
Under consideration for publication in Math. Struct. in Comp. Science

Convergence in Infinitary Term Graph
Rewriting Systems is Simple
Patrick Bahr

Computer Science Department, IT University of Copenhagen

Rued Langgaards Vej 7, 2300 Copenhagen, Denmark

Email: paba@itu.dk

Received 20 February, 2012; Revised November 8, 2017

Term graph rewriting provides a formalism for implementing term rewriting in an
efficient manner by emulating duplication via sharing. Infinitary term rewriting has been
introduced to study infinite term reduction sequences. Such infinite reductions can be
used to model non-strict evaluation. In this paper, we unify term graph rewriting and
infinitary term rewriting thereby addressing both components of lazy evaluation:
non-strictness and sharing.
In contrast to previous attempts to formalise infinitary term graph rewriting, our
approach is based on a simple and natural generalisation of the modes of convergence of
infinitary term rewriting. We show that this new approach is better suited for infinitary
term graph rewriting as it is simpler and more general. The latter is demonstrated by
the fact that our notions of convergence give rise to two independent canonical and
exhaustive constructions of infinite term graphs from finite term graphs via metric and
ideal completion. In addition, we show that our notions of convergence on term graphs
are sound w.r.t. the ones employed in infinitary term rewriting in the sense that
convergence is preserved by unravelling term graphs to terms. Moreover, the resulting
infinitary term graph calculi provide a unified framework for both infinitary term
rewriting and term graph rewriting, which makes it possible to study the
correspondences between these two worlds more closely.

1. Introduction

Term graphs are a generalisation of terms, which allow us to avoid duplication of subterms
and instead use pointers in order to refer to the same subterm several times. In this paper,
we aim to extend the theory of infinitary term rewriting to the setting of term graphs.
As the basis for our infinitary calculi we use the well-established term graph rewriting

formalism of Barendregt et al. (1987) as it will allow us to draw on the work investigating
the relation between (infinitary) term rewriting on the one hand and term graph rewriting
on the other hand (Kennaway et al. , 1994).
In order to devise an infinitary calculus, we have to conceive a notion of convergence

that constrains reductions of transfinite length in a meaningful way. To this end, we

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/160744246?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Patrick Bahr 2

generalise the metric on terms that is used to define convergence for infinitary term
rewriting (Dershowitz et al. , 1991) to term graphs. In a similar way, we generalise the
partial order on terms that has been recently used to define a closely related notion
of convergence for infinitary term rewriting (Bahr, 2014). The use of two different –
but on terms closely related – approaches to convergence will allow us both to assess
the appropriateness of the resulting infinitary calculi and to compare them against the
corresponding infinitary calculi of term rewriting.
The focus of the present work is primarily on the foundational aspects of infinitary term

graph rewriting. That is, our major concerns are the underlying notions of convergence
and their appropriateness. That is why we only consider weak forms of convergence, i.e.
notions of convergence that are purely based on the convergence of the terms respectively
term graphs along a reduction, as opposed to strong convergence (Kennaway et al. , 1995)
that also considers the positions of contracted redexes.

1.1. Motivation

1.1.1. Lazy Evaluation Many functional programming languages allow deferring the eval-
uation of an expression until its “value” is needed for evaluation in the context that it
appears. The functional programming language Haskell (Marlow, 2010) has this seman-
tics by default. But other languages typically provide means to selectively enable this
evaluation strategy as well, e.g. F#.
As an example what this so-called non-strict evaluation semantics offers, consider the

following function definition for from:

from(n) = n :: from(s(n))

Here, we use the binary infix symbol :: to denote the list constructor cons and s for the
successor function on natural numbers. Intuitively, from constructs for each number n
the infinite list of consecutive numbers starting from n.

Obviously, we cannot use the infinite list generated by from directly. By its very nature,
viz. constructing an infinite list, the evaluation of an expression of the form from n cannot
terminate. However, what we can do is use the expression from n in a context in which
we only read a finite prefix of the infinite list conceptually defined by from.
Non-strict evaluation enables this program construction as it delays the evaluation of a

subexpression until its result is actually required for further evaluation of the expression.
Note that this non-strict semantics is not only a conceptual elegancy but in fact one of
the major features that make functional programs highly modular (Hughes, 1989).
Term rewriting can be used to study functional programs. A functional program essen-

tially consists of functions defined by a set of equations and an expression that is supposed
to be evaluated according to these equations. The conceptual process of evaluating an
expression is nothing else than term rewriting.
The above definition of the function from is represented as a term rewriting system

with the following rule:

from(x)→ x :: from(s(x))

Convergence in Infinitary Term Graph Rewriting Systems is Simple 3

Starting with the term from(0), we thus obtain the following infinite reduction:

from(0)→ 0 :: from(s(0))→ 0 :: s(0) :: from(s(s(0)))→ . . .

Infinitary term rewriting (Kennaway & de Vries, 2003) provides a notion of con-
vergence that may assign a meaningful result term to such an infinite reduction pro-
vided there exists one. For instance, the above reduction converges to the infinite term
0 :: s(0) :: s(s(0)) :: . . . , which represents the infinite list of numbers 0, 1, 2, This ex-
tension of term rewriting with explicit limit constructions for non-terminating reductions
allows us to directly reason about non-terminating functions and infinite data structures.
But, in a practical implementation, non-strict evaluation is rarely left to its own de-

vices. Usually, non-strict evaluation is implemented as part of lazy evaluation (Henderson
& Morris Jr., 1976), which complements a non-strict evaluation strategy with sharing.
The latter avoids duplication of subexpressions and instead uses pointers. For example,
the function from above duplicates its argument n – it occurs twice on the right-hand
side of the defining equation. A lazy evaluator simulates this duplication by inserting two
pointers pointing to the actual argument. Sharing is a natural companion for non-strict
evaluation as it avoids re-evaluation of expressions that are duplicated before they are
evaluated.
The underlying formalism that is typically used to obtain sharing for functional pro-

gramming languages is term graph rewriting (Peyton-Jones, 1987; Plasmeijer & van Eeke-
len, 1993). Term graph rewriting (Barendregt et al. , 1987; Plump, 1999) uses graphs to
represent terms, thus allowing multiple arcs to point to the same node. For example, the
right-hand side x :: from(s(x)) of the term rewrite rule defining the function from can
be represented as a term graph in the following two ways:

::

x from

s

x

::

x from

s

The former is a tree and corresponds directly to the original term representation; the
variable x still occurs twice. The latter is a proper graph (i.e. not a tree) and only
contains one occurrence of the variable x. The two original occurrences of the variable
are represented by two ingoing edges.
The non-strictness part of lazy evaluation is covered by infinitary rewriting, whereas

term graphs give us a model for sharing. We aim to unify the two formalisms into one
calculus by endowing term graph rewriting with a notion of convergence. This unification
will allow us to model both aspects of lazy evaluation within the same calculus.

1.1.2. Rational Terms In their full generality, term graphs can do more than only share
common subexpressions. Through cycles term graphs may also provide a finite represen-

Patrick Bahr 4

tation of certain infinite terms – so-called rational terms. For example, the infinite term
0 :: 0 :: 0 :: . . . can be represented as the finite term graph

::

0

A single node on a cycle in a term graph represents infinitely many corresponding sub-
terms. Accordingly, the contraction of a single term graph redex may not correspond to
only a single term rewrite step but instead a transfinite term reduction that contracts
infinitely many term redexes.
For example, if we apply the rewrite rule 0→ s(0) to the above term graph, we obtain

a term graph that represents the term s(0) :: s(0) :: s(0) :: . . . , which can only be obtained
from the term 0 :: 0 :: 0 :: . . . via a transfinite term reduction with the rule 0→ s(0). Ken-
naway et al. (1994) investigated this correspondence between cyclic term graph rewriting
and infinitary term rewriting. They were able to characterise a subset of transfinite term
reductions – called rational reductions – that can be simulated by a corresponding finite
term graph reduction. The above reduction from the term 0 :: 0 :: 0 :: . . . is an example
of such a rational reduction.
With the help of a unified formalism for infinitary and term graph rewriting, it should

be easier to study the correspondence between infinitary term rewriting and finitary term
graph rewriting further. The move from an infinitary term rewriting system to a term
graph rewriting system is then only a change in the degree of sharing if we use infinitary
term graph rewriting as a common framework.
For example, consider the term rewrite rule rep(x) → x :: rep(x), which defines a

function rep that repeats its argument infinitely often:

rep(0)→ 0 :: rep(0)→ 0 :: 0 :: rep(0)→ 0 :: 0 :: 0 :: rep(0)→ . . . 0 :: 0 :: 0 :: . . .

This reduction happens to be not a rational reduction in the sense of Kennaway et al.
(1994). The move from the term rule rep(x)→ x :: rep(x) to a term graph rule is a simple
matter of introducing sharing of common subexpressions:

rep

x

::

x rep

x

rep

xis represented by

::

Instead of creating a fresh copy of the redex on the right-hand side, the redex is reused by
placing an edge from the right-hand side of the rule to its left-hand side. This rewrite rule
allows us to represent the infinite reduction approximating the infinite term 0 :: 0 :: 0 :: . . .
with the following single step term graph reduction:

rep

0

::

0

Convergence in Infinitary Term Graph Rewriting Systems is Simple 5

By its cyclic structure, the resulting term graph represents the infinite term 0 :: 0 :: 0 ::
Since both transfinite term reductions and the corresponding finite term graph reduc-

tions can be treated within the same formalism, we hope to provide a tool for studying
the ability of cyclic term graph rewriting to finitely represent transfinite term reductions.

1.2. Contributions & Related Work

1.2.1. Contributions The main contributions of this paper are:
(i) We devise a simple partial order on term graphs based on graph homomorphisms.

We show that this partial order forms a complete semilattice and thus is technically
suitable for defining a notion of convergence.

(ii) We devise a simple metric on term graphs and show that it forms a complete ultra-
metric space on term graphs.

(iii) Based on the partial order respectively the metric we define a notion of weak conver-
gence for infinitary term graph rewriting. We show that the partial order convergence
subsumes the metric convergence.

(iv) We confirm that the partial order and the metric on term graphs generalise the par-
tial order respectively the metric that is used for infinitary term rewriting. Moreover,
we show that the corresponding notions of convergence are preserved by unravelling
term graphs to terms thus establishing the soundness of our notions of convergence
on term graphs w.r.t. the convergence on terms.

(v) Finally, we show that both the partial order and the metric provide completion con-
structions – ideal completion and metric completion, respectively – that construct
the set of finite and infinite term graphs from the set of finite term graphs.

In this paper we study the foundations of infinitary term graph rewriting and therefore
focus purely on weak notions of convergence, i.e. notions that are based on the sequence of
term graphs produced along a term graph reduction. Similar to infinitary term rewriting,
weak notions of convergence for infinitary term graph rewriting are difficult to study and
often manifest some unexpected behaviour. In particular, soundness and completeness
properties w.r.t. infinitary term rewriting are hard to come by. Yet, we gathered much
evidence that support the appropriateness of our infinitary calculi. More evidence can
be found when moving to strong convergence, which does exhibit solid soundness and
completeness properties w.r.t. infinitary term rewriting (Bahr, 2012a).

1.2.2. Related Work Ariola & Klop (1997) recognised that adding explicit recursion
mechanism in the form of letrec to the lambda calculus may break confluence. In or-
der to reconcile this, Ariola & Blom (2002, 2005) developed a notion of skew confluence
that allows them to define an infinite normal form in the vein of Böhm trees.
In previous work, we have investigated notions of convergence for term graph rewrit-

ing (Bahr, 2012b). The approach that we have taken in that work is very similar to the
approach adopted in this paper: by generalising the metric and the partial order on terms
to term graphs, we devised a weak notion of convergence for infinitary term graph rewrit-
ing. However, both the metric and the partial order on term graphs are very carefully

Patrick Bahr 6

crafted in order to make them very similar to the corresponding structures on terms.
While the thus obtained two notions of convergence manifest the same correspondence
that is known from infinitary term rewriting (Bahr, 2014), they are too restrictive as we
will illustrate in this paper. Due to the close resemblance to the convergence on terms,
these notions of convergence are not able to capture all forms of sharing appropriately.
In this paper, we follow a different approach by taking the arguably simplest gen-

eralisation of the metric and the partial order to term graphs. We will show that this
approach is better suited for infinitary term graph rewriting as it lifts the restrictions
that we observe in our previous formalisation (Bahr, 2012b).

1.3. Overview

The structure of this paper is as follows: in Section 2, we give an overview of infinitary
term rewriting including the necessary background for metric spaces and partially ordered
sets. Section 3 provides the necessary theory for graphs and term graphs. Sections 4 and 5
form the core of this paper. In these sections we study the partial order and the metric on
term graphs that are the basis for the notions of convergence we consider in this paper. In
Section 6, we use these two notions of convergence to study two corresponding infinitary
term graph rewriting calculi. Sections 7 and 8 are concerned with forms of soundness and
completeness properties of our notions of convergence. In the former, we show that both
notions of convergence generalise the corresponding notions of convergence on terms and
that they are preserved under unravelling term graphs to terms. In the latter, we show
that the set of (finite and infinite) term graphs arises both as the metric completion and
the ideal completion of the set of finite term graphs.

2. Infinitary Term Rewriting

For devising an infinitary calculus, we have to devise a notion of convergence that con-
strains transfinite reductions in a meaningful way. Before pondering over the right ap-
proach to an infinitary calculus of term graph rewriting, we want to provide a brief
overview of infinitary term rewriting (Kennaway & de Vries, 2003; Bahr, 2014). In this
paper, we will only consider weak notions of convergence, i.e. convergence is solely de-
termined by the sequence of terms respectively term graphs that are produced along a
reduction (Dershowitz et al. , 1991).

We assume the reader to be familiar with the basic theory of ordinal numbers, orders
and topological spaces (Kelley, 1955), as well as term rewriting (Terese, 2003). In the
following, we briefly recall the most important notions.

2.1. Sequences

We use the von Neumann definition of ordinal numbers. That is, an ordinal number (or
simply ordinal) α is the set of all ordinal numbers strictly smaller than α. In particular,
each natural number n ∈ N is an ordinal number with n = {0, 1, . . . , n− 1}. The least

Convergence in Infinitary Term Graph Rewriting Systems is Simple 7

infinite ordinal number is denoted by ω and is the set of all natural numbers. Ordinal
numbers will be denoted by lower case Greek letters α, β, γ, δ, λ, ι.

A sequence S of length α in a set A, written (aι)ι<α, is a function from α to A with
ι 7→ aι for all ι ∈ α. We use |S| to denote the length α of S. If α is a limit ordinal, then S
is called open. Otherwise, it is called closed. If α is a finite ordinal, then S is called finite.
Otherwise, it is called infinite. For a finite sequence (ai)i<n, we also use the notation
〈a0, a1, . . . , an−1〉. In particular, 〈〉 denotes the empty sequence. We write A∗ for the set
of all finite sequences in A.
The concatenation (aι)ι<α ·(bι)ι<β of two sequences (aι)ι<α and (bι)ι<β is the sequence

(cι)ι<α+β with cι = aι for ι < α and cα+ι = bι for ι < β. A sequence S is a (proper)
prefix of a sequence T , denoted S ≤ T (respectively S < T), if there is a (non-empty)
sequence S′ with S · S′ = T . The prefix of T of length β ≤ |T | is denoted T |β . The thus
defined binary prefix relation ≤ forms a complete semilattice (cf. Section 2.3). Similarly,
a sequence S is a (proper) suffix of a sequence T if there is a (non-empty) sequence S′
with S′ · S = T .

2.2. Metric Spaces

Given a set M , a pair (M,d) is called a metric space if d : M ×M → R+
0 is a func-

tion satisfying d(x, y) = 0 iff x = y (identity), d(x, y) = d(y, x) (symmetry), and
d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality), for all x, y, z ∈ M . If d, instead of
the triangle inequality, satisfies the stronger property d(x, z) ≤ max {d(x, y),d(y, z)}
(strong triangle), then (M,d) is called an ultrametric space. Let (aι)ι<α be a sequence
in a metric space (M,d). The sequence (aι)ι<α converges to an element a ∈M , written
limι→α aι, if, for each ε ∈ R+, there is a β < α such that d(a, aι) < ε for every β < ι < α;
(aι)ι<α is continuous if limι→λ aι = aλ for each limit ordinal λ < α. The sequence (aι)ι<α
is called Cauchy if, for any ε ∈ R+, there is a β < α such that, for all β < ι < γ < α,
we have that d(aι, aγ) < ε. A metric space is called complete if each of its non-empty
Cauchy sequences converges.
Given two metric spaces (M1,d1) and (M2,d2), a function φ : M1 → M2 is called an

isometric embedding of (M1,d1) into (M2,d2) if it preserves distances, i.e.

d2(φ(x), φ(y)) = d1(x, y) for all x, y ∈M1.

If, additionally, φ is bijective, then it is called an isometry and the metric spaces (M1,d1)
and (M2,d2) are said to be isometric.

2.3. Partial Orders

A partial order ≤ on a set A is a binary relation on A that is transitive, reflexive, and
antisymmetric. The pair (A,≤) is then called a partially ordered set. A subset D of the
underlying set A is called directed if it is non-empty and each pair of elements in D has
an upper bound in D. A partially ordered set (A,≤) is called a complete partial order
(cpo) if it has a least element and each directed set D has a least upper bound (lub)

⊔
D.

A cpo (A,≤) is called a complete semilattice if every non-empty set B has greatest lower

Patrick Bahr 8

bound (glb)
d
B. In particular, this means that for any sequence (aι)ι<α in a complete

semilattice, its limit inferior, defined by lim infι→α aι =
⊔
β<α

(d
β≤ι<α aι

)
, exists.

There is also a different characterisation of complete semilattices in terms of bounded
complete cpos: a partially ordered set (A,≤) is called bounded complete if each set B ⊆ A
that has an upper bound in A also has a least upper bound in A.

Proposition 2.1 (complete semilattice, Kahn & Plotkin (1993)). Given a cpo
(A,≤), the following are equivalent:
(i) (A,≤) is a complete semilattice.
(ii) (A,≤) is bounded complete.

Given two partially ordered sets (A,≤A) and (B,≤B), a function φ : A→ B is called
monotonic if a1 ≤A a2 implies φ(a1) ≤B φ(a2). In particular, a sequence (bι)ι<α in
(B,≤B) is called monotonic if ι ≤ γ < α implies bι ≤B bγ . An order isomorphism from
(A,≤A) to (B,≤B) is a monotonic function φ : A → B such that there is a monotonic
function ψ : B → A which is the inverse of φ, i.e. ψ ◦ φ and φ ◦ ψ are identity functions
on A respectively B. If there is an order isomorphism from (A,≤A) to (B,≤B), then
(A,≤A) and (B,≤B) are called order isomorphic.
With the prefix order ≤ on sequences we can generalise concatenation to arbitrary

sequences of sequences: let (Sι)ι<α be a sequence of sequences in some set A. The con-
catenation of (Sι)ι<α, written

∏
ι<α Sι, is recursively defined as the empty sequence 〈〉

if α = 0,
(∏

ι<α′ Sι
)
· Sα′ if α = α′ + 1, and

⊔
γ<α

∏
ι<γ Sι if α is a limit ordinal.

