
Design and Performance Analysis of an
Aeronautical Routing Protocol with

Ground Station Updates

Hemanth Narra

Submitted to the graduate degree program in Electrical Engineering &
Computer Science and the Graduate Faculty of the University of Kansas

School of Engineering in partial fulfillment of
the requirements for the degree of Master of Science

Thesis Committee:

Dr. James P.G. Sterbenz: Chairperson

Dr. Gary Minden

Dr. Prasad Kulkarni

Date Defended

c© 2011 Hemanth Narra

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/213394618?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Thesis Committee for Hemanth Narra certifies

that this is the approved version of the following thesis:

Design and Performance Analysis of an Aeronautical Routing

Protocol with Ground Station Updates

Committee:

Dr. James P.G. Sterbenz: Chairperson

Dr. Gary Minden

Dr. Prasad Kulkarni

Date Approved

i

Abstract

Aeronautical routing protocol (AeroRP) is a position-based routing protocol

developed for highly dynamic airborne networks. It works in conjunction with

the aeronautical network protocol (AeroNP). AeroRP is a multi-modal protocol

that operates in different modes depending on the mission requirements. Ground

station (GS) update mode is an AeroRP mode in which the GS sends geolocation

or topology updates to improve routing accuracy. The main contribution of this

thesis is to develop and implement the GS updates in AeroRP and analyse its

performance in the various modes and compare them against canonical MANET

routing protocols such as DSDV, OLSR, AODV, and DSR. The simulation analysis

shows that AeroRP outperforms the traditional MANET protocols in various

scenarios.

ii

I like to dedicate this work to my parents and my sister for their continuous

support and guidance with which I could reach this level.

iii

Acknowledgements

I would like to thank my committee members, especially my advisor Dr. James

P.G. Sterbenz for his continuous support and encouragement. I would also like

to thank PhD students Abdul Jabbar, Justin Rohrer and Egemen Çetinkaya for

mentoring and advising me during the design and implementation of this protocol.

The ResiliNets team has supported me a lot during my research and I would like

to thank each and everyone of them for their support. Last but not the least I

would like to thank my family most importantly my father Sambasiva Rao Narra,

mother Jhansi Lakshmi Narra and sister Neeharika Narra, and all my friends and

well-wishers for their support and guidance.

