
Trung Van

INTERNET-OF-THINGS STREAMING OVER

REALTIME TRANSPORT PROTOCOL

A reusablility-oriented approach to enable IoT Streaming

Master of Science

Faculty of Engineering and Natural Sciences

Examiners: Prof. Jose Luis Martinez Lastra

University Instructor. Luis Enrique Gonzalez Moctezuma

October 2022



i

CONTENTS

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . 2

2. TECHNOLOGIES OVERVIEW AND ANALYSIS . . . . . . . . . . . . . 4

2.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Related work. . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Essential concepts . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Stream . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.2 Internet of Things - IoT . . . . . . . . . . . . . . . . . . . 6

2.2.3 IoT Streaming . . . . . . . . . . . . . . . . . . . . . . 6

2.2.4 Data involved in IoT Streaming . . . . . . . . . . . . . . . 7

2.2.5 AV vs Non-AV . . . . . . . . . . . . . . . . . . . . . . 7

2.2.6 Non-streaming vs Streaming . . . . . . . . . . . . . . . . 8

2.3 RTP/RTCP . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 RTP . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 RTCP . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.3 Functionalities . . . . . . . . . . . . . . . . . . . . . . 12

2.3.3.1 Multicasting . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.3.2 Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.3.3 Redundancy . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.3.4 Simulcasting . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.3.5 Pause and Resume . . . . . . . . . . . . . . . . . . . . . 21

2.3.3.6 Retransmission . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3.7 Synchronization . . . . . . . . . . . . . . . . . . . . . . 23

2.3.4 Drawbacks . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.5 Reliability . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 SIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 VoLTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.2 Functionalities and Architecture . . . . . . . . . . . . . . . 34



ii

2.6 Conference . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6.2.1 Components . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6.2.2 Operations . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6.2.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7 Pub Sub . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7.2 Primitives . . . . . . . . . . . . . . . . . . . . . . . . 41

2.7.3 Principles . . . . . . . . . . . . . . . . . . . . . . . . 42

2.7.4 Properties . . . . . . . . . . . . . . . . . . . . . . . . 42

3. IOT-STREAMING-SUITED REALIZATION. . . . . . . . . . . . . . . . 43

3.1 Using RTP/RTCP. . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 Built-in features. . . . . . . . . . . . . . . . . . . . . . 43

3.1.2 Synchronization . . . . . . . . . . . . . . . . . . . . . 44

3.1.3 Multiplexing . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.4 Redundancy . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.5 Simulcast . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.6 Multicast . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.7 Pause and Resume . . . . . . . . . . . . . . . . . . . . 56

3.1.8 Retransmission . . . . . . . . . . . . . . . . . . . . . . 58

3.1.9 Payload Type . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Using SIP. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.1 IoT PubSub system using SIP conference . . . . . . . . . . . 61

3.2.1.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.1.2 Components . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.1.3 Storing PubSub information in a Conference Object . . . . 62

3.2.1.4 SDP attributes for PubSub . . . . . . . . . . . . . . . . . 64

3.2.1.5 Topic-Conference URI mapping . . . . . . . . . . . . . . 64

3.2.1.6 PubSub operations . . . . . . . . . . . . . . . . . . . . . 65

3.2.1.7 A new SIP PubSub Event Package . . . . . . . . . . . . 67

3.2.2 System recording . . . . . . . . . . . . . . . . . . . . . 67

3.2.2.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.2.2 Findings and Design . . . . . . . . . . . . . . . . . . . . 69

3.2.2.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2.3 Constrained SIP . . . . . . . . . . . . . . . . . . . . . 70

3.3 On VoLTE. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.1 Benefits. . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.2 Reusing all three domains in a VoLTE network . . . . . . . . . 72

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



iii

4. PROTOTYPE IMPLEMENTATION . . . . . . . . . . . . . . . . . . . 75

4.1 About the prototyping process. . . . . . . . . . . . . . . . . . . 75

4.1.1 Time Distribution . . . . . . . . . . . . . . . . . . . . . 75

4.1.2 Feature Expansion . . . . . . . . . . . . . . . . . . . . 75

4.1.3 Tech Selection . . . . . . . . . . . . . . . . . . . . . . 75

4.2 IoT streaming . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.1 Target . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.2.1 Minimal Components . . . . . . . . . . . . . . . . . . . . 76

4.2.2.2 Operation Sequences . . . . . . . . . . . . . . . . . . . 77

4.2.2.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.2.4 Payload Type . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 IoT PubSub . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.1 Target . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.2.1 Components . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.2.2 Operation sequences . . . . . . . . . . . . . . . . . . . . 85

4.3.2.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 89

5. RESULTS AND DISCUSSIONS . . . . . . . . . . . . . . . . . . . . 91

5.1 IoT Streaming System. . . . . . . . . . . . . . . . . . . . . . 91

5.2 IoT Pubsub System . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 Other insights . . . . . . . . . . . . . . . . . . . . . . . . . 96

6. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A. Technical details . . . . . . . . . . . . . . . . . . . . . . . . . .100

A.1 RTP redundancy functionality . . . . . . . . . . . . . . . . . . .100

A.2 RTP pause/resume functionality . . . . . . . . . . . . . . . . . .100

A.3 RTP Inter-Destination Multimedia Sync . . . . . . . . . . . . . . .101

A.4 VoLTE . . . . . . . . . . . . . . . . . . . . . . . . . . . .104

A.5 Conference . . . . . . . . . . . . . . . . . . . . . . . . . .105



iv

ABSTRACT

Trung Van: Internet-of-Things Streaming over Realtime Transport Protocol
Master of Science
Tampere University
Factory Automation and Robotics
October 2022

The Internet of Things (IoT) as a group of technologies is gaining momentum to become a
prominent factor for novel applications. The existence of high computing capability and the vast
amount of IoT devices can be observed in the market today. However, transport protocols are also
required to bridge these two advantages.

This thesis discussed the delivery of IoT through the lens of a few selected streaming protocols,
which are Realtime Transport Protocol(RTP) and its cooperatives like RTP Control Protocol(RTCP)
and Session Initiation Protocol (SIP). These protocols support multimedia content transfer with a
heavy-stream characteristic requirement.

The main contribution of this work was the multi-layer reusability schema for IoT streaming over
RTP. IoT streaming as a new concept was defined, and its characteristics were introduced to clarify
its requirements. After that, the RTP stacks and their commercial implementation-VoLTE(Voice
over LTE) were investigated to collect technical insights. Based on this distilled knowledge, the
application areas for IoT usage and the adopting methods were described.

In addition to the realization, prototypes were made to be a proof of concept for streaming
IoT data with RTP functionalities on distanced devices. These prototypes proved the possibility
of applying the same duo-plane architect (signaling/data transferring) widely used in RTP imple-
mentation for multimedia services. Following a standard IETF, this implementation is a minimal
example of adopting an existing standard for IoT streaming applications.

Keywords: IoT, Streaming, real-time, RTP, RTCP, SIP, SDP, VoLTE, eMTC, 5G, reusability, stan-
dardization, pub/sub

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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1. INTRODUCTION

1.1 Background

In recent years of IoT evolution, the data generated by IoT applications and the available

Audio Visual (A/V) streaming technologies have formed a strong association. From the

IoT perspective, stream liked data is becoming more ubiquitous for some classes of de-

vices. This rising can be seen in the adoption of new applications that require time-series

data like healthcare[1], smart agriculture [2], or robotics [3] to name only a few. Regarding

the device number, the existing and incoming IoT applications will add up to 14.7 billion

M2M connections in 2023 based on Cisco Annual Report [4]. In addition, technology-

enabling factors discovered in different domains, like computing, data storage, and data

transmission, can support the streaming process of IoT data. To summarize, regarding

this high temporal resolution IoT data, there exist:

• The demand to invest in this topic.

• The numerous sources to collect data from.

• Technologies to collect, store and process this kind of data.

Approaching from the opposite direction, one can also observe the potential of applying

what has been invented/invested in multimedia streaming for IoT. 82% of all consumer

Internet traffic is for video traffic according to Cisco [5], and audio/visual content con-

sumption can be easily found everywhere within the IP network coverage. These facts

prove that a significant investment has been placed into the network infrastructure and

the software/protocol inventions for multimedia streaming. Reusing this investment is in

the interest of multiple parties, for example, the Internet Service Providers, Network Ser-

vice Providers, and Network End Users. IoT developers also benefit from the reusing

strategy thanks to a short roll-out time materializing their ideas into actual products. In a

word, multimedia streaming offers IoT streaming reusability in different aspects like infra,

software, protocols, regulatory procedures, and potential customers...

The motivation for this work was based firmly on the explained association. This the-

sis attempted to investigate what is provided by multimedia streaming that can satisfy the

requirements of IoT streaming. Among many protocols involved in the multimedia stream-

ing world, Realtime Transport Protocol (RTP) and the others related to its operation were
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chosen to be in focus.

1.2 Problem statement

The thesis aimed to answer the following questions:

Question 1 How can the RTP built-in features and extensions be utilized for IoT

Streaming?

Question 2 How the A/V infrastructure can be reused for IoT Streaming?

Question 3 How the A/V Conference Services can be used to realize an IoT Pub-

Sub Service?

Question 1 focused on the technical details, hence required deep-diving analysis on

the functionalities of the chosen protocols. Each RTP functionality was described with

real-world use cases. Question 2 provided insights into the feasibility and benefits of

multiple parties if A/V streaming infrastructure can be used for IoT streaming. As PubSub

is a widely-used and powerful paradigm in the field of IoT, Question 3 was added as a

solution to provide PubSub-liked behaviors for a system given the available functionalities

from the A/V Conference Services.

As can be seen from these questions, the priority of this thesis was to enable IoT Stream-

ing using the same technology and infrastructure as A/V streaming. Hence, to better

narrow down the context of this thesis and reduce confusion, the following questions or

claims below were considered out of scope:

• Whether RTP can be used to transport non-A/V data?

• Is RTP a better fit for IoT Streaming compared with other IoT dedicated protocols?

1.3 Thesis structure

This thesis followed a rigorous structure to ensure a comprehensive and insightful ex-

amination of the research questions. The structure was designed to provide a clear and

logical progression of the research, from the initial rationale to the conclusions.

Section 1 set the foundation for the thesis by presenting the research questions and their

significance in the context of the IoT streaming landscape. This section established the

need for the research and the study’s objectives, providing a road map for the rest of the

thesis.

Section 2 was devoted to the related work, the involved specifications, and the literature

review, which served two critical purposes. Firstly, it allowed the author to position their

work within the broader academic discourse, highlighting the thesis’s contribution. Sec-

ondly, it gave the reader an understanding of the fundamental concepts and technical
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details of the chosen technologies, laying the groundwork for the subsequent sections.

Section 3 was dedicated to demonstrating the IoT use cases for the selected technolo-

gies. This section illustrated how the technologies could be applied in various IoT scenar-

ios, highlighting their versatility and potential.

Section 4 presented the prototypes developed to showcase the practical realization of the

technologies. This section demonstrated the feasibility and effectiveness of the proposed

approach and provided a tangible illustration of the thesis’s contribution.

Section 5 analyzed the results of the prototypes and provided a comprehensive discus-

sion of the findings.

Finally, in Section 6, the thesis’s achievements were summarized, and possible future

work was identified. This section concluded the thesis by providing a comprehensive

overview of the study’s contributions and implications for future research.

Overall, the structure of the thesis provided a robust and comprehensive framework for

the research, allowing the author to thoroughly investigate the research questions and

present their findings clearly and concisely.
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2. TECHNOLOGIES OVERVIEW AND ANALYSIS

2.1 Literature review

In this section, some works from other researchers were mentioned to provide an overview

of the research area and clustered into different groups in the Related work to support

the contribution claims in the following Summary.

2.1.1 Related work

In recent years, IoT has generated many exciting topics in its fusions with multimedia and

streaming technology.

Internet of Multimedia Things (IoMT), as defined in [6], is a subclass of IoT that requires

more resources (due to faster processing speed, larger memory, and higher bandwidth

consumption) to meet the additional requirements of Quality of Service (QoS) and Qual-

ity of Experience (QoE). Regarding the audio context of IoMT, IoAuT (Internet of Audio

Things) was coined to conveniently discuss the interaction and cooperation between Au-

dio Things [7] over the Internet. The same research group also introduced the Internet of

Musical Things(IoMusT)[8] as a subclass of IoT dedicated to serving music-related pur-

poses. In [9], IoT and a telephony service called Voice over IP have been integrated to

achieve multiple goals, like introducing a more straightforward user interface or support-

ing applications involving human-human interaction. The group of authors referred to this

paradigm as VIoT. Regarding stream processing for IoT, the discussion is usually about:

architectural decisions, as depicted in "The Lambda and the Kappa" [10] or real-time

processors/frameworks comparison on the application level like between Apache Spark,

Flink, and Storm [11].

There are also some intersecting works of IoT and RTP/RTCP protocol. For example, the

survey in [12] provided a comprehensive overview of various streaming protocols (includ-

ing RTP/RTCP) for IoT data transmission. In [13], the authors delivered two contributions:

using additional fields in the RTP/RTCP header to provide information about the IoT en-

vironment and dividing a multimedia session into smaller sessions. In addition, they also

proposed an adaptive transmission control mechanism based on the information from the

newly defined headers to avoid stream flooding problems. The experiments in [13] and
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[14] showed that the IoT variant of RTP outperformed the standard version for multime-

dia transmission. Three session layer protocols: MQTT-SN, CoAP, and RTP, have been

compared in [15] for audio, speech, and video transmission. From the experimental anal-

ysis, CoAP and RTP both demonstrated the lowest application packet loss. However, the

RTP/SIP stack was claimed to be less supported in IoT firmware than the others. SIP

has also been investigated as an essential protocol in the signaling plane of many RTP

implementations. From work in CoSIP-[16] and Lightweight SIP-[17], the group of authors

demonstrated the possibility of reducing the packet size while securing the reusability of

SIP application-layer libraries.

2.1.2 Summary

From the related work, it can be seen that the synergy between IoT and multimedia

streaming has been investigated using different approaches. One was to start with multimedia-

enabled devices and then form a network using such devices with connectivity enabled.

This approach can be seen in IoMT and IoMusT. Similarly, protocols like IoT-RTP/IoT-

RTCP, while operating under a constrained environment, were still used to transmit only

multimedia data in the mentioned experiments. Alternatively, an existing IoT application

can be upgraded by adding a media function, as in VIoT. Another approach would be

introducing an IoT-adapted and interoperable version for current tech, as done for CoSIP.

In addition, these researches were concentrated on bench-marking while real-world ap-

plications were usually out of scope.

These observations led to two ideas for this thesis contribution. First, by expanding the

usage of RTP over conventional A/V streaming, there was a significant potential to utilize

RTP to deliver IoT data (not just device condition) and take advantage of the protocol’s

existing functionalities. Second, to support multimedia streaming infra re-purposing, there

should be an application-focused and illustrative study to connect the commercial RTP

implementing systems and various innovative use cases coming out from the IoT world.

2.2 Essential concepts

This section provides the essential concepts of IoT and Stream that served as elementary

ideas for the following discussions.

2.2.1 Stream

In this document, a stream is used to refer to a sequence of events with the following

properties:

Unbounded : The number of events occurring within a period is theoretically unbounded. There
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could be zero to an infinite number of events within a period. However, due to the

device’s limitations, an RTP stream has a limit of sampled events. The unbounded-

ness, however, is helpful to emphasize that a stream should be able to transmit a

large number of events.

Time-serial : Each event is associated with a time value. The unitary period between two con-

secutive time values in a stream defines the temporal resolution of that stream.

An application considered real-time if events happen within a unitary period doesn’t

have any actionable consequence on the application. The requirement for this prop-

erty depends on the application. For example, if the temperature of a room is less

likely to fluctuate in the magnitude of 10°C within 0.1 seconds, any application that

can update the temperature more often than 0.1 seconds can be considered real-

time (for that specific use case). The time-serial property also requires a linear and

monotonic time value to be the reference.

Unidirectional The direction of a stream is only from a source to a destination. Two endpoints can

have bidirectional streaming communication, requiring two separate streams.

2.2.2 Internet of Things - IoT

In the Y2060 Recommendation [18] from the International Telecommunication Union, IoT

was defined as "A global infrastructure for the information society, enabling advanced ser-

vices by interconnecting (physical and virtual) things based on existing and evolving inter-

operable information and communication technologies". A Thing in the IoT is an object of

the physical/information world with capabilities of identification within and integration into

the communication networks. Due to its massive number and diversity of devices, IoT

intersects with multiple technology concepts: Machine-to-Machine(M2M) or Machine-to-

People(M2P) in communication, Wireless Sensor Networks (WSN) in connectivity or Big

Data in data management and analytics. In addition, while constraint devices are often

thought of for IoT applications, IoT devices are not necessarily resource-limited. There-

fore, in this thesis work, IoT is used with its broad definition as in [18], which does not

narrow the scope of this term to only constraint devices.

2.2.3 IoT Streaming

In this thesis, IoT Stream is defined as a sequence of packets containing IoT data as

described in 2.2.4, with the characteristics defined in 2.2.1. IoT Streaming involves a set

of operations related to an IoT Stream.
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2.2.4 Data involved in IoT Streaming

As the approach of this thesis is oriented toward re-using multimedia service infra for

IoT purposes, the term A/V data and IoT data is used frequently, so they are defined

in this sub-section for better clarity. A/V data includes audio and video that have been

used ubiquitously and are well-standardized. Some examples of A/V data standardization

could be in H.264 format for video or Opus format for audio. Because these data types are

mainly used for human consumption, they can also be referred to as media, conventional

media, multimedia, or human-consuming data. IoT data is usually an umbrella term for

any data transmitted between IoT devices, resulting in a broad definition. This thesis uses

the term IoT data for any type other than conventional audiovisual data. Some examples

of IoT data can be:

• The light intensity measurements of photo-receptor in lumen(lm).

• The commands to instruct the autonomous vehicles.

• The multiplexed telemetry values (altitude, received signal power, current power...)

from a drone.

• The multiplexed values from both video signal and the operational telemetry of a

robot arm (joint configuration, tools orientation, motor speed...).

Some examples of data that is not IoT data defined above are:

• Video streams from a surveillance system.

• Music streams from an entertainment platform.

• A/V streams being multicasted in a conference application.

2.2.5 AV vs Non-AV

A large section of the current streaming use cases is to support AV content delivery, as

discussed in the Background Section. To reuse the same infrastructure for non-AV data, it

is helpful to locate some differences between them. AV data is designed to deliver content

for human consumers. Hence QoS alone can not be sufficient for the quality assessment.

AV content would require, in addition to QoS, the QoE and potentially QoP (Quality of Per-

ception)[19] as investigated in [20]. Unlike AV data, Non-A/V data can not be assessed by

human perceiving factors because the end user is often not human. The effort has been

put from both industrial (ITU Technical Specification D4.4 [21]) and research[22] areas

to specify the data quality management for IoT/non-AV data. Time-to-content is another

factor that differentiates between AV and non-AV. Human user experience is strongly af-

fected by the time between user interactions and the delivered content, as insight from this

announcement[23]. A sufficient time-to-content and a reliable latency during the usage

time are required for AV data. Because machines are the primary users of non-AV data,
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latency is less crucial for some devices. However, reducing latency benefits other de-

manding applications, like Time Critical Communication. In addition, AV content is likely

to be bulkier because AV-enabled end devices like smartphones or laptops are already

sufficient for resource-consuming tasks.

2.2.6 Non-streaming vs Streaming

In this thesis, Streaming refers to a data distribution method that was not Request/Re-

sponse based, and implied the following properties:

• The being interested changes are constantly updated with no query made in ad-

vance.