2.4. Terms

Since we are interested in the infinitary calculus of term rewriting, we consider the set
T ∞(Σ) of (potentially infinite) terms over some signature Σ. A signature Σ is a countable
set of symbols. Each symbol f has an associated arity ar(f) ∈ N, and we write Σ(n) for the
set of symbols in Σ which have arity n. The set T ∞(Σ) is defined as the greatest set such
that t ∈ T ∞(Σ) implies t = f(t0, . . . , tk−1) for some f ∈ Σ(k) and t0, . . . , tk−1 ∈ T ∞(Σ).
For each nullary symbol c ∈ Σ(0), we write c for the term c(). For a term t ∈ T ∞(Σ) we
use the notation P(t) to denote the set of positions in t. P(t) is the least subset of N∗
such that 〈〉 ∈ P(t) and 〈i〉 · π ∈ P(t) if t = f(t0, . . . , tk−1) with 0 ≤ i < k and π ∈ P(ti).
For terms s, t ∈ T ∞(Σ) and a position π ∈ P(t), we write t|π for the subterm of t at π,
t(π) for the function symbol in t at π, and t[s]π for the term t with the subterm at π
replaced by s. The set T (Σ) of finite terms is the set of terms t ∈ T ∞(Σ) for which P(t)
is a finite set.
On T ∞(Σ) a similarity measure sim : T ∞(Σ) × T ∞(Σ) → ω + 1 can be defined by

setting

sim(s, t) = min {|π| |π ∈ P(s) ∩ P(t), s(π) 6= t(π)} ∪ {ω} for s, t ∈ T ∞(Σ)

That is, sim(s, t) is the minimal depth at which s and t differ, respectively ω if s = t.
Based on this, a distance function d can be defined by d(s, t) = 2−sim(s,t), where we
interpret 2−ω as 0. The pair (T ∞(Σ),d) is known to form a complete ultrametric space

Convergence in Infinitary Term Graph Rewriting Systems is Simple 9

(Arnold & Nivat, 1980). Partial terms, i.e. terms over signature Σ⊥ = Σ] {⊥} with ⊥
a fresh nullary symbol, can be endowed with a binary relation ≤⊥ by defining s ≤⊥ t iff
s can be obtained from t by replacing some subterm occurrences in t by ⊥. Interpreting
the term ⊥ as denoting “undefined”, ≤⊥ can be read as “is less defined than”. The pair
(T ∞(Σ⊥),≤⊥) is known to form a complete semilattice (Goguen et al. , 1977). When
dealing with terms in T ∞(Σ⊥), we call terms that do not contain the symbol ⊥, i.e.
terms that are contained in T ∞(Σ), total.

2.5. Term Rewriting Systems

For term rewriting systems, we have to consider terms with variables. To this end, we
assume a countably infinite set V of variable symbols and extend a signature Σ to a
signature ΣV = Σ]V with variable symbols in V as nullary symbols. Instead of T ∞(ΣV)
we also write T ∞(Σ,V). A term rewriting system (TRS) R is a pair (Σ, R) consisting of a
signature Σ and a set R of term rewrite rules of the form l→ r with l ∈ T ∞(Σ,V)\V and
r ∈ T ∞(Σ,V) such that all variables occurring in r also occur in l. Note that both the left-
and the right-hand side may be infinite. We usually use x, y, z and primed respectively
indexed variants thereof to denote variables in V.

Similar to the setting of finitary term rewriting, every TRS R defines a rewrite relation
→R on terms in T ∞(Σ) as follows:

s→R t ⇐⇒ ∃π ∈ P(s), l→ r ∈ R, substitution σ : s|π = lσ, t = s[rσ]π

Instead of s →R t, we sometimes write s →π,ρ t in order to indicate the applied rule ρ
and the position π, or simply s→ t. The subterm s|π is called a ρ-redex or simply redex,
rσ its contractum, and s|π is said to be contracted to rσ.

2.6. Convergence of Transfinite Term Reductions

At first, we look at the metric based approach of infinitary term rewriting (Dershowitz
et al. , 1991; Kennaway & de Vries, 2003). The convergence of an infinite reduction is
determined by the convergence of the underlying sequence of terms in the metric space
(T ∞(Σ),d).

A reduction in a term rewriting system R, is a sequence S = (tι →R tι+1)ι<α of
rewriting steps in R. The sequence (tι)ι<α̂ is the underlying sequence of terms, where
α̂ = α if α is a limit ordinal, and α̂ = α + 1 otherwise. The reduction S is called
weakly m-continuous, written S : t0 ↪→m . . . , if the underlying sequence of terms (tι)ι<α̂,
is continuous, i.e. limι→λ tι = tλ for each limit ordinal λ < α. The reduction S is said to
weakly m-converge to a term t, written S : t0 ↪→m t, if it is weakly m-continuous and the
underlying sequence of terms converges to t, i.e. lim

ι→α̂ tι = t.

Example 2.1. Consider the term rewriting system R containing the rule ρ : x :: y :: z →
y ::x :: y :: z, where :: is a binary symbol that we write infix and assume to associate to the
right. That is, in its explicitly parenthesised form ρ reads x :: (y :: z) → y :: (x :: (y :: z)).
Think of the :: symbol as the list constructor cons. Using the rule ρ, we have the following

Patrick Bahr 10

reduction S of length ω:

S : a :: a :: c→ a :: a :: a :: c→ a :: a :: a :: a :: c→ a :: a :: a :: a :: a :: c→ . . .

The position at which two consecutive terms differ – indicated by the underlining – moves
deeper and deeper into the term structure during the reduction S. Hence, the underlying
sequence of terms converges to the infinite term s satisfying the equation s = a :: s, i.e.
s = a :: a :: a :: This means that S weakly m-converges to s.
Now consider the starting term a :: b :: c. By repeatedly applying ρ at the root we obtain

the following reduction:

T : a :: b :: c→ b :: a :: b :: c→ a :: b :: a :: b :: c→ b :: a :: b :: a :: b :: c→ . . .

The difference between consecutive terms remains right at the root position. Hence, the
underlying sequence of terms is not Cauchy and, therefore, does not converge. Conse-
quently, T does not weakly m-converge.
However, we can form a weakly m-converging reduction starting from the term a :: b :: c

by applying the rule ρ at increasingly deep positions:

T ′ : a :: b :: c→ b :: a :: b :: c→ b :: b :: a :: b :: c→ b :: b :: b :: a :: b :: c→ . . .

The reduction T ′ weakly m-converges to the infinite term t′ = b :: b :: b ::

In the partial order approach of infinitary rewriting (Bahr, 2010, 2014), convergence
is defined in terms of the limit inferior in the partially ordered set (T ∞(Σ⊥),≤⊥): a
reduction S = (tι →R tι+1)ι<α of partial terms is called weakly p-continuous, written
S : t0 ↪→p . . . , if lim infι<λ tι = tλ for each limit ordinal λ < α. The reduction S is said
to weakly p-converge to a term t, written S : t0 ↪→p t, if it is weakly p-continuous and
lim inf

ι<α̂
tι = t.

The distinguishing feature of the partial order approach is that, due to the complete
semilattice structure of (T ∞(Σ⊥),≤⊥), each continuous reduction also converges. Intu-
itively, weak p-convergence on terms describes an approximation process. To this end, the
partial order ≤⊥ captures a notion of information preservation: s ≤⊥ t iff t contains at
least the same information as s does but potentially more. A monotonic sequence of terms
t0 ≤⊥ t1 ≤⊥ . . . thus approximates the information contained in t =

⊔
i<ω ti: any finite

part of t is contained is some ti and subsequently remains stable in ti+1, ti+1, ti+2,
Given this reading of ≤⊥, the glb

d
T of a set of terms T captures the common (non-

contradicting) information of the terms in T . Leveraging this property of the partial order
≤⊥, a sequence of terms (si)i<ω that is not necessarily monotonic can be turned into a
monotonic sequence (tj)j<ω by setting tj =

d
j≤i<ω si. That is, each tj contains exactly

the information that remains stable in (si)i<ω from j onwards. Hence, the limit inferior
lim infi→ω si =

⊔
j<ω

d
j≤i<ω si is the term that contains the accumulated information

that eventually remains stable in (si)i<ω. This is expressed as an approximation of the
monotonically increasing information that remains stable from some point on.

Example 2.2. Reconsider the rule ρ and its induced reduction S from Example 2.1.
The reduction S also weakly p-converges to s, i.e. lim infi→ω si for (si)i<ω the underlying
sequence of terms in S. To see this, consider the sequence (tj)j<ω of terms tj =

d
j≤i<ω si

Convergence in Infinitary Term Graph Rewriting Systems is Simple 11

each of which intuitively encodes the information that remains stable from j onwards:

a :: a ::⊥, a :: a :: a ::⊥, a :: a :: a :: a ::⊥, . . .

This sequence of terms approximates s = a :: a :: a :: . . . in the sense that s =
⊔
j<ω tj .

Likewise, also the reduction T ′ from Example 2.1 weakly p-converges to the term t′ =
b :: b :: b :: The sequence of stable information of T ′ is

⊥ ::⊥ ::⊥, b ::⊥ ::⊥ ::⊥, b :: b ::⊥ ::⊥ ::⊥, . . .

As we have seen, the reduction T from Example 2.1 does not weakly m-converge.
However, since T it is trivially weakly p-continuous, it is weakly p-converging. The cor-
responding sequence of stable information is

⊥ ::⊥ ::⊥, ⊥ ::⊥ ::⊥ ::⊥, ⊥ ::⊥ ::⊥ ::⊥ ::⊥, . . .

This sequence approximates the term t = ⊥ ::⊥ ::⊥ :: . . . and we thus have that T weakly
p-converges to t.

The relation between weak m- and p-convergence illustrated in the examples above is
characteristic: weak p-convergence is a conservative extension of weak m-convergence. In
order to qualify this, we say that a reduction S = (tι → tι+1)ι<α weakly p-converges to
t in T ∞(Σ) if S weakly p-converges to t and t as well as each tι with ι < α̂ is in T ∞(Σ).
Analogously, we say that S is weakly p-continuous in T ∞(Σ) if S is weakly p-continuous
and each tι with ι < α̂ is in T ∞(Σ). We then have the following correspondence between
m- and p-convergence:

Theorem 2.1 (p-convergence in T ∞(Σ) = m-convergence, Bahr (2009)). For
every reduction S in a TRS, the following equivalences hold:
(i) S : s ↪→p . . . in T ∞(Σ) iff S : s ↪→m
(ii) S : s ↪→p t in T ∞(Σ) iff S : s ↪→m t.

Kennaway (1992) and Bahr (2010) investigated abstract models of infinitary rewriting
based on metric spaces respectively partially ordered sets. We will take these abstract
models as a basis to formulate a theory of infinitary term graph reductions. The key
question that we have to address is what an appropriate metric space respectively partial
order on term graphs looks like.

3. Graphs and Term Graphs

This section provides the basic notions for term graphs and more generally for graphs.
We shall use the same basic framework of term graphs as in our previous work (Bahr,
2012b), where full proofs of the propositions given in this section can be found.
Terms over a signature, say Σ, can be thought of as rooted trees whose nodes are

labelled with symbols from Σ. Moreover, in these trees a node labelled with a k-ary
symbol is restricted to have out-degree k and the outgoing edges are ordered. In this
way the i-th successor of a node labelled with a symbol f is interpreted as the root node

Patrick Bahr 12

f

a h

a b

(a) f(a, h(a, b)).

f

h

a

b

h

(b) A graph.

f

f

a

h

(c) A term graph g.

h

f

a

(d) Sub-term graph of g.

Figure 1: Tree representation of a term and generalisation to (term) graphs.

of the subtree that represents the i-th argument of f . For example, consider the term
f(a, h(a, b)). The corresponding representation as a tree is shown in Figure 1a.
In term graphs, the restriction to a tree structure is abolished. The corresponding

notion of term graphs we are using is taken from Barendregt et al. (1987).

Definition 3.1 (graphs). Let Σ be a signature. A graph over Σ is a triple g =
(N, lab, suc) consisting of a set N (of nodes), a labelling function lab : N → Σ, and a
successor function suc : N → N∗ such that |suc(n)| = ar(lab(n)) for each node n ∈ N ,
i.e. a node labelled with a k-ary symbol has precisely k successors. The graph g is called
finite whenever the underlying set N of nodes is finite. If suc(n) = 〈n0, . . . , nk−1〉, then
we write suci(n) for ni. Moreover, we use the abbreviation arg(n) for the arity ar(lab(n))
of n.

Example 3.1. Let Σ = {f/2, h/2, a/0, b/0} be a signature. The graph over Σ, depicted
in Figure 1b, is given by the triple (N, lab, suc) with N = {n0, n1, n2, n3, n4}, lab(n0) =
f, lab(n1) = lab(n4) = h, lab(n2) = b, lab(n3) = a and suc(n0) = 〈n1, n2〉, suc(n1) =
〈n0, n3〉, suc(n2) = suc(n3) = 〈〉, suc(n4) = 〈n2, n3〉.

Definition 3.2 (paths, reachability). Let g = (N, lab, suc) be a graph and n,m ∈ N .
(i) A path in g from n to m is a finite sequence π ∈ N∗ such that either

(a) π is empty and n = m, or
(b) π = 〈i〉 · π′ with 0 ≤ i < arg(n) and the suffix π′ a path in g from suci(n) to m.

(ii) If there exists a path in g from n to m, we say that m is reachable from n in g.

Definition 3.3 (term graphs). Given a signature Σ, a term graph g over Σ is a tuple
(N, lab, suc, r) consisting of an underlying graph (N, lab, suc) over Σ whose nodes are all
reachable from the root node r ∈ N . The term graph g is called finite if the underlying

Convergence in Infinitary Term Graph Rewriting Systems is Simple 13

graph is finite, i.e. the set N of nodes is finite. The class of all term graphs over Σ is
denoted G∞(Σ); the class of all finite term graphs over Σ is denoted G(Σ). We use the
notation Ng, labg, sucg and rg to refer to the respective components N ,lab, suc and r

of g. Given a graph or a term graph h and a node n in h, we write h|n to denote the
sub-term graph of h rooted in n.

Example 3.2. Let Σ = {f/2, h/2, c/0} be a signature. The term graph over Σ, depicted
in Figure 1c, is given by the quadruple (N, lab, suc, r), where N = {r, n1, n2, n3}, suc(r) =
〈n1, n2〉, suc(n1) = suc(n2) = 〈n1, n3〉, suc(n3) = 〈〉 and lab(r) = lab(n1) = f , lab(n2) =
h, lab(n3) = a. Figure 1d depicts the sub-term graph g|n2 of g.

Paths in a graph are not absolute but relative to a starting node. In term graphs,
however, we have a distinguished root node from which each node is reachable. Paths
relative to the root node correspond to positions in terms and are central for dealing
with term graphs:

Definition 3.4 (positions, depth, cyclicity, trees). Let g ∈ G∞(Σ) and n ∈ Ng.
(i) A position of n is a path in the underlying graph of g from rg to n. The set of all

positions in g is denoted P(g); the set of all positions of n in g is denoted Pg(n).†
(ii) The depth of n in g, denoted depthg(n), is the minimum of the lengths of the positions

of n in g, i.e. depthg(n) = min {|π| |π ∈ Pg(n)}.
(iii) For a position π ∈ P(g), we write nodeg(π) for the unique node n ∈ Ng with

π ∈ Pg(n) and g(π) for its symbol labg(n).
(iv) A position π ∈ P(g) is called cyclic if there are paths π1 < π2 ≤ π with nodeg(π1) =

nodeg(π2). The non-empty path π′ with π1 · π′ = π2 is then called a cycle of
nodeg(π1). A position that is not cyclic is called acyclic. The set of all acyclic posi-
tions of a node n in g is denoted Pag (n). If g has a cyclic position, g is called cyclic;
otherwise g is called acyclic.

(v) The term graph g is called a term tree if each node in g has exactly one position.

Note that the labelling function of graphs – and thus term graphs – is total. In contrast,
Barendregt et al. (1987) considered open (term) graphs with a partial labelling function
such that unlabelled nodes denote holes or variables. This is reflected in their notion
of homomorphisms in which the homomorphism condition is suspended for unlabelled
nodes.

3.1. Homomorphisms

Instead of a partial node labelling function for term graphs, we chose a syntactic ap-
proach that is closer to the representation in terms: variables, holes and “bottoms” are
represented as distinguished syntactic entities. We achieve this on term graphs by making
the notion of homomorphisms dependent on a set of constant symbols ∆ for which the
homomorphism condition is suspended:

† The notion/notation of positions is borrowed from terms: every position π of a node n corresponds to
the subterm represented by n occurring at position π in the unravelling of the term graph to a term.

Patrick Bahr 14

f

h

a

a

f

h

a

φ

g1φ : g2

(a) A homomorphism.

f

a b

f

h

a

ψ

g3ψ : g4
{a, b}

(b) A {a, b}-homomorphism.

Figure 2: ∆-homomorphisms.

Definition 3.5 (∆-homomorphisms). Let Σ be a signature, ∆ ⊆ Σ(0), and g, h ∈
G∞(Σ).
(i) A function φ : Ng → Nh is called homomorphic in n ∈ Ng if the following holds:

labg(n) = labh(φ(n)) (labelling)
φ(sucgi (n)) = suchi (φ(n)) for all 0 ≤ i < arg(n) (successor)

(ii) A ∆-homomorphism φ from g to h, denoted φ : g →∆ h, is a function φ : Ng → Nh

that is homomorphic in n for all n ∈ Ng with labg(n) 6∈ ∆ and satisfies

φ(rg) = rh (root)

Note that, for ∆ = ∅, we get the usual notion of homomorphisms on term graphs (e.g.
Barendsen (2003)). The ∆-nodes can be thought of as holes in the term graphs that can
be filled with other term graphs. For example, if we have a distinguished set of variable
symbols V ⊆ Σ(0), we can use V-homomorphisms to formalise the matching step of term
graph rewriting, which requires the instantiation of variables.

Example 3.3. Figure 2 depicts two functions φ and ψ. Whereas φ is a homomorphism,
the function ψ is not a homomorphism since, for example, the node labelled a in g3
is mapped to a node labelled h in g3. Nevertheless, ψ is a {a, b}-homomorphism. Note
that ∆-homomorphisms may introduce additional sharing in the target term graph by
mapping several nodes in the source to the same node in the target.

Proposition 3.1 (∆-homomorphism preorder). The ∆-homomorphisms on G∞(Σ)
form a category that is a preorder, i.e. there is at most one ∆-homomorphism from one
term graph to another.

Since ∆-homomorphisms between two given term graphs are unique, we have in par-
ticular that any ∆-homomorphism from a term graph g to the same term graph g

must be the identity ∆-homomorphism on g. Consequently, whenever there are two
∆-homomorphisms φ : g →∆ h and ψ : h →∆ g, they are inverses of each other, i.e.
∆-isomorphisms. If two term graphs are ∆-isomorphic, we write g ∼=∆ h.
For the two special cases ∆ = ∅ and ∆ = {σ}, we write φ : g → h respectively φ : g →σ

Convergence in Infinitary Term Graph Rewriting Systems is Simple 15

h instead of φ : g →∆ h and call φ a homomorphism respectively a σ-homomorphism.
The same convention applies to ∆-isomorphisms.