iv

Contents

Acceptance Page i

Abstract ii

1 Introduction and Motivation 1

1.1 Problem Statement . 3

1.2 Proposed Solution . 5

1.3 Contributions . 6

1.4 Organisation . 7

2 Background and Related Work 8

2.1 MANET Routing Protocols . 9

2.1.1 Topology-Based Routing Protocols 9

2.1.2 Position-Based Routing Protocols 13

2.1.3 Advantages of position-based protocols 20

2.2 ANTP Protocol Suite . 21

2.2.1 AeroRP . 21

2.2.2 AeroNP . 24

3 Implementation of ns-3 Models 25

3.1 Implementation of DSDV in ns-3 26

3.1.1 DSDV module for ns-3 . 26

3.1.2 Header . 29

3.1.3 Routing Table . 29

3.1.4 Routing Advertisements 30

3.1.5 Processing of Updates . 32

v

3.1.6 Packet Buffering . 34

3.1.7 Parameter Tuning . 35

3.1.8 DSDV Module Evaluation 35

3.2 Time Division Multiple Access . 42

3.2.1 Difference between IEEE 802.11 and TDMA 43

3.2.2 Implementation of TDMA protocol in ns-3 43

4 Design of AeroRP with GS 47

4.1 AeroRP Header Format . 47

4.1.1 Type Header . 48

4.1.2 Hello Header . 49

4.1.3 GSGeoLocation Header . 50

4.1.4 GSTopology Header . 52

4.2 Operations of Ground Station . 53

4.2.1 GS Update Mechanism . 53

4.2.2 Types of GS Updates . 54

4.3 Processing of AeroRP updates . 56

4.4 Aero Gateway . 59

5 Design of AeroNP 61

5.1 AeroNP Header Format . 62

5.2 Services provided by AeroNP . 67

5.2.1 QoS Mechanism . 68

5.2.2 Congestion-control Mechanism 68

5.2.3 Error-Detection Mechanism 69

5.3 Implementation of AeroNP in ns-3 69

5.3.1 Class interaction in AeroNP module 70

5.3.2 Packet transmission by AeroNP 72

5.3.3 Received Packet Processing by AeroNP 72

6 Simulations Analysis 74

6.1 Performance Metrics . 75

6.2 Simulation Setup . 76

6.3 Analysis of TDMA vs 802.11 . 80

6.4 Effects of Node Density . 84

vi

6.5 Effects of Velocity . 90

7 Conclusions and Future Work 100

7.1 Contributions . 100

7.2 Conclusions . 101

7.3 Publications . 104

7.4 Future Work . 105

Appendices 106

A 802.11b Plots 108

B TDMA Plots 117

References 123

vii

List of Figures

1.1 Dynamic airborne tactical environment [1] 3

2.1 Greedy routing strategies (adapted from [2]) 14

2.2 Greedy routing strategies (adapted from [2]) 15

2.3 DREAM routing protocol(adapted from [3]) 17

2.4 Location aided routing (adapted from [4]) 19

3.1 DSDV class diagram . 27

3.2 DSDV message header . 29

3.3 DSDV header encapsulation . 29

3.4 PDR with varying pause time . 37

3.5 Overhead with varying pause time 39

3.6 Packet delay with varying pause time 39

3.7 PDR with varying node density 40

3.8 Overhead with varying node density 41

3.9 Packet delay with varying node density 42

3.10 TDMA class diagram . 44

4.1 Packet format for TypeHeader . 48

4.2 Packet format for GSGeoLocationHeader 50

4.3 Packet format for GSTopologyHeader 52

4.4 Flowchart for processing a GS advertisement 57

4.5 Protocol stack translation architecture ([5]) 60

5.1 Packet format for AeroNPBasicHeader 63

5.2 Packet format for AeroNPExtendedHeader 63

5.3 Header Encapsulation within IP 69

viii

5.4 Class interaction diagram for AeroNP 70

5.5 Packet transmission by AeroNP 71

6.1 TDMA vs 802.11 on PDR (GM, 1200 m/s) 81

6.2 TDMA vs 802.11 on routing overhead (GM, 1200 m/s) 82

6.3 Node density vs PDR (TDMA, GM, 1200 m/s) 85

6.4 Node density vs overhead (TDMA, GM, 1200 m/s) 86

6.5 Node density vs overhead (AODV, TDMA, GM, 1200 m/s) 87

6.6 Node density vs delay (TDMA, GM, 1200 m/s) 88

6.7 Location-aware vs Location-unaware mode in AeroRP 89

6.8 Node velocity vs PDR (TDMA, GM, 60 nodes) 91

6.9 Node velocity vs delay (TDMA, GM, 60 nodes) 92

6.10 Node velocity vs delay (TDMA, RWP, 60 nodes) 94

6.11 Node velocity vs accuracy (TDMA, GM, 60 nodes) 95

6.12 Node movement in 3D–Gauss-Markov model [6] 96

6.13 Node velocity vs overhead (TDMA, GM, 60 nodes) 97

6.14 Node velocity vs overhead (AODV, TDMA, GM, 60 nodes) 98

A.1 Node density vs PDR (802.11b, GM, 1200 m/s) 108

A.2 Node density vs PDR (802.11b, GM, 200–1200 m/s) 109

A.3 Node density vs PDR (802.11b, RWP, 1200 m/s) 110

A.4 Node density vs PDR (802.11b, RWP, 200–1200 m/s) 110

A.5 Node velocity vs PDR (802.11b, GM, 60 nodes) 111

A.6 Node velocity vs PDR (802.11b, RWP, 60 nodes) 111

A.7 Node density vs overhead (802.11b, GM, 1200 m/s) 112

A.8 Node density vs overhead (802.11b, RWP, 1200 m/s) 112

A.9 Node velocity vs overhead (802.11b, GM, 60 nodes) 113

A.10 Node velocity vs overhead (802.11b, RWP, 60 nodes) 113

A.11 Node density vs delay (802.11b, GM, 1200 m/s) 114

A.12 Node density vs delay (802.11b, RWP, 1200 m/s) 114

A.13 Node velocity vs delay (802.11b, GM, 60 nodes) 115

A.14 Node velocity vs delay (802.11b, RWP, 60 nodes) 115

A.15 Node velocity vs accuracy (802.11b, GM, 60 nodes) 116

A.16 Node velocity vs accuracy (802.11b, RWP, 60 nodes) 116

ix

B.1 Node density vs PDR (TDMA, GM, 200–1200 m/s) 117

B.2 Node density vs delay (TDMA, RWP, 1200 m/s) 118

B.3 Node density vs PDR (TDMA, RWP, 200–1200 m/s) 118

B.4 Node velocity vs PDR (TDMA, RWP, 60 nodes) 119

B.5 Node density vs overhead (TDMA, RWP, 1200 m/s) 119

B.6 Node density vs overhead (AODV, TDMA, RWP, 1200 m/s) . . . 120

B.7 Node velocity vs overhead (TDMA, RWP, 60 nodes) 120

B.8 Node velocity vs overhead (AODV, TDMA, RWP, 60 nodes) . . . 121

B.9 Node density vs delay (TDMA, RWP, 1200 m/s) 121

B.10 Node velocity vs accuracy (TDMA, RWP, 60 nodes) 122

x

List of Tables

3.1 DSDV attributes and default values 28

3.2 Attributes with default values for TdmaController 46

6.1 Simulation variables . 76

6.2 General simulation parameters . 77

6.3 OLSR parameters . 78

6.4 AODV parameters . 78

6.5 DSDV parameters . 79

6.6 DSR parameters . 79

6.7 AeroRP parameters . 80

xi

Chapter 1

Introduction and Motivation

Over the past decade there has been a tremendous growth in the usage of

mobile wireless devices such as laptops, cell phones, and net-books. Connectiv-

ity among these devices is normally accomplished by taking services from fixed

network infrastructure and centralised administration. However, in environments

where there is no support of fixed network infrastructure or during emergency

operations at places where the fixed infrastructure is broken, the devices cannot

communicate with each other. Networks that can operate in such environments

are known as mobile ad hoc networks (MANETs) [7] [8].

MANETs are self configuring wireless networks with mobile nodes. Unlike the

conventional wired networks, MANETs do not have the support of fixed network

infrastructure. In MANETs, nodes in addition to performing their usual tasks

will also act as routers and communicate among themselves to form an ad hoc

network. Over the course of their interaction, they exchange control messages

for administrative functions along with data messages. Some nodes piggy-back

the control messages along with the data messages to reduce control overhead

and packet collisions. Network topologies of MANETs change dynamically due to

1

continuous movement of nodes. MANETs are mostly used in shielded or remote

environments, at times of a natural disaster where (re)deployment of infrastruc-

ture is infeasible, and during military operations. These networks typically employ

multi-hop routing protocols to discover end-to-end paths from a source to desti-

nation. In some cases the routing protocols may just determine the best next hop

neighbour and leave the decision of choosing a path completely to this next hop

node. The latter is generally preferred in case of a highly dynamic topology where

nodes move at very high velocities.