• The Streaming-based setup and configuration for transmission are expected to be

less frequent than the Non-streaming.

• As packets are sent more frequently, the size of each Streaming packet is expected

to be smaller than one from the Request/Response model, which may require data

aggregation or contain a bulkier header.

• Streaming model is capable of providing higher time resolution data if needed.

2.3 RTP/RTCP

RTP is the network protocol to deliver audio and video content over IP networks. In ad-

dition, VoLTE networks employ RTP as the de facto protocol on their data-transferring

plane. Therefore, it is necessary to provide some technical background before further

reusability analysis. This section demonstrates RTP and its controlling complement pro-

tocol RTCP. Several central concepts of an RTP/RTCP are also introduced to provide the

context for further discussion. The third subsection is dedicated to some currently stan-

dardized and popular functionalities from the IETF for RTP/RTCP. In the last subsection,

some drawbacks of the RTP/RTCP stack are listed and discussed.

2.3.1 RTP

RTP is a transport protocol on top of IP/UDP designed for time-sensitive services speci-

fied by IETF(Internet Engineering Task Force) in RFC3550. The implemented system is

expected to be robust on top of an unreliable network. From the design perspective, RTP

protocol follows two main philosophies of application-level framing and end-to-end.

The first philosophy is based on the premise that the application using the transported

data should be the entity to decide how to transport those data. In this case, an appli-

cation can perform different behaviors such as retransmission, unchecked continuation
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with less-than-perfect data, or sending new data just for fixing purposes. Consequently,

solutions like a strictly defined transport protocol or retransmission by default protocol are

insufficient for the aforementioned behaviors. Therefore, the application layer and the

transport layer must cooperate closely with the aim that the transport layer processes the

transmitted data while preserving boundaries from the Application Data Unit (ADU), and

the application is exposed to the transmission error to react upon.

By applying the second philosophy, the intelligence is shifted towards the endpoints to

form a system composed of network-aware end devices and dumb networks. Because

the endpoints offload some work from the network, its resources focus on networking

tasks and enable more participants.

An RTP packet consists of a fixed header, a list of contributing sources that could be

empty, and a payload. The format of an RTP header frame can be seen in Figure 2.1

below.

Figure 2.1. RTP fixed header. Adapted from [24]. One row is 32 bits

Among the illustrated fields, only the CSRC - the list of identifiers for the sources con-

tributing to the delivered payload - is optional. The first three rows in Figure 2.1 must be

the beginning of any valid RTP packet. The compulsory fields and their meanings can be

summarized as:

V version of the current RTP is 2 (1-bit).

P padding indicates if padding was applied on the packet to maintain a fixed size for

all packets (1-bit).

X extension indicates if there is an extension for the RTP header applied on this

packet (1-bit).

CC CSRC count holds the number of CSRC identifiers if there are in the packet (4-bits).

M marker has different interpretations depending on the packet profile and is usually

used to mark the packet corresponding to a significant event (1-bit).
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PR payload type indicates the format of this RTP payload via the agreed RTP profile

(7-bit).

sequence number is an increasing monotonic sequence corresponding to the being

sent RTP packets to support packet loss detection (16-bit).

timestamp marks the sampling instant of the data in the payload (32-bit).

SSRC source ID is used to classify packets from different sources for synchronization.

Thanks to the fixed fields of an RTP header, several features can be considered evident.

The data type of RTP packets during a session is deterministic and can be either static for

some predefined types or dynamically assigned in the case of more recent types. Thanks

to the timestamp, packet reordering, and delivery monitoring can be implemented, al-

though RTP does not provide any QoS or guaranteed delivery as out-of-the-box features.

RTP also inherits supported features from the chosen underlying protocol, like multicast.

Devices can utilize the SSRC fields to differentiate packets from multiple sources in the

de-multiplex phase. If it requires additional payload-format-independent fields to support

the desired function, those fields can be included in the header extension right after the

default fixed header with the X-field set to one. The additional fields must fit into only one

extension whose format can be seen in Figure 2.2. If there exists an RTP implementation

that does not support a specific extension, the RFC3550 specified such implementation

to ignore the extension header to maintain the interoperability of the system.

Figure 2.2. RTP extension header format. Adapted from [24]. One row is 32 bits

In an RTP deploying system, a participant is an entity that is reachable via a signaling

address. Accordingly, an RTP session, a central concept of RTP, is defined as a group

of participants interacting with each other via RTP. An RTP session can be dynamically

configured as unicast or multicast. A participant is allowed to engage in multiple sessions

at the same time.

2.3.2 RTCP

To provide control and monitoring for RTP operation in the data transfer plane, RTCP

is often implemented jointly within the same system. From [24], the protocol on which

RTP/RTCP will operate must support multiplexing control and data packets to implement

RTCP. The control functions of RTCP can be listed as follows:
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• Providing data distribution feedback to senders via receivers’ reports which can be

used for flow and congestion control.

• Providing a transport-layer identifier for streams of the same source called canoni-

cal name (CNAME). This ID is also more persistent than the SSRC, which could be

altered in case of ID conflicts or program reset.

• Providing a global overview of the RTP session as the control information is dis-

tributed to all participants.

• Providing optional and minimal information for session control like email, participa-

tion ID, and location.

RTCP packets are exchanged periodically in comparison with the event-based character-

istic of RTP. The format of an RTCP packet is illustrated in Figure 2.3

Figure 2.3. Common RTCP packet format. Adapted from [25]

Among the common fields, the V and P fields (the first 3 bits) gain the exact definition as

in an RTP header. The following 5 bits are used to either indicate the number of received

reports (RC) included in a packet or the number of SSRC/CSRC chunks if the packet is of

type SDES. The field PT is used to indicate the predefined types of component packets.

The last 16 bits denote the payload length of an RTCP compound packet. The control

information conveyed via RTCP includes:

SR (PT=200) Sender Report contains the statistics from the active sender(s).

RR (PT=201) Receiver Report contains the statistics non-active sender(s).

SDES (PT=202) Source Description describes the source of being sent payload.

BYE (PT=203) indicates the end of participation from a participant.

APP (PT=204) could contain various types of payload depending on specific applica-

tions.

A sent RTCP packet must always be compound, i.e., an RTCP packet must be composed

of at least two individual packets listed above. The first component packet must be an SR

or an RR packet to facilitate their RTCP header for the compound packet.

Despite the exact distribution mechanism, the two protocols use two distinguished types
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of packets to achieve function modularization, simplicity, and efficiency. The modulariza-

tion allows the RTP/RTCP to support the loosely-coupled control for multicast use cases.

Control-related information could be accessed without exposing the actual data and, on

top of that, could be shared among participants or dedicated controlling third-party enti-

ties. The demultiplex functionality is passed on to the transportation protocol to maintain

simplicity. In addition, an implementation also performs more efficiently if similar pro-

cessing steps are not scattered over multiple layers [26], which was also mentioned as

Integrated Layer Processing in Clark and Tennenhouse’s work [27].

2.3.3 Functionalities

2.3.3.1 Multicasting

The need to send identical data to multiple participants is ubiquitous in communication

networks and is usually called group communication. The transmission within this type

of communication could be one-to-many or many-to-many. While using many unicast

streams could also provide, to a degree, the function of group communication, it can be

seen that the unicast solution consumes more resources like network bandwidth and de-

vice memory compared with multicast. In RTP, the multicast distribution is only provided if

the underlying network supports it. In this thesis work, RTP multicast resembles the RFC

IP multicast definition [28]: transmitting RTP packets to a group of interested participants

or a multicast group.

Currently, there are two models of multicast in RTP: Any Source Multicast (ASM) and

Source Specific Multicast - (SSM). The terminologies to distinguish those two models can

be found in Table 2.1. In ASM, each participant only specifies its multicast group; hence

traffic from one participant in a group is always distributed to the rest of that group. While

ASM provides the many-to-many by default, it consumes more resources and is highly

complex to maintain such a multicast function. Furthermore, while some applications

demand many-to-many communication, others may not and waste a large part of the

mesh connection. For that reason, in cases where the transmission is one-to-many and

predominantly unidirectional on the data transfer plane, SSM is a more efficient solution.

If SSM is applied, each participant specifies a source in addition to the multicast group.

Accordingly, that participant only receives traffic from the specified source address.
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Service Model: ASM SSM

Multicast Abstraction: group channel

Identifier: G S, G

Receiver Operations: Join, Leave Subscribe, Unsubscribe

Table 2.1. ASM vs SSM terminologies

For a clearer explanation, some illustrative terminologies are needed for describing SSM:

Distribution Source is the only component that distributes RTP packets to the receivers.

Original Sender is an endpoint that originates RTP packets in a session. This definition is similar

to a source in RFC3550 or the Media Sender in RFC5760 [29]. Still, this term is

needed to explicitly separate this source from Distribution Source and generalize

the data type of RTP packets.

Feedback Target is the logical component to whose address the RTCP reports from receivers are

directed. This feedback information is unicast. A receiver can be associated with

more than one Feedback Target.

Figure 2.4. SSM system architecture with integrated Feedback Target

The Feedback Target(s) can be integrated into the same entity with the Distribution Source

(Figure 2.4), but this architecture is not compulsory. There are various topologies for



14

organizing Feedback Targets, such as disjoint architectures: parallel, hierarchical, or in a

chain, but the coherent RTCP information sharing between the Feedback Targets and the

Distribution Source must be satisfied as an essential requirement. Figure 2.5 illustrates

an example system architecture of an RTP implementation with disjoint Feedback Target

instances connected in parallel to the Distribution Source. To suit various topologies

using unicast RTCP feedback, a system could use the "Simple Feedback Model" or the

"Distribution Source Feedback Summary Model" as mentioned in Section 6, and Section

7 of [29]. Generally, the first option proposes all RTCP packets arrived at a Feedback

Target are kept intact and relayed to the Distribution Source while in the second option,

the Feedback Target extracts the information from RTCP packets and sends only the

summary version to the Distribution Source.

Figure 2.5. SSM system architecture with disjoint and parallel Feedback Targets

2.3.3.2 Multiplexing

Multiplexing is an operation in which data from multiple inputs (packets from different

sources) are aggregated onto some common medium to be transmitted. The multiplexed

packets share temporal(receiving at nearly the same time) and spatial(receiving at the

same address:port) relationships. In this thesis work, RTP multiplexing means transmit-
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ting multiple RTP streams using a single 5-tuple. Because packets from various streams

are received at the same address and port, a reversing operation, so-called demultiplex-

ing, of packet sorting based on their original streams must be done

An endpoint may consider supporting multiplexing for different motivations, and three

examples could be:

• A single physical source supports various streams of varying data types, and one

wants to preserve that physical binding during the transmission phase

• A source with simulcast capability is set to transmit multiple resolution data into one

port

• Re-transmitted, or Forward Error Correction packets are sent using the same means

as the original packets.

Each individual among the multiplexed entities(packets) must be addressable, which means

it can be separated after the multiplexing and transmission process. Figure 2.6 illustrates

a simple example of multiplex-enabled RTP implementation. In that example, packets

from multiple sources are gathered, arranged, and sent at a multiplexing point. On the

other end of the stream, a demultiplexing point operates the opposite function to classify

and forward packets based on their sources.

Figure 2.6. An example diagram of multiplex

Since its establishment, RTP has been updated with many extensions to enhance this

grouping behavior, and as a summary, RFC8872 [30] divided the available binding solu-

tions into categories as below:

• By signaling means:

– RTP/RTCP based: using the built-in IDs of RTCP like CNAME in SDES.

– Out-of-band signaling based: using the identifiers and descriptions in the sig-

naling plane, for example, with SDP.
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• By binding scope:

– Binding streams within an RTP session using SSRCs or SSRC-multiplexing.

– Binding streams across multiple RTP sessions or Session-multiplexing

For SSRC-multiplexing, each source produces an RTP stream identified by the SSRC

field. The multiplexing function is already agreed upon in advance during the session

negotiation. The sender sends multiple RTP streams as a single multiplexed stream in

an RTP session using the same 5-tuple value. On the receiver’s side, packets are sorted

into different RTP streams using the SSRC field in each RTP header.

The Session-multiplexing slightly differs from the RTP multiplexing definition at the begin-

ning of this section. Related RTP streams are transmitted in different RTP sessions using

different values of ports and addresses. Consequently, Session-multiplexing preserves

only the temporal relationship of the multiplexed streams. Session-multiplexing requires

an additional mechanism to identify sessions and bind multiplexed sessions together.

Depending on the specific requirements for a system deploying RTP, one can decide to

implement RTP functionalities following one of the designs in Table 2.7
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Figure 2.7. Multiplex designs overview

2.3.3.3 Redundancy

Because RTP is developed on top of UDP, it is by design unreliable. An intuitive so-

lution is to send the additional versions of that very packet. This approach is called

redundancy. Regarding the packet content, the redundancy-based solution could use

duplicated or non-identical redundant packets. The redundancy principle is built upon

the small probability that both the original packet and the redundant could be lost during

transmission. Sending redundant packets requires an opposite process of classifying the

received packets to maintain the uniqueness of each packet is called "deduplication" or

"streams merging".

In RFC7198 [31], Begen and Perkins defined the elementary concepts for RTP redun-

dancy and suggested a few relevant considerations for implementation. The discussed

solution in this document is passive and duplication based. The other solutions are

demonstrated in later sections of this thesis. An important definition is Dual Streaming
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which refers to "a technique that involves transmitting two redundant RTP streams (the

original plus the duplicated) of the same content". Using either of the streams is sufficient

for the receiver to playback in case there is no packet loss in the selected stream. It was

also mentioned in RFC7198 that increasing the number of redundant streams to more

than two would result in an out-weighted overhead over the protection benefits. Two RTP

streams are evaluated to be equal in the routing plane if the IP addresses of their sources

and destination are equal.

There are currently two distinguished types of RTP redundancy, namely Temporal Re-

dundancy and Spatial Redundancy. In both cases, the RTP duplicated packet contains

the same timestamp and sequence number as the original; hence the receivers could

operate the deduplication using these identical fields. More details information, like the

association between the original and redundant RTP stream or the RTCP operation for

redundancy, can be found in Appendix A.1

Temporal redundancy

Figure 2.8. Temporal redundancy visualization

The first variation is designed to cope with transient loss, i.e., the loss is abrupt, sudden,

and not likely to happen again on the same transmission path. Operating within the same

session (Figure 2.8), the duplicated streams utilize the same path (same source/destina-

tion address:port pairs) as the original stream. However, their SSRCs are different to pro-

vide minimal source identification and thus conform to the requirement specified in [24].

Accordingly, the SDP content must include the attribute line "a=ssrc-group:DUP" fol-

lowed by the corresponding SSRCs and another attribute "a=duplication-delay:<value>"
was also added to support a receiver to allocate resource for its buffer. Temporal redun-

dancy, as described above, can also be viewed as overlapping a delayed version of the

original over the same session and stream configuration (except the SSRC).

Spatial redundancy
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Figure 2.9. Spatial redundancy visualization for inter-session scenario

The second variation of redundancy is a solution aiming to solve a more persisting packet

loss. The duplicate and original streams are sent from the source and destination using

different pairs of address:port, indicating redundancy in several streaming paths. As a

result, those two streams are allocated in different sessions. The SSRC values of the

original and duplicate source, randomly generated for each, are hardly identical. This

then allows one to use either "a=group:DUP" or "a=ssrc-group:DUP" to specify the

original-duplicate association between steams. The former option is not available in tem-

poral redundancy and officially stated in RFC7104[32] as SDP Duplication Grouping Se-

mantics.

To summarize, both variations provide bounded delay and deterministic maximum band-

width consumption as the redundant transmission is negotiated in advance. The number

of participants experiencing the packet loss does not affect the recovering behavior, and

no retransmission signal is required to implement redundancy. To be noticed, redundancy

is not applicable for scenarios where the leading cause of packet loss is congestion be-

cause more redundant packets will stress the network even more. The recommended

use cases for RTP redundancy are temporary link/network outages, given a precondition

that the redundant traffic is within the network’s capability.

2.3.3.4 Simulcasting

Simulcast is a blending of two terms, "simultaneous" and "broadcast," and got popular-

ized by broadcasting services like television. In telecommunication, simulcast is defined

as sending different representations of the same content over the same medium simul-

taneously. RFC8853 [33] defines simulcast function support for RTP. The particularly

focused topology consists of three components:

• A source can generate streams of different encoding schemes.



20

• An intermediary component receives different encoded streams. It then forms a

suitable set of streams for each participant and forwards the selected set of streams

to the participants.

• A participant receives the forwarded streams and has a specific requirement for

that stream.

The second component from the list corresponds to the RTP mixer specified in RFC7667.

Two approaches are mentioned in RFC8853 to implement stream adaptive forwarding,

which can be used for simulcasting: Transcoding and Switching.

Transcoding

This approach requires sufficient resources from the mixer as multiple demanding opera-

tions are assigned for a mixer, which must be able to:

• Decode the received streams.

• Encode the most optimal stream from the decoded streams for each and all of its

receivers (participants).

• Forward the encoded streams to each participant.

While transcoding provides the highest adaptive ability for each receiver, some chal-

lenges/drawbacks exist to using Transcoding. The decoding and re-decoding are compu-

tationally expensive with a significant additional delay. A mixer is expected to keep track

of the requirement of each receiver for the correct output format and the format of each

received(input) stream. Another drawback is the risk of exposing transmitted content at

those intermediary points in the network.

Switching

In the Switching approach, there is no intermediate decoding-encoding in the mixer. In-

stead, a forwarded stream is formed using a subset of the received streams. A less

complicated operation results in a minor end-to-end delay, less pervasive content access,

and resource demands on a mixer. These benefits come with the price of less adaptive

mixing and higher network consumption.

In the signal plane, the simulcast function is described using SDP with an additional at-

tribute "a=simulcast". This new attribute also provides the number of simulcast streams

plus their potential alternatives in each direction ("send" or "receive"). The chosen for-

mats of these streams are restricted using the restriction identifier ("a=rid") attribute of

SDP defined in the RFC8851[34].

The scope of RFC8853 is limited to simulcast streams within one RTP session on top of

one transport flow. However, the RTP taxonomies in [RFC7656] [35] suggest that more

than one transport flow could be involved in a simulcast operation. Future work can extend
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the function of simulcast to multiple RTP sessions/transport flows and aim for better QoS

monitoring and robustness of a streaming application.

2.3.3.5 Pause and Resume

In many real-time applications, there are scenarios even when data packets are not ac-

tively sent between participants, the whole setting for communication is still wished to

persist. This persistent setting allows participants to continue their transmission imme-

diately. In streaming terms, a system must be able to pause and resume its streams

to acquire such behavior. Pause-resume functions are ubiquitous, especially in recent

multimedia applications, for example: a user pauses the being streamed video later on

resumes that video with a modified setting, a participant in a conference temporarily re-

moves his video from the presentation or a mixer entity pauses a subset of its simulcast

streams in response to changes in network resources.

RFC7288 [36] describes the related aspects of an RTP/RTCP implementation to acquire

pause-resume functionalities. To signal pause-resume behaviors, an implementation uti-

lizes Feedback Messages (FM) which conforms to the Codec Control Message (CCM)

specified in RFC5104 [37]. The defined Feedback Messages are listed in Table 2.2.

These FMs are called blocks of Feedback Control Information and can form an AVPF

RTCP feedback message as defined in RFC4585-"Extended RTP Profile for RTCP-Based

Feedback" [38]. Thanks to this composability, a single message can carry many control

information for one or more senders.