The structure of positions permits a convenient characterisation of ∆-homomorphisms:

Lemma 3.1 (characterisation of ∆-homomorphisms). Given g, h ∈ G∞(Σ), a func-
tion φ : Ng → Nh is called a ∆-homomorphism φ : g →∆ h iff the following holds for all
n ∈ Ng:

(a) Pg(n) ⊆ Ph(φ(n)), and (b) labg(n) 6∈ ∆ =⇒ labg(n) = labh(φ(n)).

By Proposition 3.1, there is at most one ∆-homomorphism between two term graphs.
The lemma above uniquely defines this ∆-homomorphism: if there is a ∆-homomorphism
from g to h, it is defined by φ(n) = n′, where n′ is the unique node n′ ∈ Nh with
Pg(n) ⊆ Ph(n′). Moreover, while it is not true for arbitrary ∆-homomorphisms, we have
that homomorphisms are surjective.

3.2. Isomorphisms & Isomorphism Classes

When dealing with term graphs, in particular when studying term graph transformations,
we do not want to distinguish between isomorphic term graphs. Distinct but isomorphic
term graphs only differ in the naming of nodes and are thus an unwanted artifact of
the definition of term graphs. In this way, equality up to isomorphism is similar to α-
equivalence of λ-terms and has to be dealt with.

In this section, we characterise isomorphisms and more generally ∆-isomorphisms.
From this we derive two canonical representations of isomorphism classes of term graphs.
One is simply a subclass of the class of term graphs while the other one is based on
the structure provided by the positions of term graphs. The relevance of the former
representation is derived from the fact that we still have term graphs that can be easily
manipulated whereas the latter is more technical and will be helpful for constructing
term graphs up to isomorphism.
From the characterisation of ∆-homomorphisms in Lemma 3.1, we immediately obtain

a characterisation of ∆-isomorphisms as follows:

Lemma 3.2 (characterisation of ∆-isomorphisms). For all g, h ∈ G∞(Σ), a function
φ : Ng → Nh is a ∆-isomorphism iff for all n ∈ Ng

(a) Ph(φ(n)) = Pg(n), and
(b) labg(n) = labh(φ(n)) or labg(n), labh(φ(n)) ∈ ∆.

Proof. Immediate consequence of Lemma 3.1 and Proposition 3.1.

Note that whenever ∆ is a singleton set, the condition labg(n), labh(φ(n)) ∈ ∆ in the
above lemma implies labg(n) = labh(φ(n)). Therefore, we obtain the following corollary:

Corollary 3.1 (σ-isomorphism = isomorphism). Given g, h ∈ G∞(Σ) and σ ∈ Σ(0),
we have g ∼= h iff g ∼=σ h.

The above equivalence does not hold for ∆-homomorphisms with more than one symbol

Patrick Bahr 16

in ∆: consider the term graphs g = a and h = b consisting of a single node labelled a

respectively b. While g and h are ∆-isomorphic for ∆ = {a, b}, they are not isomorphic.

3.2.1. Canonical Term Graphs From Lemma 3.2 we learned that isomorphisms between
term graphs are mappings that preserve and reflect the positions as well as the labelling
of each node. These findings motivate the following definition of canonical term graphs
as candidates for representatives of isomorphism classes:

Definition 3.6 (canonical term graphs). A term graph g is called canonical if n =
Pg(n) holds for each n ∈ Ng. That is, each node is the set of its positions in the term
graph. The set of all (finite) canonical term graphs over Σ is denoted G∞C (Σ) (respectively
GC(Σ)). Given a term graph h ∈ G∞C (Σ), its canonical representative C(h) is the canonical
term graph given by

NC(h) =
{
Ph(n)

∣∣n ∈ Nh
}

rC(h) = Ph(rh) labC(h)(Ph(n)) = labh(n) for all n ∈ Nh

sucC(h)
i (Ph(n)) = Ph(suchi (n)) for all n ∈ Nh, 0 ≤ i < arh(n)

The above definition follows a well-known approach to obtain, for each term graph g,
a canonical representative C(g) (Plump, 1999). One can easily see that C(g) is a well-
defined canonical term graph. With this definition we indeed capture a notion of canonical
representatives of isomorphism classes:

Proposition 3.2 (canonical term graphs). Given g ∈ G∞(Σ), the term graph C(g)
canonically represents the equivalence class [g]∼=. More precisely, it holds that

(i) g ∼= C(g), and (ii) g ∼= h iff C(g) = C(h).

In particular, we have, for all canonical term graphs g, h, that g = h iff g ∼= h.

Proof. Straightforward consequence of Lemma 3.2.

3.2.2. Labelled Quotient Trees Intuitively, term graphs can be thought of as “terms with
sharing”, i.e. terms in which occurrences of the same subterm may be identified. The
representation of isomorphic term graphs as labelled quotient trees, which we shall study
in this section, makes use of this intuition and formalises it. To this end, we introduce
an equivalence relation on the positions of a term graph that captures the sharing in a
term graph:

Definition 3.7 (aliasing positions). Given a term graph g and two positions π1, π2 ∈
P(g), we say that π1 and π2 alias each other in g, denoted π1 ∼g π2, if nodeg(π1) =
nodeg(π2).

One can easily see that the thus defined relation ∼g on P(g) is an equivalence relation.
Moreover, the partition on P(g) induced by ∼g is simply the set {Pg(n) |n ∈ Ng } that
contains the sets of positions of nodes in g.

Example 3.4. For the term graph g2 illustrated in Figure 2a, we have that 〈0, 0〉 ∼g2 〈1〉
as both 〈0, 0〉 and 〈1〉 are positions of the a-node in g2. For the term graph g4 in Figure 2b,

Convergence in Infinitary Term Graph Rewriting Systems is Simple 17

〈〉 ∼g4 〈1〉 ∼g4 〈1, 1〉 ∼g4 . . . since all finite sequences over 1 are positions of the f -node
in g4.

The characterisation of ∆-homomorphisms of Lemma 3.1 can be recast in terms of
aliasing positions, which then yields the following characterisation of the existence of
∆-homomorphisms:

Lemma 3.3 (characterisation of ∆-homomorphisms). Given g, h ∈ G∞(Σ), there
is a ∆-homomorphism φ : g →∆ h iff, for all π, π′ ∈ P(g), we have

(a) π ∼g π′ =⇒ π ∼h π′, and (b) g(π) 6∈ ∆ =⇒ g(π) = h(π).

Intuitively, Clause (a) states that h has at least as much sharing of nodes as g has,
whereas Clause (b) states that h has at least the same non-∆-labelling as g. In this sense,
the above characterisation confirms the intuition about ∆-homomorphisms that we men-
tioned in Example 3.3, viz. ∆-homomorphisms may only introduce sharing and relabel
∆-nodes. This can be observed in the two ∆-homomorphisms illustrated in Figure 2.

From the above characterisations of the existence of ∆-homomorphisms, we can eas-
ily derive the following characterisation of ∆-isomorphisms using the uniqueness of ∆-
homomorphisms between two term graphs:

Lemma 3.4 (characterisation of ∆-isomorphisms). For all g, h ∈ G∞(Σ), we have
that g ∼=∆ h iff

(a) ∼g = ∼h, and (b) g(π) = h(π) or g(π), h(π) ∈ ∆ for all π ∈ P(g).

Lemma 3.4 shows that term graphs can be characterised up to isomorphism by only
giving the equivalence ∼g and the labelling g(·) : π 7→ g(π) of the involved term graphs.
This observation gives rise to the following definition:

Definition 3.8 (labelled quotient trees). A labelled quotient tree over signature Σ
is a triple (P, l,∼) consisting of a non-empty set P ⊆ N∗, a function l : P → Σ, and an
equivalence relation ∼ on P that satisfies the following conditions for all π, π′ ∈ N∗ and
i ∈ N:

π · 〈i〉 ∈ P =⇒ π ∈ P and i < ar(l(π)) (reachability)

π ∼ π′ =⇒
{
l(π) = l(π′) and
π · 〈i〉 ∼ π′ · 〈i〉 for all i < ar(l(π))

(congruence)

In other words, a labelled quotient tree (P, l,∼) is a ranked tree domain P together with
a congruence ∼ on it and a labelling function l : P/∼ → Σ that honours the rank. Also
note that since P must be non-empty, the reachability condition implies that 〈〉 ∈ P .

Example 3.5. The term graph g2 depicted in Figure 2a is represented up to isomorphism
by the labelled quotient tree (P, l,∼) with P = {〈〉, 〈0〉, 〈0, 0〉, 〈1〉}, l(〈〉) = f , l(〈0〉) = h,
l(〈0, 0〉) = l(〈1〉) = a and ∼ the least equivalence relation on P with 〈0, 0〉 ∼ 〈1〉.

The following lemma confirms that labelled quotient trees uniquely characterise any
term graph up to isomorphism:

Patrick Bahr 18

Lemma 3.5 (labelled quotient trees are canonical). Each term graph g ∈ G∞(Σ)
induces a canonical labelled quotient tree (P(g), g(·),∼g) over Σ. Vice versa, for each
labelled quotient tree (P, l,∼) over Σ there is a unique canonical term graph g ∈ G∞C (Σ)
whose canonical labelled quotient tree is (P, l,∼), i.e. P(g) = P , g(π) = l(π) for all
π ∈ P , and ∼g = ∼.

Labelled quotient trees provide a valuable tool for constructing canonical term graphs
as we shall see. Nevertheless, the original graph representation remains convenient for
practical purposes as it allows a straightforward formalisation of term graph rewriting
and provides a finite representation of finite cyclic term graphs, which induce an infinite
labelled quotient tree.

3.2.3. Terms, Term Trees & Unravelling Before we continue, it is instructive to make
the correspondence between terms and term graphs clear. First, note that, for each term
tree t, the equivalence ∼t is the identity relation IP(t) on P(t), i.e. π1 ∼t π2 iff π1 = π2.
Consequently, we have the following one-to-one correspondence between canonical term
trees and terms: each term t ∈ T ∞(Σ) induces the canonical term tree given by the
labelled quotient tree (P(t), t(·), IP(t)). For example, the term tree depicted in Figure 1a
corresponds to the term f(a, h(a, b)). We thus consider the set of terms T ∞(Σ) as the
subset of canonical term trees of G∞C (Σ).
With this correspondence in mind, we can define the unravelling of a term graph g as

the unique term t such that there is a homomorphism φ : t→ g. The unravelling of cyclic
term graphs yields infinite terms, e.g. in Figure 6 on page 39, the term graphs h and h′
both unravel to the infinite term b :: b :: We use the notation U (g) for the unravelling
of g.

4. A Simple Partial Order on Term Graphs

In this section, we want to establish a partial order suitable for formalising convergence
of sequences of canonical term graphs similarly to weak p-convergence on terms.
Recall that weak p-convergence on term rewriting systems is based on a partial order

≤⊥ on the set T ∞(Σ⊥) of partial terms. The partial order ≤⊥ instantiates occurrences
of ⊥ from left to right, i.e. s ≤⊥ t iff t is obtained by replacing occurrences of ⊥ in s by
arbitrary terms in T ∞(Σ⊥).
Analogously, we will consider the class of partial term graphs simply as term graphs over

the signature Σ⊥ = Σ]{⊥}. In order to generalise the partial order ≤⊥ to term graphs,
we need to formalise the instantiation of occurrences of ⊥ in term graphs. To this end,
we will look more closely at ∆-homomorphisms with ∆ = {⊥}, or ⊥-homomorphisms
for short. A ⊥-homomorphism φ : g →⊥ h maps each node in g to a node in h while
“preserving its structure”. Except for nodes labelled ⊥ this also includes preserving the
labelling. This exception to the homomorphism condition allows the ⊥-homomorphism
φ to instantiate each ⊥-node in g with an arbitrary node in h.
Therefore, we shall use ⊥-homomorphisms as the basis for generalising ≤⊥ to canonical

partial term graphs. This approach is based on the observation that ⊥-homomorphisms

Convergence in Infinitary Term Graph Rewriting Systems is Simple 19

characterise the partial order ≤⊥ on terms. Considering terms as canonical term trees,
we obtain the following characterisation of ≤⊥ on terms s, t ∈ T ∞(Σ⊥):

s ≤⊥ t ⇐⇒ there is a ⊥-homomorphism φ : s→⊥ t.

Embodying a natural concept on term graphs, ⊥-homomorphisms thus constitute the
ideal tool to define a partial order on canonical partial term graphs that generalises ≤⊥.

In this paper, we focus on the simplest among these partial orders on term graphs:

Definition 4.1 (simple partial order ≤S
⊥). The relation ≤S

⊥ on G∞(Σ⊥) is defined
as follows: g ≤S

⊥ h iff there is a ⊥-homomorphism φ : g →⊥ h.

One of our objective is to argue that the simple partial order ≤S
⊥ is indeed a suitable

structure for deriving a notion of convergence on term graphs in general and for infinitary
term graph rewriting in particular.
Due to the preorder structure of ⊥-homomorphisms on term graphs and the character-

isation of isomorphisms as given by Corollary 3.1, the relation ≤S
⊥ forms a partial order

if restricted to canonical term graphs.

Proposition 4.1 (simple partial order ≤S
⊥). The relation ≤S

⊥ is a partial order on
G∞C (Σ⊥).

Proof. Transitivity and reflexivity of ≤S
⊥ follows immediately from Proposition 3.1.

For antisymmetry, consider g, h ∈ G∞C (Σ⊥) with g ≤S
⊥ h and h ≤S

⊥ g. Then, by Proposi-
tion 3.1, g ∼=⊥ h. This is equivalent to g ∼= h by Corollary 3.1 from which we can conclude
g = h using Proposition 3.2.

Before we study the properties of the partial order ≤S
⊥, it is helpful to make its char-

acterisation in terms of labelled quotient trees explicit:

Corollary 4.1 (characterisation of ≤S
⊥). Let g, h ∈ G∞(Σ⊥). Then g ≤S

⊥ h iff the
following conditions are met:
(a) π ∼g π′ =⇒ π ∼h π′ for all π, π′ ∈ P(g)
(b) g(π) = h(π) for all π ∈ P(g) with g(π) ∈ Σ.

Proof. This follows immediately from Lemma 3.3.

Note that the partial order ≤⊥ on terms is entirely characterised by (b). In other
words, the partial order ≤S

⊥ is a combination of the partial order ≤⊥ imposed on the
underlying tree structure of term graphs (i.e. their unravelling) and the preservation of
sharing as stipulated by (a).
In order to reflect on the merit of the partial order ≤S

⊥ as a suitable basis for a notion of
convergence on term graphs, recall the characteristics of the partial order-based notion
of convergence for terms: weak p-convergence on terms is based on the ability of the
partial order ≤⊥ to capture information preservation between terms – s ≤⊥ t means
that t contains at least the same information as s does. The limit inferior – and thus
weak p-convergence – comprises the accumulated information that eventually remains
stable along a sequence. Following the approach on terms, a partial order suitable as a

Patrick Bahr 20

basis for convergence for term graph rewriting, has to capture an appropriate notion of
information preservation as well.
One has to keep in mind, however, that term graphs encode an additional dimension

of information through sharing of nodes, i.e. nodes with multiple positions. Since ≤S
⊥

specialises to ≤⊥ on terms, it does preserve the information on the tree structure in the
same way as ≤⊥ does. The difficult part is to determine the right approach to the role
of sharing.
Indeed, ⊥-homomorphisms instantiate occurrences of ⊥ and are thereby able to intro-

duce new information. But they also introduce sharing by mapping different nodes to
the same target node: for the term graphs g0 and g1 in Figure 3, we have an obvious ⊥-
homomorphism – in fact a homomorphism – φ : g0 →⊥ g1 and thus g0 ≤S

⊥ g1. However,
this homomorphism φ maps both c-nodes in g0 to the single c-node in g1.

There are at least two different ways to interpret the differences in g0 and g1. The
first one dismisses ≤S

⊥ as a partial order suitable for our purposes: the term graphs g0
and g1 contain contradicting information. While in g0 the two children of the f -node
are distinct, they are identical in g1. We adopted this view in our previous work on
convergence for term graphs (Bahr, 2012b), where we studied a more rigid partial order
≤R
⊥ for which g0 and g1 are indeed incomparable (cf. Definition 4.2 below). The second

view, which we will adopt in this paper, does not see g0 and g1 in contradiction. Both
show the f -nodes with two successors, both of which are labelled with c. The term graph
g1 merely contains the additional piece of information that the two successor nodes of
the f -node are identical. Hence, g0 ≤S

⊥ g1.
The rest of this section is concerned with showing that the partial order ≤S

⊥ has indeed
the properties that make it a suitable basis for weak p-convergence, i.e. that it forms a
complete semilattice. At first we show its cpo structure:

Theorem 4.1. The partially ordered set (G∞C (Σ⊥),≤S
⊥) is a cpo. In particular, it has the

least element ⊥, and the least upper bound of a directed set G is given by the following
labelled quotient tree (P, l,∼):

P =
⋃
g∈G
P(g) ∼ =

⋃
g∈G
∼g l(π) =

{
f if f ∈ Σ and ∃g ∈ G. g(π) = f

⊥ otherwise

Proof. The least element of ≤S
⊥ is obviously ⊥. Hence, it remains to be shown that each

directed subset G of G∞C (Σ⊥) has a least upper bound g given by the labelled quotient
tree (P, l,∼) defined above. To this end, we will make extensive use of Corollary 4.1 using
(a) and (b) to refer to its corresponding conditions.
At first we need to show that l is indeed well-defined. For this purpose, let g1, g2 ∈ G

and π ∈ P(g1) ∩ P(g2) with g1(π), g2(π) ∈ Σ. Since G is directed, there is some g ∈ G
such that g1, g2 ≤S

⊥ g. By (b), we can conclude g1(π) = g(π) = g2(π).
Next we show that (P, l,∼) is indeed a labelled quotient tree. Recall that ∼ needs to

be an equivalence relation. For the reflexivity, assume that π ∈ P . Then there is some
g ∈ G with π ∈ P(g). Since ∼g is an equivalence relation, π ∼g π must hold and,
therefore, π ∼ π. For the symmetry, assume that π1 ∼ π2. Then there is some g ∈ G
such that π1 ∼g π2. Hence, we get π2 ∼g π1 and, consequently, π2 ∼ π1. In order to show

Convergence in Infinitary Term Graph Rewriting Systems is Simple 21

transitivity, assume that π1 ∼ π2, π2 ∼ π3. That is, there are g1, g2 ∈ G with π1 ∼g1 π2
and π2 ∼g2 π3. Since G is directed, we find some g ∈ G such that g1, g2 ≤S

⊥ g. By (a),
this implies that also π1 ∼g π2 and π2 ∼g π3. Hence, π1 ∼g π3 and, therefore, π1 ∼ π3.
For the reachability condition, let π·〈i〉 ∈ P . That is, there is a g ∈ G with π·〈i〉 ∈ P(g).