The present day airborne telemetry architecture uses legacy point-to-point

links connecting multiple sources (airborne nodes) to a ground station. The in-

creased usage of wireless devices to meet the emerging needs of Major Range and

Test Facility Bases (MRTFB) led to increased requirements for bandwidth and

connectivity. These legacy point-to-point links will not be able to cope with the

limited spectrum. This need is recognised by various groups including the Inte-

grated Network Enhanced Telemetry (iNET) group [9], [10]. Multihop routing

protocols are necessary for the airborne airborne nodes (ANs) to operate as an in-

tegrated system. ANs in these environments move at velocities of up to Mach 3.5

and move towards each other with relative velocities of about Mach 7.0. These

high velocities lead to frequent link breaks and inconsistent routing of packets

among nodes.

The aeronautical routing protocol (AeroRP) is one such domain specific rout-

ing protocol that is designed for highly dynamic airborne networks [11]. AeroRP

is first introduced in [12] and later modelled and analysed using the ns-3 network

simulator [13, 14]. The preliminary results showed that AeroRP outperforms the

traditional MANET routing protocols in terms of throughput and packet delivery

2

ratio (PDR) [13,14]. AeroRP uses the node’s current or predicted geolocation1 in-

formation for discovering routes. Neighbour discovery in AeroRP is multi-modal,

in which various modes can be used to discover neighbours depending upon the

mission needs including stealth requirements. We will describe in detail the vari-

ous operational modes of AeroRP in Section 2.2.1.

© James P.G. Sterbenz!""#

16 July 2008 AeroTP, AeroNP, AeroRP iN E T F2F Meeting 3 2

!"#$%#&'()'*'+',#-(.',/%#0"&1
23'&4#"%(4&5(6&7"#%&+'&,

GS
GS

RN

ANAN

ANs

Internet

GW
GW

AN airborne node
RN relay node

GS ground station
GW gateway

Figure 1.1. Dynamic airborne tactical environment [1]

1.1 Problem Statement

The typical environment of a highly dynamic airborne network is shown in

Figure 1.1. Every airborne network has at least one ground station (GS), a set

1The words geolocation and position can be used interchangeably and mean the same in the
context of this thesis.

3

airborne nodes (ANs) and optional relay nodes (RNs). Our assumption is that

the GS knows geolocation and velocity information of every other AN or RN in

the network. The usual traffic pattern for this environment is that the ANs send

application data to the GS and the GS sends control information back to the ANs.

The RNs are used to relay information to and from the GS to other ANs. The GS

and an AN can also communicate directly with each other or via the RNs or other

ANs, if it is beyond the transmission range of the GS. AeroRP in [6], can operate

in two modes depending on the AN update mechanism: beacon and beaconless. In

the beacon mode, ANs exchange geolocation information by transmitting periodic

hello messages and in the beaconless mode, they piggy-back this information to

data packets. Exchange of this information among nodes is only possible if they

are within transmission range of each other. However, due to the highly dynamic

nature of this environment, nodes stay connected only for a very short duration,

possibly as low as 10 s. The ANs do not have geolocation information of every

other node in the network except the nodes they communicated with previously.

Lack of this information can affect the forwarding decisions made by a node. As

we have already seen, there is least one GS in every network that tracks every node

in the network and keeps a record of their geolocation information. However, this

information is not shared with the other nodes in [6]. Sharing this information

with other nodes is critical if the ANs are supposed to follow a pre-determined

flight plan.

In addition, exchange of geolocation information is not a viable option in all

environments; it reveals the exact position of a node. This can lead to prob-

lematic situations if this geolocation information is snooped by a malicious node.

AeroRP should have a neighbour discovery mode that does not reveal the node’s

4

geolocation information but inform it about its neighbours.

1.2 Proposed Solution

The GS has geolocation information of all the nodes in the network. We

propose to leverage this information and pass it on to the other nodes. In this

case all nodes will have geolocation information of every other node, thus allowing

them to make better forwarding decisions. Controlled flooding is used to push

these updates from the GS for every periodic update interval.

To overcome the security concerns or mission requirements of not exposing

a node’s geolocation information, we propose to broadcast the network topology

information in the form of link state information between nodes. This topology

information will just reveal the nodes on either side of a link and the link duration

specified by a start time and an end time and the link cost. This information is

sent from the GS for every periodic update interval. Also, based on the geolocation

information of the node and its velocity component, the GS can predict the future

topology and transmit that information as well. This further improves the node’s

ability to discover forwarding nodes.

The goal of this research is to modify the existing AeroRP protocol so it

can make better forwarding decisions with the entire topology information at its

disposal and design a new neighbour discovery mode that does not reveal the

node’s geolocation information. To accomplish the above solutions, the AeroRP

message header formats [6] should be modified and new headers should be designed

to transmit GS updates. AeroNP, an IP compatible network protocol should

be implemented so that it could carry the geolocation information of the nodes

and provide QoS, congestion-control, and error-detection services to the AeroTP

5

transport protocol. AeroRP will then be extensively simulated comparing its

performance to the existing MANET protocols.

1.3 Contributions

The contributions of this thesis are the following:

• Design the AeroRP message headers and model the protocol for improving

its performance

– Choose the protocol parameters that can be used to modify the protocol

operation

– Incorporate GS updates and device a methodology of broadcasting these

updates

– Modify the protocol to use geolocation and topology information broad-

casted by the GS in making routing decisions

• Implement AeroNP network protocol in ns-3

– Modify AeroNP headers to suit the implementation decisions

– Implement the QoS and congestion control services provided by the

AeroNP protocol

• Implement the GS update mode and location-unaware routing in AeroRP

routing protocol and the AeroNP network protocol in ns-3 network simulator

• Implement DSDV routing protocol in ns-3 to compare against AeroRP

• Implement TDMA MAC protocol in ns-3 over a simple-wireless channel

model

6

• Analyse the performance of AeroRP in its various modes of operation and

compare its performance against other MANET routing protocols such as

OLSR, AODV, DSDV, and DSR in ns-3

1.4 Organisation

The rest of the thesis is organised as follows. Chapter 2 briefly discusses the

classification of MANET routing protocols by providing examples from some of

the canonical MANET routing protocols. It also describes AeroRP and AeroNP.