Message Type (RFC7728) FM Category (RFC5104) Function description

PAUSE Request Describes a request from

a receiver to a sender to

pause a stream

PAUSED Indication Sent by a sender to a re-

ceiver to indicate whether a

stream is paused

RESUME Request Describes a request from a

receiver to to a sender to

resume a stream

REFUSED Notification Sent by a sender to a re-

ceiver to indicate a PAUSE

or RESUME is not to be

processed

Table 2.2. Pause-resume Feedback Messages
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Each message is identified with a PauseID (Section 5.2 of [36]) following the design of

a numbering sequence. The value of a PauseID is incremented by one in modulo arith-

metic every time a new "pause and resume operation" is satisfied. A "pause and resume

operation," in its turn, is recorded once a paused stream in the RTP sender is resumed.

Logic in the RTP stream sender is organized using four distinguished states: Playing (or

Sending), Pausing, Paused, and Local Paused, as seen from Figure 2.10.

Figure 2.10. RTP Pause States in Sender. Adapted from [36]

The basic usage of pause-resume can be seen in Appendix A.2

2.3.3.6 Retransmission

As another choice to achieve transmission reliability, Retransmission (resending packets

only if they are lost or damaged) offers an active and conditional approach compared to

Redundancy. Regarding the IETF standard, the effects of retransmission are illustrated

in RFC2354 [39] along with FEC and interleaving. An RTP implementation must acquire

extended functionalities in both the signaling plane (to communicate control information

related to retransmitted packets) and The data transferring plane (to send the lost/dam-

aged packets again and distinguish the resent packets). In addition, the proposed solu-

tion must also conform to existing specifications. RFC4588 [40] specifies a solution using

the in-band AVPF RTCP RFC4585 for control/feedback, out-of-band SDP for types as-

sociation, and a separate RTP stream as the data transferring solution. The separated

retransmitted stream can be allocated in the same RTP session using SSRC-multiplexing

or in a different RTP session using Session-multiplexing. The former option leans towards

flexibility, while the latter focuses on resource saving.

A retransmission packet (format shown in Figure 2.11) contains the following field:
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RTP Header (32-bit) conforms to RFC3550 for integrated RTP functions.

OSN (16-bit) or Original Sequence Number is associated with the original packet.

Payload (n-bit) Original RTP Packet Payload

Figure 2.11. RTP retransmission packet format. Adapted from [40]

After retransmitting a packet, the packet association must be done so the receiver can

benefit from that packet. If session multiplexing is applied, the original and retransmit-

ted stream are associated via the exact value of SSRC in two different sessions. If the

implementation is SSRC-multiplexing, the CNAME field in two RTP Headers is the initial

attempt for packet association. If the CNAME cannot associate the two streams, ad-

ditional information, such as retransmission packet reception, must be used. However,

there are cases like multicast where even the additional information can not provide a

confident result; a higher architectural solution must be considered. On the resilience vs

delay tradeoff, a give-up time is set for the total retransmission duration to at least assure

the upper bound for the delay.

2.3.3.7 Synchronization

In general, the purpose of synchronization is to maintain the temporal relationship of the

presented data. A popular example of synchronization in AV streaming applications is lip-

syncing, in which the audio and video content is aligned. Synchronizing in this example is

necessary to re-construct the content that matches the user’s expectation of the auditory

and visual information matching. There are two main approaches to achieving the target

of synchronization:

• Network level: Network synchronization synchronizes the clocks of all stream-

generating devices in the network. This is usually done via protocols like Network

Time Protocol(NTP) defined in RFC5905 [41] or Precision Time Protocol(PTP) de-

fined in RFC8173 [42].

• Streams level: Stream synchronization synchronizes the received streams from

the devices. This approach is operated on the application level using temporal

information from the first approach.
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Despite both approaches playing an important role in data consistency and integrity, the

second approach is focused on this thesis work. In multiple comparative studies([43],

[44], [45]), groups of authors provided some handy terminologies for multimedia streams

synchronization which could be extrapolated at a certain level for stream synchronization

of other data kinds. The modified version of these terms are listed below:

• Synchronization (or sync in short) is a process to maintain the temporal coordina-

tion and organization of one or multiple streams.

• Event-based sync is a type of sync technique that focuses on the orchestration of

multiple streams. It ensures a triggered event results in packet transmission of the

right streams.

• Stream-based sync is a type of sync technique that aims for the correct temporal

order of the "playout" stream(s). This sync technique is meant to align the received

streams based on their packet’s temporal information.

• The subsets of stream-based sync can be listed as:

– Intra-stream sync

– Inter-stream sync

– Inter-destination sync or Group sync

– Interactive sync

The first subset handles the temporal coordination for packets within a single stream.

The second one copes with the temporal relationship between different streams

contributing to a common task. Inter-destination sync is specialized for distributed

networks as its goal is to ensure scattered receivers can play out streams regarding

the same temporal coordination. The interactive sync goal is to guarantee multiple

streams from distributed sources can maintain a sufficient temporal relationship

under any random and unpredictable user interaction.

As the transmitted data in an RTP/RTCP implementation is closely tied to the time-serial

characteristic, the protocol supports the synchronizing function by default and in several

extensions. By using a consistent rule for timing specified in RFC3550 for the timestamp-

RTP header field, an RTP packet generator is expected to preserve the intra-stream sync.

In addition, the sequence number and payload type also indirectly support the sync

function because the former provides packet loss detection, and the latter notifies the

type of transmitted payload containing the information about the sampling rate. However,

the initial timestamp given at the start of each stream is generated randomly, so using

timestamp values solely does not solve the inter-stream sync problem. A reference-clock

value, delivered via RTCP SR [24], is assigned to each RTP stream. This pair of local

timestamp and reference-clock values allows a participant to perform the inter-stream

sync.
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In this thesis, the focus synchronizing types are inter and intra-sync, so the operational

details about the inter-destination sync have been moved to Appendix A.3 to avoid a

lengthy explanation.

2.3.4 Drawbacks

While the design of RTP/RTCP is well-suited for real-time applications, there exist certain

drawbacks and room for improvement:

Lack of QoS and Timely Delivery

RTP, by default, does not provide any mechanism for QoS or Timely Delivery, but usually

relies on RTCP for these functionalities. Alternatively, other solutions in other stacks can

also be used if they deliver the same control/feedback information between participants.

A standalone RTP deploying system could be insufficient for QoS-demanding and Timely-

delivery-demanding applications.

Complexity on Endpoint

As a tradeoff for function modularization, participants are expected to coordinate data-

transferring tasks and their reports during the operation. In any RTP architecture, the

complexity significantly increases at the components where the signaling and data-transferring

function intersects. In addition, multiplexing is required for applications using RTCP in the

control plane to reduce port usage and associate the transmission report with data pack-

ets.

Network-aware Application

Thanks to the blurred separation between the transport and application layers, an RTP

application is granted access to transport-layer resources and multilayer network moni-

toring means. On the other hand, those extended capabilities put more weight on the

development of a real-time application in comparison with applications using different so-

lutions.

2.3.5 Reliability

The reliability of packet transmission is a common challenge for transport protocols. As

the RTP stack is built on top of IP/UDP, the packets can be lost during the transmission

without acknowledgment. Therefore, the IETF community proposes numerous solutions

using RTP/RTCP to mitigate this problem. In addition, other candidates outside the scope

of the transport layer can be applied to improve RTP reliability. Due to its importance, even

if there could be some overlapping with the QoS and Timely Delivery in Section 2.3.4, this

section will be dedicated to discussing the topic of reliability on RTP.
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A reliable transmission generally means all transmitted packets from the sender are suc-

cessfully received at the receiver side. On the RTP level, there available two solutions:

Redundancy (Section 2.3.3.3): Sending more packets by default.

Retransmission (Section 2.3.3.6): Re-sending only the lost packets.

Given the specific conditions of an RTP deploying system, a system designer can choose

a suitable solution or a set of solutions to enhance reliability. If redundancy is selected, the

extra-bandwidth consumption and additional processing power for stream merging have

been approved. If retransmission is applied, there is less bandwidth consumption for data

because a sender will only send the known lost packets. On the other hand, both the

sender and receiver are assigned additional tasks to send the correct missing packets.

Different aspects to be considered before applying redundancy or retransmission can be

seen in Table 2.3.

Aspect Redundancy Retransmission

Bandwidth Deterministic and dependent

on the redundant level

Nondeterministic but can be

limited by the give-up time

Latency Depends on the stream-

merging operation

Depends on a long process

of packet loss detecting, re-

send requesting, and packet

lost resending operation

Complexity Lower and mainly within the

stream merging operation

Higher and requires many ad-

ditional functions

Multicast scalability Simple in terms of implemen-

tation, but results in large

bandwidth consumption

The complexity also prolifer-

ates, but it is bandwidth-wise

more acceptable

Memory consumption Lower as there is no addi-

tional buffer

Higher because the sender

needs to buffer packets to re-

send and the sender needs to

buffer packets to detect loss

Table 2.3. Redundancy vs. Retransmission for Reliability

Alternatively, if the lower layers allow each packet to be sent with a higher guarantee,

one can also see the reliability of the RTP deploying system. Concrete examples of this

approach would be technologies in the Ultra-Reliable and Low Latency Communication

category of the 5G. To meet the requirement from E2E latency of 1ms with 1 − 10−5

reliability for machine control tasks to 1− 10−9 for surgery tasks, some possible solutions
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are highlighted in the work of Zexian Li on 5G URLLC Design Challenges and System

Concepts[46]:

Micro-diversity: more antennas on the transmitter and receiver sides.

Using a higher reliable control channel.

Using a dedicated channel for high.

Improving the Signal-Noise Ratio by reducing the received interference from the

neighbor gNBs and UEs.

2.4 SIP

2.4.1 Overview

SIP plays an important role in VoLTE networks as it is the main protocol for signaling func-

tions required before any RTP session. Session Initiation Protocol (SIP) is an application

layer control protocol to support session-related functions (including establishment, mod-

ification, and termination) and user mobility(via SIP URL and service registration). The

current SIP is SIP version 2, specified in RFC3261 [47], and has been continuously up-

dated with new functions. A wide range of applications in IP-based communications is

implemented using SIP as the main control protocol due for the following reasons:

• A large community of IETF contributors supports SIP in developing a unified com-

munication system.

• The modular development is guaranteed. SIP only provides the means to deliver

the control signal for a session and does not interfere with the session description

function or content delivery. A system designer can choose from other methods to

describe what SIP delivers. Session Description Protocol is (SDP) often chosen for

this purpose.

• SIP is an End-to-End protocol.

• Interoperability is embedded in the protocol as two or more devices can negotiate

their session setting before initiating one.

• Scalability is activated by shifting the complexity from the network to end devices.

Once a session is up, the impact of a SIP server is small, which expands the net-

work’s capacity.

• SIP is accessible and straightforward because it is based on many popular IP net-

work concepts, like HTTP resembling syntax or URIs as SIP addresses.
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2.4.2 Design

SIP is based on HTTP in its design. Therefore, it also involves the request/response

mechanism realization of entities like clients and servers. A SIP entity that can generate

SIP requests is a SIP client. Those requests can be received by another entity called the

SIP server, which can answer requests by returning responses. In SIP terms, a client

application and a server application are called User Agent Client (UAC) and User Agent

Server (UAS). A UAC issues requests, while a UAS issues the corresponding responses.

SIP Proxy or SIP Proxy Server or SIP Server is a logical entity in a SIP deploying system

that handles multiple functions:

• Routing requests to users.

• Implementing provider call-routine policies.

• Providing user authentication and authorization for services.

• Providing additional features like voice mail.

A SIP Proxy can be in two modes: "stateless" or "stateful". A stateless SIP Proxy acts

as a forwarding element and discards the information about a message as soon as that

message is delivered. If a SIP Proxy is stateful, all transactions handled by that Proxy are

remembered for future processing. A stateful SIP Proxy can also discard unnecessary

transactions. Therefore, a SIP Proxy can switch between its two operation modes. To

clarify two Server definitions in SIP, a SIP Server is defined in the network scope as an

entity, while the User Agent Server refers to the role of a Server in an application using

SIP. The last two essential elements for a communication system using SIP are the SIP

Registrar and SIP Redirect Server. A SIP Registrar maintains the information associated

with a user and passes this information to other entities in the network. A SIP Redirect

Server provides additional information (like the alternative URI or phone number) for the

originator of a request in case a user can not be reached using the previous URI.

SIP Message

The SIP message is the general term for SIP request and SIP response. Each SIP

message contains the following:

• A type indicating line:

– Request line for SIP request in the format: SIP-method SIP-URI SIP-version.

Example: INVITE sip:trung.van@tuni.com SIP/2.0.

– Status line for SIP response in the format: SIP-version Status-code Reason-phrase.

Example: SIP/2.0 180 Ringing.

• A SIP header may have one of the popular fields listed in Table 2.4. A header con-

tains compact but important information to quickly describe a SIP message without
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processing the content in the SIP body. SIP headers format is Header-field:
Header-value. For example: To: Trung <sip:trung.van@tuni.fi>

• A SIP body (optional) contains an object describing operations on a session.

A series of correlated SIP messages form a SIP transaction. As expected, SIP is a trans-

actional protocol, meaning SIP entities interact with each other using these SIP message

exchanges.

Field Common form Function

Call-ID A generated string Uniquely identify a series of SIP

messages

Contact A URI Directly locate a user

Cseq An integer followed by a method

name

Order repeated requests in the

same session and match requests

to responses

From A display name followed by a URI Identify the initiator of the request,

could be the address-of-record

To A display name followed by a SIP

URI

Identify the recipient of the request

Route A list of URIs separated by commas Indicate the forced proxy routing ap-

plied on a request

Via A list of proxy URIs involved to han-

dle a request

Store the path of a request to avoid

looped routing

Table 2.4. Popular SIP headers

SIP Request RFC3261 defined six main types of SIP requests serving different purposes.

In general, all protocol functions in SIP are initiated using SIP requests. Until now, several

new types have been added to the initial set. The popular SIP request types can be seen

from Table 2.5.
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Request type RFC ref Function

REGISTER RFC3261 Register the URI listed in To-

header field with a location server

INVITE RFC3261 Invite users to join a session

ACK RFC3261 Acknowledge the reception from

the final response to an INVITE

request

CANCEL RFC3261 Cancel a pending transaction

BYE RFC3261 Indicate the leaving of a session

participant and terminate a ses-

sion if there is only one participant

OPTIONS RFC3261 Query information about a

server’s capability

UPDATE RFC3311 Modify session’s parameters with-

out affecting the state of a dialog

REFER RFC3515 Instruct the recipient of this RE-

FER to issue a new SIP request

SUBSCRIBE RFC6665 Create a subscription to receive

notification about an event from a

notifier

NOTIFY RFC6665 Notify a subscriber when a new

event occurs

PUBLISH RFC3903 Publish an event to a notification

server

INFO RFC6086 Deliver information about a ses-

sion without modifying its state

Table 2.5. Popular SIP requests

SIP Response

A SIP response is sent by UAS to UAC to indicate the result corresponding to a SIP

request. Different classes of responses are numerically coded similarly to HTTP codes.

A summary of them can be referred from Table 2.6
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Range Class Function

1xx Informational Indicate a request is valid and being

processed

2xx Success Indicate a request has been success-

fully completed

3xx Redirection Indicate a redirection is required for a

dialog

4xx Client Error Indicate a failure of a request from

client side

5xx Server Error Indicate a failure of a valid and re-

ceived request from server side

6xx Global failure Indicate a request can not be re-

sponded by any server

Table 2.6. SIP response classes

2.5 VoLTE

2.5.1 Overview

VoLTE is the realization of the RTP plus SIP stack to provide voice services popular in

cell phones today. Therefore, it is necessary to provide a brief overview of VoLTE in

this thesis. VoLTE is an abbreviation for Voice over Long-Term-Evolution whose name

conveys quite well its primary function of delivering VoIP calls over LTE. Subsequently,

LTE is defined as a high-speed wireless communication standard (3GPP Release 8 and

9 document series) for cell phones and data terminals.

VoLTE was first introduced as an industrial initiative called One Voice in 2009. This initia-

tive aims to provide a minimal profile for manufacturers and service providers to enhance

interoperability in the race for voice service over the IP Multimedia Subsystem (IMS). IMS

is a standardized architectural framework for delivering multimedia services over an IP

network. In 2010, GSM Association officially adopted One Voice and renamed it VoLTE.

As there are multiple associations involved in the standardization, a proper VoLTE imple-

mentation must satisfy both the specifications from the GSM Association for VoLTE and

3GPP for LTE. Some critical differences related to VoLTE between these two standardiz-

ing entities can be seen in Appendix A.4

VoLTE is not limited to LTE, as WiFi and 5G have been included in the connectivity. Based

on the Ericsson Mobility Report of 220 [48], VoLTE has been activated for over 280 net-
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works. The current number of VoLTE subscriptions is about 4.8 billion, and Figure 2.12

suggests this number can reach 7 billion in 2027.

Figure 2.12. VoLTE Subscription from 2021 to 2027. Adopted from [48]

From Ericsson Report on Mobile Subscriptions, the number of 5G and LTE subscriptions

is projected to reach 9 billion in 2027, as seen from Figure 2.13. This includes VoLTE

services in about 90 percent of the future 5G/LTE subscriptions. This could be attributed

to factors like the wide range of connectivity supported by VoLTE, the Circuit-Switch net-

work obsolescence, or the improvement in operators’ services to compete with other VoIP

OTT(Voice over IP Over-the-top) applications.



33

Figure 2.13. 5G and LTE Subscriptions from 2021 to 2027. Adopted from [48]

By using the VoLTE services, a user can take advantage of different VoLTE properties:

• A reliable and well-maintained connection.

• A constantly improved connection in terms of coverage and connection quality.

• A user-friendly experience and no additional application required.

• A short service connection setup time.

• A lower energy consumption level compared with other VoIP solutions.

• An inter-operator service by default.

• Supported various device types.

• Emergency support and fallback capability.

• A fixed and predictable cost.

From a provider’s perspective, continuing the support for current VoLTE services and ex-

panding them with new research are both critical. The two most obvious reasons are
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re-purposing the investment in network infra and securing a stable income from subscrip-

tions. In addition, an operator can also up-sell their customers with:

• Hardware and connectivity in one purchase: An operator can offer an individual

an offer that includes both hardware(smartphone, smartwatch ...) and their VoLTE

package.

• Extending the current usage: An operator can offer more premium features in their

services to the current users to compete with others.

2.5.2 Functionalities and Architecture

For data transmission between two devices, two minimal requirements must be met: The

connectivity between them and the actual data transmission on that connectivity. The

network core domain handles both requirements during the circuit switch network. In

VoLTE, access mobility and connectivity are handled by the Evolved Packet Core (EPC)

in the Evolved Packet System (EPS). At the same time, the IMS is responsible for the

calls and media control. This functional division results in the architecture of VoLTE,

whose simplified version can be seen in Figure 2.14.

Figure 2.14. Simplified VoLTE architecture. Adopted from [49]

A VoLTE architecture spreads into three domains: Access, EPC, and IMS. As a conse-

quence, a collection of VoLTE main functionalities can be clustered into three main groups

based on GSMA’s official "IMS Profile for Voice and SMS" [50]:

• Provided at the Access domain:

– Packet scheduling and QoS differentiation to prioritize packet transmission.

– Mobility enables seamless handover and fallback in either intra or inter-system

scenarios.

– Power saving feature on User End-devices (UE) using discontinuous trans-

mission and discontinuous reception (DTX/DRX).
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– Positioning using multiple solutions.

• Provided by the EPC network:

– Identification for LTE Subscriber

– Establishing the Packet Data Network (PDN) connectivity (always-on IP con-

nectivity between a user and a PDN) for the VoLTE User.