Hence, π ∈ P(g), which in turn implies π ∈ P . Moreover, π · 〈i〉 ∈ P(g) implies that
i < ar(g(π)). Since g(π) cannot be a nullary symbol and in particular not ⊥, we obtain
that l(π) = g(π). Hence, i < ar(l(π)).
For the congruence condition, assume that π1 ∼ π2 and that l(π1) = f . If f ∈ Σ,

then there are g1, g2 ∈ G with π1 ∼g1 π2 and g2(π1) = f . Since G is directed, there is
some g ∈ G such that g1, g2 ≤S

⊥ g. Hence, by (a) respectively (b), we have π1 ∼g π2
and g(π1) = f . Using Lemma 3.5 we can conclude that g(π2) = g(π1) = f and that
π1 · 〈i〉 ∼g π2 · 〈i〉 for all i < ar(g(π1)). Because g ∈ G, it holds that l(π2) = f and that
π1 · 〈i〉 ∼ π2 · 〈i〉 for all i < ar(l(π1)). If f = ⊥, then also l(π2) = ⊥, for if l(π2) = f ′ for
some f ′ ∈ Σ, then, by the symmetry of ∼ and the above argument (for the case f ∈ Σ),
we would obtain f = f ′ and, therefore, a contradiction. Since ⊥ is a nullary symbol, the
remainder of the condition is vacuously satisfied.
This shows that (P, l,∼) is a labelled quotient tree which, by Lemma 3.5, uniquely

defines a canonical term graph. In order to show that the thus obtained term graph g is
an upper bound for G, we have to show that g ≤S

⊥ g for all g ∈ G by establishing (a)
and (b). This is an immediate consequence of the construction of g.
In the final part of this proof, we will show that g is the least upper bound of G. For

this purpose, let ĝ be an upper bound of G, i.e. g ≤S
⊥ ĝ for all g ∈ G. We will show that

g ≤S
⊥ ĝ by establishing (a) and (b). For (a), assume that π1 ∼ π2. Hence, there is some

g ∈ G with π1 ∼g π2. Since, by assumption, g ≤S
⊥ ĝ, we can conclude π1 ∼ĝ π2 using

(a). For (b), assume π ∈ P and l(π) = f ∈ Σ. Then there is some g ∈ G with g(π) = f .
Applying (b) then yields ĝ(π) = f since g ≤S

⊥ ĝ.

The following proposition shows that the partial order ≤S
⊥ also admits glbs of arbitrary

non-empty sets:

Proposition 4.2. In the partially ordered set (G∞C (Σ⊥),≤S
⊥) every non-empty set has a

glb. In particular, the glb of a non-empty set G is given by the following labelled quotient
tree (P, l,∼):

P =

π ∈ ⋂
g∈G
P(g)

∣∣∣∣∣∣∀π′ < π∃f ∈ Σ⊥∀g ∈ G : g(π′) = f


l(π) =

{
f if ∀g ∈ G : f = g(π)
⊥ otherwise

∼ =
⋂
g∈G
∼g ∩ P × P

Proof. At first we need to prove that (P, l,∼) is in fact a well-defined labelled quotient
tree. That ∼ is an equivalence relation follows straightforwardly from the fact that each
∼g is an equivalence relation.

Next, we show the reachability and congruence properties from Definition 3.8. In order
to show the reachability property, assume some π · 〈i〉 ∈ P . Then, for each π′ ≤ π there

Patrick Bahr 22

is some fπ′ ∈ Σ⊥ such that g(π′) = fπ′ for all g ∈ G. Hence, π ∈ P . Moreover, we have
in particular that i < ar(fπ) = ar(l(π)).
For the congruence condition, assume that π1 ∼ π2. Hence, π1 ∼g π2 for all g ∈ G.

Consequently, we have for each g ∈ G that g(π1) = g(π2) and that π1 · 〈i〉 ∼g π2 · 〈i〉 for
all i < ar(g(π1)). We distinguish two cases: at first assume that there are some g1, g2 ∈ G
with g1(π1) 6= g2(π1). Hence, l(π2) = ⊥. Since we also have that g1(π2) = g1(π1) 6=
g2(π1) = g2(π2), we can conclude that l(π2) = ⊥ = l(π1). Since ar(⊥) = 0, we are done
for this case. Next, consider the alternative case that there is some f ∈ Σ⊥ such that
g(π1) = f for all g ∈ G. Consequently, l(π1) = f and since also g(π2) = g(π1) = f for
all g ∈ G, we can conclude that l(π2) = f = l(π1). Moreover, we obtain from the initial
assumption for this case, that π1 · 〈i〉, π2 · 〈i〉 ∈ P for all i < ar(f) which implies that
π1 · 〈i〉 ∼ π2 · 〈i〉 for all i < ar(f) = ar(l(π1)).
Next, we show that the term graph g defined by (P, l,∼) is a lower bound of G, i.e.

that g ≤S
⊥ g for all g ∈ G. By Corollary 4.1, it suffices to show ∼ ∩ P × P ⊆ ∼g and

l(π) = g(π) for all π ∈ P with l(π) ∈ Σ. Both conditions follow immediately from the
construction of g.

Finally, we show that g is the greatest lower bound of G. To this end, let ĝ ∈ G∞C (Σ⊥)
with ĝ ≤S

⊥ g for each g ∈ G. We will show that then ĝ ≤S
⊥ g using Corollary 4.1. At

first we show that P(ĝ) ⊆ P . Let π ∈ P(ĝ). We know that ĝ(π′) ∈ Σ for all π′ < π.
According to Corollary 4.1, using the assumption that ĝ ≤S

⊥ g for all g ∈ G, we obtain
that g(π′) = ĝ(π′) for all π′ < π. Consequently, π ∈ P . Next, we show part (a) of
Corollary 4.1. Let π1, π2 ∈ P(ĝ) ⊆ P with π1 ∼ĝ π2. Hence, using the assumption
that ĝ is a lower bound of G, we have π1 ∼g π2 for all g ∈ G according to Corollary 4.1.
Consequently, π1 ∼ π2. For part (b) of Corollary 4.1 let π ∈ P(ĝ) ⊆ P with ĝ(π) = f ∈ Σ.
Using Corollary 4.1, we obtain that g(π) = f for all g ∈ G. Hence, l(π) = f .

From this we can immediately derive the complete semilattice structure of ≤S
⊥:

Theorem 4.2. The partially ordered set (G∞C (Σ⊥),≤S
⊥) forms a complete semilattice.

Proof. Follows from Theorem 4.1 and Proposition 4.2.

In particular, this means that the limit inferior is defined for every sequence of term
graphs. Moreover, from the constructions given in Theorem 4.1 and Proposition 4.2, we
can derive the following direct construction of the limit inferior:

Corollary 4.2. The limit inferior of a sequence (gι)ι<α in (G∞C (Σ⊥),≤S
⊥) is given by the

following labelled quotient tree (P,∼, l):

P =
⋃
β<α

{π ∈ P(gβ) | ∀π′ < π∀β ≤ ι < α : gι(π′) = gβ(π′)}

∼ =

⋃
β<α

⋂
β≤ι<α

∼gι

 ∩ P × P
l(π) =

{
gβ(π) if ∃β < α∀β ≤ ι < α : gι(π) = gβ(π)
⊥ otherwise

for all π ∈ P

Convergence in Infinitary Term Graph Rewriting Systems is Simple 23

f

c c

f

c

f

c c

f

c

f

c c

(g0) (g1) (g2) (g4) (gω)

Figure 3: Limit inferior in the presence of acyclic sharing.

In particular, given β < α and π ∈ P(gβ), we have that g(π) = gβ(π) if gι(π′) = gβ(π′)
for all π′ ≤ π and β ≤ ι < α.

Example 4.1. Figure 6c and 6d on page 39 illustrate two sequences of term graphs
(gι)ι<ω and (hι)ι<ω together with their limit inferiors gω respectively hω. To see how
these limits come about, consider first the sequence of glbs (

d
α≤ι<ω gι)α<ω of (gι)ι<ω:

::

⊥ ::

⊥ ⊥

::

⊥ ::

⊥ ::

⊥

::

⊥ ::

⊥ ::

::

⊥

. . .

The lub of this sequence of term graphs is the term graph gω. The corresponding sequence
(
d
α≤ι<ω hι)α<ω of glbs for (hι)ι<ω looks as follows:

::

⊥ ::

⊥ ⊥

::

b ::

⊥ ::

⊥ ⊥

::

b ::

::

⊥ ::

⊥ ⊥

. . .

With each step the number of edges into the b-node increases by one and the ⊥-nodes
move further down the graph structure. The lub of this sequence is the term graph hω.
Changing acyclic sharing may, however, expose an oddity of the partial order ≤S

⊥. Let
(gι)ι<ω be the sequence of term graphs illustrated in Figure 3. The sequence alternates
between g0 and g1 which differ only in the sharing of the two arguments of the f function
symbol. Hence, there is an obvious homomorphism from g0 to g1 and we thus have
g0 ≤S

⊥ g1. Therefore, g0 is the greatest lower bound of every suffix of (gι)ι<ω, which
means that lim infι→ω gι = g0.

In our previous work (Bahr, 2012b), we have used a partial order ≤R
⊥ that is more rigid

than ≤S
⊥. In the context of this partial order ≤R

⊥, limit inferior of the sequence illustrated
in Figure 3 changes to the term tree f(⊥,⊥) instead of f(c, c).

Patrick Bahr 24

Definition 4.2 (rigid ⊥-homomorphisms, rigid partial order ≤R
⊥).

(i) A ⊥-homomorphism φ : g →⊥ h between two term graphs g, h ∈ G∞(Σ⊥) is called
rigid if, for all n ∈ Ng with labg(n) ∈ Σ, we have that Pag (n) = Pah(φ(n)), i.e. n and
φ(n) have the same acyclic positions.

(ii) For every g, h ∈ G∞(Σ⊥), define g ≤R
⊥ h iff there is a rigid ⊥-homomorphism

φ : g →⊥ h.

The difference in the convergence behaviour of ≤S
⊥ and ≤R

⊥ stems from their difference
in dealing with sharing, which we have discussed in the beginning of this section: the
partial order ≤S

⊥ sees the term graph g1 as the term graph g0 with the additional infor-
mation that the two arguments of f coincide. Since this additional piece of information
is not stable throughout the sequence (gi)i<ω, the limit inferior is only the term graph
g0.
The partial order ≤R

⊥, on the other hand, sees the two term graphs g0 and g1 in conflict
due to the difference in the arguments of f ; it is a difference in acyclic sharing. Thus,
the sequence (gi)i<ω is only stable in the root nodes of the term graphs and the limit
inferior is consequently the term tree f(⊥,⊥).
In our previous work (Bahr, 2012b), we chose the rigid partial order as there is a metric

space that is “compatible” with it. However, this property of the partial order ≤R
⊥ comes

at a price: ≤R
⊥ is quite restrictive in its ability to represent acyclic sharing. For example,

the sequence (hι)ι<ω of term graphs depicted in Figure 6d does not have the anticipated
limit inferior hω but instead the term graph obtained from hω by relabelling the b-node
with ⊥.
For the partial order ≤S

⊥, we will not be able to find a metric space that is “compatible”
with it in the same way and as a consequence we will not obtain the same correspondence
that Theorem 2.1 exposed for infinitary term rewriting. In the following section, we will,
however, devise a simple metric space that comes close enough to being “compatible”
with ≤S

⊥ such that it is possible to regain the correspondence between p-convergence and
m-convergence in the setting of strong convergence (cf. Section 9).

5. A Simple Metric on Term Graphs

In this section, we pursue the metric approach to convergence in rewriting systems. To
this end, we shall define a metric space on canonical term graphs. We base our approach
to defining a metric distance on the definition of the metric distance d on terms.

Originally, Arnold & Nivat (1980) used a notion of truncation of terms to define the
metric on terms. The truncation of a term t at depth d, denoted t|d, replaces all subterms
at depth d by ⊥:

t|0 = ⊥, f(t1, . . . , tk)|d+ 1 = f(t1|d, . . . , tk|d), t|ω = t

For technical reasons, we also define the truncation at depth ω, which does not affect the
term at all.
Recall that the metric distance d on terms is defined by d(s, t) = 2−sim(s,t). The

underlying notion of similarity sim : T ∞(Σ)× T ∞(Σ)→ ω + 1 can be characterised via

Convergence in Infinitary Term Graph Rewriting Systems is Simple 25

truncations:

sim(s, t) = max {d ≤ ω | s|d = t|d}

We will adopt this approach for term graphs as well. To this end, we will first define
abstractly what a truncation on term graphs is and how a metric distance can be derived
from it. Then we devise a concrete truncation and show that the induced metric space
is in fact complete. We will conclude the section by showing that the metric space we
considered is robust in the sense that it is invariant under small changes to the definition
of truncation. Lastly, we contrast this finding with the properties of the complete met-
ric that we have previously studied as a candidate for describing convergence on term
graphs (Bahr, 2012b).

5.1. Truncation Functions

As we have seen above, the truncation on terms is a function that, depending on a depth
value d, transforms a term t to a term t|d. We shall generalise this to term graphs and
stipulate some axioms that ensure that we can derive a metric distance in the style of
Arnold & Nivat (1980):

Definition 5.1 (truncation function). A family τ = (τd : G∞(Σ⊥) → G∞(Σ⊥))d≤ω
of functions on term graphs is called a truncation function if it satisfies the following
properties for all g, h ∈ G∞(Σ⊥) and d ≤ ω:

(a) τ0(g) ∼= ⊥, (b) τω(g) ∼= g, and (c) τd(g) ∼= τd(h) =⇒ τe(g) ∼= τe(h) for all e < d.

Note that from axioms (b) and (c) it follows that truncation functions must be defined
modulo isomorphism, i.e. g ∼= h implies τd(g) ∼= τd(h) for all d ≤ ω.
Given a truncation function, we can define a distance measure in the style of Arnold

and Nivat:

Definition 5.2 (truncation-based similarity/distance). Let τ be a truncation func-
tion. The τ -similarity is the function simτ : G∞(Σ⊥)× G∞(Σ⊥)→ ω + 1 defined by

simτ (g, h) = max {d ≤ ω | τd(g) ∼= τd(h)}

The τ -distance is the function dτ : G∞(Σ⊥) × G∞(Σ⊥) → R+
0 defined by dτ (g, h) =

2−simτ (g,h), where 2−ω is interpreted as 0.

Observe, that the similarity simτ (g, h) induced by a truncation function τ is well-
defined since the axiom (a) of Definition 5.1 insures that the set {d ≤ ω | τd(g) ∼= τd(h)}
is not empty. The following proposition confirms that the τ -distance restricted to G∞C (Σ)
is indeed an ultrametric:

Proposition 5.1 (truncation-based ultrametric). For each truncation function τ ,
the τ -distance dτ constitutes an ultrametric on G∞C (Σ).

Patrick Bahr 26

Proof. The identity respectively the symmetry condition follow by

dτ (g, h) = 0 ⇐⇒ simτ (g, h) = ω ⇐⇒ τω(g) ∼= τω(h) (∗)⇐⇒ g ∼= h
Prop. 3.2⇐⇒ g = h, and

dτ (g, h) = 2−simτ (g,h) = 2−simτ (h,g) = dτ (h, g).

The equivalence (∗) is valid by axiom (b) of Definition 5.1. For the strong triangle con-
dition, we have to show that

simτ (g1, g3) ≥ min {simτ (g1, g2), simτ (g2, g3)} .

With d = min {simτ (g1, g2), simτ (g2, g3)} we have, by axiom (c) of Definition 5.1, that
τd(g1) ∼= τd(g2) and τd(g2) ∼= τd(g3). Since we have that τd(g1) ∼= τd(g3) then, we can
conclude that simτ (g1, g3) ≥ d.

Given their particular structure, we can reformulate the characterisation of Cauchy
sequences and convergence in metric spaces induced by truncation functions in terms of
the truncation function itself:

Lemma 5.1. For each truncation function τ , term graph g ∈ G∞C (Σ), and sequence
(gι)ι<α in G∞C (Σ)) the following holds:
(i) (gι)ι<α is Cauchy in (G∞C (Σ),dτ) iff for each d < ω there is some β < α such that

τd(gγ) ∼= τd(gι) for all β ≤ γ, ι < α.
(ii) (gι)ι<α converges to g in (G∞C (Σ),dτ) iff for each d < ω there is some β < α such

that τd(g) ∼= τd(gι) for all β ≤ ι < α.

Proof. We only show (i) as (ii) follows analogously. For “only if” direction assume that
(gι)ι<α is Cauchy and that d < ω. We then find some β < α such that dτ (gγ , gι) < 2−d
for all β ≤ γ, ι < α. Hence, we obtain that simτ (gγ , gι) > d for all β ≤ γ, ι < α. That
is, τe(gγ) ∼= τe(gι) for some e > d. According to axiom (c) of Definition 5.1, we can then
conclude that τd(gγ) ∼= τd(gι) for all β ≤ γ, ι < α.
For the “if” direction assume some positive real number ε ∈ R+. Then there is some

d < ω with 2−d ≤ ε. By the initial assumption we find some β < α with τd(gγ) ∼= τd(gι)
for all β ≤ γ, ι < α, i.e. simτ (gγ , gι) ≥ d. Hence, we have that dτ (gγ , gι) = 2−simτ (gγ ,gι) <

2−d ≤ ε for all β ≤ γ, ι < α.

5.2. The Simple Truncation and its Metric Space

In this section, we consider a straightforward truncation function that simply cuts off all
nodes at the given depth d. The metric that we obtain from this truncation will be the
companion metric for the simple partial order ≤S

⊥.

Definition 5.3 (simple truncation). Let g ∈ G∞(Σ⊥) and d ≤ ω. The simple trun-
cation g†d of g at d is the term graph defined as follows:

Ng†d =
{
n ∈ Ng

∣∣ depthg(n) ≤ d
}

rg†d = rg

labg†d(n) =
{

labg(n) if depthg(n) < d

⊥ if depthg(n) = d
sucg†d(n) =

{
sucg(n) if depthg(n) < d

〈〉 if depthg(n) = d

Convergence in Infinitary Term Graph Rewriting Systems is Simple 27

f

h

f

f

a

a

f

h

⊥

f

⊥

f

h

f

f

⊥ ⊥

⊥

(g) (g†2) (g‡2)

Figure 4: Comparison of simple and rigid truncation.

One can easily see that the truncated term graph g†d is obtained from g by relabelling
all nodes at depth d to ⊥, removing all their outgoing edges and then removing all
nodes that thus become unreachable from the root. This makes the simple truncation a
straightforward generalisation of the truncation on terms.
Figure 4 shows a term graph g and its simple truncation at depth d = 2. The shaded

part of the term graph g comprises the nodes at depth < d. Note that a node can get
truncated even though some its successor are retained.
The simple truncation indeed induces a truncation function:

Proposition 5.2. Let † be the function with †d(g) = g†d for all d ≤ ω. Then † is a
truncation function.

Proof. (a) and (b) of Definition 5.1 follow immediately from the construction of the
truncation. For (c) assume that g†d ∼= h†d. Let 0 ≤ e < d and let φ : g†d → h†d be
the witnessing isomorphism. Note that simple truncations preserve the depth of nodes,
i.e. depthg†d(n) = depthg(n) for all n ∈ Ng†d. This can be shown by a straightforward
induction on depthg(n). Moreover, by Lemma 3.2 also isomorphisms preserve the depth
of nodes. Hence,

depthh(φ(n)) = depthh†d(φ(n)) = depthg†d(n) = depthg(n) for all n ∈ Ng†d

Restricting φ to the nodes in g†e thus yields an isomorphism from g†e to h†e.