Implementation details of DSDV and TDMA in ns-3 are outlined in Chapter 3.

AeroRP with GS updates in explained in detail in Chapter 4 along with the

its implementation in ns-3. Chapter 5 explains the AeroNP protocol and its

implementation in ns-3. The simulations of the routing protocols and analysis of

results in detailed in Chapter 6. Chapter 7 presents the conclusions and details

the focus areas for future work.

7

Chapter 2

Background and Related Work

Routing protocols operate in the network layer of the protocol stack and dis-

cover paths between a source and a destination. The discovered paths are then

populated in the node’s forwarding tables. When a packet arrives at an intermedi-

ate node and destined for a particular destination, the intermediate node refers to

its forwarding table to determine the next hop address for that destination. The

packet is then forwarded to that next hop node. Routing protocols use routing

algorithms to discover paths. There are many routing protocols developed for

MANETs [15] [16] [17]. Development of MANET routing protocols continues to

be an active research area to date as no single routing protocol is able to address

all the challenges posed by ad-hoc networks.

This chapter is organised as follows. Section 2.1 describes the different types

of routing protocols designed for MANET environment. Sections 2.1.1 and 2.1.2

discusses the various topology-based and position-based routing protocols, their fea-

tures, and briefly elaborates on some of the canonical routing protocols from each

category. This is followed by comparing the topology-based and the position-based

routing protocols and explaining the advantages of the latter. Section 2.2.1 de-

8

scribes the AeroRP routing protocol without ground station advertisements (GSAs)

and Section 2.2.2 briefly discusses the IP compatible AeroNP network protocol.

2.1 MANET Routing Protocols

The primary features of MANETs such as mobility and lack of infrastructure-

support, pose a significant challenge to accurate routing of packets [18] [19]. Thus

the protocols being designed for MANETs should take these effects into consid-

eration. Routing protocols are classified as topology-based and position-based

based on the type of information used for discovering routes. Topology-based

protocols use information about the existing links among nodes whereas position-

based protocols use the geographic position of nodes to perform packet forward-

ing. Topology-based routing protocols are further classified as proactive, reactive,

and source routing protocols. Position-based protocols are classified into greedy

packet forwarding, restricted directional flooding, and hierarchical routing proto-

cols. These classifications are explained in detail in the following sections.

2.1.1 Topology-Based Routing Protocols

Topology-based routing protocols operate by identifying neighbours or exist-

ing link-state information, and exchanging this with other nodes in the network.

Topology-based routing protocols are classified as proactive, reactive routing pro-

tocols based on the type of route discovery mechanism. Source routing is or-

thogonal to both reactive and proactive classification. It is a route discovery

mechanism that can be classified either as a proactive or a reactive mechanism.

Dynamic source routing (DSR) is a good example of a source routing protocol

that can be classified as a reactive routing protocol as well. Subsequent sections

9

elaborate more on proactive, reactive, and source routing routing protocols by

taking examples from the prominent topology-based routing protocols.

2.1.1.1 Proactive Routing Protocols

Proactive routing protocols maintain routes to all nodes in the network even if

there is no request for a route. They add new routes or update existing routes by

periodically distributing routing tables or exchanging link-state information with

each other. One advantage of doing so is that routes to any destination are ready

for use if needed. Some of the canonical proactive routing protocols are DSDV

and OLSR.

DSDV: Destination-sequenced distance vector routing protocol [20] uses the

Bellman-Ford algorithm to calculate paths. The cost metric used is the hop count,

that is the number of hops it takes for the packet to reach its destination. DSDV is

a table-driven proactive protocol, thus it maintains a routing table with entries for

all the nodes in the network and not just the neighbours of a node. The changes

are propagated through periodic and trigger update mechanisms used by DSDV.

Because of these updates, the chances of having routing loops within a network

increases. To eliminate routing loops, each update from the node is tagged with

a sequence number. A sequence number for each node is independently chosen,

but it must be incremented each time a periodic update is made by a node. The

sequence number of normal update must be an even number, since each time a

periodic update is made the node increments its sequence number by 2 and adds its

update to the routing message it transmits. The node cannot change the sequence

number of other nodes. Only if a node wants to send an update for an expired

route to its neighbours, it increments the sequence number of the disconnected

10

node by one. Nodes receiving this update look at the sequence number and if it is

odd, they remove the corresponding entry from the routing table. Mobility of the

nodes in MANETs causes route fluctuations, for which DSDV uses settling time

to dampen.

OLSR: Optimised link state routing [21] is a proactive routing protocol in which

routes to all destinations within the network are discovered and maintained before

a packet is sent from source to destination. OLSR uses HELLO and topology con-

trol (TC) messages to discover and broadcast link state information throughout

the network regularly. Nodes receiving this topology information compute next

hop destinations for all nodes in the network. HELLO messages at each node dis-

cover 2-hop neighbour information and select a set of multi-point relays (MPRs).

MPRs are responsible for transmitting broadcast messages and constructing link

state. OLSR floods topology data frequently enough over the network to make

sure all nodes are synchronised with link state information.