• Provided by the IMS network:

– Multiple Identification functions for users(in both public and private domain),

subscriptions, devices, public services, and network entities.

– Service Provisioning by a SIP-based service invoking architecture on the Packet

Switch network.

– Rich communication with supplementary services on top of the basic media

capabilities.

A more detailed VoLTE architecture (as can be seen in Appendix A.4) can be found in the

GSMA official document for VoLTE service description and deploying guideline [51].

2.6 Conference

2.6.1 Overview

A conference (or teleconference) refers to a multiparty communication session that in-

volves sharing voice, video, instant messages, or data of other types. This application

is popular in both the enterprise sector and the sector of individual Internet users. Due

to the demand for this application, it has been standardized in 3GPP TS 24.147 [52] to

provide the details for implementation on the IMS Core Network. This document glues

different technology fragments discussed above (SIP, RTP, RTCP, VoLTE) into a complete

conference application blueprint, and commercial implementations have been built based

on that. The conference’s infrastructure reusing and conferencing characteristics moti-

vate this section to describe its rough architecture. The content of this section can be

used to understand conference system design without reading all of its specifications.

Like many other applications implemented on IMS infra, conference functions are sepa-

rated into two planes: Signaling and Data Transferring. Conference system design mainly

focuses on the Signaling plane to manage the multi-participant sessions. Challenges in

Data Transferring are already common in media streaming and can be overcome by ap-

plying the available solutions. The design of a conference system is discussed in the

following subsection.
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2.6.2 Design

The 3GPP TS 24.147 instructs the use of the SIPPING framework, which in its turn is

specified using multiple IETF documents, including:

RFC4353 A Framework for Conferencing with the Session Initiation Protocol (SIP)

RFC4575 A Session Initiation Protocol (SIP) Event Package for Conference State

RFC4579 Session Initiation Protocol Call Control - Conferencing for User Agents

RFC6665 SIP-Specific Event Notification

Generally, a conference based on the SIPPING framework follows the tightly-coupled

model. An illustration of a tightly-coupled conference can be seen in Figure 2.15. Each

conference participant maintains a signaling relationship with a conference server. Stream-

ing data from each participant is also sent to a mixer co-located at that server.

Figure 2.15. Tightly-coupled conference model. Adopted from [53]

2.6.2.1 Components

RFC4353 introduces several fundamental components of a conference service used in

both IETF and 3GPP documents:

Focus is the central component responsible for orchestrating the whole conference

system to make sure participants can receive media streams. In SIP terms, Focus

is a user agent and is addressable by a conference URI. All conference participants

interact with the Focus by SIP dialogs.
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Conference Policy Server is a logical function responsible to manage the confer-

ence policy.

Conference Notification Service is a logical function acting like a notifier RFC6665[54]

to notify its subscribers about the changes in the conference state.

Mixer is similar to its definition in RFC3550 but allows other data types beside A/V.

Conference Server is a physical server based on Focus (at the minimum), Confer-

ence Policy Server, Conference Notification Service, and Mixers.

Participants must be capable of performing at least SIP user agent functions.

The communication between these components can be seen in Figure 2.16.

Figure 2.16. Model of Functions involved in a Conference using SIPPING framework.
Adopted from [55]

Conference-related information(Conference State) is maintained in the form of an XML

object-Conference Object(an overview in Figure 2.17) in the Focus. The RFC4575 spec-

ifies the content of a Conference State, a SIP conference event package for that con-

ference state, and a mechanism to subscribe to the conference state. This Subscribing

to/Receiving notification of mechanism is responsible for the bidirectional arrow between

the Conference Notification Service to Participants in Figure 2.16. The RFC4575 also

provides a partial notification mechanism to avoid re-sending the unchanged or unneces-

sary content in the conference state. Another observation that can be made from Figure

2.16 is that Mixers are not included in this illustration. To explain, a Mixer is not involved in
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the signaling process and only receives media streams from Participants and instructions

from the Focus to generate output streams. In addition, a Mixer can be placed within

the Focus, or many Mixers can be distributed near Participants depending on the chosen

architecture.

Figure 2.17. An overview of a Conference Object. Adopted from [56]

2.6.2.2 Operations

RFC4579 describes the operations of the Focus and Participant UAs applied for a tightly

coupled conference. For a more abstract view, some common operations with a short

description can be listed:

Creating Conferences

A conference creation simultaneously triggers the construction of multiple entities, includ-

ing: a Focus to maintain a SIP relationship with participants, a unique URI to identify that

Focus, and a Conference Policy with default rules.

Adding Participants

A participant has two ways to join a conference: either by adding himself or having another
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add him in. The first option involves an INVITE request to be sent to the conference URI

from a participant. The conference server, after that, decides to allow the user to join

based on its conference policy. The latter option requires a SIP REFER request from a

participant. This request can be sent to another participant to introduce him to Focus and

vice versa.

Removing Participants

A similar approach to Adding Participants can be applied for this operation by replacing

the INVITE request with a BYE request. A participant can be removed from a conference

by himself, by the Focus, or by another participant. In any case, the Focus must remove

the media stream from/to that participant.

Destroying Conferences

When a conference is destroyed, the entities created to support its work are destroyed

simultaneously, namely the conference URI and the conference policy. The existing sub-

scriptions must be terminated, and BYE SIP messages must be sent to the active Partic-

ipants in a conference before the destruction process.

Obtaining Participants Info

The information about other participants within the same conference can be obtained by

subscribe/notify or fetch mechanism.

Adding/Removing Media

A conference may change its media set, and participants can select what streams to

receive or reject. This operation is done via SIP re-INVITE request.

Announcing in Conferences

In principle, the announcement application is an automated participant in the conference.

Its sent data only serves the informative and interactive purposes of the conference. This

information can be blended into the shared communication with all participants or tailored

for an individual participant.

2.6.2.3 Architecture

Different realizations can be formed by varying the amount and arrangement of confer-

ence components. In this subsection, the Centralized Server architecture is shortly de-

scribed with its illustration adopted from RFC4353. Other architecture descriptions can

be found in the Appendix A.5
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Figure 2.18. Centralized Server Model. Adopted from [55]

In this realization, a single physical server handles signaling and data transferring. This

Centralized Server is responsible for many functions: a Focus, a Conference Policy

Server, and Mixers.

2.7 Pub Sub

2.7.1 Overview

Today, one can easily find the term PubSub when working with data distributing systems.

PubSub is a software architectural design pattern based on the asynchronous messaging

model. A PubSub system generally contains publishers who send messages and sub-

scribers who receive messages. Instead of sending messages directly to a subscriber,

a publisher sends its messages to a middleware that will distribute them to interested

subscribers. Related messages, e.g., from the same publisher, are organized under the

name of a topic. In a PubSub implementing system, a publisher and a subscriber of the

same topic are not required to synchronize their operations. A broker handles the routing

and coordinating tasks between publishers and subscribers. More technical details are

described in the following subsections. Broker pattern-the most popular pattern is cho-

sen to demonstrate in this section, while various patterns exist to implement a PubSub

system. Other technical details can be found in the following subsections.
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2.7.2 Primitives

There are several primitives prevalently used in the paradigm of PubSub, and some of

them can be seen in Figure 2.19:

Figure 2.19. PubSub primitives example

Event is a discrete state transition that happened in the system and can be either

atomic or composite(as a combination of atomic events). An Event message is a

container for Event traffic within a system. When one mentions data in a PubSub

system, he usually means Event messages.

Notification is a response of the system towards a detected event for the receiving

agent.

Topic is a named resource from which correlating messages can be sent and re-

trieved. It addresses the data under its name.

Subscriber is an agent interested in a specific topic. A Subscriber, after success-

fully making a subscription to a topic(could be further specified using additional

conditions), will receive the valid Events if they arrive.

Publisher is an agent capable of detecting or producing events and associating its

data with a topic.

Broker is an intermediate agent with various functions like data routing, notification

routing, or topic management. A broker can be capable of data forwarding or yield

that function for other Middlewares.
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2.7.3 Principles

As a paradigm, there are several central design principles required to create more so-

phisticated rules and practices:

• The interface of a PubSub-system is logically centralized, and this interface ab-

stracts away the internal organization of the broker(s).

• The communicating agents are decoupled from each other.

• A filtering mechanism (upstream filtering) and distributing mechanism(downstream

replication) are required. Both processes should be as close to the southbound as

possible to reduce unnecessary traffic.

• The system has to be modular and extensible to stay flexible.

2.7.4 Properties

Some popular properties of a PubSub system are:

Spatial decoupling: Decoupled publishers and subscribers handle their comple-

mentary functions using separated resources on two ends of the system. There-

fore, the publishers and subscribers are unaware of each other, and the number of

subscribers for a topic does not affect the publishing behavior.

Temporal decoupling: All involved agents are not required to be active simultane-

ously for PubSub-operations. The sending agent does not have to be active as

long as the event message/notification has been successfully delivered to other

intermediate agents.

Synchronization decoupling: Subscriber and publisher can operate other tasks/pro-

cesses while concurrently performing their PubSub-functions. No synchronizing

tasks are required for the publication and subscription to be sent.
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3. IOT-STREAMING-SUITED REALIZATION

This chapter focuses on the practical application of RTP and its extensions for IoT stream-

ing use cases. The chapter explores how RTP can be effectively utilized to ensure the

reliable and efficient streaming of IoT data, considering factors such as data size, net-

work bandwidth, and latency. The chapter also investigates how SIP can be leveraged

to facilitate IoT streaming and identifies relevant findings that require additional explana-

tion on SIP. Additionally, the chapter examines the relationship between RTP and VoLTE

and identifies potential opportunities for using VoLTE capabilities in IoT streaming appli-

cations. To make the practical application of RTP and related protocols more understand-

able, the chapter will include use-case examples demonstrating how these technologies

can be applied in real-world scenarios. The findings from this chapter and the use-case

examples will be applied in the subsequent Prototype Implementation chapter to create a

practical, real-world example of how RTP and related protocols can be used effectively in

IoT streaming applications. By providing practical insights and use-case examples, this

chapter serves as a valuable foundation for the subsequent Prototype Implementation

chapter.

3.1 Using RTP/RTCP

Given the functionalities described in Section 2.3.3, numerous use cases of IoT streaming

are discovered and the ratios of RTP adoption over novelty vary case by case. This sec-

tion is dedicated to illustrating the realization of IoT streaming from an RTP perspective

using some concrete examples.

3.1.1 Built-in features

Using RTP for data transferring, multiple basic functions are enabled by default. The

following list shows some of them that are relevant to this thesis work:

• Packet loss detection and stream reconstruction using the Sequence Number.

• Preserving the temporal information, thanks to the timestamp value, and inter-

stream synchronizing based on that value.

• Identifying packets belonging to the same stream.
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• Extendability via the extended header.

• Identifying multiple streams contributing to a more complex stream using the CSRC.

As some built-in functions are covered by or closely related to the other functions in the

coming subsections, they are explained together.

3.1.2 Synchronization

Synchronization is a critical function for a streaming system, and its importance even

escalates in some IoT contexts. Like other applications involving time-serial data, the

received stream must be aligned with others to exploit their temporal relationship. With a

proper synchronizing function set, an IoT streaming system is enhanced in multiple ways:

• IoT data from various sources can be combined to provide more complex applica-

tion logic.

• High temporal resolution data can be applied on top of low temporal resolution data

to increase confidence, if needed, before making any critical decision.

• If packets in an IoT stream are lost or damaged, other streams used along with that

stream can partly cover the missing information. This could be useful for unreliable

and constrained networks whose devices are not capable of retransmission.

The heterogeneity and network scale in IoT applications like WSN result in a large num-

ber of streams to be synchronized and the sync-setting that could be required within

a network. These two challenges may require a different distribution of synchronizing

points to fit the devices and network constraints. Besides, the stream processing speed

in electronic devices increases the upper bound for the number of events in a stream. For

example, some sensors operate at frequencies of thousands of Hz, and different man-

ufacturers may use their proprietary settings. Therefore, a system designer must also

consider specific devices’ processing frequency to select intra-stream and inter-stream

sync strategies. In addition, different qualitative measurement methods for IoT stream-

ing services are beneficial to improve service quality. Despite several QoE assessment

methods have been proposed as in [57], [58] or [59], QoE for IoT streaming is still not yet

standardized.

Example - Analytical Streaming

In the realm of IoT, there are scenarios where devices’ high temporal resolution update

is yet available, or the need for that sensory data is occasional. Some examples can be

envisioned as follows:

• A healthcare service would like to offer remote diagnostics to support emergency

cases or more convenient operations for simple tests. Vital bio-signals are streamed

but only for a short period. Of course, these signals must be synchronized to rep-
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resent the patient’s condition as much as possible. The necessary device to extract

those signals can be equipped for an emergency medical service in an emergency

case.

• In less severe cases, like for a simple test or checkup, a sensory device can be a

module attached to a UAV for home delivery. This convenience could encourage

the users to have their checkups more frequently with high temporal resolution. If

there is a small percentage of a decrease, the patient could permit a higher volume

of data to be collected before going to the next check. Thanks to the additional data

and its early availability, a doctor could improve the final diagnostic.

• A conservation organization would like to collect data on animals or plants in a large

area. The time-series data is beneficial, but maintaining the whole network infras-

tructure for that purpose could be costly. A possible solution could be a short-range

but high-temporal resolution device to collect streaming data from multiple targets

in its coverage. This application needs a module to stream the field-collected data

to the nearest server. The courier could be UAVs or that organization’s employees

on duty trips. A relevant prototype was made in [60] to prove the feasibility and

efficiency of autonomous drone-based data harvesting.

The streaming module in the mentioned examples is realized as an RTP/RTCP module.

This device must prioritize transmitting the data to the server rather than performing on-

device synchronization. The synchronizing point is located at the server after the data

is duplicated and distributed to multiple interested services. Only intra-stream sync and

inter-stream sync are required in these applications.

A more concrete RTP procedure for a home healthcare service can be described below.

When a request for at-home service has been made, a UAV is sent to the patient’s ad-

dress. The user can start collecting their bio-signals by integrating multiple sensors into

the UAV. The SIP module starts to negotiate an RTP session for the streaming. A set

of formats for bio-signals must be approved as a prerequisite for this use case in RTP.

A single session can transmit multiple streams of different signal types. Each signal is

identified as a source with a specific SSRC value to distinguish it from the other. The RTP

module in the UAV acts as an RTP sender that keeps generating multiple RTP streams

and sending them to an RTP receiver at the analysis provider/hospital. The synchroniz-

ing point is located on the server side to make sure the vital data is backed up and will

be effectively synchronized with sufficient computing power. The RTCP feedback reports

communicate the transmission quality. On the server side, RTP packets are received from

the same address:port values are sorted by their SSRCs and CNAMEs to reconstruct the

bio-signals. After that, these signals are synchronized using their timestamps before be-

ing fed into a multi-model diagnostic program. The synchronization error depends on the

component streams in the sync group. For example, electro-physiological signals (EEG,
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EMG, ...) must have a stricter requirement than the cardiac signal. In addition, this home

service can also provide the option to forward the streams from users’ healthcare wear-

ables. These data can be sent to the RTP module using short-range connectivity like

Bluetooth and then steamed to the server as an RTP stream.

3.1.3 Multiplexing

For IoT, some properties of multiplexing are remarkably valuable. Some of them can be

listed as:

Reducing the number of addresses and ports.

Reducing overhead stream and session set-up time.

Using a single Network Address Translation (NAT) binding for all multiplexed streams.

Reducing the complexity in end-to-end communication management.

In addition, by introducing IoT data type to RTP streaming, two new multiplexing scenarios

occur: multiplexed stream with only IoT packets (IoT multiplexing) and multiplexed stream

with both IoT and audiovisual packets (IoT-AV multiplexing).

IoT multiplexing

In many systems that take advantage of analytics, it is typical to store the streaming data

for analyzing purposes. It could be beneficial to store the multiplexed streaming data as

it comes, and the demultiplexing is on-demand rather than by default. For applications

that are analytics-focused, less time-critical, or on-demand, this adjustment can reduce

the cost and more efficiently allocate the processing time for streams.

Example - Smart City

Smart City is a grand scope application of IoT where multiple dense networks continu-

ously generate massive data. Multiplexing IoT streams is vital for these applications to

gain practical bandwidth usage and session management. A stream can be associated

with each other via different multiplex methods (Table 2.7):

• Their common physical original device (Multiple Data Types, One Session, or One

Endpoint as One SSRC),

• Their common geographic location (One Data Type Multiple Sessions),

• Their common type of data being transmitted (One Data Type Multiple Sessions).

The multiplexing streams association is optimized using additional information on how this

data will be used. Using the session-multiplexing with 32-bit SSRCs, a sufficient number

of participants can operate and identify themselves in the network.

Example - Multi-signals Processing
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Multi-signals Processing application is another field of IoT streaming that takes advan-

tage of the multiplex. As Machine Learning techniques are gaining popularity in signal

processing, the need for correlated data as inputs for a model is becoming more signif-

icant. After being trained with a certain number of inputs, a model is better to operate

with the same input in the interference phase. Suppose the input comes from a group

of RTP participants. In that case, their streaming data should be multiplexed not only for

the benefits mentioned in 2.3.3.2 but also to reduce the number of processing points in

the system. For continuous training models where the parameters are updated on the

flight (during operation time), a practical issue is to handle the missing elements in a set

of inputs. Multiplexing incoming streams is an approach to force the shared-fate property

on the model’s input if one wants to avoid using past or extrapolated values. The transient

loss is expected to be eased by a noticeable amount of transmissions that can be done

in the same period.

EEG signals processing is a representative example of this kind of application because

the brain signals are probed from multiple points on the user’s scalp but are usually used

in the same model. An EEG device requires an intermediary like a mobile phone or a

laptop. However, streaming the EEG signals as RTP multiplexed packets directly to a

powerful processing unit nearby is a promising solution. The benefits could be increased

mobility, computing resources access/upgrade, and unlimited recording as a service.

IoT-AV multiplexing

Some applications process AV and IoT data simultaneously, like XR, drone control, or

enhanced monitoring systems, where the multiplexing of all streams is convenient. For

service providers, IoT-AV multiplexing adds value to their current AV product, quickly roll-

outs new IoT products, and reuses the invested AV streaming infrastructure.

To achieve a functioning implementation of IoT-AV stream multiplexing using RTP, the

desired conditions are:

• Devices operating multiplexing/demultiplexing must be able to handle the involved

data type.

• The mechanism to arrange the multiplexed packets must be agreed upon and fea-

sible for multiplexing/demultiplexing devices.

• If packet-loss recovery is wanted: at least one RTP mechanism should be applica-

ble if no new mechanism is provided.

• The multiplexed packets must remain operable for other RTP functions required for

this application.

A discussion on the first two bullet points may start with an essential factor affecting the

audiovisual data format: human sensory ability. There are certain upper limits for the

human sensory system, like 60-240 frame-per-second for vision or 20-20kHz for audi-
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tory. Hence, sending more data than the perceivable limitations of human end-user is

not beneficial. Machines have a much higher receptive frequency due to different factors:

more straightforward computing tasks, differences in computing hardware, etc. There-

fore, an application with IoT-AV multiplexing enabled should consider these differences to

maximize the benefits. The decisions could include, but are not limited to:

• How the component streams are allocated?

– In the same RTP session and separated by distinguished SSRCs.

– In different RTP sessions and grouped by application’s record.

• How is the IoT data used in the multiplexed stream?

– In case IoT data is multiplex with video: sending IoT data after every frame,

sending IoT data only after I-frames, or using a new codec of image/video with

IoT integrated.

– In case IoT data is multiplexed with audio: IoT data encoded in one channel

of the audio or IoT data sampled at the same frequency with audio

• What packet-loss mitigating mechanism should be used?