Next we show that the metric space (G∞C (Σ),d†) that is induced by the truncation
function † is in fact complete. To do this, we give a characterisation of the simple trun-
cation in terms of labelled quotient trees.

Lemma 5.2 (labelled quotient tree of a simple truncation). Let g ∈ G∞(Σ⊥)
and d ≤ ω. The simple truncation g†d is uniquely determined up to isomorphism by the
labelled quotient tree (P, l,∼) with
(a) P = {π ∈ P(g) | ∀π1 < π∃π2 ∼g π1 with |π2| < d},

Patrick Bahr 28

(b) l(π) =
{
g(π) if ∃π′ ∼g π with |π′| < d

⊥ otherwise
(c) ∼ = ∼g ∩ P × P

Proof. We just have to show that (P, l,∼) is the labelled quotient tree induced by
g†d. Then the lemma follows from Lemma 3.5. The case d = ω is trivial. In the following
we assume that d < ω.
At first, note that

for each π ∈ P(g†d) we have that π ∈ P(g) and nodeg†d(π) = nodeg(π). (∗)

This can be shown by an induction on the length of π: the case π = 〈〉 is trivial. If
π = π′ · 〈i〉, let n = nodeg†d(π′) and m = nodeg†d(π). Hence, m = sucg†di (n) and, by
construction of g†d, also m = sucgi (n). Since by induction hypothesis n = nodeg(π′), we
can thus conclude that π ∈ P(g) and that nodeg(π) = m = nodeg†d(π).

(a) P = P(g†d). For the “⊆” direction let π ∈ P . We show by induction on the
length of π that π ∈ P(g†d). The case π = 〈〉 is trivial. If π = π1 · 〈i〉, then by induction
hypothesis π1 ∈ P(g†d). Let n = nodeg†d(π1). By (∗), we know that n = nodeg(π1). Since
π1 · 〈i〉 ∈ P , there is some π2 ∼g π1 with |π2| < d. That is, depthg(n) < d. Therefore, we
have that sucg†d(n) = sucg(n). Since π1 ∈ Pg†d(n), this means that π1 · 〈i〉 ∈ P(g†d).
For the “⊇” direction, assume some π ∈ P(g†d). By (∗), π is also a position in g.

To show that π ∈ P , let π1 < π. Since only nodes of depth smaller than d can have a
successor node in g†d, the node nodeg†d(π1) in g†d is at depth smaller than d. Hence,
there is some π2 ∼g†d π1 with |π2| < d. Because π2 ∼g†d π implies, by (∗), that π2 ∼g π,
we can conclude that π ∈ P .

(b) l(π) = g†d(π) for all π ∈ P . Let π ∈ P and n = nodeg(π). We distinguish two
cases. At first suppose that there is some π′ ∼g π with |π′| < d. Then l(π) = g(π).
Since n = nodeg(π′), we have that depthg(n) < d. Consequently, labg†d(n) = labg(n)
and, therefore, g†d(π) = g(π) = l(π). In the other case that there is no π′ ∼g π with
|π| < d, we have l(π) = ⊥. This also means that depthg(n) = d. Consequently, g†d(π) =
labg†d(n) = ⊥ = l(π).

(c) ∼ = ∼g†d. Using the fact that P = P(g†d), we can conclude for all π1, π2 ∈ P that

π1 ∼g†d π2 ⇐⇒ nodeg†d(π1) = nodeg†d(π2)
(∗)⇐⇒ nodeg(π1) = nodeg(π2)
⇐⇒ π1 ∼g π2

⇐⇒ π1 ∼ π2

Notice that a position π is retained by a truncation, i.e. π ∈ P , iff each node that π
passes through is at a depth smaller than d (and is thus not truncated or relabelled).
From this characterisation we immediately obtain the following relation between a

term graph and its simple truncations:

Corollary 5.1. Given g ∈ G∞(Σ⊥) and d ≤ ω, we have the following:

Convergence in Infinitary Term Graph Rewriting Systems is Simple 29

(i) π ∈ P(g) iff π ∈ P(g†d) for all π with |π| ≤ d.
(ii) g†d(π) = g(π) for all π ∈ P(g) with |π| < d.
(iii) π1 ∼g π2 iff π1 ∼g†d π2 for all π1, π2 ∈ P(g) with |π1| , |π2| ≤ d.

Proof. Using the reflexivity of ∼g, (i) follows immediately from Lemma 5.2 (a). Using
(i), we obtain (ii) and (iii) immediately from Lemma 5.2 (b) and (c), respectively.

As expected, we also obtain the following relation between the simple truncation and
the simple partial order:

Corollary 5.2. For each g ∈ G∞(Σ⊥) and d ≤ ω, we have that g†d ≤S
⊥ g.

Proof. Immediate from the characterisation of the simple truncation and the simple
partial order in Lemma 5.2 and Corollary 4.1, respectively.

We can now show that the metric space induced by the simple truncation is complete:

Theorem 5.1. The metric space (G∞C (Σ),d†) is complete. In particular, each Cauchy
sequence (gι)ι<α in (G∞C (Σ),d†) converges to the canonical term graph given by the
following labelled quotient tree (P, l,∼):

P = lim inf
ι→α

P(gι) =
⋃
β<α

⋂
β≤ι<α

P(gι) ∼ = lim inf
ι→α

∼gι =
⋃
β<α

⋂
β≤ι<α

∼gι

l(π) = gβ(π) for some β < α with gι(π) = gβ(π) for each β ≤ ι < α for all π ∈ P

Proof. We need to check that (P, l,∼) is a well-defined labelled quotient tree. At first
we show that l is a well-defined function on P . In order to show that l is functional,
assume that there are β1, β2 < α such that there is a π with gι(π) = gβk(π) for all
βk ≤ ι < α, k ∈ {1, 2}. But then we have gβ1(π) = gβ(π) = gβ2(π) for β = max {β1, β2}.

To show that l is total on P , let π ∈ P and d = |π|. By Lemma 5.1, there is some
β < α such that gγ†d + 1 ∼= gι†d + 1 for all β ≤ γ, ι < α. According to Corollary 5.1,
this means that all gι for β ≤ ι < α agree on positions of length smaller than d + 1, in
particular π. Hence, gι(π) = gβ(π) for all β ≤ ι < α, and we have l(π) = gβ(π).
One can easily see that ∼ is a binary relation on P : if π1 ∼ π2, then there is some

β < α with π1 ∼gι π2 for all β ≤ ι < α. Hence, π1, π2 ∈ P(gι) for all β ≤ ι < α and thus
π1, π2 ∈ P .
Similarly, it follows that ∼ is an equivalence relation on P . To show reflexivity, assume

π ∈ P . Then there is some β < α such that π ∈ P(gι) for all β ≤ ι < α. Hence, π ∼gι π
for all β ≤ ι < α and, therefore, π ∼ π. In the same way symmetry and transitivity
follow from the symmetry and transitivity of ∼gι .
Finally, we have to show the reachability and the congruence property from Defini-

tion 3.8. To show reachability assume some π · 〈i〉 ∈ P . Then there is some β < α such
that π · 〈i〉 ∈ P(gι) for all β ≤ ι < α. Hence, since then also π ∈ P(gι) for all β ≤ ι < α,
we have π ∈ P . According to the construction of l, there is also some β ≤ γ < α with
gγ(π) = l(π). Since π · 〈i〉 ∈ P(gγ) we can conclude that i < ar(l(π)).
To establish congruence assume that π1 ∼ π2. Consequently, there is some β < α such

that π1 ∼gι π2 for all β ≤ ι < α. Therefore, we also have for each β ≤ ι < α that
π1 · 〈i〉 ∼gι π2 · 〈i〉 for all i < ar(gι(π1)) and that gι(π1) = gι(π2). According to the

Patrick Bahr 30

construction of l, there is some β ≤ γ < α such that l(π1) = gγ(π1) = gγ(π2) = l(π2).
Moreover, we can derive that π1 · 〈i〉 ∼ π2 · 〈i〉 for all i < ar(l(π1)).

This concludes the proof that (P, l,∼) is indeed a labelled quotient tree. Next, we
show that the sequence (gι)ι<α converges to the thus defined canonical term graph g. By
Lemma 5.1, this amounts to giving for each d < ω some β < α such that g†d ∼= gι†d for
all β ≤ ι < α.
To this end, let d < ω. Since (gι)ι<α is Cauchy, there is, according to Lemma 5.1, some

β < α such that

gι†d ∼= gγ†d for all β ≤ ι, γ < α. (∗)

In order to show that this implies that g†d ∼= gι†d for all β ≤ ι < α, we show that the
respective labelled quotient trees of g†d and gι†d as characterised by Lemma 5.2 coincide.
The labelled quotient tree (P1, l1,∼1) for g†d is given by

P1 = {π ∈ P | ∀π1 < π∃π2 ∼ π1 : |π2| < d}
∼1 = ∼ ∩ P1 × P1

l1(π) =
{
l(π) if ∃π′ ∼ π : |π′| < d

⊥ otherwise

The labelled quotient tree (P ι2 , lι2,∼ι2) for each gι†d is given by

P ι2 = {π ∈ P(gι) | ∀π1 < π∃π2 ∼gι π1 : |π2| < d} ∼ι2 = ∼gι ∩ P ι2 × P ι2

lι2(π) =
{
gι(π) if ∃π′ ∼gι π : |π′| < d

⊥ otherwise

Due to (∗), all (P ι2 , lι2,∼ι2) with β ≤ ι < α are pairwise equal. Therefore, we write
(P2, l2,∼2) for this common labelled quotient tree. That is, it remains to be shown that
(P1, l1,∼1) and (P2, l2,∼2) are equal.
(a) P1 = P2. For the “⊆” direction let π ∈ P1. If π = 〈〉, we immediately have that

π ∈ P2. Hence, we can assume that π is non-empty. Since π ∈ P1 implies π ∈ P , there is
some β ≤ β′ < α with π ∈ P(gι) for all β′ ≤ ι < α. Moreover this means that for each
π1 < π there is some π2 ∼ π1 with |π2| < d. That is, there is some β′ ≤ γπ1 < α such
that π2 ∼gι π1 for all γπ1 ≤ ι < α. Since there are only finitely many proper prefixes
π1 < π but at least one, we can define γ = max {γπ1 |π1 < π } such that we have for each
π1 < π some π2 ∼gγ π1 with |π2| < d. Hence, π ∈ P γ2 = P2.
To show the converse direction, assume that π ∈ P2. Then π ∈ P ι2 ⊆ P(gι) for all

β ≤ ι < α. Hence, π ∈ P . To show that π ∈ P1, assume some π1 < π. Since π ∈ P β2 ,
there is some π2 ∼gβ π1 with |π2| < d. Then π1 ∈ P2 because P2 is closed under prefixes
and π2 ∈ P2 because |π2| < d. Thus, π2 ∼2 π1 which implies π2 ∼gι π1 for all β ≤ ι < α.
Consequently, π2 ∼ π1, which means that π ∈ P1.
(c) ∼1 = ∼2. For the “⊆” direction assume π1 ∼1 π2. Hence, π1 ∼ π2 and π1, π2 ∈

P1 = P2. This means that there is some β ≤ γ < α with π1 ∼gγ π2. Consequently,
π1 ∼2 π2. For the converse direction assume that π1 ∼2 π2. Then π1, π2 ∈ P2 = P1 and
π1 ∼gι π2 for all β ≤ ι < α. Hence, π1 ∼ π2 and we can conclude that π1 ∼1 π2.
(b) l1 = l2. We show this by proving that, for all β ≤ ι < α, the condition ∃π′ ∼ π :

|π′| < d from the definition of l1 is equivalent to the condition ∃π′ ∼gι π : |π′| < d from
the definition of l2 and that l(π) = gι(π) if either condition is satisfied. The latter is

Convergence in Infinitary Term Graph Rewriting Systems is Simple 31

simple: whenever there is some π′ ∼ π with |π′| < d, then gι(π) = lι2(π) = lβ2 (π) = gβ(π)
for all β ≤ ι < α. Hence, l(π) = gβ(π) = gι(π) for all β ≤ ι < α. For the former, we first
consider the “only if” direction of the equivalence. Let π ∈ P1 and π′ ∼ π with |π′| < d.
Then also π′ ∈ P1 which means that π′ ∼1 π. Since then π′ ∼2 π, we can conclude that
π′ ∼gι π for all β ≤ ι < α. For the converse direction assume that π ∈ P2, π′ ∼gι π and
|π′| < d. Then also π′ ∈ P2 which means that π′ ∼2 π. This implies π′ ∼1 π, which in
turn implies π′ ∼ π.

Example 5.1. Reconsider the two sequences of term graphs (gι)ι<ω and (hι)ι<ω from
Figure 6c respectively 6d on page 39. The simple truncation of the term graphs gι at
depth 2 alternates between the term trees a ::⊥ ::⊥ and b ::⊥ ::⊥. More precisely, gι†2 =
a ::⊥ ::⊥ if ι is even and gι†2 = b ::⊥ ::⊥ if ι is odd. According to Lemma 5.1, this means
that (gι)ι<ω is not Cauchy in (T ∞(Σ),d†) and is consequently not convergent.
On the other hand, (hι)ι<ω does converge to the term graph hω in (T ∞(Σ),d†): for

each d ∈ N we have that hω†d + 1 ∼= hι†d + 1 for all d ≤ ι < ω. Lemma 5.1 then yields
that limι→ω hι = hω.

As we have seen in Example 4.1, the limit inferior induced by ≤S
⊥ showed some curious

behaviour for the sequence of term graphs illustrated in Figure 3. This is not the case
for the metric d†. In fact, there is no topological space in which (gι)ι<ω from Figure 3
converges to a unique limit. In particular, this means that there is no metric space in
which (gι)ι<ω converges.

5.3. Other Truncation Functions and Their Metric Spaces

Generalising concepts from terms to term graphs is not a straightforward matter as we
have to decide how to deal with additional sharing that term graphs offer. The definition
of simple truncation seems to be an obvious choice for a generalisation of tree truncation.
In this section, we shall formally argue that it is in fact the case. More specifically, we
show that no matter how we define the sharing of the ⊥-nodes that fill the holes caused
by the truncation, we obtain the same topology.
The following lemma is a handy tool for comparing metric spaces induced by truncation

functions:

Lemma 5.3. Let τ, υ be two truncation functions on G∞(Σ⊥) and f : G∞C (Σ)→ G∞C (Σ)
a function on G∞C (Σ). Then the following are equivalent

(i) f is a continuous mapping f : (G∞C (Σ),dτ)→ (G∞C (Σ),dυ)
(ii) For each g ∈ G∞C (Σ) and d < ω there is some e < ω such that

simτ (g, h) ≥ e =⇒ simυ(f(g), f(h)) ≥ d for all h ∈ G∞C (Σ)

(iii) For each g ∈ G∞C (Σ) and d < ω there is some e < ω such that

τe(g) ∼= τe(h) =⇒ υd(f(g)) ∼= υd(f(h)) for all h ∈ G∞C (Σ)

Proof. Analogous to Lemma 5.1.

Patrick Bahr 32

An easy consequence of the above lemma is that if two truncation functions only differ
by a constant depth, they induce the same topology:

Proposition 5.3. Let τ, υ be two truncation functions on G∞(Σ⊥) such that there is
a δ < ω with |simτ (g, h)− simυ(g, h)| ≤ δ for all g, h ∈ G∞C (Σ). Then (G∞C (Σ),dτ) and
(G∞C (Σ),dυ) are topologically equivalent, i.e. they induce the same topology.

Proof. We show that the identity function id : G∞C (Σ)→ G∞C (Σ) is a homeomorphism
from (G∞C (Σ),dτ) to (G∞C (Σ),dυ), i.e. both id and id−1 are continuous. Due to the sym-
metry of the setting it suffices to show that id is continuous. To this end, let g ∈ G∞C (Σ)
and d < ω. Define e = d + δ and assume some h ∈ G∞C (Σ) such that simτ (g, h) ≥ e.
By Lemma 5.3, it remains to be shown that then simυ(g, h) ≥ d. Indeed, we have
simυ(g, h) ≥ simτ (g, h)− δ ≥ e− δ = d.

This shows that metric spaces induced by truncation functions are essentially invariant
under changes in the truncation function bounded by a constant margin.

Remark 5.1. We should point out that the original definition of the metric on terms by
Arnold & Nivat (1980) was slightly different from the one we showed here. Recall that
we defined similarity as the maximum depth of truncation that ensures equality:

simτ (g, h) = max {d ≤ ω | τd(g) ∼= τd(h)}

Arnold and Nivat, on the other hand, defined it as the minimum truncation depth that
still shows inequality:

sim′τ (g, h) = min {d ≤ ω | τd(g) 6∼= τd(h)}

However, it is easy to see that either both simτ (g, h) and sim′τ (g, h) are ω or sim′τ (g, h) =
simτ (g, h) + 1. Hence, by Proposition 5.3, both definitions yield the same topology.

Proposition 5.3 also shows that two truncation functions induce the same topology if
they only differ in way they treat “fringe nodes”, i.e. nodes that are introduced in place
of the nodes that have been cut off. Since the definition of truncation functions requires
that τ0(g) ∼= ⊥ and τω(g) ∼= g, we do not give the explicit construction of the truncation
for the depths 0 and ω in the examples below.
The truncation of term graphs in general – as opposed to the truncation of term trees

– has some peculiar effects: nodes in a term graph may not be cut off by a truncation
even though some nodes on a path to them are cut off; thus the sharing of nodes that
are retained in a truncation may be altered.

Definition 5.4 (acyclic predecessors). Given g ∈ G∞(Σ⊥) and n,m ∈ Ng, we say
that m is an acyclic predecessor of n in g if there is an acyclic position π · 〈i〉 ∈ Pag (n)
with π ∈ Pg(m). The set of acyclic predecessors of n in g is denoted Preag(n).

The distinction between acyclic and cyclic predecessors will play a prominent role in
the truncation functions that we shall discuss below.

Example 5.2. Consider the following variant τ of the simple truncation function †. Let
g ∈ G∞(Σ⊥) be a term graph. For each n ∈ Ng and i ∈ N, we use ni to denote a fresh

Convergence in Infinitary Term Graph Rewriting Systems is Simple 33

node, i.e.
{
ni
∣∣n ∈ Ng, i ∈ N

}
is a set of pairwise distinct nodes not occurring in Ng.

Given a depth 0 < d < ω, we define the truncation τd(g) as follows:

Nτd(g) = Ng
<d]N

g
=d

Ng
<d =

{
n ∈ Ng

∣∣ depthg(n) < d
}

Ng
=d =

{
ni
∣∣n ∈ Ng

<d, 0 ≤ i < arg(n), sucgi (n) 6∈ Ng
<d

}
labτd(g)(n) =

{
labg(n) if n ∈ Ng

<d

⊥ if n ∈ Ng
=d

sucτd(g)
i (n) =

{
sucgi (n) if ni 6∈ Ng

=d

ni if ni ∈ Ng
=d

One can easily show that τ is in fact a truncation function. The difference between †
and τ is that in the latter we create a fresh node ni whenever a node n has a successor
sucgi (n) that lies at the fringe, i.e. at depth d. Since this only affects the nodes at the
fringe and, therefore, only nodes at the same depth d we get the following:

g†d ∼= h†d =⇒ τd(g) ∼= τd(h), and
τd(g) ∼= τd(h) =⇒ g†d− 1 ∼= h†d− 1.

