p)

if (A. —» p)/i = ^ 0 , for some substitution o then

if c => CjCT then

(X —> p)| i <— po| if c

end if

end if

end for

end for

if e was reduced then

R = R - {X —> p if c }

Pairs = Pairs - {p I p is a pair formed with e }

if X' * p ' then

add-reduction(A/ - p')

end if

end if

end for

end constr-inter-reduce

Figure 28. Constrained inter-reduce procedure.

62

will trivially be found joinable.

The procedure joinable takes an equation and uses our constrained reduction rules to

reduce it to an identity or an equation with a constraint of F. If this cannot be done then we

must add the equation as a reduction using add-reduction. This procedure, when restricted

to equations whose constraints are T, is equivalent to the process of putting the left- and

right-hand sides into normal form, seeing if they are identical, and adding a reduction if

not. This, again, shows us that when reduced to only equations which have true constraints

our procedure is equivalent to the KB-completion procedure.

Our constr-inter-reduce procedure keeps the constrained reductions in a type of

normal form. Peterson only defined normal forms for ground terms but we will define a

normal form fo r constrained reductions as follows:

Given a reduction r = X -> p if c we let r —» r \ using ^.| —> Pi if c j, if there exists

an i e sdom(X) U sdom(p) such that (k -» p)/i = >qa, for some substitution a and if

c => qG , then r' = (A. —> p)[i <— pal if c. A reduction r is in normal form relative to R if

—» cannot be applied to r by any reduction in R.

The procedure constr-inter-reduce produces normal forms for each r relative to R -

{r } and re-orients the reduction r if necessary. To see why we generate a new constraint

rather than keeping old constraints consider the following:

Given r| = x + y —» x if T:

(0 • y) + (x • 1) —> x if T r|

0 • y —» x if T

but using STP we get 0 • y -> x if 0 • y > x

63

Given rj = 0 + x —» x if T:

x + y —»0 + y i f x >0 rj

x + y —> y i f x >0

but using STP we get x + y —> y if T

Again, our inter-reduce procedure corresponds to KB-compIetion when only true

constraints are generated. This is because our constr-inter-reduce procedure puts both

sides into normal form and if changes were made we delete the old rule and insert the new.

In constr-inter-reduce we are actually a little over-aggressive since we try to re orient

when only the right-hand side is rewritten in addition to when the left-hand side is

rewritten which is not necessary in KB-completion.

Finally, we see that the overall procedure constr-complete performs the necessary

checking of joinability for all critical pairs and we can now compare it to the KB-

completion given in Figure 5. Remember that it is not enough that the input reductions

have constraints T for the two procedures to give the same results; we must also have any

reductions which are generated by our procedure result in constraints which are T.

We will check for c2 = c a - iq o # F when generating critical pairs, by seeing if

greater-than-normal(c,c^a) (shown in Figure 23) returns F. This way of checking for

equivalence to F is not complete. We mentioned in Section VI why this is so but the

consequence of this is simply that we will reduce e to ej and e2 and it will still hold that e

is reducible if and only if ej and e2 are joinable but if we cannot show this we may end up

not showing completeness when it really exists. We will check for c => c'o, to see if we

can eliminate e2, by putting c 'o into normal form and seeing if for every s > t e c'o,

c a (s > t) = c. This procedure is shown in Figure 29.

64

redundant (c, ci)

/* returns T if c => Ci and F otherwise */

cj-conjuncts = {set of conjuncts in C(}

while C]-conjuncts * 0

cj-conjuncts = cpconjuncts - current

/* current = s > t */

for all S2 > t2 in c

if x = S2 AND t is a subterm of t2 OR

t = t2 AND S2 is a subterm of s then

return (T)

end if

end for

end while

return(F)

end redundant

Figure 29. Redundant procedure.

We now present a correctness proof.

Theorem 7.6 Whenever the constr-complete procedure stops with success the final set

of reductions R is complete.

Proof This is not a particularly deep result. Peterson showed that if all critical pairs are

joinable then the set is complete (Theorem 7.1). We generate the critical pairs in the

65

correct manner. Also, joinable procedure is correct by the following reasoning: First,

the normalform procedure was shown to be valid using Theorems 7.2 through 7.4.

Theorem 7.5 tells us that we prove joinability of e by showing joinability of e] and

and therefore joinable and the entire procedure is correct. ■

The implementation of the joinable procedure, as we shall see in the next section, is

important. Obviously we want to avoid proving joinability on as many equations as

possible. Thus if we have two rewrite rules which can rewrite our equation and the first

produces an ej and e2 while the second produces an only ej then the second rewrite rule

should be chosen. Flowever, we do not want to check for a rewrite rule which only

produces an ei for so long that the time saved, by avoiding a joinability proof tor 02 is

lost. Thus we want to order the reductions in R so that we find the second type of rewrite

rules quickly. These and other implementation details will be discussed in the next section.

For a look at using constraints in other logic programming environments and in

completion see [KKR90],

66

VIII. HIPER AND HIPER-EXTENSION

This section describes our implementation of constrained completion. We wished to

make our implementation as fast as possible and thus decided to try to modify what is

probably the fastest completion procedure in existence, when applicable - a system called

HIPER. HIPER stands for High PERformance permutative completion and was developed

by Jim Christian at the University of Texas-Austin |Ch89| (HIPER is available through ftp

at rascal.ics.utexas.edu (128.83.144.1) in “pub/jimc”). We decided to use this system’s

many quick procedures and to add more functionality (the constraints) to produce our

HIPER -extension system.

Since we built our system on top of HIPER we will first describe it and why it is so

fast.

A. HIPER

HIPER is a completion procedure designed to find complete sets of reductions

modulo an equational theory. HIPER gains some easy speed up by restricting itself to

simple, linear permutative equational theories (described below) because Christian

showed that when dealing with these theories confluence implies coherence (the

properties which along with termination prove completeness). By restricting the theories

like this Christian did not have to generate coherence pairs or show that they reduced to

identities. The fact that HIPER does not generate coherence pairs does not hurt our

implementation since we are not concerned with them either - indeed we have no separate

equational theory to speak of.

Let #(p,t) be the number of occurrences of p in t, where p e ‘J. A term is

simple if all non-root subterms are variables. A term t is linear if #(x,t) < 1 lor all x < ‘V. A

term s is a permutation of t if #(p,s) = #(p,t) for all p <= T 'u ‘J. An equational theory E is a

67

simple, linear permutative theory if for all s == t e E, s is a simple, linear permutation of t.

Note that although commutativity is a simple, linear permutation, associativity is not.

Christian also improved his speed by using ‘flatterms’ to store terms. A flatterm is a

data structure with fields symbol, next, prev, and end so that each record contains a

function symbol or variable name, pointers to the next and previous symbols, and a

pointer to the end of the subterm which this symbol starts. Constants and variables have

their end pointers pointing to themselves. Thus flatterms are doubly-linked lists with end

pointers added. A flatterm is visualized in Figure 30.

g(f(x), a, f(b))

Figure 30. Flatterm representation.

The traditional a tree-like structures used to represent terms would not be as efficient

in traversing terms in HIPER. Traversing is important since traversing forward is used

when generating critical pairs while traversing backward is used in rewriting and copying.

68

Christian [Ch89] claims that the use of these flatterms causes a 25 to 30 percent

speedup, although unification and matching procedures do not change their run times

much.

The most time spent in completion procedures is, however, taken up in trying to find

a rule which will reduce a given term (to get our normal forms) or in finding rules which

are reduced by a given rule. To do these operations quickly Christian used discrimination

nets to hold the left-hand sides of rules. These discrimination nets are tree-1 ike structures

which have, at each level, all function symbols listed plus a wild card spot, *, to stand for

any variable and term structure can be determined by following a path through the net. See

Figure 31.

Figure 31. A Discrimination net.

By putting terms in this data structure we can check for structure compatibility

quickly. We use wild cards for the variables because matching rarely fails due to variable

binding inconsistency but, rather, fail often due to structure incompatibility. When

69

variables are encountered at a level we keep ‘choicepoints’ so that if variable binding does

fail we can go back to this choicepoint to find a different rule which matches the given

subterm.

This process of searching for rules to reduce a given subterm takes about 20 percent

of the overall time]Ch89] so it is important that we find this type of fast procedure.

Another procedure, which uses 10 to 20 percent of the total time [Ch89], is the

searching for terms which can be reduced by a rule which has just been added. This is

needed so that we can inter-reduce our reductions. To do this we need to add the right-

hand side of terms into a net also since we want to keep both sides of the reductions

reduced. This procedure generally takes more time since more choicepoints are needed

because a new reduction’s variables will be able to make many matches.

Subsumption of rewrite rules is also performed using these discrimination nets.

Christian also tries to avoid garbage collecting by the LISP interpreter in his system.

Garbage collecting is a process in LISP which periodically checks for values which are no

longer referenced and collects them to have their memory re-used by the system later. He,

in effect, does much of the garbage collecting himself and thus does not need to allocate

memory for new structures very often.

Since LISP does not offer pointers or ‘C’-like arrays Christian also takes advantage

of his knowledge of Austin Kyoto Common LISP CAKCL) to implement these data

structures and thus speed up his implementation. When using other versions of Common

LISP, though, these enhancements are left out.

Christian [Ch89] claims that discrimination nets are the key to the speed up he

achieved. Using them has resulted in an increase of speed of 20 to 30 times.

70

B. HIPER-extension

We will now look at our implementation of constrained completion using HIPER.

We first need a structure to represent our constraints in HIPER. To do this we modified

Christian’s existing ‘eqn’ data structure which took a left- and right-hand side (called ‘lhs’

and ‘rhs’ respectively) of an equation each of which had flatterms stored in them. To this

we added an operator field in which we could put in T, F, =, >, a , v , and -i to make up our

constraints. We let our constraints and our reductions share the same data structure with

the reductions using the added ‘constraint’ field

We also let the operator field take on values of ‘lex’, ‘all’, ‘some’, and ‘lexsome’ for

use in the STP procedure. Since ‘lexsome’ takes five arguments we added ‘term3’,

‘term4’, and ‘term5’ to the structure and store the first and second arguments in ‘lhs’ and

‘rhs’, respectively.

We have also modified HIPER so that we can garbage collect our new equations.

This must be done carefully since they may be deeply nested and end in flatterms which

we also want to garbage collect. Also, code was deleted from HIPER which pertained to

unfailing completion, different orderings, dynamic permutative unification, function

symbol introduction, etc.

We gave the basic algorithms for the constrained completion procedure in Section

VI and these were implemented in HIPER-extension. We said that it should correspond to

KB-completion under certain conditions and thus we might wonder if the functionality we

added when implementing this procedure caused the system to slow down when they

should produce the same results. The table below shows that it degrades somewhat. We

suspect this is because we did not always use the discrimination nets in our

implementation and that time was spent while checking and generating constraints.

71

Table II. Comparison of HIPER and HIPER-extension.

Problem HIPER-extension HIPER

(seconds) (seconds)

Pi 0.2333 0.0667

lesc 0.1667 0.1667

kbinv 0.05 0.01667

kbgcl 0.1667 0.0333

kbcancel 0.08333 0.05

The above runs were made on a Sun SparcStation I running AKCL and are listed

fully in Appendix A.