Example - UAVs Operational Data

Unmanned Aerial Vehicle (UAVs) is currently one of the active research areas in the IoT,

with a wide application range as seen from the market analysis in [61]. Some examples

could be military operation devices, last-mile delivery fleets, low-attitude transportation,

and on-demand 5G deployment ... In addition to a wide range of applications that re-

quires various specific sensory data, a UAV is usually equipped with sufficient computing

capability. These criteria cover both the rationale for using holoplexing and its hardware

prerequisites.

For an RTP implementation, a UAV can join an RTP session to transmit directly recorded

AV and IoT data while preserving its communication for command transmission. RTCP

should be applied for feedback and control of the recorded/playback data with the CNAMEs

to group streams’ quality on the same device. The component streams are assigned with

different SSRCs within the same RTP session. This behavior requires the Multiple Data

Type over One Session design described in RFC8872 [30]. Each UAV acts as an active

sender whose receiver is the nearest RTP-enabled server. The communication can be

described as multiple unidirectional streams from different drones to a common server.

A fleet of UAVs in the same operation can join the same RTP session. There are some

benefits provided by having multiple session-multiplexing streams in the same session,

such as:

• Reducing the network resources: more UAVs can operate simultaneously or for the

same service.
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• Compensating the lost data from a drone with its fellow’s data.

• Sharing the feedback RTCP to adjust the whole fleet’s transmission behavior.

However, as a session is identified via a 5-tuple, a single address:port must be used for

the sender(s) in this RTP session. For a single drone, it is obvious to have that single value

assigned for that drone. In the case of a drone fleet, that group of drones must share

the same address:port. An example implementation would be nominating the address

of an IP-enabled drone as the fleet’s 5-tuple value. The chosen drone will also do the

RTCP distributing/processing for all participating drones. Once the session is negotiated,

and the transmission is started, the receiver must keep track of the association between

multiplexed streams and their SSRCs to perform the demultiplexing effectively. This step

requires a more powerful processing unit that can be met and scaled on demand at a

modern base station. Tesla [62] is a recent example of the big-data approach to improving

the autonomous function of their vehicles, starting with diverse data collection. The UAV

industry could also adopt a similar technique to speed up their development with these

on-site data.

Currently, the additional information is still limited to the metadata of video frames, such

as the UAV telemetry, camera configuration, and gimbal status. Due to the relatively

small size, this meta-data could be fitted into the RTP header extension as the work done

for Parrot’s drone photo metadata embedding [63]. However, as the amount of data to

be transmitted increases, an IoT-AV multiplexing solution is necessary for this specific

application.

Example - XR

Extended Reality (XR) is another area where applications can take advantage of IoT-AV

multiplexing. XR has been researched extensively and is considered the next killer app. In

addition to the AV data, other helpful information could come from a gyroscope, a thermo-

stat, a photo sensor, a magnetometer, and so on. For many XR applications, the device is

operated in a relatively small area which mitigates the IP address allocating challenge in

the UAV example. This application uses the bidirectional communication between the XR

device and the nearest 5G fog data/computing center [64] with RTP functions activated

to provide sufficient and adjustable computing power compared to the built-in hardware

approach and lower total latency compared to the cloud computing approach. In the XR-

to-center direction, the end device is an RTP sender that initiates multiple streams within

the same session to the center. In the opposite direction, the server is an RTP sender that

streams packets to the XR device. The processes could apply different time resolutions

due to the various end-users requirement of the transmitted data. The negotiation for mul-

tiple data types being used in these sessions is handled via the offer/answer mechanism.

An SSRC identifies each distinguished stream, and the relationship between streams is

primarily concerned with the fog center. The southbound multiplexed stream must include
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RTP with suitable timestamps and corresponding SSRCs to alleviate the lip-sync function

in the XR device.

3.1.4 Redundancy

As discussed in the function overview in Section 2.3.3.3, the more redundant packets

(duplicates) are sent, the smaller probability of all of them being lost. This subsection will

demonstrate some use cases of Temporal and Spatial Redundancy in IoT streaming.

For temporal redundancy, the network and device tax are similar to having retransmission

as default. The time between the original and the duplicate transmission defines the

"protected" period in which packet loss can be recovered using temporal redundancy.

A system must compromise with more active time on devices and a longer end-to-end

delay to provide a longer protected period. For IoT streaming applications, temporal

redundancy should only be used in specific scenarios where the trade-off is acceptable.

Some examples could be:

• Some streams are critical, and even the transient loss should be avoided.

• The temporal redundancy can be activated regarding the packet sending/receiving

reception or application’s requirement.

• The resource consumption by temporal redundancy is less than retransmission.

• NAT/ICE/STUN function or multi-sessions management is limited on some devices.

Spatial redundancy’s robustness is based on distributing the redundant packets over dif-

ferent sessions. By default, the protected period in this approach is only the moment when

the original and its replicate are sent. Therefore, the delay in terms of transmission is not

significant, and an end device can make all of its sending before going to low-power mode

if needed. However, spatial redundancy requires multi-session management, which could

be expensive for constrained device categories. The address-port usage is also higher,

followed by a remarkable amount of resources for NAT/ICE/STUN function maintenance.

Some common characteristics of spatial redundancy applicable system could be listed

as:

• The streaming content is time critical and is worth the network resource extra con-

sumption.

• Participants are capable of joining multi-sessions.

• The buffered replicated packets can be processed with a minimal delay.

Using temporal and spatial redundancy as unit blocks, a system could obtain the Temporal-

Spatial Redundancy functionality which can significantly improve the robustness of the

transmission. As a consequence, this hybrid approach inherits challenges from its com-

ponents along with significant complexity in both sender and receiver. Given the precon-
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dition of effectively re-configuring a session which means it could be using SIP re-INVITE

or SIP UPDATE [65] requests, a stream can apply mentioned solutions flexibly to obtain

the Adaptive Redundancy. Ideally, the redundancy is activated during or right before the

lossy period to reduce both the packet loss and the network consumption. The cognitive

function of the 5G network[66] could be another source to provide network-level insights

for applications to improve the prediction of traffic conditions.

Example - Smart Factory

Industrial IoT (IoT) is an important section of IoT research invested heavily due to its

commercial potential. In the picture of Industry 4.0, Smart Factory is considered the

next evolutionary manufacturing step. The enhancement is given by smart factories such

as[67]: improved process efficiency, lower operational cost, higher product quality, re-

duced operational accidents, and more adjustable system. A strong correlation between

the physical entities and their virtual models in Cyber-Physical System (CPS) is required

to achieve the mentioned enhancement. IoT streaming using RTP supports smart factory

applications via high temporal resolution and diverse data transmission.

The factory is usually facilitated with power access and a dedicated network that partly

alleviates the well-known IoT constraints and allows redundant transmission. In RTP

terms, the system’s components can be described as:

• End Device is equipped with RTP/RTCP for data transferring and SIP for signaling.

• SIP Server with sufficient coverage and power to handle all signaling from all plant

devices.

• Digital Twin Server receives all possible RTP streams from the factory.

• Analytic Sink stores all the operational data from the plant for later offline analytics

or simulation.

An assembling line composed of multi-functional robot arms, conveyors, and additional

sensory devices as End Devices is used to illustrate a concrete example. RTP streams

are set up for data transmission: between End Devices, from the end device to the Digital

Twin Server, or from the Digital Twin Server to the Analytic Sink. The first setup is for the

collaborative tasks between End Devices, so the transmitted data should be narrowed

down to the control-related data, e.g., robot coordination, conveyor speed, or stiffness of

the object. Each End Device in the production line receives the list of its collaborators’

IDs along with the program to be run during the process. An ID should be illustrative

and understandable for humans as the End Device’s address:port value is to be received

from the SIP Server to assure its validity. The program distributor can be co-located with

the SIP Server to take advantage of all devices’ IP-address records in the SIP Server.

An End Device obtains its collaborators’ address:port based on the received ID list and

initiates RTP sessions with its collaborators. The implemented RTP topology in this sce-
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nario must be Point-To-Point as each participant is a separate physical device with their

address:port values. The transmission between End Devices can tolerate a higher redun-

dancy compared with the transmission towards the Digital Twin Server due to the smaller

packet size. Temporal Redundancy, Spatial Redundancy or their variations can be used

depending on network capability. However, Temporal Redundancy is less desirable in

this use case. Because enhancing the "protected" period of a packet means a longer

delay between its duplicate and original thus, it compensates for the priority of real-time

transmission. As Spatial Redundancy is applied, multiple sessions must be initiated and

maintained for every pair of End Devices. The Digital Twin Server requires a dual setup

for its whole plant model. The transmitted data is of various types and does not contain

only related control. Any relative condition of an End Device like temperature, power level,

or displacement must be streamed back to the Digital Twin Server to update the Device’s

model. This transmission can be considered a lower critical level in comparison with the

inter-End-Device type if the CPS is only for monitoring purposes. However, a remote

operator can order a higher level of redundancy on-demand to serve the critical period

or for an online examining task. To activate the additional reliability, the operator needs

to initiate more RTP sessions (spatial redundancy) or modify the current RTP session

(temporal redundancy) from the SIP Server. The Digital Twin of the factory can prioritize

and apply different redundant levels on End Devices, for example, based on their up-time,

next inspection date, network situation, and so on. Even if there is a saturation level for

applying for redundancy and the number of End Devices in a factory is deterministic, the

Digital Twin Server and the SIP Server must maintain tight coordination to ensure the

network can afford the redundancy. The last setup is for analytics and storage purposes,

so it is not as time-critical. Therefore, reliable functionality, such as retransmission should

be considered to reduce network stress.

3.1.5 Simulcast

The technical problem aimed to solve by simulcast is multiple data format broadcasting.

The advantages of simulcasting can be listed as follows:

• Devices with different resource constraints and data requirements can operate in

the same network. Hence, simulcast strongly supports the heterogeneous nature

of IoT.

• The computing complexity and resource consumption are shifted to the stream

senders and mixers.

• Less signaling is required in comparison to scalable encoding.

With fewer constraints for the data representations, IoT streaming has more freedom to

tailor the content for each use case. In other words, before implementing IoT stream

simulcasting, a system designer must define the different "resolutions" for IoT streams
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in his application. The data representation selection heavily impacts the performance of

the simulcasting function. More details on this topic will be discussed in subsection Data

Type of Section 3.1.

The technical details illustrated in Section 2.3.3.4 suggest a simulcast-enabled system

requires: a sender with the capability to generate multiple streams of different formats

and an intermediary(RTP mixer) to forward the compatible streams to receivers. Because

the complexity and resources of a system are mostly focused on the senders and the

mixers, such a system can take advantage of the decentralized and cloud-fog architecture

mentioned in [64], especially for southbound streaming.

Example - Automotive communication

Vehicle-to-Everything or V2X is an intersection of automotive technology and IoT where a

vehicle exchanges data with other entities to extend its application. Various potential use

cases and benefits of V2X communications were investigated in [68] and [69], which can

be grouped as:

• Safety: Services focus on reducing traffic accidents and minimizing other risks for

traffic participants.

• Efficiency: Services focus on optimizing the potentials of both public infrastructure

and private vehicles without compromising environmental quality

• Infotainment: Services focus on extra functions for the human user of a vehicle.

Of the three mentioned types of service, the need for stream-liked data transmission

persists. In addition, due to the mobility nature of the vehicle and the diversity of things

it interacts with, the need for multiple representations of the same information is evident.

Examples of such scenarios can be depicted as follows:

The control station broadcasts the weather or accident notification for multiple au-

tonomous cars (vehicle-infrastructure communication) in an area. The information

is given in multiple languages and simulcasted to all vehicles. Vehicles that received

the multi-language information can choose to either display just one representation

(private vehicle) or multiple representations (public vehicle like a bus)

A vehicle needs to broadcast its condition to other nearby vehicles for safety ser-

vices. Those vehicles are from manufacturers who may use different representa-

tions, such as Fahrenheit instead of Celsius degree or BSON instead of JSON. A

vehicle may choose to simulcast data in many popular representations to ensure all

vehicles are aware of its condition.

From the aforementioned requirements, simulcast must be considered for V2X communi-

cation.

The first example can be described in more detail using RTP terms as the following:
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Control Station is an RTP source that generates multiple RTP streams of different formats from the

same content and simulcasts these streams to the Mixer.

Mixer is similar to an RTP switching mixer and can be located in a vehicle (a car, a bus, a

ferry ...) or a part of the infrastructure (a traffic post, a lighting post, a bus stop...).

Receiver corresponds to the RTP participants and can be an RTP module added to the vehi-

cles. A receiver can serve the received information to a single human user (private

car panel or an attached XR headset) or multiple human users (bus’ display panel).

Similar information can also be fed to the vehicle, but in a much higher resolu-

tion(temporal or measurement precision), to improve its autonomous function.

The following procedure illustrates how the simulcast function operates in an accident up-

dating system for automobiles. Each vehicle (Receiver) identifies itself and updates its IP

address when entering the coverage of a Control Station. In case an incident happens,

the responsible Control Station for that area generates RTP streams related to the inci-

dent. The content is expected to be used not only for human users but also for vehicles.

Therefore, there are two RTP sessions for each vehicle that have the same IP address

but different ports. The human-consuming RTP session is used to transmit data at a low

frequency and is only used for presenting insights to humans such as real-time graphs,

statistics values, safety recommendations, or audit reports. The vehicle-consuming RTP

session contains simulcasted RTP streams that can be used by the vehicle to optimize its

function. This information includes:

• Road conditions such as illumination detected obstacles or holes, or icy road

• Traffic flow-related information like congestion detection, traffic redirecting, recov-

ering time estimation

• Public reinforced commands from Control Station such as speed limit or lighting

power.

Each simulcasted stream between the Control Station and the vehicle is identified by an

SSRC within the scope of an RTP session. A vehicle plays the role of an RTP switching

mixer and handles two important functions: updating the data representation it can use

and selecting the suitable stream(s) based on that representation. Data from the human-

consuming sessions can be displayed directly via the vehicle’s info dashboard or speaker.

An example would be showing a multi-subtitle graph/map or multi-language audio report.

Alternatively, the same information can be forwarded to private devices that are connected

to the vehicle. Examples of private devices could be XR headsets, smartphones, or

smartwatches. When the vehicle is out of the impact zone of the incident, it can terminate

the sessions and prepare to initiate new sessions with the next Control Station.
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3.1.6 Multicast

Multicast is required for IoT applications that quickly distribute the same data to many

receivers. RTP multicast is desirable for IoT because of the following reasons:

• Lower network resource consumption (addresses, ports, bandwidth).

• A more energy-efficient system as the data is only sent to the needed receivers.

• An abstraction to handle multiple numeric addresses as one entity.

• A shared awareness of data transmission thanks to RTCP feedback reports.

• Possibility to integrate a third-party monitoring application by sharing RTCP feed-

back.

Within the two groups of multicast available in RTP, SSM should be preferable for its lower

complexity and resource consumption than ASM.

Example - Multiple diagnostics service

For medical reasons, a swift reaction during the first hour is critical for recovery when

an accident or health-related failure happens. This period is usually called the "golden

hour" as its information can make a life-death difference. IoT is already in a fast pace

of adoption for healthcare applications such as emergency services as in [70], or early

stroke detection as in [71]. Independent of the details on how the patient data is used,

a set of high temporal-resolution data is needed by many receivers. Examples of parties

interested in this data could be diagnostic services, the nearest ambulance or hospital,

the patient’s private doctor, etc. IoT streaming with simulcast is a promising candidate to

provide this critical data in time.

In this example, an RTP implementation to stream comprehensive vital data (temperature,

heart rate variability, ECG, EMG, oxygen level...) to various responsible services. Using

the terminologies agreed in Section 2.3.3.1, an IoT streaming system with a multicast

function can be realized as:

Original Sender is a sensory device located in a first aid station, embedded in a wearable device, or

integrated with an automated external defibrillator (AED).

Distribution Source is assigned as a module at a base station near the Original Sender to shorten the

transmission time.

Feedback Target is another module handled at the base station to offload the feedback function from

the Original Sender.

Receivers are applications used by services or people pre-assigned for the incident on that

site.

Only the Feedback Target is specialized for the RTCP function of the four realized compo-
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nents. The other three must be capable of performing both signaling, RTP (sending and

receiving), and RTCP functions. Consider the case of an incident, the Original Sender is

in its operation mode, and the following tasks are enabled:

1. Collecting vital signals to store, locally visualize and prepare for streaming.

2. Initiating a unicast RTP session to the Distribution Source.

3. Streaming, the signals can be multiplexed into one stream or separated as multiple

streams with distinguished SSRCs.

4. Adjusting the streaming process according to the RTCP feedback received from the

Distribution Source

Using RTP, all recorded signals are already timestamped and sequenced for reconstruc-

tion at the receiving site. After identifying the Original Sender, Distribution Source initiates

multiple RTP sessions to prepare for the multicast process. The local operator can reg-

ister the Original Sender to provide its precise location or send a GPS value along with

the SIP messages. When the RTP sessions are ready, the Distribution Source forwards

the unicast streams to its Receivers. The receiving services can be dynamically regis-

tered to the Distribution Source. Local operators can easily modify the service using the

same hardware. For example, if a company is notified about a new employee with a rare

allergy, that company can add a diagnostic package specified to that allergy to its current

subscription. In another scenario, an ambulance operating near that area can update

the patient’s situation in real-time to prioritize the action when the team arrives at the

site. On a Receiver’s side, after joining the session and receiving the data, it sends the

RTCP feedback and control signal to a corresponding Feedback Target. The Feedback

Target, while allocated in a different physical device away from the Distribution Source,

must maintain strong communication with the Distribution Source.

3.1.7 Pause and Resume

As RTP/RTCP is involved in both the application and transport layers, the pause-resume

function of a streaming system posed a coherent effect on both layers. Applications ben-

efit from abstraction observed on the application level for pause/resume behavior while

still being able to interfere with lower-level operations if needed. Some examples of these

benefits can be listed as follows:

• Reducing the number of total operations required for pause/resume behavior. The

alternative would be a sequence of terminating the current RTP session and nego-

tiating again a new RTP session, which is more complex.

• Reducing the pause-to-transmission time: If the pause decision is from the sender,

it can continue sending at any time. If the decision is from the receiver, that receiver

will get the sender’s response to its request after a short period.
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• Reducing network setup overhead.

• Reusing the available RTCP statistics to better anticipate the transmission of the

paused stream.

• Providing a means to indicate the proactively not-transmitting decision (via PAUSED

and REFUSED messages) from a sender. This also helps to improve the packet-

loss vs. no-packet-sent scenario distinction.

• Reducing the bandwidth usage during the pause period as no additional packet is

sent.

In the context of IoT streaming, especially in massive IoT, an enormous number of partic-

ipants in an RTP session emphasizes, even more, the session’s reusability. At the same

time, the predictability of the transmission is useful for resource allocation and a short

pause-to-transmission time is also desirable in time-critical streaming applications.

Example - Large scale WSN

Examples of pause-resume-enabled systems can be seen in large-scale WSNs with a

decentralized architecture. There are cases where high temporal resolution data from all

sensory nodes is not desirable, for example:

• The network is temporally allowed for a narrow bandwidth.

• The current task requires only a subset of sensory streams, and the application

would prefer to dedicate more bandwidth to those streams.

• Some sensory nodes would like to preserve their battery level to stream only critical

data.

In this section, the example use case applies point-to-point topology in a single RTP

session. A WSN’s components in RTP terminologies can be realized as follows:

Collector acts as an RTP mixer-sender and receives streamed data from sensory nodes in

the network. Collector also has signaling capability to receive session configuration

from the Controller. Multiple streams from the Collector are within the same RTP

session and separated via different SSRCs.

