667 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Edge Video Analytics: A Survey on Applications, Systems and Enabling Techniques

    Full text link
    Video, as a key driver in the global explosion of digital information, can create tremendous benefits for human society. Governments and enterprises are deploying innumerable cameras for a variety of applications, e.g., law enforcement, emergency management, traffic control, and security surveillance, all facilitated by video analytics (VA). This trend is spurred by the rapid advancement of deep learning (DL), which enables more precise models for object classification, detection, and tracking. Meanwhile, with the proliferation of Internet-connected devices, massive amounts of data are generated daily, overwhelming the cloud. Edge computing, an emerging paradigm that moves workloads and services from the network core to the network edge, has been widely recognized as a promising solution. The resulting new intersection, edge video analytics (EVA), begins to attract widespread attention. Nevertheless, only a few loosely-related surveys exist on this topic. The basic concepts of EVA (e.g., definition, architectures) were not fully elucidated due to the rapid development of this domain. To fill these gaps, we provide a comprehensive survey of the recent efforts on EVA. In this paper, we first review the fundamentals of edge computing, followed by an overview of VA. The EVA system and its enabling techniques are discussed next. In addition, we introduce prevalent frameworks and datasets to aid future researchers in the development of EVA systems. Finally, we discuss existing challenges and foresee future research directions. We believe this survey will help readers comprehend the relationship between VA and edge computing, and spark new ideas on EVA.Comment: 31 pages, 13 figure

    Enabling Technologies for Ultra-Reliable and Low Latency Communications: From PHY and MAC Layer Perspectives

    Full text link
    © 1998-2012 IEEE. Future 5th generation networks are expected to enable three key services-enhanced mobile broadband, massive machine type communications and ultra-reliable and low latency communications (URLLC). As per the 3rd generation partnership project URLLC requirements, it is expected that the reliability of one transmission of a 32 byte packet will be at least 99.999% and the latency will be at most 1 ms. This unprecedented level of reliability and latency will yield various new applications, such as smart grids, industrial automation and intelligent transport systems. In this survey we present potential future URLLC applications, and summarize the corresponding reliability and latency requirements. We provide a comprehensive discussion on physical (PHY) and medium access control (MAC) layer techniques that enable URLLC, addressing both licensed and unlicensed bands. This paper evaluates the relevant PHY and MAC techniques for their ability to improve the reliability and reduce the latency. We identify that enabling long-term evolution to coexist in the unlicensed spectrum is also a potential enabler of URLLC in the unlicensed band, and provide numerical evaluations. Lastly, this paper discusses the potential future research directions and challenges in achieving the URLLC requirements

    Space enabled smart Africa (SESA)

    Get PDF
    Urbanization in Africa is growing at a rapid pace and so is the population growth. Cities in Africa are struggling to cope with the demand that urban migration brings. For example, Africa has over 60% of her population located in the urban areas. These urban locations are sprawling slums due to the massive influx of people and inadequate housing systems. The United Nations, through the Sustainable Development Goals called for a sustainable cities and communities. This project is focus on using the smart city approach to tackle these urbanization issues. With the advancement in satellite application systems, smart cities can be enabled through space technology to address these urbanization and other issues affecting the African region. Integrating space technology, such as communication, Earth observation, and satellite aided position timing & navigation application systems and small satellite technology, to the smart city paradigm could provide sustainable ways in which problems like digital division, over population, natural disaster, etc. could be managed and eradicated

    Machine Learning-Aided Operations and Communications of Unmanned Aerial Vehicles: A Contemporary Survey

    Full text link
    The ongoing amalgamation of UAV and ML techniques is creating a significant synergy and empowering UAVs with unprecedented intelligence and autonomy. This survey aims to provide a timely and comprehensive overview of ML techniques used in UAV operations and communications and identify the potential growth areas and research gaps. We emphasise the four key components of UAV operations and communications to which ML can significantly contribute, namely, perception and feature extraction, feature interpretation and regeneration, trajectory and mission planning, and aerodynamic control and operation. We classify the latest popular ML tools based on their applications to the four components and conduct gap analyses. This survey also takes a step forward by pointing out significant challenges in the upcoming realm of ML-aided automated UAV operations and communications. It is revealed that different ML techniques dominate the applications to the four key modules of UAV operations and communications. While there is an increasing trend of cross-module designs, little effort has been devoted to an end-to-end ML framework, from perception and feature extraction to aerodynamic control and operation. It is also unveiled that the reliability and trust of ML in UAV operations and applications require significant attention before full automation of UAVs and potential cooperation between UAVs and humans come to fruition.Comment: 36 pages, 304 references, 19 Figure

    Markov decision processes with applications in wireless sensor networks: A survey

    Get PDF
    Ministry of Education, Singapore under its Academic Research Funding Tier

    Internet-of-Things Streaming over Realtime Transport Protocol : A reusablility-oriented approach to enable IoT Streaming

    Get PDF
    The Internet of Things (IoT) as a group of technologies is gaining momentum to become a prominent factor for novel applications. The existence of high computing capability and the vast amount of IoT devices can be observed in the market today. However, transport protocols are also required to bridge these two advantages. This thesis discussed the delivery of IoT through the lens of a few selected streaming protocols, which are Realtime Transport Protocol(RTP) and its cooperatives like RTP Control Protocol(RTCP) and Session Initiation Protocol (SIP). These protocols support multimedia content transfer with a heavy-stream characteristic requirement. The main contribution of this work was the multi-layer reusability schema for IoT streaming over RTP. IoT streaming as a new concept was defined, and its characteristics were introduced to clarify its requirements. After that, the RTP stacks and their commercial implementation-VoLTE(Voice over LTE) were investigated to collect technical insights. Based on this distilled knowledge, the application areas for IoT usage and the adopting methods were described. In addition to the realization, prototypes were made to be a proof of concept for streaming IoT data with RTP functionalities on distanced devices. These prototypes proved the possibility of applying the same duo-plane architect (signaling/data transferring) widely used in RTP implementation for multimedia services. Following a standard IETF, this implementation is a minimal example of adopting an existing standard for IoT streaming applications
    corecore