For a sample run of HIPER we will look at run on a associativity-commutativity

problem:

> (constr-complete “actest2”)

Declaring symbol */2 with weight 2

Input equation (* XO X I) = (* XI XO)

2:(* X 0 X 1)~ > (*X1 XO)

Input equation (* (* XO XI) X2) = (* XO (* XI X2))

1: (* (* XO X I) X2) ~> (* XO (* XI X2))

Pair

= (* XO (* XI X2)) (* X2 (* XO XI)) IF (* XO XI) > X2 from 1 on 2

Pair

= (* (* XO XI) X2) (* XI (* XO X2)) IF XI > XO from 2 on 1

Pair

(commutativity)

IF XO > XI

(associativity)

IF TRUE

= (* (* XO (* X1 X2A XT) (* f* XO X ll (* X2 X3)V IF TRUE from 1 on 1

72

Pair

= (* XO (* XI X2)) (* (* XO X2) XI) IF XI > (* XO X2) from 3 on 2

Pair

= (* XO (* XI X2)) (* X2 (* XO XI))

IF XO > XI AND X2 > XI AND XO > X2 from 2 on 3

Pair

= (* XO (* (* XI X2) X3)) (* XI (* X2 (* XO X3))) IF (* XI X2) > XO from 3 on 1

Pair

= (* (* XO (* XI X2)) X3) (* XI (* (* XO X2) X3)) IF XI > XO from 3 on 1

Pair

= (* XO (* XI (* X2 X3))) (* (* XI X2) (* XO X3)) IF XO > (* XI X2) from 1 on 3

Pair

= (* XO (* XI (* X2 X3))) (* X2 (* XO (* XI X3)))

IF XO > XI AND X2 > XI AND XO > X2 from 3 on 3

*** Completion terminated ***

Rules/Failures:

2: (* XO XI) ~> (* XI XO) IF XO > XI

1: (* (* XO XI) X2) —> (* XO (* XI X2)) IF TRUE

3: (* XO (* X2 XI)) --> (* X2 (* XO XI)) IF XO > X2

Run time: 4.5 seconds

3 Equations retained

9 Pairs generated

17 Equations processed

73

For runs on other problems see Appendix A.

As was mentioned in Section VII, we found that our implementation of the joinable

procedure was important in achieving a quick completion procedure. We want to avoid

partially reducing an equation e into e) and e2, instead we would like to reduce e into ej.

Remember that if e = (s = t if c) and r = X —> p if c | then e reduces to

ej = (s = t)[i <r- pa] if c

if (s = t)/i = A.G and c => cjG

and partially reduces to

ei = (s = t)[i <— pa] if c a cjo

e2 = s = t if c a - c i a

if (s = t)/i = and c a CjO ^ F.

If we can find a reduction rj which non-partially reduces e then not only do we

avoid proving joinability for two equations, we also keep the constraint in a simpler form.

This is important since our checking for Cj => C2 and our putting new terms into normal

form takes more time when the constraints are larger.

The most obvious way to check for reducibility is to simply check the reductions

one at a time and reduce as soon as we can, whether the reduction is partial or not. If we do

not order the reductions so that it is more likely to non-partially reduce than partially

reduce then we can waste much time proving joinability. As an extreme example, a run

which can be done in HIPER-extension in ~32 seconds with an ordering on the reductions

to try small constraints (fewest conjuncts) first was tried with the inverse of this ordering -

trying reductions with constraints with the largest number of conjuncts first. I his run was

aborted after ~15 minutes after generating 93 of the 124 critical pairs needed and seemed

74

The most obvious ordering to apply is to check reductions whose constraints are T

first. This way we know that when these reductions are applied that c => cjO (= T o = T)

and thus we do not partially reduce. Reductions without true constraints could be ordered

so that the reduction with the least number of conjuncts is attempted first. This will help

keep the size of the constraint small in most cases. We will call this strategy for proving

joinability the Ordered First Find (OFF) strategy. See Figure 32 for its pseudo-code.

Although the OFF strategy will keep constraint size down in most cases it will not

always produce a non-partial reduction. If, for example, the constraint C[has fewer

conjuncts than C2 but only C2 is implied by the original conjunct we would use the

reduction with constraint cj, call it rj, before the one with C2, call it r2, even though r|

partially reduces while r2 non-partially reduces. To avoid this we could try to check for

reducibility and when we find a non-partial reduction we reduce immediately while if we

find a partial reduction we ‘shelve’ it and try to find a non-partial reduction with the other

rules. If we cannot find a non-partial reduction then we use the best partial reduction (least

number of conjuncts) which partially reduces our equation e. If we implement this way we

are assured of non-partially reducing when it is possible. We will call this strategy the Best

Find (BF) strategy.

The OFF strategy cannot use the discrimination nets since we cannot order the

matching done in them. This is disappointing since Christian said that the discrimination

nets were important to his speed up. We will, however, use them in the BF method since it

is not necessary to keep them ordered when we check the reductions for a non-partial

reduction. Our hope in doing this is that use of the discrimination nets in BF will offset the

to be having trouble proving joinability at this point since no new pairs were generated for

~5 minutes when we aborted. This example is the ternary boolean algebra example and

will be listed in Section IX.

75

OFF-strategy(R, s = t if c)

/* The reductions in R are assumed to be ordered form smallest constraint to largest
constraint so that when we loop over R we attempt the reductions in this order. */

c = normalform(c)

if s and t are identical then
return ()

if c = F then
return ()

for all X -» p if C] e R
if X -> p if cj reduces s = t if c on the left-hand side then

if c => cjO then
OFF(R, ej = (s = t)[i <— pa] if c)
exit (OFF-strategy)

else
OFF(R, ej = (s = t)[i <— pa] if c a c'a)
OFF(R, Cj = s = t if c a - c 'a)

end if
else if A, —> p if c i reduces s = t if c on the right-hand side then

if c => cjO then
OFF(R, ej = (s = t)|i <— pa] if c)
exit (OFF-strategy)

else
OFF(R, ei = (s = t)[i <— pa] if c a c'a)
OFF(R, e2 = s = t if c a - c 'a)

end if
end if

end for

add-reduction(s = t)
constr-inter-reduce(R)

end OFF-strategy

Figure 32. Ordered first find strategy.

76

non-ordering of reductions.

Something we must consider is: Given an equation e do we try each reduction first

on the left-hand side of e and then on the right-hand side of e or do we try to reduce the

left-hand side of e by all reductions and then the right-hand side of e by all reductions.

Obviously if the reductions were ordered we would want to try each reduction on the left-

and right-hand sides before trying the next reduction. We do this in OFF but not in BF. In

BF we use the other method since the reductions are not ordered and the matching routines

are not designed to handle this method.

We present the BF strategy in Figure 33.

C. RESULTS

1. OFF vs. BF

We will now compare the results of our two implementations and suggest

improvements to the strategies. We first show a comparison of the OFF and BF strategies

using a Sun SparcStation I running AKCL in the below table.

Table III. Comparison of OFF and BF strategies.

Problem OFF BF

(seconds) (seconds)

Pi 0.36 0.2333

lesc 0.1667 0.1667

kbinv 0.05 0.08333

kbgcl 0.1667 0.18333

kbcancel 0.08333 0.0667

ac 4.5 6.2333

77

BF-strategy(R, s = t if c)

/* The reductions in R are not in any particular order */

/* We will keep the best partial reduction in ‘best-partial’ */

c = normalform(c)

if s and t are identical then

return ()

end if

if c = F then

return ()

end if

for all A p if c j e R

/* let the reduction we are working with be called ‘current’ */

if A. —» p if Cj reduces s = t if c on the left-hand side then

if c => CjO then

BF(R, ej = (s = t)|i <— po | if c)
exit (BF-strategy)

else

if current is a ‘better’ partial reduction than best-partial OR
best-partial does not exist then

best-partial = current

end if

end if

end if

end for

Figure 33. a.) Best find strategy (continued).

78

for all A. —> p if c | g R

/* let the reduction we are working with be called ‘current’ */

if A. -> p if cj reduces s = t if c on the right-hand side then

if c => CjO then

BF(R, ej = (s = t)[i <— pa] if c)
exit (BF-strategy)

else

if current is a ‘better’ partial reduction than best-partial OR
best-partial does not exist then

best-partial = current

end if

end if

end if

end for

if best-partial exists then

/* prove joinability using this partial reduction */

BF(R, e] = (s = t)|i <- pa] if c a c'a)

BF(R, cj = s = t if c a -ic 'a)
exit(BF-strategy)

end if

/* The equation was not joinable */

add-reduction(s = t)

constr-inter-reduce(R)

end BF-strategy

Figure 33 (continued), b.) Best find strategy.

79

The above problems are fully presented in Appendix A.

As we can see the results are actually disappointing for our BF method. We expected

it to outperform OFF since it does not partially reduce as much and because we were using

discrimination nets. We suspect that the lack of ordering on the terms presented the

greatest degradation since it causes us to attempt too many reductions than in OFF. Also,

the fact that we try all reductions on the left-hand side before trying any on the right-hand

side also contributes to the wasted time.

Two modifications can be thought of which could make the completion procedure

run faster. First, we can try our BF strategy without the use of discrimination nets. This

way we can order our reductions when trying to find non-partial reductions so that we find

the non-partial reductions quicker.

The other modification we can make is to have some sort of ordering when using

discrimination nets. To do this though we will need multiple nets with each net only

containing the left-hand side rewrite rules whose constraints have a given length, we

probably need to only have four such nets: a T constraint net and nets for constraints with

1, 2 and > 3 conjuncts (not many naturally occurring rewrite rules have constraints with

more than three conjuncts).

This implementation must be carefully done since it will take up more space and

since we do not want to search multiple nets often in order to find a reducing rule. The

implementation of this in HIPER will thus take some time since we would be modifying

the heart of the system and do not want to introduce inefficiencies.

2. Constrained reductions vs. other methods

Earlier, we gave a comparison of HIPER and HIPER-extension when the procedures

produced the same results but we will now compare the methods when HIPER-extension

80

can use its constraints to its advantage and HIPER can use its dynamic unification

algorithms and function symbol introduction.

Before we do this let us look at the original set of axioms which prompted Peterson

to look at constrained completion - ACI completion. Here is the run from HIPER-

extension used to find a complete set of reductions for this theory.

> (constr-complete “aci”)

Declaring symbol */2 with weight 2

Declaring symbol ZERO/O with weight 1

Input equation

(* X0X1)>(*X1 X0)

Input equation

(* (* X0 XI) X2) > (* X0 (* XI X2))

Input equation

(* (ZERO) X0) > X0

1: (* (ZERO) X0) > XO

2: (* (* XO XI) X2) ~> (* XO (* XI X2))

3: (* X 0 X l) - > (*X1 XO)

IF TRUE

IF TRUE

IF > XO XI

*** Completion terminated ***

81

R u le s /F a i lu r e s :

4: (* XO (Z E R O)) > XO I F T R U E

1: (* (Z E R O) XO) > XO I F T R U E

2: (* (* XO X I) X 2) ~ > (* XO (* X I X 2)) IF T R U E

5: (* XO (* X 2 X I)) ~ > (* X 2 (* XO X I)) IF > XO X 2

3: (* X 0 X l) - > (* X 1 XO) I F > XO X I

Run time: 7.35 seconds

5 Equations retained

18 Pairs generated

28 Equations processed

We have thus provided a complete set of reductions for this theory without even

producing the unification algorithm which the original completion procedure required.