Receiver is a module in a server with RTP/RTCP function. It receives RTP and RTCP streams

from the Collector. A Receiver then separates data and control streams before

forwarding the former to the RTP Module and the latter to the RTCP Module of the

Application.

Application contains application-specific logic and two extra parts: RTP Module for the data

ingesting task and RTCP Module for the controlling task.

Controller is separated from the Application and has the signaling capability to arrange the

session configuration requested from the Application.
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To start with, an RTP session exists between the Collector and the Receiver. The network-

aware Application detects a possible bandwidth shortage and reduces its sensory data

streams to avoid network saturation. Based on its internal logic and the RTCP reports

from the RTCP module, the Application selects a subset of streams to stay streaming.

A list of to-be-paused streams is made and sent to the Controller, where it is used to

make the required SIP messages. These SIP messages are then sent to the Controller,

whose first action is pausing all the indicated streams. If the Application wants to resume

a stream, it initiates a new request to the Controller. The Controller then sends a SIP

message containing session modification to the Collector. After receiving the SIP mes-

sage for session modifying, the Collector starts pausing or resuming specified streams.

Finally, the Application is informed if any stream is refused to be resumed.

One of the essential benefits of pause-resume is the immediate availability of streams.

Because the SSRC space (32-bit) is significantly larger than the number of ports available

at an address, the number of maximum simultaneous paused streams depends on the

latter range. However, given the same number of ports, the Collector can still expand

its coverage further using the CSRC field. Multiple correlating sensory nodes can be

realized as contributing sources(CSRCs) for one synchronizing source(SSRC). With this

approach, data from contributing sources of the same SSRC is shared fate as the CSRC-

level stream control is not yet available. Alternatively, the Controller can initiate a new RTP

session to increase the number of streams. This approach is more intuitive but requires

early planning for new session negotiations.

3.1.8 Retransmission

Similar to conventional AV streaming, retransmission contributes to the additional reliabil-

ity of IoT streaming using RTP. Other advantages of retransmission-enabled IoT stream-

ing can be listed as follows:

• Retransmission is more dynamic than Redundancy. The receiver can decide if it

wants to have the lost/damaged packet resent.

• Retransmission requires less bandwidth consumption for transient loss than Tem-

poral Redundancy.

• Retransmission consumes fewer transport ports than Spatial Redundancy.

A system designer should also consider the following characteristics of the RTP retrans-

mission to implement that function for IoT streaming:

• IoT devices must be equipped with RTCP to communicate retransmitting signaling.

RTCP statistics should also be employed to gain insights into the expected packet

arrival time where it is applicable to make the most out of the additional RTCP

capability.
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• The retransmitted streams can be placed in the same session as the original stream

to reduce the number of sessions.

• One should consider tuning the retransmission for practical implementation. A re-

ceiver can stop requesting/waiting for repairing packets after several requesting

attempts or a time-out. This decision significantly affects the trade-off between reli-

ability and system performance.

Example - Predictive Retransmission Service

Packet loss is a common problem in IoT streaming applications that involve device mobility

or sudden environmental changes. The causal factors could be due to blocking by terrain,

high level of interference at a particular area, low penetration due to vegetation roof.

However, the low transmission quality could be predicted and planned for some of these

cases. For the automotive industry, a smart vehicle knows the high packet loss areas

when its user plans his trip. That vehicle can then use the position information (GPS)

to estimate when retransmission is needed. An additional RTP session is negotiated

for retransmission before that car enters the poor connection area. The retransmission

implementation follows the session-multiplexing specified in RFC4588. The failed packets

are to be buffered in the vehicle as the duration of packet loss is anticipated. The buffered

packets are retransmitted until the buffer is empty or the timeout period for those packets

has passed. After that, the retransmission RTP session is torn down. The collaboration

between network operators and users can provide this predictive retransmission service.

The network providers can provide customized based stations to offer a better connection

for the vehicle. Organizers and end-users can equip their cars with the RTP-enabled

application and subscribe to an automotive data package to benefit from the exclusive

streaming quality.

3.1.9 Payload Type

Considering the formats of IoT Streaming, most of the data being exchanged is in the key-

value representations such as JSON, BSON, CBOR, Msgpack, Protobuf, or SenML as

found in this survey[72]. Compact options like CBOR, Protobuf, and BSON are encoded

to binary. On the other hand, JSON and the JSON representation on SenML are encoded

in string format like UTF-8. The second group allows RTP infrastructure to quickly adapt

to the IoT streaming new use cases by using a text-related extension like "RTP Payload

for Text Conversation"-RTP T140. Figure 3.1 shows the format of a T140 packet without

redundancy.
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Figure 3.1. RTP T140 packet format

By applying encapsulation, a data point or multiple data points can be represented in

JSON or JSON-SenML object which can be encoded as a string in the T140 packet. This

approach is demonstrated in Chapter 4-Prototype.

3.2 Using SIP

By replacing a human with a non-human in the position of the consumer or an End User

(EU), VoLTE can be reused to have the data transmission between two machines (M2M

call) on that same infrastructure for human voice service. Below is the rationale for the

M2M call approach from a SIP perspective.

As a signal protocol for multimedia sessions, SIP supports the streaming part of IoT

Streaming as long as a session can be set. The IoT part in IoT Streaming could be

covered, too, if an EU can be a non-human entity. One could refer to an entity with the

SIP functionalities as a SIP Endpoint to emphasize this extension in terminology. The

definition of a Session in RFC3261 is "an exchange of data between an association and

participants" and does not imply that multimedia is the only type of data on the traffic. In

this section, Machine-to-Machine session or M2M-session will refer to a SIP session with

all non-human participants. An M2M session is expected to involve some new behaviors

due to the vast amount of differences in EU characteristics. Some examples can be listed:

• The range of session duration significantly varies. A session duration could be

extremely short due to the high data consuming/producing frequency compared

with human EU. On the other hand, a session of low-power devices could be much

longer to prevent the session negotiation.

• A session could contain a significant number of non-human EUs, but each con-

sumes/produces few data than the human EU.

• A session could face a machine-speed joining/leaving condition from many EUs,

which may require inter-session functions.
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Alternatively, a SIP session could also be a Person-to-Machine session or Machine-to-

Person session if the EUs include humans and machines.

It can be considered that, in the absence of major changes in SIP, a broader implementa-

tion of sessions between a diverse population of IoT EUs is possible. There already exist

commercial platforms to provide SIP Servers as a Service for IoT applications like alarm

servers (iotcomms.io [73]) or automated parking(SIPazon [74]). The following subsections

describe the novel use cases for SIP in IoT Streaming.

3.2.1 IoT PubSub system using SIP conference

3.2.1.1 Rationale

By applying solutions from the PubSub paradigm, multiple inherited challenges from both

IoT and Streaming areas in some cases could be dealt with. The common advantages of

telecommunication infrastructure reusing have been discussed; hence, it is not mentioned

again. Other immediately recognizable benefits can be listed as follows:

Providing one-to-many data distribution

Decoupled communication: Data transmission does not require Publisher and Sub-

scriber activeness simultaneously.

Supporting high temporal resolution data transmission if needed.

Event-driven: no polling is required, and the data is sent whenever an event is

observed/produced.

Energy Efficiency: End-devices can concurrently execute their communicating func-

tion quickly and then return to less resource-demanding tasks (or sleep mode). The

broker handles the resource-demanding task of topic bookkeeping, routing, and

policy management.

Modularity and Scalability: The abstraction of broker(s), modularity, and extensibil-

ity from the core principles of PubSub provides interoperability as a default to deal

with the heterogeneity of IoT. The broker can be scaled dynamically and horizontally

in advance, increasing the potential of PubSub systems.

Bandwidth saving: The massive number of IoT devices can quickly saturate the net-

work’s traffic if the real-time data is delivered using the Request/Response model.

The correlation in their designs can be realized with the analysis given in Section 2.6-

Conference and Section 2.7-PubSub. Both technologies introduce the separation in func-

tions: Signaling vs Data Transferring for Conferences and Topic publishing/subscribing vs

data forwarding. Both of them are capable of one-to-many transmission and streaming

tasks. A centralized server is required for a PubSub system and most conference archi-
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tectures. This correlation encourages an attempt to re-purpose the Conference using the

SIPPING framework to set up a PubSub system.

3.2.1.2 Components

From RFC4353, there are elements in the framework for conferencing that can be used

to implement PubSub behaviors for a communication system. The essential components

of such a PubSub system are listed as follows:

• Participants in a SIP conference are Publishers or Subscribers.

• A SIP conference is assigned with a topic in PubSub. In an implementation, a

topic is associated with a Conference Server composed of: A Focus, A Conference

Notification Service, A Conference Policy Service, and Mixers if the mixing func-

tion is located at that Conference Server. A Conference Server only handles the

operations regarding the topic associated with it.

• A Conference Factory in SIP conferencing acts as a broker in PubSub. It is an entity

that can allocate resources for multiple conferences and create/modify those.

• Other intermediate components like middlewares are context-dependent, so they

are not described in detail here.

3.2.1.3 Storing PubSub information in a Conference Object

The realized components require means to persist the related information about a Pub-

Sub system like the Publisher list or the address of the Publisher. This information can be

stored in the Conference Object in the Focus of a Conference Server. Conference Object

was defined in RFC4575-A Session Initiation Protocol(SIP)Event Package for Conference

State[56]. This subsection describes the findings about reusing these fields for PubSub.

The primary idea behind this subsection is to reuse the available event package in AV

conferences for IoT use cases as much as possible. If there is no suitable field to store

the valuable information, this subsection suggests some possible solutions.

<subject>

The name of a topic can be placed in the <subject> field within a <conference-description>
of a conference. Initially, in a conventional AV conference, <subject> is used for descrip-

tive usage for human users. Therefore, it could be more beneficial to reuse this element

rather than adding a new one to the package. To maintain the uniqueness of a topic

name, the Conference Factory is assigned an additional task, topic collision avoidance.

<keywords>

Different values in the <keywords> field in <conference-description> are helpful for

the Conference Factory to filter conferences it created. In a PubSub realization, it is equal
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to the ability of a broker to filter its topics.

<roles>

The Conference Object contains a field <roles> to indicate the allowed operations for

a participant swiftly. Participants in a PubSub implementing system can use this field to

express their role as subscribers, publishers, or both. While field values like publisher
or subscriber can directly describe the role of a participant in PubSub, a system de-

signer should also consider reusing the existing SDP attributes for this purpose to avoid

the additional mapping task. For example, a publisher can be described as sendonly,

and a subscriber can be described as recvonly. If this solution is applied, the role of a

participant can be copied from SIP messages to the Conference Object without conver-

sion.

<available-media>

The successfully negotiated RTP stream characteristics for a topic can be stored in the

<available-media> field in the <conference-description>. Multiple entries can be

saved in this field, making it convenient for multiplexing or simulcasting-enabled applica-

tions. The sub-field <media> allows audio, video, text, application, and message. The

"text" and "application" formats are promising to describe the IoT data stream.

<status>

The <status> field of an <endpoint> is a handful to store the current condition of a

PubSub participant. For example, an Endpoint with a "connected" status is ready to

receive notifications from the topic and the data forwarding from the corresponding mixer.

An Endpoint with a "pending" status could be paused and refuse to receive the data while

still receiving PubSub notifications.

In addition to the field mentioned above, other enhancements can be added to the SIP

and SDP to support PubSub operations better.

<subscriber-count> and <publisher-count>

Quick access to the number of publishers or subscribers often benefits policy-based be-

haviors. For example, if a topic has had no subscriber for a while, the Conference Server

can stop the streaming from its publishers to save battery for those devices. This adjust-

ment provides more actionable information than the general <user-count> given by the

SIP Conference Event Package.

<status>*

Negotiating the RTP stream characteristics every time a participant re-joins a topic could

be expensive for IoT devices, as discussed in the Pause/Resume Section. It is valuable

to have a value in the <status> field of <endpoint> to indicate the "paused" status of
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an Endpoint explicitly.

3.2.1.4 SDP attributes for PubSub

As SDP is used for media negotiation for RTP sessions. The IoT PubSub realization

also requires a similar describing function for IoT data session negotiation. Hence, it is

valuable to have an attribute dedicated to storing the PubSub topic associated with a

conference. An example of this new attribute could be ‘a=topic:<topic-name>‘.

Regarding the corresponding Conference URI of a topic, it can be placed in the u=<uri>
attribute of the session description. This attribute is optional in the SDP format and only

used to describe additional human-readable information. However, each session can

have only one u=<uri> attribute. Therefore, one should come up with another solution

if multiple conference URIs for a conference is the case. One example scenario would

be when a conference shares different URIs for participants of different roles. For such

requirements, an additional attribute for conference URI is desired to store URIs in the

media description part of the SDP. An example of a SIP message containing a confer-

ence URI can be seen in Listing 3.1. The topic of "temperature" is associated with a

conference whose conference URI is "sendonly-temperature@server:port". Participants

can only publish data using that conference URI due to the a=sendonly attribute.

Listing 3.1. Conference URI in a SIP message example

. . .

a= t o p i c : temperature

a=con fUr i : sendonly −temperature@server : po r t

a=sendonly

. . .

3.2.1.5 Topic-Conference URI mapping

For a participant to join any conference, the conference URI of that conference is required.

While the association between a topic and the conference URI exists in the conference

object in the Focus of the Conference Server, participants have no access to that infor-

mation. However, a participant in a PubSub implementing system has the name of the

topic it wants to interact with. Therefore, a new entity needs to be defined whose primary

function is maintaining a map for topics and their corresponding conference URIs. In this

thesis, this entity will be referred to as Topic-ConferenceURI Mapper or Mapper, for short.

A Mapper can operate as a network function who are reachable by any components in

PubSub systems that need to convert between a topic and a conference URI.
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3.2.1.6 PubSub operations

To create a topic

A topic in this realization is created after the Conference Factory successfully creates a

conference with the <subject> value of that topic name. Hence, there are at least two

cases that lead to a topic creation:

• A publisher or subscriber creates a topic by sending a SIP message to the broker.

The simple flow can be seen in Figure 3.2.

• The broker receives the command to create a topic from another application logic.

Then, the broker creates a topic without any participants.

Figure 3.2. Topic creation by a participant

If the broker receives a request to create an already existing topic, i.e. the Conference

Factory is asked to create a duplicate conference, some options for the broker’s behaviors

can be:

• Similar to the AV conference: The Conference Server sends a SIP message (4xx-

Client Failure Response) back to the request originator. The follow-up behaviors,

like trying again or modifying the SIP message, depending on the participant’s pol-

icy.

• More IoT-oriented: The Conference Server adds that participant to the existing con-

ference instead of sending back the error response. This policy is favorable for

PubSub systems containing numerous constraint devices. Fewer SIP messages

are needed, and the participants can start sending or receiving data earlier.

To publish/subscribe to a topic
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A participant can try to interact with a topic as a publisher or subscriber using the cor-

responding conference URI for that specific purpose. Participants communicate with a

Conference Server instead of the Conference Factory as in the topic-creating case. The

interactions with a topic can be initiated in different scenarios, for example:

• A participant makes the initiation of the interaction itself. This is equal to a publisher

or a subscriber sending a SIP INVITE message to the Conference Server to invite

itself to that conference.

• A participant is referred to a topic. It means another in-topic participant sends a

SIP REFER message to the Conference Server to introduce a new participant to

that topic.

• Application logic in the Conference Server, after receiving commands somewhere

else, adds participants to the topic. The Conference Server sends SIP INVITE

messages to different participants and waits for their responses on whether to join

that conference.

If participants already have the conference URI, the call flows are similar to the AV con-

ference call flows. However, additional flows are needed to acquire the conference URI

from the Mapper if a participant only has the topic value. Figure 3.3 shows an example of

this extended call flow. The protocol used for those added flows is unspecified, as it could

be tailored for different use cases.

Figure 3.3. Example call flow of a publisher publish data to a topic

To destroy a topic

A topic can be destroyed similarly to how a conference is destroyed, as mentioned in

RFC4353:

By a broker: If the broker decides to destroy a topic or if other causes destroy it and
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a broker detects that, that broker must inform the topic’s publisher and subscribers

to stop their PubSub-tasks.

By a publisher: A publisher can stop streaming its data to a topic. To operate

correctly, the publisher must inform the broker about its stopping. The broker, after

that, signals to all subscribers that this topic is about to shut down, and they should

stop waiting for streaming data.

By policy: A Conference Server operating the topic can also be equipped with the

ability to destroy a topic itself. An example use case would be a topic with expired

time preset by a service provider. If the expired time is met and no extension has

been received, the Conference Policy Server can ask the Conference Server to

start the conference destroying process.

3.2.1.7 A new SIP PubSub Event Package

Suppose the usage of IoT PubSub over-expanded the capability given by the reusing

approach mentioned in the above subsections. In that case, defining a new event package

for PubSub operations using SIP is more beneficial and practical. Using a tailored event

package would reduce the confusion caused by the function mapping between AV and IoT

data conferences. It provides a more unified and efficient solution for IoT PubSub-specific

use cases. On the other hand, defining a brand-new event package requires significant

time and resources to structure such a systematic and comprehensive solution.

3.2.2 System recording

3.2.2.1 Rationale

The importance of recording or data capturing in this era can be considered critical to

mandatory in many cases. The RFC6341 [75] provided a broad list of use cases of

recording for media streaming which can be useful to realize similar applications for IoT

Streaming. Table 3.1 sums up those use cases with a more general scope of the type

of data being streamed. RFC6431 also laid out some terminologies widely used in the

follow-up document about the recording function:

SRS -Session Recording Server is a SIP UA that acts as the sink of recorded data.

SRC -Session Recording Client is a SIP UA where the recorded data is sent from, to-

wards the SRS.

Two distinguished types of Sessions: Communication Session(CS) as the subject

of the recording and Recording Session(RS) to record that CS.

Metadata to describe the CS and its recorded data.
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Usecase name Description

Fulltime Recording One RS for Each CS

Selective Recording Apply recording only for a subset of CSs

RS within a CS Start/Stop RS during the active time of a CS

Persistent Recording A single RS is run continuously for one or

more CSs

Realtime Recording Controls A portion of streaming data in a CS can be

demanded not to be recorded

Voice Portal Recording Specified for voice involved application,

recorded data is used to improve perfor-

mance or to adapt with compliance require-

ments

Enterprise Mobility Recording Focus on enterprise usage, to record the

work-related data being generated when

their employees are not on company

premises.

Geographically Distributed Recording The Recording scope is defined by the loca-

tion of the SRCs

Complex Scenario Recording The operation of an RS leads to another as-

sociated RS to be done

High Availability Continuous Recording To support RS with extreme requirements

Multichannel/Multi datatype Session An RS supports stream data that comes in

multiple channels and of different types. This

also involves synchronization.

Realtime Processing A SRS must be able to support real-time pro-

cessing of the data in an RS if needed

Table 3.1. Recording Usecases

In the rising tide of Machine Learning and Big Data applications, the demand for data

capturing is even more severe as the huge amount of data is an enabler for those tech-

nologies. Therefore, it is evident that the recording function should also be supported

once network operators start to provide IoT Streaming on their infrastructure. From the

perspective of an individual user, if the recorded data can be secured and shared only

with his permission, there are potentials for personalized service adoption and mone-

tizing personal data. Hence, the users could benefit more from data recording and are
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encouraged to provide a larger data collection.

3.2.2.2 Findings and Design

Given the IoT Streaming discussed in the previous section of this thesis is enabled, the

recording function can be conveniently implemented by initiating a session with a similar

setting between SRS and the SRC. In other words, a system with IoT Streaming capability

should be able to extend its functionality to cover the recording function, without major

changes. Different architectures to support recording are described in more detail in

RFC7245 [76].