Hence, the respectively induced similarities only differ by a constant margin of 1, i.e.
we have that |sim†(g, h)− simτ (g, h)| = 1. According to Proposition 5.3, this means that
(G∞C (Σ),d†) and (G∞C (Σ),dτ) are topologically equivalent.
Consider another variant υ of the simple truncation function †. Given a term graph

g ∈ G∞(Σ⊥) and depth 0 < d < ω, we define the truncation υd(g) as follows:

Nυd(g) = Ng
<d]N

g
=d

Ng
<d =

{
n ∈ Ng

∣∣ depthg(n) < d
}

Ng
=d =

{
ni

∣∣∣∣∣n ∈ Ng, depthg(n) = d− 1, 0 ≤ i < arg(n) with sucgi (n) 6∈ Ng
<d

or n 6∈ Preag(sucgi (n))

}

labυd(g)(n) =
{

labg(n) if n ∈ Ng
<d

⊥ if n ∈ Ng
=d

sucυd(g)(n) =
{

sucgi (n) if ni 6∈ Ng
=d

ni if ni ∈ Ng
=d

Also υ forms a truncation function as one can easily show. In addition to creating fresh
nodes ni for each successor that is not in the retained nodes Ng

<d, the truncation function
υ creates such new nodes ni for each cycle that is created by a node just above the fringe.
Again, as for the truncation function τ , only the nodes at the fringe, i.e. at depth d are
affected by this change. Hence, the respectively induced similarities of † and υ only differ
by a constant margin of 1, which makes the metric spaces (G∞C (Σ),d†) and (G∞C (Σ),dυ)
topologically equivalent as well.

The robustness of the metric space (G∞C (Σ),d†) under the changes illustrated above is
due to the uniformity of the core definition of the simple truncation which only takes
into account the depth. By simply increasing the depth by a constant number, we can
compensate for changes in the way fringe nodes are dealt with.
This is much different for the rigid truncation function g‡d that we have used in our

previous work (Bahr, 2012b) in order to derive a complete metric on term graph:

Patrick Bahr 34

Definition 5.5 (rigid truncation of term graphs). Let g ∈ G∞(Σ⊥) and d ∈ N.
(i) The set of retained nodes of g at d, denoted Ng

<d, is the least subset M of Ng

satisfying the following conditions for all n ∈ Ng:
(T1) depthg(n) < d =⇒ n ∈M (T2) n ∈M =⇒ Preag(n) ⊆M

(ii) For each n ∈ Ng and i ∈ N, we use ni to denote a fresh node, i.e.
{
ni
∣∣n ∈ Ng, i ∈ N

}
is a set of pairwise distinct nodes not occurring in Ng. The set of fringe nodes of
g at d, denoted Ng

=d, is defined as the singleton set {rg} if d = 0, and otherwise as
the set{

ni

∣∣∣∣∣n ∈ N
g
<d, 0 ≤ i < arg(n) with sucgi (n) 6∈ Ng

<d

or depthg(n) ≥ d− 1, n 6∈ Preag(sucgi (n))

}
(iii) The rigid truncation of g at d, denoted g‡d, is the term graph defined by

Ng‡d = Ng
<d]N

g
=d rg‡d = rg

labg‡d(n) =
{

labg(n) if n ∈ Ng
<d

⊥ if n ∈ Ng
=d

sucg‡di (n) =
{

sucgi (n) if ni 6∈ Ng
=d

ni if ni ∈ Ng
=d

Additionally, we define g‡ω to be the term graph g itself.

The idea of this definition of truncation is that not only each node at depth < d is kept
– via the closure condition (T1) – but also every acyclic predecessor of such a node – via
(T2). In sum, every node on an acyclic path from the root to a node at depth smaller
than d is kept. The difference between the two truncation functions † and ‡ are illustrated
in Figure 4.
In contrast to the simple truncation †, the rigid truncation function ‡ is quite vulnerable

to small changes:

Example 5.3. Consider the following variant τ of the rigid truncation function ‡. Given
a term graph g ∈ G∞(Σ⊥) and depth d ∈ N+, we define the truncation τd(g) as follows:
the set of retained nodes Ng

<d is defined as for the truncation g‡d. For the rest we define

Ng
=d =

{
sucgi (n)

∣∣n ∈ Ng
<d, 0 ≤ i < arg(n), sucgi (n) 6∈ Ng

<d

}
Nτd(g) = Ng

<d]N
g
=d

labτd(g)(n) =
{

labg(n) if n ∈ Ng
<d

⊥ if n ∈ Ng
=d

sucτd(g)(n) =
{

sucg(n) if n ∈ Ng
<d

〈〉 if n ∈ Ng
=d

In this variant of truncation, some sharing of the retained nodes is preserved. Instead
of creating fresh nodes for each successor node that is not in the set of retained nodes,
we simply keep the successor node. Additionally loops back into the retained nodes are
not cut off. This variant of the truncation deals with its retained nodes in essentially
the same way as the simple truncation. However, opposed the simple truncation and
their variants, this truncation function yields a topology different from the metric space
(G∞C (Σ),d‡)! To see this, consider the two families of term graphs gn and hn illustrated
in Figure 5. For both families we have that the τ -truncations at depth 2 to n+ 2 are the
same, i.e. τd(gn) = τ2(gn) and τd(hn) = τ2(hn) for all 2 ≤ d ≤ n + 2. The same holds

Convergence in Infinitary Term Graph Rewriting Systems is Simple 35

f

g

...

g

h

a

a

a

n
tim

es
f

g

...

g

h

a

⊥

⊥

n
tim

es

f

g

...

g

h

a

a

n
tim

es

f

g

...

g

h

a

⊥

n
tim

es

(gn) (τ2(gn) = τn+2(gn)) (hn) (τ2(hn) = τn+2(hn))

Figure 5: Variations in fringe nodes.

for the truncation function ‡. Moreover, since the two leftmost successors of the h-node
are not shared in gn, both truncation functions coincide on gn, i.e. gn‡d = τd(gn). This
is not the case for hn. In fact, they only coincide up to depth 1. In total, we can observe
that sim‡(gn, hn) = n+ 2 but simτ (gn, hn) = 1. This means, however, that the sequence
〈g0, h0, g1, h1, . . .〉 converges in (G∞C (Σ),d‡) but not in (G∞C (Σ),dτ)!
A similar example can be constructed that uses the difference in the way the two

truncation functions deal with fringe nodes created by cycles back into the set of retained
nodes.

The above discussion should give a first indication why the simple metric d† should be
preferred over the rigid partial order d‡: the metric d† is not only simpler than d‡ but also
more natural in the sense that we obtain the topology of the metric space (G∞C (Σ),d†)
without paying too much attention to the corner case details of the underlying truncation
function. Small changes in the way we treat these corner cases do not affect the resulting
topology as we have illustrated in Example 5.2. For the metric space (G∞C (Σ),d†), on
the other hand, we have to be very careful about how to deal with fringe nodes. As
Example 5.3 shows, even small changes yield a different topology. This is part of the
reason why the definition of the underlying rigid truncation ‡ is so convoluted.
In Section 8.3, we will give another reason to prefer the metric d† over the metric d‡:

while the former allows us to construct the set of term graphs from the set of finite term
graphs via metric completion, the latter does not. That is, the rigid metric does not yield
a representation of infinite term graphs as the limit of a sequence of finite term graphs.

6. Infinitary Term Graph Rewriting

In the previous sections, we have constructed and investigated the necessary metric and
partial order structures upon which the infinitary calculus of term graph rewriting that

Patrick Bahr 36

we shall introduce in this section is based. After describing the framework of term graph
rewriting that we consider, we will explore different modes of convergence on term graphs.
In the same way that infinitary term rewriting instantiates the abstract notions of weak
m- and p-convergence (Bahr, 2010), infinitary term graph rewriting is an instantiation
of these abstract modes of convergence to term graphs.

6.1. Term Graph Rewriting Systems

We base our infinitary term rewriting calculus on the term graph rewriting framework
of Barendregt et al. (1987). In order to represent placeholders in rewrite rules, this
framework uses variables – in a manner much similar to term rewrite rules. However,
instead of open graphs whose unlabelled nodes are interpreted as variables, we use explicit
variable symbols. To this end, we consider a signature ΣV = Σ] V that extends the
signature Σ with a set V of nullary variable symbols.

Definition 6.1 (term graph rewriting system).
(i) Given a signature Σ, a term graph rule ρ over Σ is a triple (g, l, r) where g is a graph

over ΣV and l, r ∈ Ng, such that all nodes in g reachable from l or r. We write
ρl respectively ρr to denote the left- respectively right-hand side of ρ, i.e. the term
graph g|l respectively g|r. Additionally, we require that, for each variable v ∈ V,
there is at most one node n in g labelled v and n is different but still reachable from
l.

(ii) A term graph rewriting system (GRS) R is a pair (Σ, R) with Σ a signature and R
a set of term graph rules over Σ.

The requirement that the root l of the left-hand side is not labelled with a variable
symbol is analogous to the requirement that the left-hand side of a term rule is not
a variable. Similarly, the restriction that nodes labelled with variable symbols must be
reachable from the root of the left-hand side corresponds to the restriction on term rules
that every variable occurring on the right-hand side must also occur on the left-hand
side.
Term graphs can be used to compactly represent terms. This representation of terms

is defined by the unravelling of term graphs. This notion can be extended to term graph
rules.

Definition 6.2 (unravelling of term graph rules). Let ρ be a term graph rule with
ρl and ρr left- respectively right-hand side term graph. The unravelling of ρ, denoted
U (ρ), is the term rule U (ρl)→ U (ρr). Let R = (Σ, R) be a GRS. The unravelling of R,
denoted U (R), is the TRS (Σ,U (R)) with U (R) = {U (ρ) | ρ ∈ G}.

Figure 6a illustrates two term graph rules that both represent the term rule x :: y :: z →
y ::x :: y :: z from Example 2.1, which they unravel to.
The application of a rewrite rule ρ (with root nodes l and r) to a term graph g is

performed in four steps: at first a suitable sub-term graph of g rooted in some node n of
g is matched against the left-hand side of ρ. This amounts to finding a V-homomorphism
φ : ρl →V g|n from the term graph rooted in l to the sub-term graph rooted in n, the

Convergence in Infinitary Term Graph Rewriting Systems is Simple 37

redex. The V-homomorphism φ allows to instantiate variables in the rule with sub-term
graphs of the redex. In the second step, nodes and edges in ρ that are not reachable
from l are copied into g, such that edges pointing to nodes in the term graph rooted
in l are redirected to the image under φ. In the last two steps, all edges pointing to n
are redirected to (the copy of) r and all nodes not reachable from the root of (the now
modified version of) g are removed.

Definition 6.3 (application of a term graph rewrite rule, Barendregt et al.
(1987)). Let ρ = (Nρ, labρ, sucρ, lρ, rρ) be a term graph rewrite rule in a GRS R =
(Σ, R), g ∈ G∞(Σ) and n ∈ Ng. ρ is called applicable to g at n if there is a V-
homomorphism φ : ρl →V g|n. φ is called the matching V-homomorphism of the rule
application, and g|n is called a ρ-redex. Next, we define the result of the application of
the rule ρ to g at n using the V-homomorphism φ. This is done by constructing the
intermediate graphs g1 and g2, and the final result g3.
(i) The graph g1 is obtained from g by adding the part of ρ not contained in the

left-hand side:

Ng1 = Ng] (Nρ \Nρl)

labg1(m) =
{

labg(m) if m ∈ Ng

labρ(m) if m ∈ Nρ \Nρl

sucg1
i (m) =


sucgi (m) if m ∈ Ng

sucρi (m) if m, sucρi (m) ∈ Nρ \Nρl

φ(sucρi (m)) if m ∈ Nρ \Nρl , sucρi (m) ∈ Nρl

(ii) Let n′ = φ(rρ) if rρ ∈ Nρl and n′ = rρ otherwise. The graph g2 is obtained from g1
by redirecting edges ending in n to n′:

Ng2 = Ng1 labg2 = labg1 sucg2
i (m) =

{
sucg1

i (m) if sucg1
i (m) 6= n

n′ if sucg1
i (m) = n

(iii) The term graph g3 is obtained by setting the root node r′, which is r if l = rg, and
otherwise rg. That is, g3 = g2|r′ . This also means that all nodes not reachable from
r′ in g2 are removed.

The above construction induces a pre-reduction step ψ = (g, n, ρ, n′, g3) from g to
g3, written ψ : g 7→n,ρ,n′ g3. In order to indicate the underlying GRS R, we also write
ψ : g 7→R g3.

Examples for term graph (pre-)reduction steps are shown in Figure 6. We revisit them
in more detail in Example 6.1 in the next section.
Note that term graph rules do not provide a duplication mechanism. Each variable is

allowed to occur at most once. Duplication must always be simulated by sharing, i.e. with
nodes reachable via multiple paths from any of the two roots. This means for example
that a variable that should “occur” on the left- and the right-hand side must be shared
between the left- and the right-hand side of the rule as seen in the term graph rules in

Patrick Bahr 38

Figure 6a. This sharing can be direct as in ρ1 – the variable node has multiple ingoing
edges – or indirect as in ρ2 – the variable node is reachable from nodes with multiple
ingoing edges. Likewise, for variables that are supposed to be duplicated on the right-
hand side, e.g. the variable y in the term rule x :: y :: z → y ::x :: y :: z, we have to use
sharing in order to represent multiple occurrence of the same variable as seen in the
corresponding term graph rules in Figure 6a: in both rules, the y-node is reachable by
two distinct paths from the right-hand side root r.

The definition of term graph rewriting in the form of pre-reduction steps is very op-
erational in style. The result of applying a rewrite rule to a term graph is constructed
in several steps by manipulating nodes and edges explicitly. While this is beneficial for
implementing a rewriting system, this is problematic for reasoning on term graphs up
to isomorphisms, which is necessary for introducing notions of convergence. In our case,
however, this does not cause any harm since the construction in Definition 6.3 is invariant
under isomorphism:

Proposition 6.1 (pre-reduction steps). Let φ : g 7→n,ρ,m h be a pre-reduction step
in some GRS R and ψ1 : g′ ∼= g. Then there is a pre-reduction step φ′ : g′ 7→n′,ρ,m′ h′

with ψ2 : h′ ∼= h such that ψ1(n′) = n and ψ1(m′) = m.

Proof. Immediate from the construction in Definition 6.3.

This justifies the following definition of reduction steps:

Definition 6.4 (reduction steps). Let R = (Σ, R) be GRS, ρ ∈ R and g, h ∈ G∞C (Σ)
with n ∈ Ng and m ∈ Nh. A tuple φ = (g, n, ρ,m, h) is called a reduction step, written
φ : g →n,ρ,m h, if there is a pre-reduction step φ′ : g′ →n′,ρ,m′ h′ with C(g′) = g, C(h′) =
h, n = Pg′(n′), and m = Ph′(m′). As for pre-reduction step, we also write φ : g →R h or
simply φ : g → h for short.

In other words, a reduction step is a canonicalised pre-reduction step.

6.2. Convergence of Transfinite Reductions

In this section, we shall look at term graph reductions of potentially transfinite length.

Definition 6.5 (reduction). Let R = (Σ, R) be a GRS. A reduction in R is a sequence
(gι →R gι+1)i<α of rewriting steps in R. If S is finite, we write S : g0 →∗ gα.

In analogy to infinitary term rewriting, we employ the partial order ≤S
⊥ and the metric

d† for the purpose of defining convergence of transfinite term graph reductions.

Definition 6.6 (convergence of reductions). Let R = (Σ, R) be a GRS.
(i) Let S = (gι →R gι+1)ι<α be a reduction in R. S is weakly m-continuous, written

S : g0 ↪→m R . . . , if the underlying sequence of term graphs (gι)ι<α̂ is continuous, i.e.
limι→λ gι = gλ for each limit ordinal λ < α. S weakly m-converges to g ∈ G∞C (Σ) in
R, written S : g0 ↪→m R g, if it is weakly m-continuous and lim

ι→α̂ gι = g.

Convergence in Infinitary Term Graph Rewriting Systems is Simple 39

::l

x ::

y z

::r

::

::

(ρ1)

::l

x ::

y z

::r

(ρ2)

(a) Term graph rules that unravel to x :: y :: z → y ::x :: y :: z.

::

a ::

b c

(g)

::

b

(h)

ρ2

::

b ::

::

(h′)

ρ1

(b) A ρ2-step followed by a ρ1-step.

::

a ::

b c

(g0)

::

b ::

a ::

c

(g1)

::

a ::

b ::

::

c

(g2)

::

⊥ ::

⊥ ::

::

::

(gω)

ρ1 ρ1 ρ1

(c) A term graph reduction over ρ1 that does not weakly m-converge.

::

a ::

b c

(h0)

::

b ::

a ::

c

(h1)

::

b ::

::

a ::

c
(h2)

::

b ::

::

::

(hω)

ρ1 ρ1 ρ1

(d) A weakly m-converging term graph reduction over ρ1.

Figure 6: Term graph rules and their reductions.

Patrick Bahr 40

(ii) Let R⊥ be the GRS (Σ⊥, R) over the extended signature Σ⊥ and S = (gι →R⊥

gι+1)ι<α a reduction in R⊥. S is weakly p-continuous, written S : g0 ↪→p R . . . , if
lim infι<λ gi = gλ for each limit ordinal λ < α. S weakly p-converges to g ∈ G∞C (Σ⊥)
in R, written S : g0 ↪→p R g, if it is weakly p-continuous and lim inf

ι<α̂
gi = g.

Note that we have to extend the signature of R to Σ⊥ for the definition of weak
p-convergence. Moreover, since the partial order ≤S

⊥ forms a complete semilattice on
G∞C (Σ⊥), weak p-continuity coincides with weak p-convergence

Example 6.1. Figure 6a shows two term graph rules that both unravel to the term rule
x :: y :: z → y ::x :: y :: z from Example 2.1. The two rules differ only in their sharing with
ρ1 using “minimal sharing” and ρ2 using “maximal sharing”.
Figure 6c and Figure 6d illustrate term graph reductions that correspond to the term

reductions T respectively T ′ from Example 2.1 and 2.2. All reductions – including the
term graph reductions – start from the same term (tree) a :: b :: c.

Like the term reduction T , the corresponding term graph reduction in Figure 6c is not
weakly m-convergent: as we have illustrated in Example 5.1, the underlying sequence of
term graphs is not convergent. On the other hand, the reduction does weakly p-converge
to the term graph gω, which unravels to the term t to which the reduction T weakly
p-converges to.
Similarly, also the reduction in Figure 6d follows its term rewriting counterpart T ′

closely: It both weakly m- and p-converges to the term graph hω, which unravels to the
term t′ that T ′ weakly m- and p-converges to. Example 5.1 respectively 4.1 explain how
these limits come about.
Due to its higher degree of sharing, the rule ρ2 permits to arrive at essentially the same

result by a single reduction step as seen in Figure 6b. The resulting cyclic term graph h
unravels to the same term t′ as hω. The ρ1-step that follows illustrates the interaction of
rewrite rules with cycles. In fact, if we continue applying the rule ρ1 after h′, we obtain
a reduction that weakly m- and p-converges to hω.