2.1.1.2 Reactive Routing Protocols

Reactive routing protocols discover routes only if required. Nodes using reac-

tive routing protocols will not update their routing tables periodically and will not

maintain routes to all nodes in the network. Reactive routing protocols initiate a

route request message to discover new routes if required. The main drawback of

these protocols is the delay in discovering routes to new destinations. AODV is

the most well-known reactive routing protocol.

AODV: Ad hoc on-demand distance vector [22,23] is a distance vector routing

protocol that operates reactively to reduce overhead finding routes only on de-

11

mand. If a route to a given destination does not exist, a route request (RREQ)

message is flooded by the source and by the intermediate nodes if they have no

previous routes in their table. Upon receiving a RREQ message, the receiving node

records the route information in its own routing table. Once the RREQ message

reaches the destination or an intermediate node, the node responds by unicasting a

route reply (RREP) message back to the neighbour from where it first received the

RREQ message. As the RREP message is forwarded back along the reverse path,

nodes along this path set up forwarding entries in their routing tables, pointing to

the node from where they received RREP message. AODV uses sequence numbers

created by the destination for every route entry to avoid routing loops. Routes

with the largest sequence number are preferred in selecting routes from the source

to the destination.

2.1.1.3 Source Routing Protocols

In source routing, the sender node specifies partial or entire route traversed

by the packet. This is different to many MANET routing protocols in which the

next hop neighbour is free to choose any path to the destination.

DSR: Dynamic source routing [24] [25] is an on-demand routing protocol that

employs the source-routing mechanism instead of route-request mechanism em-

ployed by AODV. Route discovery and maintenance are the two major phases in

DSR operation. DSR maintains a route cache containing source routes to every

other node in the network. If a source node wants to send a packet to a des-

tination node, DSR on the source node looks for a route to destination in the

route cache. If a route is identified, it adds the source routes to the packet and

forwards the packet. The packet traverses all the nodes in the path specified by

12

the source route till it reaches the destination. If a route can not be determined

using the route cache, the source node initiates a route discovery process and

sends a RouteRequest message to every node within its transmission range. Nodes

receiving the RouteRequest message look at their route-cache to see if they have

a route to that destination. If they can not determine a route, they add their IP

address to the RouteRequest message and broadcast it again. A route record is

formed as this RouteRequest message is propagated through the network. When

the RouteRequest reaches the destination, it replies back with a RouteReply mes-

sage. The route record from the RouteRequest message is copied to a RouteReply

message. The RouteReply message traverses the path specified by the route record

to reach the source node. On receiving the RouteReply message, the source node

as well as the intermediate nodes update their route cache with this route record.

The sender node adds source route information to data packet and it traverses

the path specified by it. Every node along the path is responsible for making sure

the packet has reached the next hop along the source route. If any intermediate

node does not receive the ReceiptRequest from the next hop, it should retransmit

the packet. If the retransmission number reaches a maximum count, a RouteError

message is sent to the sender node. The sender node then removes this broken

link and uses an alternate entry from its route-cache. If necessary, it starts route

discovery process again to find a route to destination.

2.1.2 Position-Based Routing Protocols

Position-based routing protocols use the geographic position information of a

node in making forwarding decisions [26] [27]. The GPS receiver is commonly

used to get geolocation and velocity information of a node. Unlike topology-based

13

protocols, position-based protocols do not require establishment or maintenance

of routes. All forwarding decisions are made based on the current position of

the destination and the source node’s immediate neighbours. Based on the for-

warding strategy employed by a routing protocol, packets are either forwarded to

immediate neighbours closer to the destination, or closer to the source, or to all

neighbours within a particular region. A discussion of the forwarding strategies

and routing protocols employing them is presented below.

B

C

S

A

D

r

Figure 2.1. Greedy routing strategies (adapted from [2])

2.1.2.1 Greedy Packet Forwarding

In greedy packet forwarding, the sender node forwards packets to its neigh-

bour node in the direction of destination. The criteria for choosing a forwarding

neighbour can vary based on the forwarding strategy chosen by a node. In Fig-

ure 2.1, source S wants to send a packet to destination D. The transmission range

of S is marked with a circle of radius r and D is outside the transmission range

of S. Source S needs to forward the packet to one of its neighbours within the

14

transmission range so that they could forward the packet to D. One strategy,

known as most-forward within r (MFR) [28] forwards the packet to a neighbour

closest to destination, in this case C. MFR minimises the number of hops taken by

packets to reach D. Nearest with forward progress (NFP) [29] is another strategy

in which a source node forwards the packets to its closest neighbour by reduc-

ing its transmission power. In this case, source node S forwards the packets to

neighbour A. Packet collisions can be significantly reduced using NFP strategy as

packets stay for shorter durations on the wireless links. In other strategy known

as compass routing, a packet is forwarded to a node that is on a closest angle

to the destination. Compass routing eliminates the traversal of packet only in

forward direction towards the destination. This feature allows it to successfully

route a packet through a complex boundary even though there is no direct path

to a destination.

S

D

Figure 2.2. Greedy routing strategies (adapted from [2])

Greedy packet forwarding has many disadvantages such as routing loops and

15

failing to find a path between source and destination even if there exists one.

Consider the scenario depicted in Figure 2.2, in which source S wants to find a

route to destination D. Transmission range of S is depicted by the circle around

it and the semicircle represents the distance between source S and destination

D. A valid path exists between S and D. However, S using a greedy forwarding

approach, it does not forward the packet using the existing path as it is closer to

the destination than any other node in its transmission range.

2.1.2.2 Restricted Directional Flooding

Restricted directional flooding is a routing strategy in which a node forwards

packets to more than one next hop neighbours in the forward direction. This

strategy may increase the chances of packet reaching the destination, but cannot

not guarantee its reception by the destination. In this section we look at two

protocols employing this strategy, DREAM and LAR.