3.2.2.3 Example

This subsection discusses the use cases of the recording function for remote support

in IIoT. To enhance the adoption rate of automation and robotics in the manufacturing

section of IIoT, customer support must be considered an essential part of their products.

The recording function can be realized in different scenarios for this use case:

1. On-premise-SRS: The recording system can be set up and owned by the factory

where devices are operating. In the presence of an incident, the factory can retrieve

information about the devices around that time. This data can serve their internal

analysis or be selectively cut and sent to the device manufacturer for expert sup-

port. This scenario is similar to the Geographically Distributed Recording where the

scope of recording is the factory area.

2. Manufacturer-based-SRS: In case of an incident, the on-site engineer can connect

to the remote support provided by the manufacturer. During the debugging session,

data generated by a faulty device is transmitted to the manufacturer. This session

can be further augmented with video and audio from multiple devices, i.e. the

recorded interaction from the operator during the debugging process. The manu-

facturer can request recording permission to improve their services or create a fault

profile tailored for that specific factory. The scenario requires both the Complex

Scenario Recording and the Multi-datatype Session.

3. Automated-Recording: A new scenario can be realized by combining The Realtime

Recording Controls and Realtime Processing use case. The manufacturer can also

provide an automated diagnostic service for the factory with the precondition of

recording. If an incident happens, the diagnostics service will run multiple popular

tests to catch the common causes of failure and record those results. In case it

requires more investigation, the process continued as in Manufacturer-based-SRS,

but the factory owns the right to stop recording at any time.
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3.2.3 Constrained SIP

The HTTP-based design of SIP results in the text-based protocol syntax that is useful

to improve interoperability and simplification during the implementation/debugging phase.

However, text-based messages also increase the network traffic and resources to store/pro-

cess. Constrained IoT networks demand a more constrained-device-oriented version of

SIP. To resolve the message-size problem of SIP, a fusion between SIP and CoAP [77] -

Constrained SIP (CoSIP) [16] was proposed as a solution. The idea is to have a binary

protocol whose message format resembles CoAP while reusing the rest of the SIP design

(architecture, concepts, header fields...). Figure 3.4 illustrates the approach of CoSIP ar-

chitecturally, which emphasizes the reusability of SIP. In his follow-up work [78], Simone

Cirani presented a reduction of 33 percent of SIP-related data the in an IoT application

prototype using CoSIP. The same research also pointed out the potential to reduce the

number of received packets at a lower layer where packet fragmentation stresses the

network even more.

Figure 3.4. Comparison of the layered architectures of SIP(a) and CoSIP(b). Adopted
from [16]

A lightweight Session Initiation Protocol (Lightweight SIP) was introduced in [17] and

proved to provide an even more significant improvement in terms of network traffic, as

can be seen from the significant size reduction between the first and third columns in

Figure 3.5. While CoSIP only uses the binary message format from CoAP, Lightweight

SIP goes further into the CoAP realm to apply CoAP’s methods and REST paradigm for

session-related tasks. As a result, Lightweight SIP also allows reusing more CoAP and

RESTful stacks available in other software libraries.
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Figure 3.5. Network traffic comparison between: Lightweight SIP(CoAP-based),
CoSIP(Binary SIP) and Standard SIP(SIP). Adopted from [17]

In conclusion, if these compact SIP archetypes can be standardized and applied to IoT

streaming systems, significant network traffic can be saved for devices with limited capa-

bility.

3.3 On VoLTE

This section is dedicated to discussing VoLTE infrastructure for IoT Streaming purposes.

3.3.1 Benefits

By reusing the same infrastructure made for the AV streaming services for IoT Stream-

ing, multiple parties involved in the VoLTE/IMS network infrastructure can reach a mutual

gain. First, integrating IoT Streaming into the VoLTE network can provide a head-start for

those new services and result in stronger competitiveness. The list below contains some

advantages of the VoLTE/IMS infra that can serve as prominent traits for IoT Streaming

service providers to enhance their user’s experience.

• There are numerous completed functionalities ready for deployment. Some impor-

tant examples could be subscription management, authentication, or recording.

• The physical network infrastructure that covers a wide area(especially residential

zones) with a high-quality connection and on-time maintenance services.

• With the adoption of hyper-scale computing in the telecommunication industry, ser-

vices run on VoLTE can be supported in case of wildly fluctuating data traffic, which

is even more valuable for IoT use cases.

• The inter-operator compatibility can be provided and paves the way for roaming

services if necessary.

• With a proper abstraction from service providers to hide the heavily technical de-
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tails, like by using APIs, the telecommunication functions can be exposed to a

larger audience, including Small and Medium Enterprises and individual develop-

ers. Strong bonding with the community is valuable in the long run.

Second, IoT Streaming leads to new business opportunities for the same investment.

Similar to today’s popular mobile data subscription, connectivity for IoT can also be pro-

vided in the same manner. The subscription plans are expected to be more dynamic

due to the diversity of IoT device classes and applications. The IoT subscription can be

considered another stable revenue for service providers. Hardware providers and service

providers can also collaborate on a single-purchase package that includes all IoT hard-

ware and the necessary connectivity to operate that hardware. This package can range

from wearable devices needing to update health signals to a fleet of industrial robots

demanding high-speed control.

The third benefit comes from merging the existing and the new use cases. For example,

the same customer who enjoyed the AV streaming on their smart TV is likelier to enjoy

the IoT-AV multiplexed streaming service on her XR headset. On the other hand, a fac-

tory whose surveillance system is solely based on AV recording can change to an audio

and ultra-high sound approach to reduce the cost or prevent sensitive information from

leaking. These cases are extremely important for the technology adoption process before

the full-blown stage of IoT Streaming.

Lastly, companies with knowledge of VoLTE networks can significantly benefit from their

human resource as less investment is required than adopting new IoT Streaming technol-

ogy. Another advantage could be the community impact and social connection from the

previous research, standardizing work, and product development.

3.3.2 Reusing all three domains in a VoLTE network

The same simplified architecture can drive the structure of this discussion in 2.14.

On the Radio Access Domain

The scale of IoT networks would demand a more demanding Radio Access capability to

support the increasing traffic. Depending on each specific use case, an IoT Streaming

application would require a Radio Access Network with the following:

• A large range of coverage.

• A denser base-station distribution at critical locations, for example, in highly popu-

lated areas or stages for public events.

• A capability to expand with a well-defined procedure for it, both technically and

legally.

• A regular maintenance and updating plan to keep up with industry standards.
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• A sufficient accessing and mobility support.

These bullet points are all available in the Radio Access network that is being used for

VoLTE as described in 2.5 Therefore, this domain can be considered the first step in the

IoT Streaming adoption process in VoLTE.

On the EPC Domain

From two 3GPP Releases, 13 and 14, LTE-M was introduced along the enhanced Ma-

chine Type Communication(eMTC). Compared to its sibling NB-IoT, LTE-M provides higher

mobility, a higher data rate, and especially native support for VoLTE. This standardization

opens the possibility of repurposing legacy or exploiting under-performed LTE networks

for a new application like telemetry and tracking system as LTE shares part of its spec-

trum with LTE-M. In addition, the LTE-M Deployment Guide [79] includes requirements

and suggestions for implementing LTE-M on an Evolved Packet System (EPS). Visibly,

the same EPS infrastructure VoLTE could serve M2M communication as a repurposed or

additional service. There are related works in both research areas [80], [81], and industry

[82] that indicate interest in this approach. Since IoT streaming applications would require

5G connectivity, EPC is expected to stay relevant in the future to share the traffic pressure

with the 5G Core.

On the IMS Domain

In the implementation plan of the IMS domain in VoLTE, SIP and RTP/RTCP are chosen

as the main protocols for network signaling and data transferring. Therefore, the realiza-

tions described for SIP and RTP/RTCP can be inherited for the IMS network. However, the

IMS implementation does not contain all possible functionalities specified in RFCs. The

IR92[50] is a recommended official document for operators who want to directly apply

the Generic IMS Functions or enable the Supplementary Services for their IoT Streaming

applications.

3.4 Summary

Based on the analysis of the various technologies explored in this chapter, it was de-

termined that the multiplexing and simulcasting functionalities from RTP are likely to be

particularly useful for IoT streaming applications due to their ability to support efficient and

reliable transmission of large amounts of data. Additionally, SIP was identified as a criti-

cal protocol for facilitating signaling in IoT streaming applications, as it is commonly used

in other telecommunications contexts. Finally, the PubSub architecture was selected for

implementation in one of the prototypes. It is a popular approach for many IT applications

and can support many IoT use cases. The selection of these technologies for the proto-

type implementation was based on criteria, including their ability to support real-time data

streaming, their compatibility with existing protocols and standards, and their potential for
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supporting a range of IoT use cases. In the next chapter, these technologies will be im-

plemented and tested in practical use-case scenarios to demonstrate their effectiveness

and feasibility for IoT streaming applications.



75

4. PROTOTYPE IMPLEMENTATION

This chapter demonstrates two prototypes to materialize the concepts and findings from

Sections 3 and 4. The first was focused on implementing streaming IoT data using the

SIP/RTP stack. Two discussed RTP extensions, namely multiplexing, and simulcasting,

were added to the initial signaling/data transferring system. In the second prototype, a

PubSub system for IoT devices was implemented using the findings from the PubSub

realization part. This section is organized into three parts: Section 4.1 mentions the

common approach for both prototypes, Section 4.2 contains all content about the imple-

mented IoT data streaming using RTP (with two extended functionalities), and Section

4.3 is dedicated only for the PubSub operations.

4.1 About the prototyping process

4.1.1 Time Distribution

The most effort during the prototyping phase was placed on implementing signaling/data

transferring core functions and defining IoT data format. The additional RTP features and

visualization were later added based on the best-effort approach in the IoT streaming

prototype. For the IoT PubSub, time was distributed more for the call flow defining and

implementing the additional function (Topic-ConferenceURI Mapper)

4.1.2 Feature Expansion

In these prototypes, the software-package modularity was applied to ease the debugging

in the development process and assure future feature expansion. For example, suppose

a feature like multiplexing was added. In that case, extra processes like multiplexing

and demultiplexing should be easily integrated (before and after the packet transmission

process) without a major change in the system.

4.1.3 Tech Selection

Both prototypes were developed using Golang(Go) for the following reasons:
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• Complete programs are compiled into binary, reducing resource consumption in

constrained devices.

• Go is embedded with testing features that help develop multi-agent software.

• Go is adopted in many telecom and cloud-native projects.

• Prototyping using Go is faster than in C or Rust.

This prototype was developed by expanding and contributing to two open-source Go pack-

ages: go-sip-ua and pion/rtp. The go-sip-ua package was used to assemble the

SIP Proxy Server, SIP Registrar, SIP UAC, and SIP UAS entity. The pion/rtp was uti-

lized as the inspiration for implementing a packetizer/depacketizer for the T140 format.

This package did not yet support this payload type, so a Go package was made following

RFC4103[83] to provide text transmission over RTP.

For data storage purposes, InfluxDB was chosen because of the time-series characteristic

of the data and the option to implement databases in both cloud and local host manner.

As a result, Grafana was selected for the visualizing tasks thanks to its dashboard support

and smooth integration with InfluxDB. Before the final deployment, the application for each

component has been containerized using Docker for testing in an internal Docker network.

4.2 IoT streaming

4.2.1 Target

To demonstrate the feasibility of IoT streaming over RTP, a prototype is set up with the

following targets:

Target 1 Deploying signaling and data transferring system on constrained devices using SIP

and RTP.

Target 2 Defining the packet payload format for IoT data using RTP.

Target 3 Streaming IoT data in the format defined in Target 2 using the infra from Target
1.

Target 4 Implementing one or more additional RTP functionalities as discussed in Section

2.3.3

4.2.2 Design

4.2.2.1 Minimal Components

The minimal prototype includes three entities as described in Table 4.1
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SIP Server Stream Sender Stream Receiver

Composed of SIP Registrar, SIP

Proxy Server

SIP UAC, RTP

Sender

SIP UAC, RTP Re-

ceiver

Operation plane Signaling Signaling and Data

transferring

Signaling and Data

transferring

Hardware Laptop or Raspberry

Pi 3 (RPi3)

RPi3 with a sensory

peripheral (Sense

HAT[84])

RPi3

Table 4.1. IoT Streaming prototype components

4.2.2.2 Operation Sequences

The operation sequence of the whole system can be seen in Figure 4.1 if both users are

registered at the SIP Server.

The prototype assumes the Stream Sender achieved the contact (URI) of the Stream

Receiver by other means. The operation sequence consists of four processes:

1. UA Registration: both UAs register themselves as online at SIP Server

2. Stream Initiation:

• Stream Sender sends an INVITE message to SIP Server.

• SIP Server uses the contact in that message to check if Stream Receiver is

online.

• In case the SIP Server finds the contact, it forwards the INVITE message to

the Stream Receiver to initiate a streaming session.

• Stream Receiver accepts to start a streaming session and passes its answer

to SIP Server, who passes that to the Stream Sender.

3. RTP Streaming: The IoT Streaming process in an RTP session starts.

4. Stream Termination: The Stream Sender stops streaming data and sends a BYE

message to indicate that Stream Sender is not sending more data till a new stream-

ing session is initiated.
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Figure 4.1. The sequence diagram of a successful IoT streaming process

To provide more details on the "IoT Streaming" operation in Figure 4.1, the flow of an IoT

data stream from the Sense HAT peripheral to the other end of the cloud-hosted database

can be seen in Figure 4.2. A packetizer requires a list of parameters, some of which come

from a successful session negotiating process. A packetizer is assigned with an SSRC

value. Hence it only packetizes data for a single stream.
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Figure 4.2. The end-to-end flow of data in IoT Streaming Core Architecture.

Figure 4.3 illustrates the system operation if the contact of the Stream Receiver used in

Stream Sender’s INVITE message does not match with any AOR in the Registrar.

Figure 4.3. The sequence diagram of a "404 USER NOT FOUND" IoT streaming process
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Only the first two processes are included in the failed streaming process: the UA Regis-

tration and the Stream Initiation.

4.2.2.3 Architecture

IoT Steaming Core Architecture

Based on the components and operations described in the sub-section above, the ar-

chitecture of the minimal system that demonstrates the core signaling/data transferring

functions was formed and can be seen in Figure 4.4.

Figure 4.4. IoT Streaming Prototype Core Architecture

IoT Streaming Architecture with Multiplexing Support

Additional components have been added to the Core Architecture to support the multi-

plexing function. In the demo, as shown in Figure 4.5, the multiplexed stream includes

the measurements from three sensors measuring temperature, humidity, and pressure.

When these three measurements are separated, they are coded in different colors (red

for temperature, blue for humidity, and purple for pressure). The multiplexed stream of

data is coded in white color.
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Figure 4.5. IoT Streaming Prototype Architecture with Multiplexing Function

The chosen multiplexing scheme was SSRC-multiplexing, meaning packets from the

same stream were identified by their SSRC field. Consequently, three packetizers, each

with a distinct SSRC, were also required on the Stream Sender side. On the Stream

Receiver side, a demultiplexer was added to sort the depacketized data into their original

streams. The additional databases were optional.

IoT Streaming Architecture with Simulcasting Support

To demonstrate the simulcast function, the orientation (roll, pitch, and yaw) measured

from the sense HAT have been chosen. There were two packetizers on the Stream

Sender side: one to packetize data in low resolution (marked with a thin black arrow)

and one to packetize data in high resolution. In this prototype, the difference was illus-

trated using integer type for the low-resolution stream and float type for the high-resolution

stream. As a result, each packetizer had a unique SSRC and Payload Type. The "Simul-

cast Logic" was added to decide how the simulcasted data should be processed. Both

streams were sent to different storage in this prototype and visualized in Grafana dash-

boards. However, Simulcast Logic can be reconfigured with other behavior, for example:

visualizing the low-resolution data for human consumers and sending high-resolution data

to mission-critical computing nodes. The IoT Streaming Architecture with Simulcasting

can be seen in Figure 4.6
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Figure 4.6. IoT Streaming Prototype Architecture with Simulcasting Function

4.2.2.4 Payload Type

Each group of measurements from the Sense HAT was organized as a JSON representa-

tion of SenML (JSON-SenML), which comes in the form of a list. This list is then serialized

and placed inside an RTP T140 payload. An example of an IoT packet is in Figure 4.7

Figure 4.7. An example of IoT packet used in this prototype



83

4.3 IoT PubSub

4.3.1 Target

This prototype was made to prove the applicability of using conference-related technolo-

gies in SIP(the conference framework and the conference event package) and RTP for IoT

PubSub purposes. The incremental steps towards that goal could be listed as follows:

Target 1 Reusing the IoT streaming in Section 4.2 as fundamental blocks for IoT PubSub.

Target 2 Implementing the basic operations of a PubSub system:

– topic creating/destroying

– data publishing/subscribing/unsubscribing

– one-to-many data distribution

Target 3 Demonstrating the IoT-specific aspects of this prototype like the Topic-ConferenceURI

Mapper.

4.3.2 Design

4.3.2.1 Components

In this prototype, all components were deployed as docker containers in the same virtual

network due to the limited time budget and the ease of repeatedly developing/testing the

entire system. The components are described in the following paragraphs.

Publisher

A Publisher in IoT PubSub is similar to the previous prototype, consisting of two sub-

components: a SIPClient for signaling tasks and an RTPSende for data-transferring. If the

Publisher also shared Conference URI, an additional sub-component could be required.

However, in this demo, this Conference URI sharing was not demonstrated.

Subscriber

For IoT PubSub, a Subscriber was extended with an HTTPClient to enable communication

with the Topic-ConferenceURI Mapper, whose name was abbreviated to ConfTopicMap-

per in this demo. The other two functions were identical to the one in IoT Streaming. A

summary of a Publisher/Subscriber function can be seen in Figure 4.8.
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Figure 4.8. Publisher and Subscriber function summary

Server

Figure 4.9. Server function summary

The Server in this demo consisted of three components, all operating in the signaling

plane. The function summary is listed in Figure 4.9. The ConferenceFactory was a partic-

ular SIP server contacted by any Participant in the PubSub system that needed to create

a conference for a specific topic. The SIPServer handled the conventional functions of a

SIP server, like User Agent registration and session negotiation management. The HTTP-

Client was added to update the information regarding topic-conferenceURI mapping in the

Mapper using HTTP requests.

Topic Conference Mapper

Figure 4.10. Topic Conference Mapper function summary

The Topic Conference Mapper(Figure 4.10) is a database equipped with two HTTP mod-

ules to command the MRF for RTP-packet forwarding and receive topic-related updates

from the Server.

MRF

Figure 4.11. MRF function summary

The MRF in this demo was an RTP-Media Resource Function acting as a packet forwarder



85

with an HTTPClient added for receiving updates from the Topic Conference Mapper. Its

function was summarized in Figure 4.11

4.3.2.2 Operation sequences

From the generic operations described in Section 3.2.1, more details were added to for-

malize the implementable call flows for an IoT PubSub system demo. This part describes

all designed call flows, some of which have been implemented. In the following descrip-

tion, the registration procedure was assumed to be set. Therefore, registration call flows

were displayed in a short form. Parts of the SDP for SIP messages were placed in the

yellow note boxes as a handy convention in this demo. Color coding was used to quickly

recognize the relevant information: blue for the topic related, yellow for data format, green

for the participant’s role, and red for the conference URI.

Topic publishing

Diagram 4.12 illustrates a call flow for the topic publishing operation initiated by a pub-

lisher. In flow-3, the publisher sends a SIP INVITE to the Conference Factory function in

the Server using the factory’s URI. In the attached SDP, the topic was set as iotTopic
with the text/T140 format. The publisher proposed its role via the SDP attribute sendonly.

