1,019 research outputs found

    Iris Indexing and Ear Classification

    Get PDF
    To identify an individual using a biometric system, the input biometric data has to be typically compared against that of each and every identity in the existing database during the matching stage. The response time of the system increases with the increase in number of individuals (i.e., database size), which is not acceptable in real time monitoring or when working on large scale data. This thesis addresses the problem of reducing the number of database candidates to be considered during matching in the context of iris and ear recognition. In the case of iris, an indexing mechanism based on Burrows Wheeler Transform (BWT) is proposed. Experiments on the CASIA version 3 iris database show a significant reduction in both search time and search space, suggesting the potential of this scheme for indexing iris databases. The ear classification scheme proposed in the thesis is based on parameterizing the shape of the ear and assigning it to one of four classes: round, rectangle, oval and triangle. Experiments on the MAGNA database suggest the potential of this scheme for classifying ear databases

    Fast and Accurate Algorithm for Eye Localization for Gaze Tracking in Low Resolution Images

    Full text link
    Iris centre localization in low-resolution visible images is a challenging problem in computer vision community due to noise, shadows, occlusions, pose variations, eye blinks, etc. This paper proposes an efficient method for determining iris centre in low-resolution images in the visible spectrum. Even low-cost consumer-grade webcams can be used for gaze tracking without any additional hardware. A two-stage algorithm is proposed for iris centre localization. The proposed method uses geometrical characteristics of the eye. In the first stage, a fast convolution based approach is used for obtaining the coarse location of iris centre (IC). The IC location is further refined in the second stage using boundary tracing and ellipse fitting. The algorithm has been evaluated in public databases like BioID, Gi4E and is found to outperform the state of the art methods.Comment: 12 pages, 10 figures, IET Computer Vision, 201

    Robust pre-processing techniques for non-ideal iris images

    Get PDF
    The human iris has been demonstrated to be a very accurate, non-invasive and easy-to-use biometric for personal identification. Most of the current state-of-the-art iris recognition systems require the iris acquisition to be ideal. A lot of constraints are hence put on the user and the acquisition process.;Our aim in this research is to relax these conditions and to develop a pre-processing algorithm, which can be used in conjunction with any matching algorithm to handle the so-called non-ideal iris images. In this thesis we present a few robust techniques to process the non-ideal iris images so as to give a segmented iris image to the matching algorithm. The motivation behind this work is to reduce the false reject rates of the current recognition systems and to reduce the intra-class variability. A new technique for estimating and compensating the angle in non-frontal iris images is presented. We have also developed a novel segmentation algorithm, which uses an ellipse-fitting approach for localizing the pupil. A fast and simple limbus boundary segmentation algorithm is also presented

    Image quality assessment for iris biometric

    Get PDF
    Iris recognition, the ability to recognize and distinguish individuals by their iris pattern, is the most reliable biometric in terms of recognition and identification performance. However, performance of these systems is affected by poor quality imaging. In this work, we extend previous research efforts on iris quality assessment by analyzing the effect of seven quality factors: defocus blur, motion blur, off-angle, occlusion, specular reflection, lighting, and pixel-counts on the performance of traditional iris recognition system. We have concluded that defocus blur, motion blur, and off-angle are the factors that affect recognition performance the most. We further designed a fully automated iris image quality evaluation block that operates in two steps. First each factor is estimated individually, then the second step involves fusing the estimated factors by using Dempster-Shafer theory approach to evidential reasoning. The designed block is tested on two datasets, CASIA 1.0 and a dataset collected at WVU. (Abstract shortened by UMI.)

    Techniques for Ocular Biometric Recognition Under Non-ideal Conditions

    Get PDF
    The use of the ocular region as a biometric cue has gained considerable traction due to recent advances in automated iris recognition. However, a multitude of factors can negatively impact ocular recognition performance under unconstrained conditions (e.g., non-uniform illumination, occlusions, motion blur, image resolution, etc.). This dissertation develops techniques to perform iris and ocular recognition under challenging conditions. The first contribution is an image-level fusion scheme to improve iris recognition performance in low-resolution videos. Information fusion is facilitated by the use of Principal Components Transform (PCT), thereby requiring modest computational efforts. The proposed approach provides improved recognition accuracy when low-resolution iris images are compared against high-resolution iris images. The second contribution is a study demonstrating the effectiveness of the ocular region in improving face recognition under plastic surgery. A score-level fusion approach that combines information from the face and ocular regions is proposed. The proposed approach, unlike other previous methods in this application, is not learning-based, and has modest computational requirements while resulting in better recognition performance. The third contribution is a study on matching ocular regions extracted from RGB face images against that of near-infrared iris images. Face and iris images are typically acquired using sensors operating in visible and near-infrared wavelengths of light, respectively. To this end, a sparse representation approach which generates a joint dictionary from corresponding pairs of face and iris images is designed. The proposed joint dictionary approach is observed to outperform classical ocular recognition techniques. In summary, the techniques presented in this dissertation can be used to improve iris and ocular recognition in practical, unconstrained environments

    Non-ideal iris recognition

    Get PDF
    Of the many biometrics that exist, iris recognition is finding more attention than any other due to its potential for improved accuracy, permanence, and acceptance. Current iris recognition systems operate on frontal view images of good quality. Due to the small area of the iris, user co-operation is required. In this work, a new system capable of processing iris images which are not necessarily in frontal view is described. This overcomes one of the major hurdles with current iris recognition systems and enhances user convenience and accuracy. The proposed system is designed to operate in two steps: (i) preprocessing and estimation of the gaze direction and (ii) processing and encoding of the rotated iris image. Two objective functions are used to estimate the gaze direction. Later, the off-angle iris image undergoes geometric transformations involving the estimated angle and is further processed as if it were a frontal view image. Two methods: (i) PCA and (ii) ICA are used for encoding. Three different datasets are used to quantify performance of the proposed non-ideal recognition system

    Iris Recognition: Robust Processing, Synthesis, Performance Evaluation and Applications

    Get PDF
    The popularity of iris biometric has grown considerably over the past few years. It has resulted in the development of a large number of new iris processing and encoding algorithms. In this dissertation, we will discuss the following aspects of the iris recognition problem: iris image acquisition, iris quality, iris segmentation, iris encoding, performance enhancement and two novel applications.;The specific claimed novelties of this dissertation include: (1) a method to generate a large scale realistic database of iris images; (2) a crosspectral iris matching method for comparison of images in color range against images in Near-Infrared (NIR) range; (3) a method to evaluate iris image and video quality; (4) a robust quality-based iris segmentation method; (5) several approaches to enhance recognition performance and security of traditional iris encoding techniques; (6) a method to increase iris capture volume for acquisition of iris on the move from a distance and (7) a method to improve performance of biometric systems due to available soft data in the form of links and connections in a relevant social network
    • …
    corecore