Let us now compare our completion procedure to HIPER when the two do not

produce the same results: in cases such as the “i f ’ problem (listed in Appendix A) we

produce a much smaller set of reductions, ten compared to thirty-five, and do not require

function symbol introduction to be used. In other problems such as “ct” and “aci” (again,

listed in Appendix A) we produce roughly the same number of reductions but HIPER

requires a unification algorithm to be generated for some of the axioms. HIPER was

consistently faster in these runs. Our method, however, is more general since we can never

fail due to an un-orientable equation.

82

IX. TERNARY BOOLEAN ALGEBRA - UNIFICATION AND COMPLETION

Part of the author’s initial motivation for looking at constrained completion was to

find a complete set of reductions for ternary boolean algebras. This problem was presented

in [W088] as Test problem 14. Although its applicability in the real world might be

questionable, Wos suspected that it was a very difficult problem to solve and figured that

the attempt of solving this problem would help advance the field of automated reasoning.

Ternary boolean algebra was first presented by Grau in |Gr47|. A ternary boolean

algebra is a non-empty set satisfying the following five axioms:

(1) h(u,v,h(x,y,z)) = h(h(u,v,x),y,h(u,v,z)).

(2) h(y,x,x) = x

(3) h(x,y,i(y)) = x

(4) h(x,x,y) = x

(5) h(i(y),y,x) = x

It has been shown that axioms 4 and 5 are dependent on the other axioms while each

of axioms 1, 2, and 3 are independent of the rest [WW82], Thus to find a complete set of

reductions for these axioms we need only give the first three as input.

Christian [Ch89] attacked this problem with his HIPER system but was not able to

come up with a complete set of reductions. HIPER ran for a long time on this problem and

Christian noted that many permuters were found in his runs and hypothesized that a

unification algorithm encompassing the following equational theory was needed to find

the complete set of reductions:

(1) h(x,y,z) = h(x,z,y)

(2) h(x,y,z) = h(y,x,z)

83

(3) h(x,y,z) = h(y,z,x)

(4) h(x,y,z) = h(z,x,y)

(5) h(x,y,z) = h(z,y,x)

(6) h(x,y,h(z,y,w)) = h(h(x,y,z),y,w)

Identities 1 through 5 tells us that h is completely commutative and identity 6 is an

associative law. These identities are actually proved in |Gr47|.

Such a ‘ternary boolean algebra’ or ‘ternary associative-commutative’ unification

algorithm was created in [WMJ90] and will now be presented.

A. TERNARY BOOLEAN ALGEBRA UNIFICATION

Formally stated the ternary boolean algebra unification algorithm needs to produce a

complete set of unifiers T for the unification problem <s,t>A+cc such that if o e F then

g (s) = a+cc G(t) where A+CC is the equational theory for ternary associativity (A) and

ternary complete commutativity (CC). To solve this problem we will produce the two sets

{s' I s' =A's} and {t' I t'=A+cct} and find the set of all Robinson unifiers from the cross

product of these sets. The theory A' is the theory of associative laws which allows the

bridge element (‘y’ in identity 6 above) to be in any term - not just the middle term since h

is completely commutative. This would give us 36 (3!3!) different associative laws. We

will collectively call these associative laws the cc-associative laws.

To produce this set of unifiers we must first produce the set {s' I s' =A- s} and

{t' I t'=A+cc t}. Producing these sets is more difficult than it might seem at first glance.

To apply the associative law to a term h(x,y,h(z,y,w)) we need to have the bridge

element y to produce the combinators h(z,y,h(x,y,w)) and h(w,y,h(z,y,x)). It becomes more

difficult to produce these combinators when many bridges occur such as in

84

h(x,h(x,y,z),h(x,w,h(x,y,z))) since the bridges are nested and cycling can occur. This term

produces sixty-three combinators while h(h(x,y, h(z,w,y)),x,h(h(x,y,h(z,w,y)),z,w))

produces 1062 combinators!

These combinators will produce our set {t' I t'=A-1).

To produce the combinators we sort our terms so that the subterms are ordered with

the deeper nested subterms put on the right. This means that the bridge element always

occurs to the left of the subterm in which it appears.

We need two functions to produce the combinators. First, the function depth will

return the nesting depths of a term (e.g. depthi h(x,y,z)) = 0 and

dcpt/i(h(x,h(x,y,z),h(u,v,w))) = 1). Second, the function swap-at-depth finds all

combinators at a given depth. The function to produce the combinators, tercomh, can now

be shown in Figure 34.

Tercomb(t)

[1] toprocess := {t };

[2] processed := 0 ;

[3] while toprocess * 0 do

[4] term := Pop(toprocess);

[5] temp := 0 ;

[6] if Depth(term) * 0 then

[7] for i := 1 to Depth(term) do

[8] temp := temp u cc Swap-at-depth(i,term);

[9] processed := processed u cc (term};

[10] toprocess := toprocess u cc {temp -cc processed};

[11] return (processed);

Figure 34. Algorithm to find combinators.

In the tercomb algorithm, u cc means that we do not add terms which are =cc to

already found combinators. The function -cc takes out terms which are =cx- t0 *he stated

85

term. This algorithm’s correctness is given in Appendix B.

Now to produce our set {t' 1t' =A+cc U we produce it as ft' 11' =cc t" where t" e

tercomb(t)}. Producing j t ' 11' =cc U is relatively simple: we simply recursively permute

all subterms in s.

Let 11 Ij, denote the number of occurrences of h in t. Let allperms(t) produce the set

(t' I t' =cc t} and R-unify produce Robinson mgus. Now we give the ternary A+CC-

unification algorithm in Figure 35. Remember that the method is to find all mgus from

{s' I s' =cc s) and |t ' I t '= A+cct}.

TBA-unify(s,t)
if I s If, > 11 If, then swap(s,t)
listj = nil
for all x in tercomb(s)

listj = listj u allperms(s)

list2 = tercomb(t)
unifiers = nil
for all x in list2

for all y in listj
unifiers = unifiers u R-unify(x,y)

return (unifiers)

Figure 35. Ternary A+CC unification algorithm.

This algorithm is certainly not minimal but we believe it is complete, yet no proof of

this exists. In Appendix B we present work towards this completeness proof. Namely, we

show the completeness and correctness of an algorithm to produce a set of unifiers under

complete commutativity.

B. TERNARY BOOLEAN ALGF.BRA COMPLETION

This ternary A+CC unification algorithm was implemented to work both inside and

86

outside of HIPER but our results were disappointing since no complete set of reductions

was found using it. These attempts have not met with success due to the large computing

time necessary to produce the combinators. An algorithm which produces a closer to

minimal set of unifiers is needed to make another attempt. Also, the attempts in HIPER

were early attempts and a better understanding of the system may make another attempt

worthwhile.

Since we could not find a complete set of reductions using HIPER we might wonder

if we can do so in HIPER-extension (i.e. using constraints). Indeed we can, but not in a

straight-forward way.

Peterson presented the first such set (that we know of) in his paper [Pe90b]. To

create the set however he first produced a complete set of reductions for boolean algebras

which is listed below with ‘a ’ as and, and ‘©’ as exclusive or.

(x a y) a y -> x a (y a z)

X A y - > y A x i f x > y

x a (y a z) -» y a (x a z) if x >y

x a x —> x

X A (x A y) — > X A y

(x © y) © z -» x © (y © z)

x f f i y - » y © x i f x > y

x © (y © z) -> y © (x © z) if x >y

x © x —> F

x © (x © y) —> y

x a T - > x

87

T A X - > X

x © F - > x

F © X -4 X

x a F —> F

F a x -> F

x a (y © z) —> (x a y) © (x a z)

(x © y) a z -> (x a z) © (y a z)

Peterson then added the following two axioms:

h(x,y,z) —> (x a y) © (y a z) © (z a y)

i(x) —> T © x

These twenty axioms form a complete set of reductions and since the last two

axioms present the only realization of a ternary boolean algebra in a boolean algebra

(Theorem III in [Gr47]) it fonns a complete set of reductions for a ternary boolean

algebra.

Below is a run in HIPER-extension showing that this set is complete.

> (constr-complete “tba”)

Declaring symbol */2 with weight 3

Declaring symbol +/2 with weight 2

Declaring symbol ZERO/O with weight 0

Declaring symbol ONE/O with weight 1

Declaring symbol -/I with weight 4

Declaring symbol F/3 with weight 5

IF TRUE11: (+ XO (+ XOX1)) ~>X1

16: (* XO (* XO XI)) --> (* XO XI) IF TRUE

17: (* XO XO) ~> XO IF TRUE

12: (+ XO XO) - > (ZERO) IF TRUE

10: (* XO (ONE)) - > XO IF TRUE

9: (* (ONE) XO) ~> XO IF TRUE

8: (+ XO (ZERO)) - > XO IF TRUE

7: (+ (ZERO) XO)- > XO IF TRUE

6: (* XO (ZERO)) - > (ZERO) IF TRUE

5: (* (ZERO) XO) ~> (ZERO) IF TRUE

20: (* (* XO XI) X2) --> (* XO (* XI X2)) IF TRUE

15: (+ (+ XO X I) X2) —> (+ XO (+ XI X2)) IF TRUE

4: (* XO (+ XI X2)) - > (+ (* XO XI) (* XO X2)) IF TRUE

3: (* (+ XO XI) X2) - > (+ (* XO X2) (* XI X2)) IF TRUE

1: (- XO) —> (+ (ONE) XO) IF TRUE

2: (F XO XI X2) - > (+ (* XO XI) (+ (* XI X2) (* X2 XO))) IF TRUE

18: (* XO (* XI X2)) -> (* XI (* XO X2)) IF XO > XI

13: (+X 0(+X 1 X2)) --> (+ XI (+X0X2)) IFX 0>X 1

19: (* XO XI) —> (* XI XO) IF XO > XI

14: (+ XO XI) ~> (+ XI XO) IF XO > XI

Pair

= (+ X O X l)(+ X O X l) “IF “ TRUE from 11 on 11

Pair

= (* XO (* XO XI)) (* XO (* XO XI)) “IF “ TRUE from 16 on 16

89

Pair

= (* xo XO) (* XO XO) “IF “ TRUE from 17 on 16

Pair

= (+ XO (ZERO)) XO IF “ TRUE from 12 on 11

Pair

= (+ (+ XO XI) X2) (+ XO (+ X2 XI)) IF “ X2 > (+ XO XI) from 14 on 13

Pair

= (+ XO (+ XI X2)) (+ X2 (+ XO XI))

“IF “ X 0>X 1 AND X2 > XI AND XO > X2 from Mon 13

*** Completion terminated ***

Rules/Failures:

11: (+ XO (+ XO XI)) —> XI IF TRUE

16: (* X 0 (* X 0 X 1))~ > (* X 0 X 1) IF TRUE

5: (* (ZERO) XO) - > (ZERO) IF TRUE

6: (* XO (ZERO)) - > (ZERO) IF TRUE

7: (+ (ZERO) XO) - > XO IF TRUE

8: (+ XO (ZERO)) -> XO IF TRUE

9: (* (ONE) XO) ~> XO IF TRUE

10: (* XO (ONE)) > XO IF TRUE

12: (+ XO XO) --> (ZERO) IF TRUE

90

17: (* X0 XO) -> X 0 IF TRUE

15: (+ (+ X 0 X l)X 2)~ > (+ X 0 (+ X l X2)) IF TRUE

20: (* (* XO XI) X2) -> (* XO (* XI X2)) IF TRUE

3: (* (+ XO XI) X2) - > (+ (* XO X2) (* X1 X2)) IF TRUE

4 :(* X 0 (+ X 1 X 2))--> (+ (* XO XI) (*X 0X 2)) IF TRUE

1: (- XO) ~> (+ (ONE) XO) IF TRUE

2: (F XO XI X2) - > (+ (* XO XI) (+ (* XI X2) (* X2 XO))) IF TRUE

13: (+ XO (+ XI X2)) -> (+ XI (+ XO X2)) IF > XO XI

18: (* XO (* XI X2)) --> (* XI (* XO X2)) IF > XO XI

14: (+ XO XI) —> (+ XI XO) IF > XO X I

19: (* XO XI) --> (* XI XO) IF > XO XI

Run time: 33.78333 seconds

20 Equations retained

124 Pairs generated

159 Equations processed

Although we have thus found a complete set of reductions for ternary boolean

algebra this does not mean that finding the set using HIPER and the unification algorithm

is a useless cause. Again, the research and not the result is what is more important. Thus,

an interesting research problem still remains: find a complete set of reductions using the

three axioms for ternary boolean algebras rather than Peterson’s roundabout method.