6.3. m-Convergence vs. p-Convergence

Recall that weak p-convergence in term rewriting is a conservative extension of weak
m-convergence (cf. Theorem 2.1). The key property that makes this possible is that for
each sequence (tι)ι<α in T ∞(Σ), we have that limι→α tι = lim infι→α tι whenever (tι)ι<α
converges, or lim infι→α tι is a total term.

Unfortunately, this is not the case for the metric space and the partial order that we
consider on term graphs. As we have shown in Example 5.1, the sequence of term graphs
depicted in Figure 3 has a total term graph as its limit inferior although it does not
converge in the metric space. In fact, since the sequence in Figure 3 alternates between
two distinct term graphs, it does not converge in any Hausdorff space, i.e. in particular,
it does not converge in any metric space.
This example shows that we cannot hope to generalise the compatibility property that

we have for terms: even if a sequence of total term graphs has a total term graph as its

Convergence in Infinitary Term Graph Rewriting Systems is Simple 41

limit inferior, it might not converge. However, the other direction of the compatibility
does hold true:

Theorem 6.1. If (gι)ι<α converges, then limι→α gι = lim infι→α gι.

Proof. In order to prove this property, we will use the construction of the limit respec-
tively the limit inferior of a sequence of term graphs, which we have shown in Theorem 5.1
respectively Corollary 4.2.
According to Theorem 5.1, we have that the canonical term graph limι→α gι is given

by the following labelled quotient tree (P,∼, l):

P =
⋃
β<α

⋂
β≤ι<α

P(gι) ∼ =
⋃
β<α

⋂
β≤ι<α

∼gι

l(π) = f iff ∃β < α∀β ≤ ι < α : gι(π) = f

We will show that g = lim infι→α gι induces the same labelled quotient tree.
From Corollary 4.2, we immediately obtain that P(g) ⊆ P . To show the converse

direction P(g) ⊇ P , we assume some π ∈ P . According to Corollary 4.2, in order to show
that π ∈ P(g), we have to find a β < α such that π ∈ P(gβ) and for each π′ < π there
is some f ∈ Σ⊥ such that gι(π′) = f for all β ≤ ι < α.
Because π ∈ P , there is some β1 < α such that π ∈ P(gι) for all β1 ≤ ι < α. Since

(gι)ι<α converges, it is also Cauchy. Hence, by Lemma 5.1, for each d < ω, there is some
β2 < α such that gγ†d ∼= gι†d for all β2 ≤ γ, ι < α. By specialising this to d = |π|, we
obtain some β2 < α with gγ† |π| ∼= gι† |π| for all β2 ≤ γ, ι < α. Let β = max {β1, β2}.
Then we have π ∈ P(gι) and gβ† |π| ∼= gι† |π| for each β ≤ ι < α. Hence, for each π′ < π,
the symbol f = gβ(π′) is well-defined, and, according to Corollary 5.1, we have that
gι(π′) = f for each β ≤ ι < α.
The equalities ∼ = ∼g and l = g(·) follow from Corollary 4.2 as P = P(g).

From this property, we immediately obtain the following relation between weak m-
and p-convergence:

Theorem 6.2. Let S be a reduction in a GRS R.

If S : g ↪→m R h then S : g ↪→p R h.

Proof. Follows straightforwardly from Theorem 6.1.

However, as we have indicated, weak m-convergence is not the total fragment of weak
p-convergence as it is the case for TRSs. The GRS with the two rules depicted in Figure 7
yields the reduction sequence shown in Figure 3. This reduction weakly p-converges to
f(c, c) but is not weakly m-convergent.

7. Preservation of Convergence through Unravelling

In this section, we shall show that the convergence behaviour of term graph sequences
– both in terms of metric limit and in terms of the limit inferior – is preserved by the
unravelling of term graphs to terms. As we will also show that the metric d† and partial

Patrick Bahr 42

fl

c c

fr

c c

(ρ1)

fl

c c

fr

c

(ρ2)

Figure 7: Two term graph rules.

order ≤S
⊥ coincide with the metric d respectively the partial order ≤⊥ if restricted to

terms, the preservation of convergence will show that both modes of convergence are
sound w.r.t. the modes of convergence used in infinitary term rewriting.
The cornerstone of the investigation of unravellings is the following characterisation in

terms of labelled quotient trees:

Proposition 7.1. The unravelling U (g) of a term graph g ∈ G∞(Σ) is given by the
labelled quotient tree (P(g), g(·), IP(g)).

Proof. Since IP(g) is a subrelation of ∼g, we know that (P(g), g(·), IP(g)) is a labelled
quotient tree and thus uniquely determines a term tree t. By Lemma 3.3, there is a
homomorphism from t to g. Hence, U (g) = t.

7.1. Metric Convergence

We start with a specialisation of Lemma 5.2, which provides a characterisation of the
simple truncation, to term trees:

Lemma 7.1. Let t ∈ T ∞(Σ⊥) and d ≤ ω+ 1. The simple truncation t†d is given by the
labelled quotient tree (P, l, IP) with

P = {π ∈ P(t) | |π| ≤ d} l(π) =
{
t(π) if |π| < d

⊥ if |π| ≥ d

Proof. Immediate from Lemma 5.2 and the fact that ∼t is the identity relation IP(t)
on P(t).

This shows that the metric d† restricted to terms coincides with the metric d on terms.
Moreover, we can use this in order to relate the metric distance between term graphs
and the metric distance between their unravellings.

Lemma 7.2. For all g, h ∈ G∞(Σ), we have that d†(g, h) ≥ d†(U (g) ,U (h)).

Proof. Let d = sim†(g, h). Hence, g†d ∼= h†d and we can assume that the corresponding
labelled quotient trees as characterised by Lemma 5.2 coincide. We only need to show
that U (g)†d ∼= U (h)†d since then sim†(U (g) ,U (h)) ≥ d and thus d†(U (g) ,U (h)) ≤
2−d = d†(g, h). In order to show this, we show that the labelled quotient trees of U (g)†d
and U (h)†d as characterised by Lemma 7.1 coincide. For the set of positions we have the

Convergence in Infinitary Term Graph Rewriting Systems is Simple 43

following:

π ∈ P(U (g)†d)
⇐⇒ π ∈ P(U (g)), |π| ≤ d (Lemma 7.1)
⇐⇒ π ∈ P(g), |π| ≤ d (Proposition 7.1)
⇐⇒ π ∈ P(g†d), |π| ≤ d (Corollary 5.1)
⇐⇒ π ∈ P(h†d), |π| ≤ d (g†d ∼= h†d)
⇐⇒ π ∈ P(h), |π| ≤ d (Corollary 5.1)
⇐⇒ π ∈ P(U (h)), |π| ≤ d (Proposition 7.1)
⇐⇒ π ∈ P(U (h)†d) (Lemma 7.1)

In order to show that the labellings are equal, consider some π ∈ P(U (g)†d) and assume
at first that |π| ≥ d. By Lemma 7.1, we then have (U (g)†d) (π) = ⊥ = (U (h)†d) (π).
Otherwise, if |π| < d, we obtain that

(U (g)†d) (π) Lem. 7.1= U (g) (π) Prop. 7.1= g(π) Cor. 5.1= g†d(π)
g†d∼=h†d= h†d(π) Cor. 5.1= h(π) Prop. 7.1= U (h) (π) Lem. 7.1= (U (h)†d) (π)

This immediately yields that Cauchy sequences are preserved by unravelling:

Lemma 7.3. If (gι)ι<α is a Cauchy sequence in (G∞C (Σ),d†), then so is (U (gι))ι<α.

Proof. This follows immediately from Lemma 7.2.

Moreover, we obtain that limits in the metric space (G∞C (Σ),d†) are preserved by
unravelling.

Theorem 7.1. For every sequence (gι)ι<α in (G∞C (Σ),d†), we have that limι→α gι = g

implies limι→α U (gι) = U (g)

Proof. According to Theorem 5.1, we have that P(g) = lim infι→α P(gι), and that
g(π) = gβ(π) for some β < α with gι(π) = gβ(π) for all β ≤ ι < α. By Proposition 7.1,
we then obtain P(U (g)) = lim infι→α P(U (gι)), and that U (g) (π) = U (gβ) (π) for some
β < α with U (gι) (π) = U (gβ) (π) for all β ≤ ι < α. Since by Lemma 7.3, (U (gι))ι<α is
Cauchy, we can apply Theorem 5.1 to obtain that limι→α U (gι) = U (g).

Since Lemma 7.1 confirms that the metric d† restricted to terms coincides with the
metric d on terms, we have that convergence on term graphs simulates convergence on
terms: if (gι)ι<α converges to g in (G∞C (Σ),d†), then (U (gι))ι<α converges to U (g) in
(T ∞(Σ),d).

7.2. Partial Order Convergence

At first we derive a characterisation of the partial order ≤S
⊥ on terms by specialising

Corollary 4.1:

Patrick Bahr 44

Lemma 7.4. Given two terms s, t ∈ T ∞(Σ⊥), we have s ≤S
⊥ t iff s(π) = t(π) for all

π ∈ P(s) with g(π) ∈ Σ.

Proof. Immediate from Corollary 4.1.

This shows that the partial order ≤S
⊥ on term graphs generalises the partial order ≤⊥

on terms, i.e. ≤S
⊥ restricted to T ∞(Σ⊥) coincides with ≤⊥.

From the above finding we easily obtain that the partial order ≤S
⊥ as well as its induced

limits are preserved by unravelling:

Theorem 7.2. In the partially ordered set (G∞C (Σ⊥),≤S
⊥) the following holds:

(i) Given two term graphs g, h, we have that g ≤S
⊥ h implies U (g) ≤S

⊥ U (h).
(ii) For each directed set G, we have that U

(⊔
g∈G g

)
=
⊔
g∈G U (g).

(iii) For each non-empty set G, we have that U
(d

g∈G g
)

=
d
g∈G U (g).

(iv) For each sequence (gι)ι<α, we have that U (lim infι→α gι) = lim infι→α U (gι).

Proof. (i) By Corollary 4.1, g ≤S
⊥ h implies that g(π) = h(π) for all π ∈ P(g) with

g(π) ∈ Σ. By Proposition 7.1, we then have U (g) (π) = U (h) (π) for all π ∈ P(U (g))
with U (g) (π) ∈ Σ which, by Lemma 7.4, implies U (g) ≤S

⊥ U (h).
By a similar argument (ii) and (iii) follow from the characterisation of least upper

bounds and greatest lower bounds in Theorem 4.1 respectively Proposition 4.2 by using
Proposition 7.1.
(iv) Follows from (ii) and (iii).

Since Lemma 7.4 shows that ≤S
⊥ and ≤⊥ coincide on T ∞(Σ⊥), we thus obtain that the

limit inferior on term graphs simulates the limit inferior on terms: if lim infι→α gι = g in
(G∞C (Σ⊥),≤S

⊥), then lim infι→α U (gι) = U (g) in (T ∞(Σ⊥),≤⊥).

8. Finite Term Graphs

In this section, we want to study the simple partial order ≤S
⊥ and the simple metric

d† on finite term graphs. On terms, the partial order ≤⊥ and the metric d allow us
to reconstruct the set of (partial) terms from the set of finite (partial) terms via ideal
completion and metric completion, respectively. In the following, we shall show that this
generalises to the setting of canonical term graphs.

8.1. Finitary Properties

Since term graphs are finitely branching, we know that, in each term graph, there are
only a finite number of positions of a bounded length:

Lemma 8.1 (bounded positions are finite). Let g ∈ G∞(Σ) and d < ω. Then there
are only finitely many positions of length at most d in g, i.e. the set {π ∈ P(g) | |π| ≤ d}
is finite.

Proof. Straightforward induction on d.

Convergence in Infinitary Term Graph Rewriting Systems is Simple 45

From this we can immediately conclude that the simple truncation of a term graph
yields a finite term graph:

Proposition 8.1 (simple truncations are finite). For each g ∈ G∞(Σ⊥) and d < ω,
the simple truncation g†d is finite, i.e. g†d ∈ G(Σ⊥).

Proof. By Lemma 8.1, the set P = {π ∈ P(g) | |π| ≤ d} is finite. Since the function
f : P → Ng†d defined by f(π) = nodeg(π) is surjective, we can conclude that Ng†d is
finite.

We know that positions describe the structure of a term graph. However, cycles cause
infinite repetition of essentially the same structure of a position. Therefore, a finite term
graph may have infinitely many positions. In the following, we want to avoid this by
considering only essential positions:

Definition 8.1 (redundant/essential positions). A position π ∈ P(g) in a term
graph g ∈ G∞(Σ) is called redundant if there are π1, π2 ∈ P(g) with π1 < π2 < π such
that π1 ∼g π2. A position that is not redundant is called essential. The set of all essential
positions of g are denoted Pe(g); the set of all essential positions of a node n in g are
denoted Peg (n).

Note that a position is redundant iff one of its proper prefixes is cyclic. This means
that the set Pe(g) of essential positions is closed under prefixes.

Lemma 8.2 (decomposition of redundant positions). For each g ∈ G∞(Σ) and
π ∈ P(g), we have that π is redundant iff there are π1, π2 ∈ Pe(g) such that π1 < π2 < π

and π1 ∼g π2.

Proof. The “if” direction follows immediately from the definition of redundancy. We
will show the “only if” direction by induction on the length of π.

If π is redundant in g, then there are π1, π2 ∈ P(g) with π1 < π2 < π and π1 ∼g π2.
If π2 is essential, then also π1 is essential since it is a prefix of π2. Otherwise, if π2 is
redundant, we can apply the induction hypothesis to π2 to obtain π′1, π

′
2 ∈ Pe(g) with

π′1 < π′2 < π2 and π′1 ∼g π′2.

With essential positions, we have a finite representation of the structure of term graphs
even if the term graph is cyclic.

Proposition 8.2 (essential positions characterise finiteness). A term graph g ∈
G∞(Σ) is finite iff Pe(g) is finite.

Proof. If g is finite, then let n = |Ng|. Whenever a position π ∈ P(g) is longer than n,
then a proper prefix of π passes more than n nodes. By the pigeon hole principle we thus
know that there is a node that a proper prefix of π passes twice. Hence, π is redundant.
Therefore, we know that every essential position must be of length at most n. Since,
according to Lemma 8.1, there are only finitely many such positions in g, we know that
Pe(g) is finite.
If g is infinite, we can apply König’s Lemma to obtain an infinite acyclic path (starting

Patrick Bahr 46

in the root of g) that does not pass a node twice. Since each finite prefix of this path is
an essential position, there are infinitely many essential positions.

Indeed, the essential positions of a term graph are sufficient in order to characterise
the structure of term graphs in the form of ∆-homomorphisms:

Proposition 8.3 (essential positions characterise ∆-homomorphisms). Given
g, h ∈ G∞(Σ), there is a ∆-homomorphism φ : g →∆ h iff, for all π, π′ ∈ Pe(g), we have

(a) π ∼g π′ =⇒ π ∼h π′, and (b) g(π) = h(π) whenever g(π) 6∈ ∆.

Proof. The “only if” direction follows immediately from Lemma 3.3. For the converse
direction, assume that both (a) and (b) hold. Define the function φ : Ng → Nh by
φ(n) = m iff Pg(n) ⊆ Ph(m) for all n ∈ Ng and m ∈ Nh. To confirm that this is
well-defined, we show at first that, for each n ∈ Ng, there is at most one m ∈ Nh with
Pg(n) ⊆ Ph(m). Suppose there is another node m′ ∈ Nh with Pg(n) ⊆ Ph(m′). Since
Pg(n) 6= ∅, this implies Ph(m) ∩ Ph(m′) 6= ∅. Hence, m = m′. Secondly, we show that
there is at least one such node m. We know that each node has at least one essential
position. Choose some π∗ ∈ Peg (n). Since then π∗ ∼g π∗ and, by (a), also π∗ ∼h π∗ holds,
there is some m ∈ Nh with π∗ ∈ Ph(m). Next we show by induction on the length of π
that π ∈ Pg(n) implies π ∈ Ph(m). If π ∈ Pg(n), then π ∼g π∗. In case that π is essential
in g, we obtain π ∼h π∗ from (a) and thus π ∈ Ph(m). Otherwise, i.e. if π is redundant
in g, we can decompose π into π = π1 · π2 · π3 such that π2 and π3 are non-empty and
π1 ∼g π1 ·π2. By Lemma 8.2, we can assume that π1 and π1 ·π2 are essential in g. Hence,
π1 ∼g π1 · π2 implies, by (a), that π1 ∼h π1 · π2. Moreover, π1 ∼g π1 · π2 means that the
prefix π1 · π2 of π can be replaced by π1 in g, i.e. π1 · π3 ∈ Pg(n). Since π1 · π3 is strictly
shorter than π, we can apply the induction hypothesis to obtain that π1 · π3 ∈ Ph(m).
From this and from π1 ∼h π1 · π2 we can then conclude that π1 · π2 · π3 ∈ Ph(m).
Using Lemma 3.1, we can see that φ is a ∆-homomorphism from g to h: condition

(a) of Lemma 3.1 follows immediately from the construction of φ and condition (b) of
Lemma 3.1 follows from (b) since each node has at least one essential position.

Consequently, we immediately obtain a characterisation of the simple partial order ≤S
⊥

in terms of essential positions:

Corollary 8.1 (essential positions characterise ≤S
⊥). Let g, h ∈ G∞(Σ⊥). Then

g ≤S
⊥ h iff the following conditions are met:

(a) π ∼g π′ =⇒ π ∼h π′ for all π, π′ ∈ Pe(g)
(b) g(π) = h(π) for all π ∈ Pe(g) with g(π) ∈ Σ.

The above characterisation allows us to prove that the lub of a finite number of finite
term graphs can only be finite as well:

Proposition 8.4 (lub of finite term graphs is finite). For each finite set G ⊆fin
GC(Σ⊥) with an upper bound in (G∞C (Σ⊥),≤S

⊥), we have
⊔
G ∈ GC(Σ⊥).

Proof. Let G ⊆fin GC(Σ⊥) be a finite set with upper bound ĝ. If G is empty, then

Convergence in Infinitary Term Graph Rewriting Systems is Simple 47⊔
G = ⊥ ∈ GC(Σ⊥). Otherwise, we know, by Proposition 2.1, that the complete semilat-

tice (G∞C (Σ⊥),≤S
⊥) is also bounded complete. Hence, G has a least upper bound g. Since

g is an upper bound of G, we find for each g ∈ G a ⊥-homomorphism φg : g →⊥ g. Let
N =

⋃
g∈G Im(φg) be the combined image of those ⊥-homomorphisms. Since each g ∈ G

is finite, also their image Im(φg) is finite and thus so is N . We conclude the proof by
showing that Ng ⊆ N , which proves that g is finite.
We show that n ∈ Ng implies n ∈ N by induction on depthg(n). If depthg(n) = 0, then

n = rg. Choose some g ∈ G. Since then φg(rg) = rg, we have that n ∈ Im(φg) ⊆ N . If
depthg(n) > 0, then there is some m ∈ Ng with depthg(m) < depthg(n) and sucgi (m) = n

for some i. Hence, we can apply the induction hypothesis which yields that m ∈ N . Since
m has a successor in g, we have that labg(m) ∈ Σ. Construct the term graph ĝ from g

by relabelling m to ⊥ and removing all its outgoing edges as well as all nodes that thus
become unreachable. The mapping φ : N ĝ → Ng given by φ(n̂) = n̂ for all n̂ ∈ N ĝ is
a ⊥-homomorphism. Thus C(ĝ) <S

⊥ g. However, since g is the least upper bound of G,
C(ĝ) cannot be an upper bound of G. But, for each g ∈ G, the mapping φg is also a
⊥-homomorphism from g to ĝ provided each m′ ∈ Ng with φg(m′) = m is labelled ⊥ in
g. Since this cannot be the case for all g ∈ G, we find some g ∈ G,m′ ∈ Ng such that
φg(m′) = m and labg(m′) ∈ Σ. Since φg is then homomorphic in m′, we know that m′
has an i-th successor in g such that

φg(sucgi (m′)) = sucgi (φg(m′)) = sucgi (m) = n.