DREAM: Distance routing effect algorithm for mobility [3] is a geographic

routing protocol employing restricted directional flooding strategy. Each node

maintains a database for storing location information of every other node in the

network. GPS is used to identify their current location. DREAM provides a

novel approach for dissemination of its location information to other nodes. This

approach is based on a simple observation called distance-effect that says, the

greater the distance between two nodes, the slower they appear to be moving.

Thus, the update frequency of location information to a node farther away can

be reduced compared to a node that is much closer. The mobility rate is another

factor that affects the update frequency, the faster a node moves, the more often

it needs to be communicated with. DREAM uses the above two factors and

16

S

D

ϴ

x

Figure 2.3. DREAM routing protocol(adapted from [3])

makes decisions on the frequency of control messages. Whenever a sender node

wants to send data to a destination, it identifies the possible distance that can

be covered by destination node over a period of time it would take for a packet

to reach that destination. The sender node visualises that and creates a wedge

covering a distance the destination node can travel. An assumption here is that the

maximum velocity of destination is known before hand by the source. The sender

node forwards data to its neighbours within the wedge. Neighbours do the same

until the packet reaches its destination. In Figure 2.3, node S wants to send a data

packet to node D. S knows location information of all its neighbours by exchanging

control messages. S now identifies a wedge that encompasses the distance D might

cover before the data packet reaches it. X represents the maximum distance D

can travel.

17

LAR: Location-Aided Routing (LAR) [4] is an on-demand geographic protocol

that uses the last known position and velocity information of the destination for

sending route request messages. Based on the position and velocity information,

the sender node calculates the expected zone and the request zone. Source S

as shown in Figure 2.4 needs a route to destination D. S knows the location

information of D at time t0. The expected zone is the region S expects D would

be located in at time t1. S can identify this information based on the velocity at

which D is moving. However, if S does not know the initial position of D, then

the entire network region is considered as expected zone since D could be located

anywhere in the network. The request zone as identified by source S is a region

encompassing the expected zone and region covering the source and destination

nodes. All nodes only within the request zone are required to flood the route-

request initiated by S. The request zone can be expanded to cover a larger region

of the network or even the entire region if the source S is not able to identify a route

to destination D, as shown in Figure 2.4. This requires the intermediate nodes to

figure out if they are present in the request zone or not, with two different schemes

for the nodes to determine this. The first scheme consists of the sender sending a

route request that contains the coordinates of a rectangle that contains the request

zone. A node that receives this route request discards it if it is not within the

rectangle and forwards if it is. Once the route request reaches the destination, it

replies with the route reply message. The second schema does not explicitly define

the request zone while sending the route request but instead forwards the packet

based on the distance the sending node is from the destination, that is included

in the route request.

18

S

D D

S

Request Zone Larger Request Zone

Figure 2.4. Location aided routing (adapted from [4])

2.1.2.3 Hierarchical Routing

Hierarchical routing introduces the concept of network hierarchies. The nodes

in the network are divided a number of hierarchies specified by the routing scheme

employed. Based on the hierarchies created, the tasks such as control message

propagation or making routing decisions are given to nodes in an orderly fashion.

In this section we will look at two hierarchical routing schemes: terminodes routing

and grid routing.

Terminodes Routing: Terminodes routing proposes a two level hierarchy that

includes both a proactive distance vector routing scheme and a greedy position-

based scheme. Distance vector is used if sender node and receiver node are close

to each other (considering the metric as hop count). The greedy position-based

scheme is adopted if the sender node and the destination node are far away.

19

However, as the packet approaches the destination node, the scheme is changed

back to distance vector. As we have seen earlier, greedy forwarding fails if the

packet reaches a local maximum. To overcome this problem, the sender node

includes a list of positions for the packet to traverse through in its header. The

sender node gathers this position information from the nodes it was in contact with

using the distance vector scheme. One disadvantage is that a sender node should

continuously keep track of its neighbours movement, and for a highly dynamic

environment, this involves a lot of overhead.

Grid Routing: Grid routing uses a similar hierarchy concept as terminodes

routing. Proactive distance vector routing is used at the local level and greedy

position-based scheme is used for long distance packet forwarding. A feature

that grid routing introduces is proxy. Nodes that do not know their location

information can also be part of the ad-hoc network. However, there should be

at least one position-aware node within their reach using the proactive distance

vector approach. This node acts as a proxy to the other position-unaware nodes

within its reach. Packets destined for position-unaware nodes are forwarded to this

position-aware proxy node, and using the distance vector approach these packets

are then delivered to position-unaware nodes.

2.1.3 Advantages of position-based protocols

Topology-based routing protocols do not scale well for larger dynamic envi-

ronments due to periodic broadcast of control messages. On-demand protocols

generate route request queries for sending data to a new destination. They do so

by using a flooding mechanism that leads to extra overhead in the network. On

the other hand position-based routing protocols do not require any kind of main-

20

tenance for routing tables or route construction prior to the forwarding process.

They can also forward data to valid next hop neighbours independently, taking

into considerations the changes in topology, quality of service (QoS) related pa-

rameters such as delay or available bandwidth.

2.2 ANTP Protocol Suite

The Aeronautical network protocol (ANTP) suite is developed by the Re-

siliNets group at The University of Kansas for highly dynamic airborne net-

works. The aeronautical transport protocol (AeroTP), aeronautical network pro-

tocol (AeroNP), and aeronautical routing protocol (AeroRP) together form the

ANTP suite.