91

X. CONCLUSIONS

This paper has accomplished several goals along the way to developing an efficient

constrained completion system.

First, we presented standard completion methods and have seen their inadequacies

when dealing with certain types of problems which has lead us to constrained completion.

In this paper we present the constrained completion procedure which was previously

left out of the literature. In so doing we reviewed how we produce constraints for the

lexicographic path ordering and discuss how we should keep our constrained reductions in

their simplest forms. Also, we discussed the joinable procedure and its importance for

efficiency considerations. Alternatives to implementing the procedure were discussed and

two were implemented.

We looked at the HIPER system and our modification, HIPER-extension, which

implements constrained completion. Results are shown comparing it to HIPER and

comparing it against itself with the two main strategies we have discussed. Some complete

sets of constrained reductions are given in the text and the appendices.

Finally, we presented our attack at finding a complete set of reductions for ternary

boolean algebras - including a specialized unification algorithm. A complete set is given

but is not derived directly from the ternary boolean algebra axioms.

Several interesting problems still exist:

• We need to implement a quicker joinable procedure so that we can attack the

harder problems better.

♦ Also a criterion for eliminating unnecessary critical pairs would help speed up

our completion proofs. This has already been done for KB-completion and

92

needs to be extended for constrained completion.

• Currently we only have one algorithm to generate our constraints and it is based

on the lexicographic path ordering. We need to try to implement other orderings

so that we can find a greater number of complete sets.

• A theorem prover using the constrained completion procedure should prove

interesting and should be considered.

• A complete set of reductions using only Grau’s original axioms for a ternary

boolean algebra still does not exist. The attempt at finding one should increase

our knowledge about completion procedures.

APPENDIX A

SOME RUNS IN HIPER-EXTENSION

94

Problem “pi.comp” given with the HIPER system.

> (constr-complete “p i”)

Declaring symbol E/0 with weight 1

Declaring symbol H/2 with weight 3

Declaring symbol G/2 with weight 2

Declaring symbol F/2 with weight 4

Input equation

> (F XO (G X0X1))X1

Input equation

> (F (H XO X 1) X 1) XO

Input equation

> (G XO (F XO XI)) X 1

Input equation

> (H (F X 0X 1)X 1)X 0

Input equation

> (F XO (E)) XO

Input equation

> (F (E) XO) XO

6: (F XO (G X 0X 1))-> X 1 IF TRUE

5: (F (H XO XI) XI) -> XO IF TRUE

4: (G XO (F XO XI)) --> XI IF TRUE

3: (H (F XO XI) XI) ~> XO IF TRUE

2: (F XO (E)) ~> XO IF TRUE

95

1: (F (E) XO) ~> XO IF TRUE

Pair

= (G (H XO XI) XO) XI “IF “ TRUE from 5 on 4

Pair

= (F XO XI) (F XO XI) “IF “ TRUE from 4 on 6

Pair

= (G XO XI) (G XO XI) “IF “ TRUE from 6 on 4

Pair

= (F (E) XO) XO “IF “ TRUE from 11 on 5

Pair

= (E) (E) “IF “ TRUE from 11 on 9

*** Completion terminated ***

Rules/Failures:

8: (FI XO (G XI X 0))-> X 1 IF TRUE

3: (H (F XO XI) X I) - > XO IF TRUE

7: (G (H X0X 1)X 0) -> X 1 IF TRUE

4: (G XO (F XO XI)) --> XI IF TRUE

5: (F (H XO XI) X I) ~> XO IF TRUE

6: (F XO (G XO XI)) ~> XI IF TRUE

11: (H XO XO) ~> (E) IF TRUE

12: (G (E) XO) -> X 0 IF TRUE

1: (F (E) XO) - > XO IF TRUE

9: (H XO (E)) - > XO IF TRUE

10: (G X0 XO) ~> (E) IF TRUE

2: (F XO (E)) ~> XO IF TRUE

Unprocessed pairs:

Run time: 0.3666667 seconds

12 Equations retained

31 Pairs generated

45 Equations processed

Easy problem given with the HIPER system (“lesc.comp”)

> (constr-complete “lesc”)

Declaring symbol F/l with weight 1

Declaring symbol H/l with weight 2

Declaring symbol G/l with weight 3

Input equation

> (F (G (H XO))) (F (H XO))

Input equation

> (G (H (H XO))) (G (G (H XO)))

2: (F (G (H XO))) ~> (F (H XO)) IF TRUE

1: (G (G (H XO))) > (G (H (H XO))) IF TRUE

*** Completion terminated ***

97

Rules/Failures:

2: (F (G (H XO))) - > (F (H XO)) IF TRUE

1: (G (G (H XO))) ~> (G (H (H XO))) IF TRUE

Unprocessed pairs:

Run time: 0.016667 seconds

2 Equations retained

0 Pairs generated

3 Equations processed
)jc Hi ^ ^ ̂ ^ ^ ^ ^ ^ ̂ ̂ ̂ ̂ ̂ ^ sjj ^ ̂ ^ ̂ ̂ ^ vj. *j. ^ ^ ^ ^ ^ ^ ^

Boyer-Moore axiomatization of if-then-else

- This system needs function symbol introduction to complete the set in HIPER.

> (constr-complete “i f ’)

Declaring symbol T/0 with weight 1

Declaring symbol F/0 with weight 2

Declaring symbol IF/3 with weight 3

Input equation

> (IF XO XO X 1) (IF XO (T) X1)

Input equation

> (IF XO XI XO) (IF XO XI (F))

Input equation

> (IF XO XO (F)) (IF XO (T) XO)

98

Input equation

> (IF XO XO XO) (IF XO (T) (F))

Input equation

> (IF (T) XOXl)XO

Input equation

>(IF(F) X0X1)X1

Input equation

> (IF XO (IF XO XI X2) X3) (IF XO XI X3)

Input equation

> (IF XO X 1 (IF XO X2 X3)) (IF X0X1 X3)

2: (IF XO (IF XO XI X2) X3) - > (IF XO XI X3) IF TRUE

1: (IF XO XI (IF XO X2 X3)) —> (IF XO X 1 X3) IF TRUE

4: (IF (T) XO XI) ~> XO IF TRUE

3: (IF (F) XO X 1) ~> X 1 IF TRUE

10: (IF XO (T) XI) - > (IF XO XO XI) IF > (T) XO

9: (IF XO XO XI) ~> (IF XO (T) XI) IF > XO (T)

8: (IF XO XI (F)) ~> (IF XO XI XO) IF > (F) XO

7: (IF XO XI XO) ~> (IF XO XI (F)) IF > XO (F)

6: (IF XO (T) XO) > (IF XO XO (F)) IF > (T) XO

5: (IF XO XO XO) ~> (IF XO (T) (F)) IF > XO (T)

Pair

= (IF XO (IF XO XI X2) X3) (IF XO (IF XO XI X4) X3) “IF “ TRUE from 2 on 2

Pair

= (IF XO XI (IF XO X2 X3)) (IF XO XI (IF XO X4 X3)) “IF “ TRUE from I on 1

99

= (IF XO (IF XO XI X2)X3) (IFXOX1 X3) “IF “ TRUE from 1 on 2

Pair

= (IF XO (IF XO XI X2) X3) (IF XO XI (IF XO X4 X3)) “IF “ TRUE from 1 on 2

Pair

Pair

= (IF XO (T) (F)) (IF XO (T) XO) “ IF “ > XO (T) from 5 on 9

Pair

= (IF (T) (T) (F)) (IF (T) (T) (T)) “IF “ FALSE from 5 on 10

*** Completion terminated ***

Rules/Failures:

1: (IF XO XI (IFX 0X 2 X3)) -> (IFX0X1 X3) IF TRUE

2: (IF XO (IF XO XI X2) X3) -> (IF XO XI X3) IF TRUE

3: (IF (F) XO XI) —> XI IF TRUE

4: (IF (T) XO XI) - > XO IF TRUE

5: (IF XO XO XO) ~> (IF XO (T) (F)) IF > XO (T)

6: (IF XO (T) XO) ~> (IF XO XO (F)) IF > (T> XO

7: (IF XO XI XO) - > (IF XO XI (F)) IF > XO (F)

8: (IF XO XI (F)) - > (IF XO XI XO) IF > (F) XO

9: (IF XO XO XI) ~> (IF XO (T) XI) IF > XO (T)

10: (IF XO (T) XI) - > (IF XO XO XI) IF > (T) XO

1 0 0

Run time: 3.35 seconds

10 Equations retained

56 Pairs generated

86 Equations processed

Commutativity-Transitivity example

> (constr-complete “ct”)

Declaring symbol R/2 with weight 2

Declaring symbol */2 with weight 1

Input equation

> (* (R XO XI) (R XI X2)) (* (R XO XI) (R XO X2)>

Input equation

> (R XO XI) (R XI XO)

Input equation

> (* (R XO XI) (R XO X2)) (* (R XO XI) (R X2 XI))

Input equation

> (* (R XO XI) (R XI X2)) (* (R XO XI) (R X2 XI))

5: (* (R XO XI) (R XO X2)) - > (* (R XO X 1) (R X 1 X2)) IF > XO XI

4: (* (R XO XI) (R XI X2)) -> (* (R XO X I) (R XO X2)) IF > X I XO

2: (* (R XO X 1) (R X2 X 1)) —> (* (R X 0X 1)(R XI X2)) IF > X 2 XI

1: (* (R XO X 1) (R X 1 X2)) —> (* (R XO X I) (R X2 XI)) IF> XI X2

3: (R XO X I) —> (R XI X 0)IF >X 0X 1

1 0 1

= (* (R XO XO) (R XI XO)) (* (R XO XO) (R XI XO)) “IF “ FALSE from 7 on X

Pair

= (* (R XO (R XO XO)) (R (R XO XO) (R XO XO))) (* (R XO (R XO XO)) (R XO XO))

“IF “ FALSE from 5 on 6

Pair

= (* (R X0 (R XI XO)) (R XI XO)) (* (R XO (R XI XO)) (R XI XO)) “IF “ TRUE

from 7 on 6

Pair

Rules/Failures:

6: (* (R XO (R X2 XO)) (R X2 (R X2 XO))) - > (* (R XO (R X2 XO)) (R X2 XO)) IE

TRUE

1: (* (R XO XI) (R XI X2)) -> (* (R XO X I) (R X2 X I)) IF > XI X2

2: (* (R XO X I) (R X2 X I))- -> (* (R XO X I) (R XI X2)) IF > X2 XI

4: (* (R XO X I) (R XI X2)) -> (* (R XO X I) (R XO X2)) IF > XI XO

5: (* (R XO X I) (R XO X2)) -> (* (R XO X I) (R XI X2)) IF > XO XI

7: (* (R XO XI) (R X2 X I))- ->(* (R XO X I) (R X2 XO)) IF > XI XO

8: (* (R XO X I) (R X2 XO))- -> (* (R XO X I) (R X2 X I)) IF > XO XI

(R X O X l) -> (R XI XO) IF > XO X 1

Run time: 13.56667 seconds

8 Equations retained

34 Pairs generated

76 Equations processed

102

Inverse property problem (Example 4) in |KB7()|.