Hence, n ∈ Im(φg) ⊆ N .

8.2. Ideal Completion

In this section, we shall show that the set G∞C (Σ⊥) of (potentially infinite) canonical term
graphs can be constructed from the set GC(Σ⊥) of finite canonical term graphs via the
ideal completion of the partially ordered set (GC(Σ⊥),≤S

⊥).
Given a partially order set, its ideal completion provides an extension of the original

partially ordered set that is a cpo.

Definition 8.2 (ideal, ideal completion). Let (A,≤) be a partially ordered set and
B ⊆ A.
(i) The set B is called downward-closed if for all a ∈ A, b ∈ B with a ≤ b, we have that

a ∈ B.
(ii) The set B is called an ideal if it is directed and downward-closed. We write Idl(A,≤)

to denoted the set of all ideals of (A,≤).
(iii) The ideal completion of (A,≤), is the partially ordered set (Idl(A,≤),⊆).

For terms, we already know that the set of (potentially infinite) terms can be con-
structed by forming the ideal completion of the partially ordered set (T (Σ⊥),≤⊥) of
finite terms.

Theorem 8.1 (ideal completion of terms, Berry & Lévy (1977)). The ideal
completion of (T (Σ⊥),≤⊥) is order isomorphic to (T ∞(Σ⊥),≤⊥).

Patrick Bahr 48

We show an analogous result for term graphs:

Theorem 8.2 (ideal completion of term graphs). The ideal completion of the
partially ordered set (GC(Σ⊥),≤S

⊥) is order isomorphic to (G∞C (Σ⊥),≤S
⊥).

Proof. Let I be the set Idl(GC(Σ⊥),≤S
⊥) of ideals in (GC(Σ⊥),≤S

⊥). To prove that (I,⊆)
and (G∞C (Σ⊥),≤S

⊥) are order isomorphic, we will construct two monotonic functions
φ : G∞C (Σ⊥)→ I and ψ : I → G∞C (Σ⊥), and show that they are inverses of each other.
Define the function φ as follows: φ(g) =

{
h ∈ GC(Σ⊥)

∣∣h ≤S
⊥ g

}
for all g ∈ G∞C (Σ⊥).

We have to show that φ(g) is indeed an ideal for each g ∈ GC(Σ⊥). By definition, φ(g)
is downward-closed. To show that it is directed, let h1, h2 ∈ φ(g), i.e. h1, h2 ≤S

⊥ g. By
Proposition 8.4, {h1, h2} has a least upper bound h in GC(Σ⊥). Since g is an upper bound
of {h1, h2}, we have h ≤S

⊥ g and thus h ∈ φ(g).
Monotonicity of φ follows immediately from its definition.
Define the function ψ as follows: ψ(G) =

⊔
G for all G ∈ I. Since, according to

Theorem 4.1, (G∞C (Σ⊥),≤S
⊥) is a cpo, we know that ψ is well-defined. The monotonicity

of ψ follows immediately from its definition.
Finally, we show that φ and ψ are inverses of each other. At first we show that

ψ(φ(g)) = g for all g ∈ G∞C (Σ⊥), i.e. g =
⊔
φ(g). By definition of φ, we already know

that g is an upper bound of φ(g). To show that it is the least upper bound, we assume
that g ∈ G∞C (Σ⊥) is an upper bound of φ(g) and show that g ≤S

⊥ g. We will do that by
using Corollary 4.1.
(a) Let π1 ∼g π2 and let d = max {|π1| , |π2|}. Then, according to Corollary 5.1, also

π1 ∼g†d π2. Moreover, by Proposition 8.1, g†d is finite and, by Corollary 5.2, g†d ≤S
⊥ g.

Hence, since g†d ∈ φ(g) and thus g†d ≤S
⊥ g. This means that π1 ∼g†d π2 implies π1 ∼g π2,

according to Corollary 4.1.
(b) Let g(π) = f ∈ Σ and let d = 1 + |π|. Then, according to Corollary 5.1, also

g†d(π) = f . As for (a), we know that g†d ≤S
⊥ g, which implies g(π) = f , by Corollary 4.1.

Lastly, we show that φ(ψ(G)) = G for all G ∈ I. The inclusion φ(ψ(G)) ⊇ G is easy
to prove: if g ∈ G, then g ≤S

⊥
⊔
G and therefore g ∈ φ(ψ(G)). For the converse inclusion

assume that h ∈ φ(ψ(G)), i.e. h ∈ GC(Σ⊥) with h ≤S
⊥
⊔
G. We claim that there is some

ĥ ∈ G with h ≤S
⊥ ĥ. Since G is downward-closed, this then implies h ∈ G. We conclude

this proof by constructing a ĥ ∈ G with h ≤S
⊥ ĥ.

Let g =
⊔
G. Since h ≤S

⊥ g, we have by Corollary 8.1 that π ∼h π′ implies π ∼g π′
for all π, π′ ∈ Pe(h). In turn, π ∼g π′ implies by Theorem 4.1, that there is some g ∈ G
with π ∼g π′. According to Proposition 8.2, the set Pe(h) is finite and thus there are
only finitely many pairs π, π′ ∈ Pe(h). Hence, we find a finite set H ⊆ G such that for
each π, π′ ∈ Pe(h) with π ∼h π′ there is a g ∈ H with π ∼g π′. Since H is a finite subset
of the directed set G, there is some h1 ∈ G that is an upper bound of H. Consequently,
for each π, π′ ∈ Pe(h) with π ∼h π′, we have π ∼h1 π

′ by Corollary 8.1.
By a similar argument we find some h2 ∈ G such that for each π ∈ Pe(h) with

h(π) = f ∈ Σ, we have h2(π) = f . Since G is directed, we find some ĥ ∈ G with
h1, h2 ≤S

⊥ ĥ. Hence, by Corollary 8.1, for all π, π′ ∈ Pe(h), we have that π ∼h π′ implies

Convergence in Infinitary Term Graph Rewriting Systems is Simple 49

π ∼
ĥ
π′ and that h(π) = f ∈ Σ implies ĥ(π) = f . According to Corollary 8.1, this means

that h ≤S
⊥ ĥ.

The above theorem show a certain completeness of the partial order ≤S
⊥ in the sense

that it allows us to canonically construct the set of term graphs G∞C (Σ⊥) from the set
of finite term graphs GC(Σ⊥). More concretely, an infinite term graph g ∈ G∞C (Σ⊥)
can be constructed by a limit construction involving only finite term graphs, viz. g =⊔{

h ∈ GC(Σ⊥)
∣∣h ≤S

⊥ g
}
. In fact, such a construction can also be achieved by the limit

inferior of a sequence of finite graphs since we have that g = lim infd→ω g†d.
Such a representation of infinite term graphs as a lub or a limit inferior of a sequence

of finite term graphs is not possible for the rigid partial order ≤R
⊥. For example, there is

no set of finite term graphs G whose lub is the term graph hω from Figure 6d w.r.t. the
partial order ≤R

⊥. The reason is that no finite term graph g with g ≤R
⊥ hω has a node

labelled b at position 〈0〉.

8.3. Metric Completion

In this section, we shall show that the set G∞C (Σ) of (potentially infinite) canonical term
graphs can also be obtained as the metric completion of the metric space (GC(Σ),d†) of
finite term graphs endowed with the simple metric d†.
Analogous to the ideal completion of partially ordered sets, the metric completion

extends a metric spaces to a complete metric space.

Definition 8.3. Let (M,d) be a metric space. The closure of a subset N ⊆M , denoted
Cl (N), is the set {x ∈M |x is the limit of a sequence in N }. A subset N ⊆M is called
dense if Cl (N) = M . A complete metric space (M•,d•) is called the metric completion
of (M,d) if there is an isometric embedding φ from (M,d) into (M•,d•) and if the image
Im(φ) of φ is dense in (M•,d•).

The metric completion of a metric space is unique up to isometry.
Again, for terms, we already know that we can construct the set of (potentially infinite)

terms T ∞(Σ) as the metric completion of the metric space (T (Σ),d) of finite terms.

Theorem 8.3 (metric completion of terms, Barr (1993)). The metric completion
of (T (Σ),d) is the metric space (T ∞(Σ),d).

Analogously, we can show that the metric space (G∞C (Σ),d†) of (potentially infinite)
term graphs arises as the metric completion of the metric space (GC(Σ),d†) of finite term
graphs.

Theorem 8.4 (metric completion of term graphs). The metric completion of
(GC(Σ),d†) is the metric space (G∞C (Σ),d†).

Proof. Since GC(Σ) is a subset of G∞C (Σ), we can define the isometric embedding
φ : GC(Σ)→ G∞C (Σ) by setting φ(g) = g. It only remains to be shown that Im(φ) = GC(Σ)
is dense in (G∞C (Σ),d†). This is achieved by showing that for each g ∈ G∞C (Σ) we find a

Patrick Bahr 50

sequence (gi)i<ω in GC(Σ) that converges to g. From its definition it is clear that the sim-
ple truncation is idempotent, i.e. (g†d)†d = g†d. for all d < ω. Hence, by Lemma 5.1, the
sequence (g†d)d<ω converges to g in (G∞C (Σ),d†). Moreover, according to Proposition 8.1,
(g†d)d<ω is a sequence in GC(Σ).

The above theorem shows that the metric d† is complete in the sense that it allows us
to construct the set of term graphs G∞C (Σ) from the set of finite term graphs GC(Σ) in a
canonical way. More concretely, each term graph g ∈ G∞C (Σ) can be constructed as the
limit of a sequence of finite term graphs, viz. g = limd→ω g†d.

We cannot obtain such a completeness result for the rigid metric d‡. For instance,
consider the term graph hω from Figure 6d. For each d > 1, the rigid truncation hω‡d
of hω is equal to hω itself. Hence, there is no finite term graph g with a similarity
sim‡(g, hω) > 1, which means, according to Lemma 5.1, that there is no sequence of
finite term graphs that converges to hω in (G∞C (Σ),d‡).

9. Concluding Remarks

We have devised two independently defined but closely related infinitary calculi of term
graph rewriting. Whilst this is not the first proposal for infinitary term graph rewriting
calculi, we gave several arguments why the present approach is superior to our previous
approach (Bahr, 2012b): it is more natural, simpler and less restrictive. Due to the
findings we have obtained here, we are very confident that we found two appropriate
notions of convergence that generalise the corresponding notions of convergence on terms.
There is, however, one aspect of our notion of convergence that might be interpreted

as an argument against its appropriateness. On term graphs, we do not obtain the cor-
respondence between p- and m-convergence known from infinitary term rewriting; cf.
Theorem 2.1. The underlying reason for the discrepancy is the fact that the partial order
on term graphs ≤S

⊥ does not only capture the level of partiality – like ≤⊥ does on terms
– but also the degree of sharing. However, this discrepancy might just be a manifestation
of the fundamental difference between terms and term graphs – namely sharing.
Unfortunately, we do not have solid soundness or completeness results apart from the

preservation of convergence under unravelling and the metric/ideal completion construc-
tion of the set of term graphs. Even establishing soundness turns out to be difficult in
the setting of weak convergence.
If we shift from the weak notions of convergence studied here to strong notions of

convergence – in analogy to strong convergence in infinitary term rewriting (Kennaway
et al. , 1995) – all of the abovementioned shortcomings disappear (Bahr, 2012a). In
particular, we regain the correspondence between metric and partial order convergence:
strong p-convergence on term graphs is a conservative extension of strongm-convergence.
Moreover, with the move to strong convergence, it is also possible to establish that
infinitary term graph rewriting is sound and complete w.r.t. term rewriting.
These additional findings further substantiate our claim that the fundamental struc-

tures that we have studied here are appropriate generalisations of the corresponding
structures on terms for the formalisation of convergence in rewriting.

Convergence in Infinitary Term Graph Rewriting Systems is Simple 51

Acknowledgement

The author wishes to thank Clemens Grabmayer for his remarks on an earlier version of
this paper.

References

Ariola, Zena, & Blom, Stefan. 2005. Skew and ω-Skew Confluence and Abstract Böhm
Semantics. Pages 368–403 of: Middeldorp, Aart, van Oostrom, Vincent, van Raams-
donk, Femke, & de Vrijer, Roel (eds), Processes, Terms and Cycles: Steps on the Road
to Infinity. Lecture Notes in Computer Science, vol. 3838. Springer Berlin / Heidelberg.

Ariola, Zena M, & Blom, Stefan. 2002. Skew confluence and the lambda calculus with
letrec. Annals of Pure and Applied Logic, 117(1-3), 95–168.

Ariola, Zena M, & Klop, Jan Willem. 1997. Lambda Calculus with Explicit Recursion.
Information and Computation, 139(2), 154–233.

Arnold, André, & Nivat, Maurice. 1980. The metric space of infinite trees. Algebraic and
topological properties. Fundamenta Informaticae, 3(4), 445–476.

Bahr, Patrick. 2009. Infinitary Rewriting - Theory and Applications. Master’s Thesis,
Vienna University of Technology, Vienna.

Bahr, Patrick. 2010. Abstract Models of Transfinite Reductions. Pages 49–66 of: Lynch,
Christopher (ed), Proceedings of the 21st International Conference on Rewriting Tech-
niques and Applications. Leibniz International Proceedings in Informatics (LIPIcs),
vol. 6. Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Bahr, Patrick. 2012a. Infinitary Term Graph Rewriting is Simple, Sound and Complete.
Pages 69–84 of: Tiwari, Ashish (ed), 23rd International Conference on Rewriting Tech-
niques and Applications (RTA’12). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 15. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik.

Bahr, Patrick. 2012b. Modes of Convergence for Term Graph Rewriting. Logical Methods
in Computer Science, 8(2).

Bahr, Patrick. 2014. Partial Order Infinitary Term Rewriting. Logical Methods in Com-
puter Science, 10(2).

Barendregt, Henk P, van Eekelen, Marko C J D, Glauert, John R W, Kennaway, Richard,
Plasmeijer, Marinus J, & Sleep, M Ronan. 1987. Term graph rewriting. Pages 141–
158 of: de Bakker A. J. Nijman, Philip C Treleaven (ed), Parallel Architectures and
Languages Europe, Volume II: Parallel Languages. Lecture Notes in Computer Science,
vol. 259. Springer Berlin / Heidelberg.

Barendsen, Erik. 2003. Term Graph Rewriting. Chap. 13, pages 712–743 of: Terese (ed),
Term Rewriting Systems, 1st edn. Cambridge University Press.

Barr, Michael. 1993. Terminal coalgebras in well-founded set theory. Theoretical Com-
puter Science, 114(2), 299–315.

Berry, Gérard, & Lévy, Jean-Jacques. 1977. Minimal and optimal computations of recur-
sive programs. Pages 215–226 of: POPL ’77: Proceedings of the 4th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages. New York, NY, USA:
ACM.

Patrick Bahr 52

Dershowitz, Nachum, Kaplan, Stéphane, & Plaisted, David A. 1991. Rewrite, rewrite,
rewrite, rewrite, rewrite, ... Theoretical Computer Science, 83(1), 71–96.

Goguen, Joseph A, Thatcher, James W, Wagner, Eric G, & Wright, Jesse B. 1977. Initial
Algebra Semantics and Continuous Algebras. Journal of the ACM, 24(1), 68–95.

Henderson, Peter, & Morris Jr., James H. 1976. A lazy evaluator. Pages 95–103 of:
Proceedings of the 3rd ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages. New York, NY, USA: ACM.

Hughes, John. 1989. Why Functional Programming Matters. The Computer Journal,
32(2), 98–107.

Kahn, Gilles, & Plotkin, Gordon D. 1993. Concrete domains. Theoretical Computer
Science, 121(1-2), 187–277.

Kelley, J L. 1955. General Topology. Graduate Texts in Mathematics, vol. 27. Springer-
Verlag.

Kennaway, Richard. 1992. On transfinite abstract reduction systems. Tech. rept. CWI
(Centre for Mathematics and Computer Science), Amsterdam.

Kennaway, Richard, & de Vries, Fer-Jan. 2003. Infinitary Rewriting. Chap. 12, pages
668–711 of: Terese (ed), Term Rewriting Systems, 1st edn. Cambridge University
Press.

Kennaway, Richard, Klop, Jan Willem, Sleep, M Ronan, & de Vries, Fer-Jan. 1994. On
the adequacy of graph rewriting for simulating term rewriting. ACM Transactions on
Programming Languages and Systems, 16(3), 493–523.

Kennaway, Richard, Klop, Jan Willem, Sleep, M Ronan, & de Vries, Fer-Jan. 1995. Trans-
finite Reductions in Orthogonal Term Rewriting Systems. Information and Computa-
tion, 119(1), 18–38.

Marlow, Simon. 2010. Haskell 2010 Language Report.
Peyton-Jones, Simon. 1987. The Implementation of Functional Programming Languages.

Prentice Hall.
Plasmeijer, Rinus, & van Eekelen, Marko C J D. 1993. Functional Programming and
Parallel Graph Rewriting. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc.

Plump, Detlef. 1999. Term graph rewriting. Pages 3–61 of: Ehrig, Hartmut, Engels,
Gregor, Kreowski, Hans-Jörg, & Rozenberg, Grzegorz (eds), Handbook of Graph Gram-
mars and Computing by Graph Transformation, Volume 2: Applications, Languages,
and Tools. River Edge, NJ, USA: World Scientific Publishing Co., Inc.

Terese. 2003. Term Rewriting Systems. 1st edn. Cambridge University Press.

	Introduction
	Motivation
	Contributions & Related Work
	Overview

	Infinitary Term Rewriting
	Sequences
	Metric Spaces
	Partial Orders
	Terms
	Term Rewriting Systems
	Convergence of Transfinite Term Reductions

	Graphs and Term Graphs
	Homomorphisms
	Isomorphisms & Isomorphism Classes

	A Simple Partial Order on Term Graphs
	A Simple Metric on Term Graphs
	Truncation Functions
	The Simple Truncation and its Metric Space
	Other Truncation Functions and Their Metric Spaces

	Infinitary Term Graph Rewriting
	Term Graph Rewriting Systems
	Convergence of Transfinite Reductions
	m-Convergence vs. p-Convergence

	Preservation of Convergence through Unravelling
	Metric Convergence
	Partial Order Convergence

	Finite Term Graphs
	Finitary Properties
	Ideal Completion
	Metric Completion

	Concluding Remarks