The IP address and port were encoded as in any conventional session negotiation.

A chain of operations (flow-4 to flow-7) using HTTP was made from the Server to the Con-

fTopicMapper and from the ConfTopicMapper to the MRF. At the end of these operations,

the topic-conference URI mapping was updated. In addition, the MRF had the information

it needed to receive and forward the RTP packets from the Publisher to the Subscribers.

In flow-8, the Server replied to the Publisher with a SIP 200 OK message. The attached

SDP contained the following information:

• The IP address and port of the MRF. For example, notice that the connection at-

tribute has changed from 10.5.0.2 in flow-3 to 10.5.0.3 in flow-8.

• The corresponding conference URI of the conference made for the requested topic.

This information was placed in a made-up SDP attribute in this demo.

• The role of the MRF, which was set to recvonly

When the session negotiation was done, the Publisher sent RTP packets to the MRF. The

topic publishing process was completed.



86

Figure 4.12. Topic publishing call flow

Topic subscribing

Diagram 4.13 illustrated the call flow of a subscriber subscribing to a topic. In this call flow,

the subscriber was given a topic it was interested in. In flow-1 and flow-2, the subscriber

used the topic name to query the conference URI representing that topic. Then, the

subscriber joined the found conference by sending a SIP INVITE to the conference URI,

similar to how a participant invites himself to an AV conference. It indicated its role as

recvonly and its IP address:port. In flow-4, the Server replied to the subscriber with a

SIP 200 OK message with the IP address-port and the role of the MRF. Flow-5 and flow-6

were for the Server to propagate the forwarding setting to the MRF for the RTP stream

forwarding in flow-7. The call flow described the topic subscription for only one subscriber.

Still, multiple subscribers can operate the same call flow to that conference and complete
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a one-to-many data distributing system.

Figure 4.13. Topic subscribing call flow

Topic unpublishing

Topic unpublishing is the reversed process of topic publishing in which a publisher deacti-

vates a topic. The call flow a publisher used to unpublish a topic can be seen in Diagram

4.14. The publisher started the unpublishing process by sending a SIP BYE message to

the Conference Server function in the Server(flow-1). A sequence of flows from 2 to 5 was

made to inform the ConfTopicMapper and MRF about the unpublishing decision. When

the Server confirmed the changes were applied to other components, it sent SIP BYE to

all subscribers interested in that topic. After that, the server replied to the publisher with

a SIP 200 OK(flow-8), and the publisher ended its RTP streaming to the MRF(flow-9).

Depending on specific IoT applications, the call flows can be modified accordingly. For

example, if the publisher is limited in battery, it can stop the RTP streaming operation

after sending the first SIP BYE in flow 1. This helps the capability-limited publisher save

energy while putting extra responsibility in the unpublishing decision.
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Figure 4.14. Topic unpublishing call flow

Topic unsubscribing

The topic unsubscribing procedure was described in Diagram 4.15. The call flow was

started by a subscriber sending a SIP BYE to the Conference Server function of the

Server(flow-1). After receiving SIP 200 OK from the Server, the subscriber could stop

processing RTP packets. There were two scenarios described in Diagram 4.15: the topic

could be empty or occupied by one or more subscribers. In the former scenario(flow-4

to flow-9), the Server can send SIP BYE to the publisher to stop publishing data without

consumers. In the latter, the publisher and the MRF continued their function.
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Figure 4.15. Topic unsubscribing call flow

4.3.2.3 Architecture

The architecture used in the second demo can be seen in Figure 4.16 and was color

coded as follows:

• Orange highlights the components that handle the SIP protocol, including the SIP-

Client, SIPServer, and the ConferenceFactory.

• Blue is used for the HTTP implementing functions.

• Green highlights the RTP-related components: Sender, Receivers, and MRF(forwarder).

The repeated details of subscribing process for Subscribers 2 and 3 were left out from

Figure 4.16 to improve clarity. It can be seen in the architecture that the Server didn’t

access the data in the transfer. By initiating MRFs for the transferring tasks, a Server can

better react to traffic fluctuation via scaling the MRF number.
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Figure 4.16. IoT PubSub system architecture
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5. RESULTS AND DISCUSSIONS

5.1 IoT Streaming System

Reflecting on the set targets, the following results have been achieved:

• A system whose devices operate on both signaling and data-transferring planes.

• Reusing an existing RTP payload format to deliver IoT data.

• Streaming IoT data using constraint devices, storing the time-series data, and visu-

alizing in real-time.

• Adding multiplexing and simulcasting functionalities on top of the default streaming.
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Figure 5.1. Dashboard capture of IoT streaming demo with multiplex enabled

Figure 5.1 captured the final result of IoT streaming with the multiplexing function enabled.

Three signals were successfully multiplexed at the StreamSender and demultiplexed at
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the StreamReceiver. The exact temporal resolution was applied for all three signals. This

can be visibly observed in the dashboard for pressure and humidity, where the changes

fluctuated in the same periods. Real-time data was stored in the InfluxDB cloud service,

and an example of pressure data can be seen in Figure 5.2. The queried data from the

InfluxDB aligned with the data observed from the Grafana dashboard. This demo also

experimented with a stable end-to-end setting for future prototypes regarding streaming

IoT data using RTP.

Figure 5.2. Pressure data queried from an InfluxDB instance

For the simulcast function, the final result dashboard for temperature measurement in dif-

ferent resolutions can be seen in Figure 5.3. The interference in hardware was assumed

to cause outliers at around 300 degrees and zero degrees in both dashboards. However,

no packet loss was detected, and signals in both resolutions were successfully delivered

to the visualizing components.
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Figure 5.3. Dashboard capture of IoT streaming demo with simulcast enabled

The signal in the high-resolution dashboard was updated more frequently. In addition, by

zooming in to a shorter period, as in Figure 5.4, the higher precision can also be seen

from the subtle changes in the second dashboard compared with the constant value in

the first one.
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Figure 5.4. Closer look into the simulcasting dashboard

From these results, it can be seen that streaming IoT data over RTP does not require

major changes in RTP or SIP. Given an AV streaming system, most of the work to expand

to IoT streaming lay on the IoT packetizer and depacketizer. Various data-publishing

frequencies have been set to examine the prototype’s capability for different data temporal

requirements. The observation showed that the data rate could be adjusted flexibly once

the session modification was handled. A stream sender can publish data concurrently

while waiting to negotiate a new valid stream setting.

The SSRC-multiplexing from the AV streaming can be reused directly for IoT streams.

To enable the simulcast function, an additional step was to define the "resolution" for IoT

streams, as discussed in Section 4.
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5.2 IoT Pubsub System

The final result of the IoT PubSub demo satisfied the following bullet points:

• Reusing the SIP session negotiation and RTP streaming for the IoT PubSub imple-

mentation as mentioned in Target 1

• Enabling multiple PubSub operations listed in Target 2

• Implementing the Topic-Conference URI Mapper with HTTP interface.

The topic unsubscribing procedure didn’t strictly follow the designed call flow mentioned.

Instead of sending a SIP BYE to the Server, the subscriber sent an HTTP PATCH request

to the ConfTopicMapper to mimic the SIP call flow. Future work can be allocated to

complete the designed call flows.

5.3 Other insights

The prototype implementation of IoT Streaming and IoT PubSub using RTP, SIP, and

PubSub technologies yielded several shared insights. First, under test conditions without

packet loss, RTP demonstrated its capability to deliver IoT data with low latency while pre-

serving all stream characteristics, making it a promising technology for real-time IoT data

transmission. However, using SIP for signaling tasks may be too demanding for some

IoT devices, and many of its features may remain unused in IoT data streaming ses-

sions. The implementation also encountered practical issues, such as signal smoothing

and outlier handling, which were not initially anticipated, underscoring the importance of

thoroughly testing and validating IoT streaming systems. Additionally, compared to other

fields such as web or machine learning, the number of IoT-focused projects is relatively

small, and unstable hardware can impede prototype development, indicating a need for

improved hardware stability and IoT-oriented platforms that can support data generation,

aggregation, and system integration. In summary, these insights highlight the importance

of addressing practical implementation issues when developing IoT streaming systems

and underscore the need for further research and development in this area.
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6. CONCLUSIONS

Based on the research in this thesis work, the following claims were stated:

Question 1 How can the RTP built-in features and extensions be utilized for IoT

Streaming?

The RTP/SIP stack available in AV streaming has numerous built-in fea-

tures and extensions that can be effectively applied to IoT streaming. By

leveraging these features, many IoT use cases can be realized with low

latency and high reliability. The flexibility and scalability of RTP make it

an ideal candidate for IoT data delivery, while SIP provides a reliable sig-

naling plane for establishing and managing IoT data streaming sessions.

Furthermore, the existing RTP extensions can be customized to support

specific IoT use cases. This approach provides a powerful framework for

implementing real-time IoT applications with high performance and low

overhead.

Question 2 How the A/V infrastructure can be reused for IoT Streaming?

Implementing IoT Streaming over RTP in the VoLTE/IMS infrastructures

can bring a multitude of benefits for all the involved parties. Firstly, end-

users can benefit from RTP’s low-latency and high-quality data delivery,

enabling seamless and real-time interaction with IoT devices. Secondly,

network service providers can expand their service offerings to include

IoT-specific services, catering to the growing demand in the market. This

can lead to new revenue streams and increased customer loyalty. Ad-

ditionally, the utilization of existing VoLTE/IMS infrastructure can reduce

deployment costs and time-to-market for new IoT services. Lastly, this

implementation can pave the way for future advancements and innova-

tions in the IoT domain by providing a reliable and scalable solution for

IoT data delivery over telecommunication networks.

Question 3 How the A/V Conference Services can be used to realize an IoT Pub-

Sub Service?

Implementing each Conference as a Topic in the PubSub architecture

with SIP for signaling and RTP for data transferring functions is a sig-
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nificant step towards enabling effective data distribution and interaction

among IoT devices. This approach allows IoT devices to seamlessly join

and participate in an IoT Conference, benefiting from PubSub behaviors

for efficient data distribution while still enjoying RTP’s low latency and

stream-supported data delivery. This implementation is a testament to

the feasibility and effectiveness of the proposed approach and can serve

as a blueprint for future developments in IoT data distribution and inter-

action.

Addition

The minimal changes required for implementing IoT Streaming and IoT

PubSub over RTP and SIP/SDP are promising for telecommunication

service providers and communication platform providers. These stream-

lined implementations provide a solid foundation for the rapid rollout of

IoT applications. By leveraging the existing infrastructure and protocols,

these providers can offer new IoT services to their customers quickly and

cost-effectively. The ease of implementation also allows for custom IoT

solutions tailored to specific customer needs. This opens new revenue

streams for service providers and enhances customer satisfaction by

providing them with personalized and innovative solutions. Overall, the

minimal implementation requirements for IoT Streaming and IoT PubSub

underscore the potential of these technologies for revolutionizing the IoT

landscape.

During the IoT realization and prototyping phase, several promising ideas have emerged

for future work on IoT streaming. These ideas can be broadly classified into two groups:

experimental and standardization. On the experimental front, further prototyping and

experimentation on real-world VoLTE networks are needed to more thoroughly assess

the reusability of the current audio-video infrastructure for IoT streaming. Another direc-

tion would be to explore the use of other payload types for RTP packets, such as robot

commands or OPC UA payloads, or investigate AV and IoT data multiplexing to support

XR-related applications.

On the standardization front, ongoing work is critical for bringing IoT streaming applica-

tions to the public. For example, developing a new SDP attribute for a topic and a new SIP

event package specified for IoT PubSub implementation in Chapter 4 would be essential

steps toward standardizing IoT streaming capabilities. Future work in VoLTE standardiza-

tion for IoT streaming is also necessary to ensure seamless integration of these new IoT

capabilities with prior standards.

In summary, these future directions underscore the need for continued research and de-

velopment in IoT streaming to realize its potential fully. The experimental work will enable
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the refinement and optimization of existing technologies for IoT streaming, while standard-

ization efforts will promote broader adoption and interoperability across different systems

and networks. We can advance state-of-the-art IoT streaming by pursuing these avenues

and help unlock new possibilities for various applications and use cases.
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A. TECHNICAL DETAILS

A.1 RTP redundancy functionality

To assure the association of the redundant streams and their original stream, if the RTP

implementation is using SDP for session negotiation, then either one of the two following

conditions must be met:

• If there exist other streams other than the original and its duplicate, the description

of the original and its duplicate (with different SSRCs) must be put on the same "m"

line.

• The original and its duplicate can only be described using different "m" lines if they

are the only streams described on each of those lines.

Considering the feedback perspective, RTCP packets for the duplicate must be gener-

ated without discrimination with the original. Reusing the reports from the original for the

duplicate is forbidden as those don’t reflect the true condition of the session and almost

certainly lead to undesired behaviors. On the signaling plane, there are two requirements

to enable RTP redundancy:

• Participants need to include the redundancy supporting their negotiation for session

setting (via SDP extension defined in the RFC7197[85]).

• The duplicate must be specified via signaling means either in-band via RTCP or

out-of-band using SDP.

A.2 RTP pause/resume functionality

The basic usages of pause-resume can be described as:

Request to Pause An RTP receiver can send a PAUSE request at any moment allowed by the time

rule in [38]. If a PAUSE request is acknowledged as lost, a new PAUSE request

with the same PauseID will be sent.

Request to Resume An RTP receiver can send a RESUME request at any time with the same timing rule

applied for PAUSE. The current PauseID is mandatory for any actionable RESUME

request.
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RTP receiver can send a PAUSE request to an RTP sender at any time because

of a requested pause or its internal decision. The ongoing tasks and necessary

preparation can be finished before processing the approved pause operation. A

PAUSED indication is sent, including the current PauseID and the highest sequence

number of the RTP. The latter information is beneficial to pre-pausing packet loss.

The paused condition is also signaled to all attending and newly joint participants.

Response on Paused If the targeted RTP sender is already paused with the same current PauseID as the

received request, that request will be ignored. Otherwise, the sending continues for

a short time (called a hold-off period) while waiting for other senders’ consensus on

the PAUSE request. If there is a disapproving RESUME during the hold-off period,

no pausing on the receiver is to be executed, but the PauseID is still updated. If the

PauseID in the PAUSE request does not match the current PauseID, a REFUSED

notification with the current PauseID value will be sent. REFUSED notification can

signal an RTP sender’s local decision not to pause, indicated by the same PauseID

in the received request.

Response on Resume A being paused RTP sender resumes its stream if the PauseID in the RESUME

request is the current value. An RTP sender with an active stream ignores the

received RESUME. Similar to the case of the PAUSE request, the local logic also

contributes to the sender’s final decision on a RESUME request.

A.3 RTP Inter-Destination Multimedia Sync

Regarding inter-destination sync, in RFC7272 [86] R. van Branderburg proposed an ar-

chitecture for IDMS (Inter-Destination Media Synchronization).

Figure A.1. IDMS Architecture Diagram. Adopted from [86]

As can be seen from Figure A.1, there are two new entity types named Synchroniza-

tion Client (SC) and Media Synchronization Application Server (MSAS). An SC is placed

inside each RTP receiver and responsible for: reporting packet arrival time, packet repre-
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senting time, and configuring playout function based on synchronization setting from the

MSAS. The sync setting contains synchronizing instructions for the RTP receivers. An

MSAS can be realized as an additional function at the RTP sender or an independent

function in an RTP implementation to collect the sync-related reports from SCs. Based

on these reports, MSAS creates and distributes the sync setting to its SCs. To provide an

official means to convey feedback information on inter-destination sync, RFC7272 also

defined:

• An RTCP XR block for IDMS to use in the SC → MSAS communication (Figure

A.3).

• An RTCP Packet Type for indicating the sync setting for RTP receivers in the MSAS

→ SC communication (Figure A.2).

Figure A.2. RTCP IDMS setting packet format. Adopted from [86]

Figure A.3. RTCP IDMS XR report format. Adopted from [86]

A note should be made that the most constrained sync setting is chosen for the RTP

receivers to ensure all receivers are in sync. As can be seen from the work of Fernando
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Boronat Segui in 2008 [87] and Mario Montagud in 2012 [88], sufficient IDMS function

can already be implemented using only their user-defined RTCP extension (such as in the

RTCP APP and RR reports). However, the usage of standardized solutions like RFC7272

was proved to be more effective in [89] with the improvement as:

• More flexible selection for the wall clock source.

• Support for both packet reception time and presentation time.

• A high resolution (64 bits) for Packet Received NTP timestamp and Packet
Presented NTP timestamp in RTCP IDMS setting packet to set up the synchro-

nization.

• A larger namespace (32 bits) for group ID (Media Stream Correlation Identifier).

• A higher accuracy for RTCP-to-RTP mapping using RTP timestamps instead of

RTP sequence numbers.

For the advantages listed above, the approach using RFC7272 should be prioritized for

an IDMS solution.
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A.4 VoLTE

Figure A.4. Key differences in VoLTE specifications between 3GPP and GSMA. Adopted
from [90]
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Figure A.5. Intra-PMN VoLTE deployment. Adapted from[51]

A.5 Conference

This appendix includes a description of other types of conference architecture specified

in RFC4353.

Endpoint Server

In the Endpoint Server model, a conference has two essential properties: ad-hoc and

locally-mixed. At the start, a regular point-to-point call is set up between two users. During

the call, there may occur demands for conference communication like: more Participants

want to join, a Participant intends to record the session or there are files to be shared.

A regular call then goes through the Transition process (the arrow in Figure A.6) to be

replaced by a conference. One of the users in that call implements the Focus function in

addition to its single UA function (becoming an Endpoint Server). That Endpoint Sever

obtains a new URI and uses that in the INVITE sent to additional users. The scenario

that a conference was not planned and started from a call makes the ad-hoc property.

Figure A.6 suggests that the Mixers are located only within one Participant. Therefore,

all media streams from other Participants are mixed within the Endpoint Server and then

re-distributed.
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Figure A.6. Endpoint Server Model. Adopted from [55]

Media Server Component

In this model, server functions, as presented in Endpoint Server, are divided into two

component servers:

Application Server for interaction with Participants. The Conference Notification

Service is exclusive to the Application Server.

Mixing Server for media mixing tasks. Mixers are only available on a Mixing Server.

Each Server has its Focus and Conference Policy but uses them slightly differently. In

an Application Server, the Focus interacts with other Participants on the Signaling Plane

and updates its Conference Policy accordingly. A Mixing Server uses its Focus solely to

receive control commands from its Application Server. These commands connect media

streams to Participants, adjust the mixing process, and update the Conference Policy.

This separation allows reusing a single Mixing Server for different Application Servers.
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Figure A.7. Media Server Model. Adopted from [55]

Distributed Mixing

A Conference Server in this model only handles the signaling functions and distributes all

media functions to conference Participants. As can be seen from Figure A.8, each Par-

ticipant has its Mixers and Conference Policy Server. This grants an individual Participant

a more flexible media mixing and policy negotiation with the Focus. On the other hand,

additional functionality in each UA is also required.
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Figure A.8. Distributed Mixing Model. Adopted from [55]

Cascaded Mixer

In the Cascaded Mixers model, operations on the Signal Plane are organized similarly

to the Centralized Server and done by the SIP mechanism. The media mixing function

on the Data Transfer Plane is scattered into different Mixers throughout the Conference

network. An individual Participant is assigned to only one Mixer. All Mixers are under

Focus’ orchestration to perform the correct mixing based on the Conference Policy stored

in the Conference Server. The control protocol is left unspecified in RFC4353.
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Figure A.9. Cascaded Mixer Model. Adopted from [55]
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