>(constr-complete “kbinv”)

Declaring symbol */2 with weight 2

Declaring symbol -/I with weight 1

Input equation

>(* (- X0) (* X0X1))X1

! :(* (- XO) (* X 0 X 1))-> X 1 IF TRUE

Pair

= (* (- (- XO)) X I) (* XO XI) “IF “ TRUE from 1 on 1

Pair

= (* XO (* (- XO) XI)) XI “IF “ TRUE from 2 on 1

Pair

= (* (- (- (- XO))) (* XO XI)) XI “IF “ TRUE from 2 on 1

Pair

= (* XO XI) (* (- (- XO)) XI) “IF “ TRUE from 3 on 3

Pair

= (* (- XO) XI) (* (- XO) XI) “IF “ TRUE from 3 on 1

Pair

= (* X 0X 1)(* XO XI) “IF “ TRUE from 1 on 3

Pair

= XO (* XI (* (- (- (- XI))) XO)) “IF “ TRUE from 3 on 2

103

= (* (- X0) (* XO XI)) XI “IF “ TRUE from 2 on 3

*** Completion terminated ***

Rules/Failures:

3: (* XO (* (- XO) X 1)) - > X 1 IF TRUE

1: (* (-X0) (* X0X1)) -> X 1 IF TRUE

2: (* (- (- XO)) X I) ~> (* XO XI) IF TRUE

Unprocessed pairs:

Run time: 0.05 seconds

3 Equations retained

8 Pairs generated

11 Equations processed

**

Knuth-Bendix |KB70] commutative group problem.

**

> (constr-complete “kbcgl”)

Declaring symbol *12 with weight 2

Input equation

>(* (* X 0X 1)(*X 1 X2))X1

Pair

1: (* (* X0X1) (* XI X2)) —> X 1 IF TRUE

1 0 4

= (* (* XO (* XI X2)) X2) (* XI X2) “IF “ TRUE from 1 on 1

Pair

- (* (* XO X 1) (* (* (* XO X 1) X2) X3)) (* (* XO X 1) X2) “ IF “ TRUE from 3 on 1

Pair

= (* (* XO XI) (* XI X2)) X I “IF “ TRUE from 3 on 1

Pair

= (* XO X I) (* XO XI) “ IF “ TRUE from 1 on 3

Pair

= (* (* XO X I) (* XI X2)) (* (* XO XI) (* XI X3)) “ IF “ TRUE from 1 on 3

Pair

= (* XO (* (* XO XI) X2)) (* XO XI) “ IF “ TRUE from 3 on 3

Pair

= (* XO (* (* XO XI) X2)) (* XO (* (* XO XI) X3)) “ IF “ TRUE from 3 on 3

Pair

= (* (* XO X I) (* XI X2)) X 1 “IF “ TRUE from 2 on 1

Pair

= (* (* XO (* X 1 (* X2 X3)» (* X2 X3)) (* X 1 <* X2 X3» "IF “ TRUK Iron. 2 on 1

Pair

= (* XO X I) (* XO XI) “IF “ TRUE from 1 on 2

Pair
= (* (* X0 X 1)(* XI X2))(* (* X3X1) (* XI X2)) IF I RUE from 1 on 2

Pair

Pair

= (* X0 (* (* XO XI) X2)) (* XO X I)“IF “ TRUE from 1 on 1

Pair

= (. (» XO (* XI X2)) X2) (* X 1 X2) "IF “ TRUE from 2 on 2

105

= (* XO (* XI X2)) (* XO (* XI X2)) “IF “ TRUE from 2 on 3

Pair

= (* (* XO (* XI X2)) (* (* XI X2) X3)) (* (* XO (* XI X2)) X2) “IF “ TRUE from

2 on 3

Pair

=1 (* (* XO XI) X2) (* (* XO XI) X2) “IF “ TRUE from 3 on 2

Pair

= (* (* XO (* x i X2)) (* (* XI X2) X3)) (* XI (* (* XI X2) X3)) “IF “ TRUE from

3 on 2

*** Completion terminated ***

Rules/Failures:

Pair

= (* (* XO (* XI X2)) X2) (* (* X3 (* XI X2)) X2) “ IF “ TRUE from 2 on 2

Pair

1: (* (* X 0X 1)(*X 1 X 2))-> X 1 IF TRUE

2: (* (* XO (* XI X2)) X2) - > (* XI X2) IF TRUE

3: (* XO (* (* XO XI) X2)) - > (* XO XI) IF TRUE

Run time: 0.1667 seconds

3 Equations retained

18 Pairs generated

21 Equations processed

106

The below system is the cancellation law (Example 9) from |KB7()|

> (constr-complete “kbcancel”)

Declaring symbol */2 with weight 2

Declaring symbol E/0 with weight 1

Declaring symbol F/2 with weight 3

Declaring symbol G/2 with weight 4

Input equation

> (F XO (* X0X1))X1

Input equation

> (G (* X 0X 1)X 1)X 0

Input equation

> (* (E) XO) XO

Input equation

> (* XO (E)) XO

4: (F XO (* X0X1)) ~>X1 IF TRUE

3: (G (* XO XI) XI) - > XO IF TRUE

2: (* (E) XO) ~> XO IF TRUE

1: (* XO (E)) - > XO IF TRUE

Pair

= (G XO XO) (E) “IF “ TRUE from 2 on 3

Pair

= (F (E) XO) XO “IF “ TRUE from 2 on 4

107

= (* (E) X0) XO “IF “ TRUE from 6 on 4

Pair

Pair

= (G XO (E)) XO “IF “ TRUE from 1 on 3

Pair

= (F XO XO) (E) “IF “ TRUE from 1 on 4

Pair

= (E) (E) “IF “ TRUE from 1 on 2

Pair

= (E) (E) “IF “ TRUE from 8 on 6

Pair

= (* XO (E)) XO “IF “ TRUE from 7 on 3

Pair

= (E) (E) “IF “ TRUE from 7 on 5

*** Completion terminated ***

Rules/Failures:

3: (G (* XO X I) XI) - > XO IF TRUE

4: (F XO (* X0X1)) ~>X1 IF TRUE

7: (G XO (E))--> XO IF TRUE

8: (F XO XO) ~> (E) IF TRUE

1:(*X 0 (E)) - > XO IF TRUE

5: (G XO XO) ~> (E) IF TRUE

6: (F (E) XO) - > XO IF TRUE

2: (* (E) XO) ~> XO IF TRUE

108

Run time: 0.08333 seconds

8 Equations retained

9 Pairs generated

19 Equations processed

jjc i|c jjc 5#C ijc jjc jjc 5§C 5jc 5|C 5|c ̂jc 3jc ̂ jjc 5jc 5jc 5jc 5jc 5jc 3jc 3jc ijc 5jc 3§C 5$C 5jc 5jc 5jc jjc 3|c 5|c ?|C jjc 5jc 5|C 5fc 3jc 5$C 3jc 5jc 5jc ijc jjc jjc 5fc 5}c 5jc jfc ijc 5j<)|c }Jc 5|c 5jc

Axioms for an associative-commutative-identity function

fc*** *-********************

> (constr-complete “aci”)

Declaring symbol *12 with weight 2

Declaring symbol ZERO/O with weight 1

Input equation

(* X 0 X 1)> (* X 1 XO)

Input equation

(* (* XO X I) X2) > (* XO (* XI X2))

Input equation

(* (ZERO) XO) > XO

1: (* (ZERO) XO) ~> XO IF TRUE

2: (* (* XO XI) X2) -> (* XO (* XI X2)) IF TRUE

3: (* X O X l)-> (*X1 XO) IF > XO XI

Pair

= (* XO X I) (* (ZERO) (* XO XI)) IF TRUE from 1 on 2

Pair

= (* (* XO (* XI X2)) X3) (* (* XO XI) (* X2 X3)) IF TRUE from 2 on 2

109

Pair

= (* X0 (* XI X2)) (* X2 (* XO XI)) IF XO > XI AND X2 > X 1 AND XO > X2

from 3 on 5

*** Completion terminated ***

Rules/Failures:

4: (* XO (ZERO)) - > XO IF TRUE

1: (* (ZERO) XO) --> XO IF TRUE

2: (* (* XO XI) X2) ~> (* XO (* XI X2)) IF TRUE

5: (* XO (* X2 XI)) -> (* X2 (* XO XI)) IF > XO X2

3: (* XO XI) - > (* XI XO) IF > XO XI

Run time: 7.35 seconds

5 Equations retained

18 Pairs generated

28 Equations processed

APPENDIX B

PROOFS IN TERNARY BOOLEAN ALGEBRA

I l l

A. PROOF OF CORRECTNESS OF THE FUNCTION TERCOMB

It will now be shown that the function Tercombii) produces all terms equivalent to t

by the cc-associative laws. Remembering from Section IX: this function will allow us to

use complete commutativity when trying to find a bridge element but no terms which are

=cc will be returned. The terms returned will be called combinators. Temis which are

equal using complete commutativity will be added later.

Let tj and ^ be terms which can be made equal by applying the cc-associative laws

some number of times. We define a distance function ditj.tj) as follows:

d(tj,t2) = minimum number of applications of the cc-associative laws (to tj) that it

takes to make the resulting term =cc to t2 (thus, d(t(,t2) > 0).

Again, remembering from Section IX Tercomb uses the functions Depth and

Swap-at-depth. The Depth function returns the number of levels of nested subexpressions.

For instance, Depth(h(\,y,z)) returns 0 while Dep///(h(x,y,h(u,v,w))) and

Dept/z(h(h(x,y,z),h(x,q,y),h(z,b,c))) both return 1. Swap-at-depth finds all possible

combinators for a term at a specified depth. Note that the distance between the given term

and the resulting terms from Swap-at-Depth is at most 1 (the resulting terms may actually

be =cc to the original term and thus the distance would be 0).