2.2.1 AeroRP

AeroRP is a geographic routing protocol designed for highly dynamic airborne

networks [12]. Contrary to the other MANET routing protocols that discover end-

to-end paths, AeroRP makes only per-hop routing decisions. This is reasonable

as the nodes in the airborne network move at very high velocities often leading

to breakage of links after an end-to-end path is determined. AeroRP can operate

in various modes based on the AN update mechanism, the mission requirements,

and the presence of ground stations (GSAs) [11]. Based on the AN update mecha-

nism, it can operate in either beacon or beaconless mode. In beacon mode, an AN

advertises its presence by broadcasting periodic hello messages, whereas in bea-

conless mode no messages are sent out. Depending on the mission requirements,

AeroRP can perform location-aware routing and location-unaware routing. In

location-aware routing the GS and the ANs add node’s geolocation information

21

to the control messages transmitted whereas in location-unaware routing they do

not reveal the node’s geolocation information. AeroRP can also operate in the

presence of GSAs or without GSAs, discussed more in Chapter4.

2.2.1.1 Operational Aspects of AeroRP

The operation of AeroRP can be divided into two phases. The first phase of

operation is the neighbour discovery phase. In this phase, an AN gathers as much

information as it can about the network topology in the following ways:

• Active snooping: Active snooping is a mechanism in which the nodes

snoop packets that are being exchanged among other nodes, extract the

location information from them, and build or update their topology tables.

To accomplish this, active-probing on the node’s network interface must

be enabled. Location information thus gathered is only valid for a time

interval specified by neighborHoldTime. On expiration of this time-interval,

the stored location information of a node is purged unless a new update

with a higher expire time is received. This helps in keeping track of only

the active neighbours in this highly dynamic environment.

• Hello beacons: Hello beacons are transmitted by the AN if it is not trans-

mitting any data. This ensures that its neighbouring ANs are aware of the

node’s presence. These messages are usually broadcasted periodically over

helloUpdateInterval with time-to-live (TTL) set to one hop.

• Ground station advertisements (GSAs): These are optional updates

transmitted by the ground station during some missions that have a pre-

determined mission plan. These updates are broadcasted periodically and

22

are exchanged among all the ANs in the network.

The AeroRP modes explained earlier affect the various neighbour discovery

processes. In beaconless mode the hello messages are not sent by any of the ANs.

Therefore, neighbour discovery relies on overhearing the packets in the medium.

Depending on the mission needs, if the AeroRP is operating in location-aware

mode, then the ANs and the GS can use geolocation information in the hello

messages and the GSAs. ANs can only be aware of their neighbours and the

GS can only send out GSAs with topology information if AeroRP is operating in

location-unaware mode.

The second phase of AeroRP operation is data forwarding. In this phase, the

sender node determines the best next hop to forward a packet by using the topol-

ogy table built in the neighbour-discovery phase. The Time-to-intercept (TTI)

metric is used in determining this next hop neighbour [6,13,14]. TTI is calculated

for every node from the topology table as:

TTI =
∆d−R
sd

where, ∆d is the euclidean distance between the current location and a predicted

location of a node based on the recorded location coordinates and velocity compo-

nents, R is the common transmission range of all the nodes, and sd is the recorded

speed component. The assumption made here is that the nodes move at a con-

stant speed during the interval for which we calculate the TTI value. TTI gives

the estimate of time taken by the neighbours to reach within the transmission

range of the destination. The neighbour with the lowest TTI value is chosen as

the next hop neighbour and packets are forwarded to this neighbour.

23

2.2.2 AeroNP

AeroNP is an IP-compatible network protocol specifically designed for highly-

dynamic airborne networks. Application systems and other devices on ANs are

IP based. In addition to replicating the services provided by IP, AeroNP provides

QoS (Quality of Service), congestion-control, and error-detection to the AeroTP

transport layer [30]. QoS is provided by tagging packets based on priorities;

AeroNP provides four levels of priorities. The AeroRP control packets are al-

ways given the highest priority. Mission specific command and control data is

given higher priority compared to application data. The packets tagged with a

particular priority are queued in specific buffer classes. The congestion-control

mechanism is accomplished by implementing a cross-layering mechanism with the

iNET TDMA MAC layer [31]. The Congestion indicator (CI) field in AeroNP

specifies the congestion level at a node. If a node identifies that the MAC buffer

is full, it increases its congestion indicator value in the AeroNP header. Neigh-

bouring nodes do not forward packets to a node with high CI value, unless it is

the destination. The wireless medium is error-prone leading to packet corruption,

and detecting these errors at the destination and waiting for the source to resend

the packet increases the end-to-end delay. The AeroNP corruption indicator and

HEC-CRC (header error check – cyclic redundancy code) fields provide the er-

ror detection. Depending on the mission requirements, geolocation information

can be included in the AeroNP header. We designate the AeroNP header with

the geolocation information as the extended header, whereas the AeroNP header

without the geolocation information as is referred to as the basic header.

24

Chapter 3

Implementation of ns-3 Models

Simulation has been the backbone of MANET research [8, 32], since the sim-

ulation environment provides easily accessible resources to study new protocols

and models. The ns-2 simulator [33] has been widely used due to its open-source

model which is appropriate for the academic research community. In response to

a number of its deficiencies, the ns-3 discrete event network simulator [34] is un-

der development, providing greater flexibility, modularity using C++, evolvability,

and support for heterogeneity including hybrid wired and wireless models.

Despite its advantages, ns-3 is relatively new with few protocol models yet

incorporated into its release distribution [35]. As part of our contribution from the

ResiliNets group we have modelled DSDV routing protocol1, 3D–Gauss-Markov

mobility model1, TDMA MAC protocol2, and DSR routing protocol2. In this

chapter we present the implementation details of DSDV routing protocol and

TDMA MAC protocol. Section 3.1 presents a detailed explanation of DSDV’s

headers, its routing table, transmitting and processing DSDV advertisements,

1incorporated in the mainline release of ns-3
2currently under testing

25

and data packet buffering. Section 3.2 details the implementation aspects of a

centralised TDMA controller and TDMA frame transmission and processing. It

also highlights the differences in operation of a TDMA MAC protocol compared

to the 802.11 MAC protocol.

