484 research outputs found

    Design and Performance Analysis of a Geographic Routing Protocol for Highly Dynamic MANETs

    Get PDF
    Efficient multi-hop routing has become important for airborne telemetry networks. The highly dynamic nature in these scenarios results in short-lived links. Geographic-based routing has an advantage over topology-based routing to make rapid forwarding decisions based on neighbor and destination position. The AeroRP geographic routing protocol is detailed, which uses a heuristic metric for forwarding decisions that takes transmission range and a neighbor's location and velocity into consideration. The main contributions of this work include detailing and finalizing the routing decision metrics, design, and simulation implementation of AeroRP. The analysis of the simulations shows AeroRP has several advantages over other MANET routing protocols and offers tradeoffs for different performance metrics in the form of different AeroRP modes. Specifically, AeroRP yields higher accuracy than all compared routing protocols and various AeroRP modes can be chosen depending on how packet delivery and delay are prioritized

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    Intertwined localization and error-resilient geographic routing for mobile wireless sensor networks

    Get PDF
    “This is a post-peer-review, pre-copyedit version of an article published in Wireless Networks. The final authenticated version is available online at: http://dx.doi.org/10.1007/s11276-018-1836-7”Geographic routing in wireless sensor networks brings numerous inherent advantages, albeit its performance relying heavily on accurate node locations. In mobile networks, localization of the continuously moving nodes is a challenging task and location errors are inevitable and affect considerably routing decisions. Our proposal is in response to the unrealistic assumption widely made by previous geographic routing protocols that the accurate location of mobile nodes can be obtained at any time. Such idealized assumption results in under-performing or infeasible routing protocols for the real world applications. In this paper, we propose INTEGER, a localization method intertwined with a new location-error-resilient geographic routing specifically designed for mobile sensor networks even when these networks are intermittently connected. By combining the localization phase with the geographic routing process, INTEGER can select a relay node based on nodes’ mobility predictions from the localization phase. Results show that INTEGER improves the efficiency of the routing by increasing the packet delivery ratio and by reducing the energy consumption while minimizing the number of relay nodes compared to six prevalent protocols from the literature.Peer ReviewedPostprint (author's final draft

    Proposal and Implementation of Encounter Data Transmission with Ultrasonic Sensor-based Active Wakeup Mechanism for Energy Efficient Sparse Wireless Sensor Network

    Get PDF
    International audienceIn this paper, we propose and implement encounter data transmission with an ultrasonic sensor-based active wakeup mechanism for sparse wireless sensor networks (SWSNs), in which sensors are placed sparsely and each sensor is unable to communicate directly. We suppose that an active wakeup mechanism will be more suitable than a low-duty-cycle mechanism for SWSNs, since the collecting node moves around randomly in the sensing field. However, it was not clear whether the collecting node can communicate with the sensor in the short passing-through period. In this paper, we propose to use an ultrasonic sensor for waking up the communication function. We also succeed in developing a real-world sensor node that wakes up only when it detects the closing of the collecting node. We evaluate the detection ratio and the average communication duration of our system in a real-world agricultural application. As a result, we confirm that our system can provide stable communication between the collecting node and the sensor for at least 20 s at 10 kmph and for 10 s at 20 kmph

    Surveying Position Based Routing Protocols for Wireless Sensor and Ad-hoc Networks

    Get PDF
    A focus of the scientific community is to design network oriented position-based routing protocols and this has resulted in a very high number of algorithms, different in approach and performance and each suited only to particular applications. However, though numerous, very few position-based algorithms have actually been adopted for commercial purposes. This article is a survey of almost 50 position-based routing protocols and it comes as an aid in the implementation of this type of routing in various applications which may need to consider the advantages and pitfalls of position-based routing. An emphasis is made on geographic routing, whose notion is clarified as a more restrictive and more efficient type of position-based routing. The protocols are therefore divided into geographic and non-geographic routing protocols and each is characterized according to a number of network design issues and presented in a comparative manner from multiple points of view. The main requirements of current general applications are also studied and, depending on these, the survey proposes a number of protocols for use in particular application areas. This aims to help both researchers and potential users assess and choose the protocol best suited to their interest

    Design and Performance Analysis of an Aeronautical Routing Protocol with Ground Station Updates

    Get PDF
    Aeronautical routing protocol (AeroRP) is a position-based routing protocol developed for highly dynamic airborne networks. It works in conjunction with the aeronautical network protocol (AeroNP). AeroRP is a multi-modal protocol that operates in different modes depending on the mission requirements. Ground station (GS) update mode is an AeroRP mode in which the GS sends geolocation or topology updates to improve routing accuracy. The main contribution of this thesis is to develop and implement the GS updates in AeroRP and analyse its performance in the various modes and compare them against canonical MANET routing protocols such as DSDV, OLSR, AODV, and DSR. The simulation analysis shows that AeroRP outperforms the traditional MANET protocols in various scenarios

    AIS operation for effective bridge lookout

    Get PDF

    The Murray Ledger and Times, March 11, 1975

    Get PDF

    The Murray Ledger and Times, March 11, 1975

    Get PDF

    Towards new technology : an overview of the development and potential use of the electronic chart

    Get PDF
    • …
    corecore