It will first be shown that the statements 4-10 in Tercomb in Figure 34 find all

combinators of term which have a distance of 1. Statements 4-10 do the above as follows:

term is set and temp is initialized to the null set (it will contain all of term's combinators

when completed). First, clearly if the term is of the form h(x,y,z) (i.e. Depth(term) = 0)

then we cannot use the associative law so temp remains null. Otherwise, we check at each

depth for bridges and generate new terms with Swap-at-depth(i,term). Since all new terms

generated by Swap-at-depth have distance < 1 and since checking at each level tor bridges

Now we have shown that we can find all combinators of term with distance = 1. This

is not enough, we need to find all combinators of term with distance < max distance (the

existence of such a bound will be established later). This is done with the rest of the

algorithm by using a processed and toprocess list.

First, note that once a term has been processed by statements 4-10 in order to find

combinators with distance = 2 we merely need to put the generated combinators through

statements 4-10. Next, these newly generated combinators are used to find all combinators

with distance = 3 and so on. Cycling is prevented by controlling a toprocess list which

holds only newly generated combinators which are not =cc to existing ones

The rest of the statements do the above as follows. Initially, toprocess is set to |t j

and processed is set to 0 , the null set. While there are still terms which have not gone

through statements 4-10 (i.e. while toprocess ^ 0) , we take a combinator from toprocess,

find its combinators of distance < 1, put it on the processed list, and put the generated

terms in toprocess if they are not already in toprocess or processed (since no new terms

can be generated if the term is all ready in one of these lists). Thus on each pass of

combinators through statements 4-10 only combinators of distance one greater than the

current term are added to toprocess. This filtering prevents the algorithm from cycling.

When toprocess is empty the processed list, which contains all combinators, is returned.

We can now say that Tercomb generates all combinators of any distance from the

original term t. Also, since it only allows new combinators to be processed the algorithm

will not cycle and therefore if a max distance exists, then the algorithm is guaranteed to

insures that all bridges will be found (and the resulting combinators generated) then upon

exiting statements 6-8 tem p contains all terms equal to term with distance < 1. Statement

10 insures that only terms with distance = 1 will be put on the toprocess list.

terminate.

113

To show that m axdistance exists let us first look a the original term t with the

ternary operators removed. The term t then has two types of symbols parentheses (right

and left) and ternary elements such as x, y, and z. Let j equal the number of ternary

elements in t, we can show that the number of pairs of parentheses in t must be (j-3)/2 + 1.

Using this result we see that there are (j + 2*((j-3)/2 + 1))! arrangements of ternary

elements and parentheses and thus there are at most that many combinators. Actually there

are far fewer than this since the terms must have matching parentheses, be a ternary

expression, and actually be =cc to t after applying the cc-associative laws some number of

times. Now to get our max distance we note that as a worst case scenario all possible

arrangements are valid ternary expressions, none of the terms are =cc to each other, and

each can be generated by applying the associative law so that our bound, max distance, in

this worst case scenario is (j + 2*((j-3)/2 + 1))!. Again, this bound is much greater than

what would actually occur but it does show that a bound exists. Since the bound exists we

can conclude that the process is finite and thus is guaranteed to stop.

B. PROOF OF CORRECTNESS AND COMPLETENESS OF A COMPLETE

COMMUTATIVITY UNIFICATION ALGORITHM

We present here a proof that an obvious solution to unification for completely

commutative theories is both complete and correct. This proof may help us prove that the

A+CC-unification algorithm is complete and correct. This proof is taken from [Mu92|.

The cc-unification problem <s,t>cc is to find a complete set of unifiers F such that if

o e T then so =cc to. We start by looking at =tc.

Given two ternary terms t) and t2, // =(T U

i) t t = t2

or

I 14

ii) tj = h(x1,x2,X3) and t2 = h(y i ,y2,y3) and one of the following is true:

*0 x i _cc y i»x2 _cc y2» ar*d x3 cc y.i

k) X1 —cc yi> x2 =cc y3. and x3 —cc y2

c) X1 =cc y2’ x2 =cc y 1» and x3 =cc y3

d) X1 =cc y2> x2 =cc y3» and x3 =cc y i

e) xi =cc y3» x2 ~cc y i ’ and x3 =cc yi

o X 1 =cc V3’ x2 =cc y i ' and x3 =cc y i

Let <tj,t2>cc be a cc-unification problem. A substitution 5 is a cc -unifier of t| and t2 iff

8(tj) =cc 8(t2). Given a term t, let T(t) = {t' 11' =cc t }. Given substitutions 5) and 52,

8j =cc 82 iff for all v e 8i(v) =cc 82(v). Given a substitution 5, A(5) = (5' I 5' =ct 5}.

Now we will formally give the obvious solution (OS) to any cc-unification problem

<tl ’t2>cc- The OS finds the set of all mgu’s using R-unification for the problems < t|',t2'>

where tj ' e T(tj) and t2' g T(t2). We will name this set Z<t|,t2>cc-

Theorem 1 (Correctness)

S<tj,t2>cc £ <̂/<tj,t2>cc- (*-e- obvious solution is correct).

Proof

Let o g X<tj,t2>cc. Thus o (tj') = o(t2') where tj ' =cc t| and t2' =cc t2. a (tj) =tc a(tj')

= a(t2') =cc a(t2) and therefore a (tj) =cc o(t2). Thus a e ^/<tj,t2>Cc and so ^ f i ^ c c

c U< t 1,t2>cc- ■

To prove completeness of OS we will first need to label and manipulate our terms.

We will label terms as follows:

i) the root node is 2.

ii) the left child of a node is pO, the middle child p i , and the right child p2 where p is

115

the parent node label.

Definition:

Let k be an ordered pair<r,vF>. Let 1 = the number of ternary digits in m and p = the

number of ternary digits in F. Let a^b; e {0,1,2} and T e {012,021,102,120,201,210).

Also let H'j be the number of the subtemi containing i (e.g. if M7 = 120, then 'l '() = 2,

'Fj = 0, and ^ 2 = 1).

1 p
Let m = £ ai 3,-1 and k = < £ . 3̂ - ,,vF/>

i = 0 i = 0
A ternary node transformation, k®m, is defined as follows:

k®m =

if T > m then m

else if by = ag and b (= a[and ... and bp = ap then

^ ‘ Vi
1 = 0

/- (/>+D) t £ v 3
i = p + 2

l-t

else m

116

The idea is that if T is equal to m for the first p digits (the length of T) then change the

next position in m according to T.

Examples

m = 20, k = <21,120>, k®m = 20

m = 212, k = <21,120>, k®m - 211

m = 211112, k = <211,201>, k®m = 211212

Definition:

A single (ternary) swap p is a mapping p :T -* if t e % p = <T, VH> then p(t) is the

term obtained from t by replacing every node, n, of t by p®n.

Example

If p = <21,021> and t = h(v,h(x,y,z),w), then

p(t) = h(v,h(x,z,y),w).

Figure 37. Ternary swap.

Definitions:

i) Let P! and p2 be two single swaps, Piop2(t) = P |(p 2(t)).

ii) A (ternary) swap p is a p:T -» Tdenoted by the tuple < p |,p 2,...,pn> such 1,1 at

P = P l°P20"°Pn-

117

iii) pl = p2 iff for all t e % p,(t) = p2(t).

iv) pj(j is the identical swap (i.e. for all nodes n, p j(j(n) = n).

(Note that any single swap of the form p = <r,()12> is an identical swap).

This lemma shows some interesting properties of swaps:

Lemma 1

i) 3 (single)swaps p | , p2 such that p i °p2 * P2°P l

(e.g. pi = <2,120>, p2 = <2,21()>).

ii) 3 a (single) swap such that pop^Pjj

(e.g. p = <2,120>).

iii) 3 a (single) swap such that p°p = pitj

(e.g. p = <2,012>).

Definitions:

i) Let p i = <T1, 4 '1>, P2 = <T2, T 2> be single swaps, p|<P2 iff T 1 < T2 or (L 1 = L2

an d 'T 1 < V 2).

ii) A swap p = <pi,...,pn> is in normal form iff P i< P 2< -<Pn.

iii) p is the ordered form of p = <pi,p2,...,pn> iff p = < a |,a 2,...,an> is in normal form

and the sequence a (......ot,, is a permutation of the sequence p |pn. In other

words, p is p with the members ordered from lowest (nearest to the root) to

highest (farthest from the root). Note, p is not necessarily equal to p.

Here is a useful property relating =cc and swaps that shows why we use swaps in our

proof of completeness.

Lemma 2

Let ti =cc t2. Then there exists a swap p such that p(t j) = t2.

118

We will do a proof by construction. If t] = t2 then let p = pjd and we are done.

Otherwise, t | = h(xj,x2,X3) and t2 = h(yi,y2,y3) and (at least) one of the following is

true:

1) X1 “ cc yi- x2 =cc Y2» and x3 ~cc Y3

2) x i =cC yp x2 =cc y3»and x3 =cc y2

3) x i ~cc y i’ x2 =cc yi - and x3 =cc y3

4) X1 =cc y2- x2 =cc y3> and x3 =cc yi

5) xi ~cc y3> x2 =cc y i >and x3 =cc yi

6) x i =cc y3- x2 =cc y2>and x3 =cc yi

Let p be the ordered form of p ,oPrcst where

p' = pj(j if 1) is true

= <n,021> if 2) is true

= <n,102> if 3) is true

= <n,201> if 4) is true

= <n,120> if 5) is true

= <n,210> if 6) is true

where n is the node whose subterms we are trying to make equal (at the top level

n=2).

prest is a swap and is the composition of the swaps p(), P |, and p 2 where p, is the swap

constructed from the ith subterm equality using the method above.

By inspection it can be seen that p(tj) = t2. ■

The following lemmas will help us produce equal swaps which are ordered.

Proof

1 1 9

Lemma 3

Let pj = <r1,4il>, P2 = <r2,T2> be single swaps. If F 1 > F2 and T1 * r 2a where

a e {0,1,2}+ then p)°p2 = P2°Pi-

Proof

Let p,p' e (0,1,2 J-*" in the following. Suppose Pi°P2 * P2°Pl- Phen there exists a t e ' /

such that Pi(p2(0) * P2CP1 CO)- Let n be a node in t in which P i(p2(n)) * p2(p[(n)).

Then at least one of pj or p2 changes n’s value. If p2 changes n’s value then n =

and p2(n) = T2P'. Now since T1 * T2a , p i(p2(n)) = p2(n) and p t(n) = n. Thus

p2(Pl(n)) = P2(n)- Therefore p i(p2(n)) = p2(Pi(n)) - a contradiction. Otherwise, if pi

changes the value of n then n = F*P and pj(n) = f 'P '. T 1 * F2a and thus

p2(Pl(n)) = pi(n) and p2(n) = n. Thus p j(p 2(n)) = p t(n) and therefore p 1 (p2(n)) =

p2(pi(n)) - a contradiction. Thus all nodes are the same. All terms are therefore also

the same and we have our proof.®

Definition:

Let k®m be defined the same as k®m except that 4^ is defined as the number in the

ith position of 4* (e.g. if 4* = 120, 4/q = 1, 4*i = 2, 4*2 = 0).

Lemma 4

Let k! = <r1,4/1> and k2 = <r2,4*2> be single swaps. If k, = k2 or (k2<k| and

T 1 * T2) then <kj>o<k2> = k2o<k2®r’, 4/1>.

Proof (bv cases)

If kj = k2 then k2®r' = T1 and thus k2o<k2® F 1,T l> = k2 c F 1̂ ^ = <k2> <kj> -

<kj>o<k2> (since kl = k2).

Else if k2 < kj and T 1 ^ T2 then

k^r1 = T 1 (if r1 *r2a with a g {0,1 ,2 }+), or

= r2p (if r1 = r2a with a,p G {0,1 ,2)+)

1 2 0

(Note here, for Corollary 1, that T2 < k2® r ’).

If k2© r 1 = r* then k2o<k2© r*,vP1> = k2o<T*,Mi l> = <k2>o<ki>. Now since r* > r 2

and T 1 * r2a, by Lemma 3 <k2>°<ki>

(= k2o<k2© r 1,'P1>) = <ki>o<k2> and we are done.

Else r = r a . By inspecting k2© P we see that the process modifies V to take into

account that k2 will not be applied before k] and thus the swaps are equal.H

Corollary 1

i

After using Lemma 4 on <k]>°<k2>, the result < k |',k2'> is in normal form or (T = r

and VF2 < 4 '1).

Proof

First, note that if kj < k 2 or(k2 < k , and L 1 = T2) then k |' = kj and k2' = k2 and we are

done. Otherwise, k2 < kj, T 1 ^ T2, k]' = k2 and k2' = <k2© F ,,Mi l >. Now by the

parenthesized note in Lemma 4 we see that it must be that k j' < k2' and we are done.®

Definitions:

Let p = <pi,p2—-Pm> and P = <oci,a2,...,an> be two swaps.

i) p c p iff p = p and m < n.

ii) p is maximal iff for all p with p = p: p c p.

The following two lemmas help produce swaps which are maximal.

Lemma 5

If kj = <r,012> and k2 is a swap then kiok2 = k2ok] = k2.

Proof

Comes from the fact that <r,012> = p̂.

121

Lemma 6

If kj = <r,vF1> and k2 = <r,T2> then there exist a 4* such that <k|>o<k2> = < r ,y > .

Proof

The following table gives the necessary conversions.

Table IV. 4* conversion table.

vpl 4* V 1 v|>2 y

012 vj#2 vj/2 120 120 201

vpl 012 T 1 120 201 012

021 021 012 120 210 021

021 102 201 201 021 210

021 120 210 201 102 021

021 201 102 201 120 012

021 210 120 201 201 120

102 021 120 201 210 102

102 102 012 210 021 201

102 120 021 210 102 120

102 201 210 210 120 102

102 210 201 201 021

120 021 102 210 210 012

120 102 210

The next two lemmas allow us to find maximal swaps in normal form.

Lemma 7

For every swap p there exists a swap p such that

i) p is in normal form

ii) p = p

1 2 2

Let p = <pj,...,pn>. If we apply Lemma 4 to p until it cannot be applied anymore

(giving us pO then, by Corollary 1, either p' is in normal form or there exist a pj, p i+]

such that T1 = ri+1 but H/i+l < 'P*. (Note that single swaps with the same F must be

consecutive). If such Pj and pj+] exist we apply the Ixmma 6 repeatedly until this no

longer exists (giving p). All T ’s in p are then unique and in order and thus p = p and

is in normal form. ■

Lemma 8

To every swap p there exist a unique maximal swap p in normal form such that

p = p .

Proof

By the Lemma 7 there exist a p' in normal form such that p ' = p. Ix t p be a maximal

swap with p = p'. Suppose, by way of contradiction, that p is not unique, then there

exist a p" such that p" = p', p" is maximal, and p" is not syntactically equal to p.

p" = p by transitivity of equal swaps, p" c p and p c p" and thus the number of

single swaps is the same. Letting p" = <pj,...,pm>, p = < a |,.. . ,a m>, suppose pm* a m

then assume, without loss of generality, pm < a m. Since a m > oq for i < m, oq # pm for

all 1 < i < m. Thus the single swap pm has no equivalent in p (i.e. swaps performed

higher up will not produce the same results). But this is contrary to p = p", therefore

Pm = CW Clearly, now using p" = <pi, -,p m-l>0Pm and P = <(X|,..,am -i>0P m we can

use the above arguments to show pm_i = (tq^i and so on until p | = ocj and thus p" =

<pj,...,pm> = p and thus p" is syntactically equal to p - a contradiction- and thus p is

unique. ■

Corollary 2

Let tj =cc \-2- Then there exists a unique maximal swap p in normal form such that

p(ti) = t2. ■

Proof

1 2 3

This follows directly from Lemma 2 and Lemma 8.

The following definition is tedious but will help us in our completeness proof.

Definition:

Let 5(tj) =cc 5(t2) and pj and p2 be swaps such that p j(8(tj)) = p2(5(t2)) then P| and

p2 are compatible with 8 i f f for all v g Var(t|)uVar(t2),

Sub(v,ti,pi(5(ti))) u Sub(v,t2,p2(8(t2))) is a singleton.

where Sub(v,t,p(8(t))) returns: if v g Var(t) and (v/t') e 8 return what t' looks like at

every location of v g t after p is applied to 8(t).

Example

Let 8 = {x/h(u,v,w)}, p i = <20,021 >°<21,210> then

Sub(x,h(u,v,w),p[(8(h(x,x,y)))) =

Sub(x,h(u,v,w),p!(h(h(u,v,w),h(u,v,w),y))) =

Sub(x,h(u,v,w),h(h(u,w,v),h(w,v,u),y)) =

{h(u,w,v),h(w,v,u)}.

Lemma 9

Let <tj,t2>cc be a cc-unification problem with cc-unitier 8:S(tj) =cc S(t2). Let p t and

p2 be swaps compatible with 8 such that p j(8(tj)) = p2(8(t2)). Then there exists

8 g A(8) such that 8 is a R-unifier fo r< p j(t|) ,p 2(t2)>: 8(p |(t |)) = 8(p2(t2))

Proof

Let 8 = {v/t I v g Var(t|) u Var(t2), t is the unique term described in the definition of

compatibility}. 8 g A(8) since, because pj and p2 are compatible swaps, the new t’s

can only be commutative terms of the original t’s in 8. 8 (p |(tj)) = 8(p2(t2)) because

Proof

124

Pl and P2 are compatible and thus the terms will be made as alike as possible before

R-unification is applied and variables can thus be replaced by a single term. ■

Example

t! = h(x,x,x) and t2 = h(h(x\y,z),h(z,y,x’),x)

5 = {x/(h(z,x’,y)} and 5(tj) =cc 5(t2)

Pi = <20,201 >o<21,201 >°<22,201 > and p2 = <2 1 ,210>°<22,201>

pl(5(tj)) = h(h(x’,y,z),h(x\y,z),h(x’,y,z)) = p2(5(t2))

Pl(t!) = h(x,x,x) and p2(t2) = h(h(x’,y,z),h(x’,y,z),x)

5 = (x/h(x’,y,z)} e A(8)

5(Pi(ti)) = S(p2(t2))

Note that if pj and p2 were not compatible then we could not find an R-unifier of

p 1 (tj) and p2(t2) since we would need both (x/h(x’,y,z)) and (x/h(z,y,x’)) or some similarly

cc-equal terms.

The correctness of I< ti ,t2>cc was previously presented. The completeness of

obvious solution follows.

Theorem2 (Completeness)

Let tj,t2e Tand Z<tj,t2>cc be the set of unifiers generated by OS. Then, for all 8 with

5(tj) =cc S(t2), there exists cr e 22<tj,t2>cc and a X such that 5 =cc Xoo.

Proof

Let 8(ti) =cc 5(t2) and pj and p2 be swaps compatible with 5 such that P |(5(t|)) =

p2(5(t2)). By Lemma 9 there exist 5 e A(5) such that 5 is a R-unitier for

< p l(t l),p2(t2)>: 8(pi(ti)) = 8(p2(t2)). Let o be the mgu of < p I(t1),p2(t2)> and X be

the substitution such that 5 = A.°o, which exists by the definition of a mgu. Note that

1 2 5

Pl(ti) e r (t ,) and P2(t2) e T(t2) and thus cr e £< ti,t2>cc. Since t a a = 8 e A(8),

=cc 8 and thus we have our proof. ■

This proof is an extension of the results of Siekmannn. Siekmann’s paper |Si79] not

only proved completeness and correctness for binary commutative unification but also

presented an algorithm which did not produce so many dependent unifiers (i.e. a closer to

minimal set of unifiers). This needs to be done for the presented solution also. Doing so

will greatly speed up any implemented unification algorithm for complete commutativity.

126

REFERENCES

[Ba88] Baird, T., (1988). “Complete sets of reductions modulo a class of
equational theories which generate infinite congruence classes.” Ph.D.
dissertation, University of Missouri-Rolla, Rolla, MO,

[BD891 Bachmair, L., and N. Dershowitz (1989). “Completion for rewriting
modulo a congruence.” Theoretical Computer Science, volume 67, pp.
173-201.

[BDP89] Bachmair, L., N. Dershowitz, and D. Plaisted (1989). “Completion without
failure.” Resolution o f Equations in Algebraic Structures, Volume 2:
Rewriting Techniques, H. Ait-Kaci and M. Nivat, eds., Academic Press, pp.
1-30.

[BHS89] Burckert, H .J., A. Herold, and M. Schmidt-Schauss (1989). “On
equational theories, unification, and (un)decidability.” ./oww// o f Symbolic
Computation, volume 8, pp. 3-49.

[BK86] Bergstra, J., and J. Klop (1986). “Conditional rewrite rules: Confluence and
termination.” Journal o f Computer and Systems Sciences, volume 32,
pp.323-362.

[BP85] Bachmair, L., and D. Plaisted (1985). “Termination orderings for
associative-commutative rewriting systems.” Journal o f Symbolic
Computation, volume 1, pp. 329-349.

[BP87] Bachmair, L., and D. Plaisted (1987). “Completion for rewriting modulo a
congruence.” Proceedings o f the Conference on Rewriting Techniques and
Applications, P. Lescanne, ed., Lecture Notes in Computer Science 256,
Springer-Verlag, pp. 192-203.

[BPW89] Baird, T., G. Peterson, and R. Wilkerson (1989). “Complete sets of
reductions modulo associativity, commutativity and identity.” Proceedings
o f the Conference on Rewriting Techniques and Applications, Lecture
Notes in Computer Science 355, Springer-Verlag, pp. 29-44.

[Ch89] Christian, J., (1989). “High performance permutative completion.” Ph.D.
dissertation, University of Texas-Austin, Austin, TX.

[CL88] Christian, J., and P. Lincoln (1988). “Adventures in associative-
commutative unification.” Technical Report, MCC, Number ACA-ST-275-
87, Austin, Texas.

[Co90] Comon, H., (1990). “Solving inequations in term algebras.” Proceedings o f
the Fifth Symposium on Logic in Computer Science, pp. 62-69.

127

[CR36]

[De79]

[De87]

[De89]

[DJ90]

[DM79]

[DOS88]

[FG84]

[Gr47]

[HO80]

[HR87]

[Hu80]

Church, A., and J. B. Rosser (1936). “Some properties of conversion.”
Transactions o f the American Mathematical Society, volume 39, pp. 472-
482.

Dershowitz, N., (1979). “Orderings for term-rewriting systems.”
Proceedings o f the 20th Symposium on Foundations o f Computer Science,
pp. 123-131 (Later version in Journal o f Theoretical Computer Science,
volume 17, 1982, pp. 279-301).

Dershowitz, N., (1987). “Termination of rewriting.” Journal o f Symbolic
Computation, volume 3, pp. 69-115.

Dershowitz, N., (1989). “Completion and its applications.” Resolution o f
Equations in Algebraic Structures, Volume 2: Rewriting Techniques, H.
Ait-Kaci and M. Nivat, eds., Academic Press, pp. 1-30.

Dershowitz, N„ and J.-P. Jouannaud (1990). “Rewrite systems.” Handbook
o f Theoretical Computer Science, Edited by J. von Leeuwen, Elsevier
Science Publishers, pp. 269-278.

Dershowitz, N., and Z. Manna (1979). “Proving termination with multiset
orderings.” Communications o f the ACM, volume 22, pp. 465-467.

Dershowitz, N., M. Okada, and G. Sivakumar (1988). “Canonical
conditional rewrite systems.” Proceedings o f the 9th International
Conference on Automated Deduction, Lecture Notes in Computer Science
310, E. Lusk and R. Overbeek, eds., Springer-Verlag, pp. 538-549.

Forgaard, R., and J. V. Guttag (1984). “A term rewriting system generator
with failure-resistance Knuth-Bendix.” Technical Report, MIT Laboratory
for Computer Science, Massachusetts Institute of Technology, Cambridge,
MA.

Grau, A., (1947). “Ternary boolean algebra.” Bulletin o f the American
Mathematical Society, volume 53, pp. 567-572.

Huet, G., and D. Oppen (1980). “Equations and rewrite rules: A survey.”
Formal Language Theory: Perspectives and Open Problems, R. Book, ed.,
Academic Press.

Hsiang, J., and M. Rusinowitch (1987). “On word problems in equational
theories.” Proceedings o f the 19th International Colloquium on Automata,
Languages, and Programming, Th. Ottomann, ed., Karlsruhe (Germany),
Springer-Verlag, Lecture Notes in Computer Science 267, pp. 54-71

Huet, G., (1980). “Confluent reductions: Abstract properties and
applications to term rewriting systems.” Journal o f the Association for
Computing Machinery, volume 27, pp. 797-821.

128

[Hu81] Huet, G., (1981). “A complete proof of correctness of the Knuth-Bendix
completion algorithm.” Journal o f Computer and System Sciences, volume
23, pp. 11-21.

[Hul81] Hullot, J.-M., (1981). “A catalogue of canonical term rewriting systems.”
Technical Report CSL-113, SRI International.

[JK86] Jouannand, J.-R, and H. Kirchner (1986). “Completion of a set of rules
modulo a set of equations.” SIAM Journal o f Computing, volume 15, pp.
1155-1194.

[JK90] Jouannand, J.-P., and C. Kirchner (1990). “Solving equations in abstract
algebras: A rule-based survey of unification.”, Research Report, CRIN
1990. To appear in Festschrift fo r Robinson, J.-L. Lassez and G. Plotkin,
eds.

[JM84] Jouannand, J.-P, and M. Munoz (1984). “Termination of a set of rules
modulo a set of equations.” Proceedings o f the 7th International
Conference on Automated Deduction, R. Shostak, ed., Springer Lecture
Notes on Computer Science, volume 170, pp. 175-193.

[KB701 Knuth, D., and P. Bendix (1970). “Simple word problems in universal
algebras.” Computational Problems in Abstract Algebras, J. Leech, ed.,
Pergammon Press, Oxford, England, pp. 263-297.

[Ki87] Kirchner, C., (1987). “Methods and tools for equational unification.”
Proceedings o f the Colloquium on the Resolution o f Equations in Algebraic
Structures, Austin, TX.

[KKR90] Kirchner, C., H. Kirchner and M. Rusinowitch (1990). “Deduction with
symbolic constraints.” Revue d'intelligence artificielle, volume4, pp. 9-52
(Also available as Rapports de Recherche No. 1358, Institut National de
Recherche en Informatique et en Automatique, France).

[KN86] Kapur, D., and P. Narendran (1986). “NP-completeness of the set
unification and matching problems.” Proceedings o f the Hth International
Conference on Automated Deduction, Lecture Notes in Computer Science
230, Springer-Verlag, pp. 489-495.

[Kn89] Knight, K., (1989). “Unification: A multidisciplinary survey.” ACM
Computing Surveys, volume 21, pp. 93-124.

[LB77a] Lankford, D. S., and A. M. Ballantyne (1977). “ Decision procedures for
simple equational theories with commutative axiom: Complete sets of
commutative reductions.” Technical Report, Mathematics Department,
University of Texas-Austin, Austin, Texas.

129

[LB77b]

[LB77c]

[Le82]

[MM76]

[MN70]

[MN90]

[Mu92]

[Ne42]

[Pe90a]

[Pe90b]

[Pe9la]

[Pe91b]

Lankford, D. S., and A. M. Ballantyne (1977). “Decision procedures for
simple equational theories with permutative axioms: Complete sets of
permutative reductions.” Technical Report, Mathematics Department,
University of Texas-Austin, Austin, Texas.

Lankford, D. S., and A. M. Ballantyne (1977). “Decision procedures for
simple equational theories with commutative-associative axioms:
Complete sets of commutative-associative reductions.” Technical Report,
Mathematics Department, University of Texas-Austin, Austin, Texas.

Lescanne, P., (1982). “Some properties of decomposition ordering: A
simplification ordering to prove termination of rewriting systems.” RAIRO
Theoretical Informatics, volume 16, pp. 331-347.

Martelli, A., and U. Montanari (1976). “Unification in linear time and
space: A structured presentation.” Internal Report B 76-16, Istituto di
Elaborazione della Informazione, Pisa, Italy.

Mana, Z., and S. Ness (1970). “On the termination of Markov algorithms.”
Proceedings o f the Third Hawaii International Conference on System
Sciences, Honolulu, HI, pp. 789-792.

Martin, U., and T. Nipkow (1990). “Ordered rewriting and confluence.”
Proceedings o f the 10th International Conference on Automated
Deduction, Lecture Notes in Computer Science 449, M. Stickel, ed..
Springer-Verlag, pp. 366-380.

Murphy, D., (1992). “Unification for completely commutative theories.”
Proceedings o f the 1992 ACM/SIGAPP Symposium on Applied Computing,
H. Berghel, E. Deaton, et. al., eds., ACM Press, pp. 547-553.

Newman, M. H. A., (1942). “On theories with a combinatorial definition of
‘equivalence’.” Annals o f Mathematics, volume 43, pp. 223-243.

Peterson, G., (1990). “Solving term inequalities.” Proceedings o f the Eight
National Conference on Artificial Intelligence, AAAI Press, Menlo Park,
pp. 258-263.

Peterson, G., (1990). “Complete sets of reductions with constraints.”
Proceedings o f the 10th International Conference on Automated
Deduction, Lecture Notes in Computer Science 449, M. Stickel, ed..
Springer-Verlag, pp. 381-395.

Peterson, G., (1991). Personal communication.

Peterson, G., (1991). “Term algebra.” Unpublished manuscript.

1 3 0

[P173]

[P178]

[PS81]

[PW78]

[Ro65]

[Sc86]

[Si79]

[Si89]

[St81]

[St84]

|WB83]

[WMJ901

[W088]

Plotkin, G., (1973). “Building-in equational theories.” Machine
Intelligence, volume 7, B. Meltzer and D. Michie, eds., American Elsevier,
New York, pp. 73-90.

Plaisted, D., (1978). “A recursively defined ordering for proving
termination of term rewriting systems.” Report R-78-943, Department of
Computer Science, University of Illinois, Urbana, IL.

Peterson, G., and M. Stickel (1981). “Complete sets of reductions for some
equational theories.” Journal o f the Association fo r Computing Machinery,
volume 28, pp. 233-264.

Paterson, M., and M. Wegman (1978). “Linear unification.”, Journal o f
Computer and System Sciences, volume 16, pp. 158-167.

Robinson, J. A., (1965). “A machine-oriented logic based on the resolution
principle.” Journal o f the Association fo r Computing Machinery volume
12, pp. 23-41.

Schmidt-Schauss, M., (1986). “Unification under associativity and
idempotence is of type nullary.” Journal o f Automated Reasoning, volume
2, pp. 277-281.

Siekmann, J., (1979). “Matching under commutativity.” Symbolic and
Algebraic Computation, Springer-Verlag, Berlin, West Germany, pp. 531 -
545.

Siekmann, J., (1989). “Unification theory.” Journal o f Symbolic
Computation, volume 7, pp. 207-247.

Stickel, M., (1981). “A unification algorithm for associative commutative
functions.” Journal o f the Association fo r Computing Machinery, volume
28, pp. 423-434.

Steele, G., (1984). COMMON LISP: the language. Digital Press,
Burlington, MA.

Winkler, F., and B. Buchberger (1983). “A criterion for eliminating
unnecessary reductions in the Knuth-Bendix algorithm.” Colloquia
Mathematica Societatis Janos Bolyai 42, Algebra, Combinatorics and
Logic in Computer Science, pp. 849-869.

Wilkerson, R., D. Murphy, J. Jenness, W. Pinet, and D. Brazeal (1990).
“Ternary boolean algebra unification.” Proceedings o f the Symposium on
Applied Computing, H. Berghel, J. Talburt, and D. Roach, eds., IEEE
Computer Society Press, pp. 119-121.

Wos, L., (1988). Automated Reasoning: 33 Basic Research Problems,
Prentice-Hall, Inc.

131

[WW82]

[Ye85]

[ZK89]

[ZR85]

Winker, S., and L. Wos (1982). “Automated generation of models and
counterexamples and its application to open questions in ternary boolean
algebra” Proceedings o f the 8th International Symposium on Multiple-
Valued Logic, IEEE Press, New York, pp. 251-256.

Yelick, K., (1985). “Combining unification algorithms for confined regular
equational theories.” Proceedings o f the Conference on Rewriting
Techniques and Applications, Lecture Notes in Computer Science 202, J.-P.
Jouannaud, ed., Springer-Verlag, pp. 365-380.

Zhang, H., and D. Kapur (1989). “Consider only general superpositions in
completion procedures.” Proceedings o f the Conference on Rewriting
Techniques and Applications, Lecture Notes in Computer Science 355, pp.
513-527.

Zhang, H., and J.-L. Remy (1985). “Contextual rewriting.” Proceedings of
the Conference on Rewriting Techniques and Applications, Lecture Notes
in Computer Science 202, J.-P. Jouannaud, ed., Springer-Verlag, pp. 46-62.

132

VITA

Daniel Patrick Murphy was born on July 9, 1966 in St. Louis, Missouri. He

graduated from Rosary High School in St. Louis, Missouri in May 1984.

He graduated Magna Cum Laude with his Bachelor of Science degree in Computer

Science in August 1987 from the University of Missouri-St. Louis. During this time he

tutored high school and college students through the university.

He received his Master of Science degree in Computer Science in May 1989 from

the University of Missouri-Rolla. During this time and while pursuing his Ph.D. he

worked as a programmer for the Generic Mineral Technology Center for Pyrometallurgy, a

graduate research assistant for the Intelligent Systems Center, and as an independent

consultant.

	Constrained completion: Theory, implementation, and results
	Recommended Citation

	tmp.1565700202.pdf.gr1PL