3.1 Implementation of DSDV in ns-3

The MANET protocols in early releases of ns-3 were limited to just the op-

timised link state routing (OLSR) and the ad hoc on-demand distance vector

(AODV) protocols. Thus we have developed an ns-3 implementation of the

destination-sequenced distance vector (DSDV)1 routing protocol. DSDV is one of

the earliest MANET routing protocols proposed [20] and provides a baseline for

performance comparisons against AeroRP protocol with ground station updates.

3.1.1 DSDV module for ns-3

This section describes our implementation of DSDV, which became part of ns-

3 since ns-3.10 release. The main components of the DSDV implementation are

routing update mechanisms, route table creation, and route maintenance. DSDV

maintains valid routes and flushes out invalid routes based on the periodic update

interval. We implemented an optional packet buffering mechanism that was not

part of the initial DSDV design [20]. This feature is implemented for testing the

performance of the protocol with and without packet buffering and also to provide

users with more options. All the attributes used in this implementation are listed

in Table 3.1. The relation between all the classes implemented in this module are

1This section is mainly based on the “Destination-Sequenced Distance Vector (DSDV) Rout-
ing Protocol Implementation in ns-3” paper [36], for which the author of this thesis is primary
author

26

shown in Figure 3.1. We implemented the DSDV routing protocol ns3::dsdv::

RoutingProtocol in ns-3 by extending from the abstract base class ns3::

Ipv4RoutingProtocol. The ns3::dsdv::DsdvHeader is extended from ns3::

Header. We have also declared ns3::dsdv::RoutingTableEntry to store the

updates of a node and ns3::dsdv::RoutingTable to store all these entries in a

table. Similarly we have declared the ns3::dsdv::QueueEntry class to store a

packet and ns3::dsdv::RequestQueue to store all the queued entries. The main

class that glues all these together is the ns3::dsdv::RoutingProtocol class. An

in-depth explanation of all these classes is presented in the following sections.

-SendTriggeredUpdate()
-SendPeriodicUpdate()
-RecvDsdv()
+RouteInput()
+RouteOutput()

-settlingTime
-periodicUpdateInterval
-mainAddress
-routingTable : RoutingTable
-queue : RequestQueue

RoutingProtocol

+Enqueue() : bool
+Dequeue() : bool
-IsEqual() : bool
+Find() : bool
+SetMaxPacketsPerDst()
+GetMaxQueueLen() : unsigned int

-maxLen
-maxLenPerDst
-queueTimeout
-IsEqual
-queueEntry : QueueEntry

RequestQueue

+AddRoute()
+DeleteRoute()
+LookupRoute()
+GetListOfAllRoutes()
+InvalidateRoutesWithDst()
+DeleteAllRoutesFromInterface()

-ipv4AddressEntry
-ipv4Events
-holddownTime
-routingTableEntry : RoutingTableEntry

RoutingTable

+Serialize()
+Deserialize()
+SetDst()
+GetDst()
+SetHopCount()
+GetHopCount() : unsigned int

-dst
-hopCount
-dstSeqNo

DsdvHeader

Ipv4RoutingProtocol

+GetRoute()
+SetRoute()
+GetNextHop()
+SetNextHop()
+GetSeqNo()
+SetSeqNo()

-seqNo : unsigned int = 0
-hops : unsigned int = 0
-settlingTime
-lifeTime
-ipv4Route

RoutingTableEntry

+SetPacket()
+GetPacket()
+SetIpv4Header()
+GetIpv4Header()
+SetExpireTime()
+GetExpireTime()

-packet
-exipre
-header

QueueEntry

-Table

1

-Entry

*

-Table

1

-Entry

*

Header

Figure 3.1. DSDV class diagram

27

A
tt

ri
b
u
te

D
e
fa

u
lt

s
S
u
m

m
a
ry

P
e
r
i
o
d
i
c
U
p
d
a
t
e
I
n
t
e
r
v
a
l

15
s

T
im

e
in

te
rv

al
b

et
w

ee
n

ex
ch

an
ge

of
fu

ll
ro

u
ti

n
g

ta
b
le

s
am

on
g

n
o
d
es

E
n
a
b
l
e
W
S
T

t
r
u
e

E
n
ab

le
s

W
ei

gh
te

d
S
et

tl
in

g
T

im
e

fo
r

th
e

u
p

d
at

es
b

ef
or

e
ad

ve
rt

is
em

en
t

S
e
t
t
l
i
n
g
T
i
m
e

6
s

M
in

im
u
m

ti
m

e
d
u
ra

ti
on

an
u
p

d
at

e
is

st
or

ed
b

ef
or

e
tr

an
sm

is
si

on
W
e
i
g
h
t
e
d
F
a
c
t
o
r

0.
87

5
W

ei
gh

te
d

fa
ct

or
fo

r
th

e
se

tt
li
n
g

ti
m

e
if
E
n
a
b
l
e
W
S
T

is
tr

u
e

E
n
a
b
l
e
B
u
f
f
e
r
i
n
g

t
r
u
e

E
n
ab

le
s

b
u
ff

er
in

g
of

d
at

a
p
ac

ke
ts

if
n
o

ro
u
te

to
d
es

ti
n
at

io
n

is
av

ai
la

b
le

M
a
x
Q
u
e
u
e
L
e
n

10
0

M
ax

im
u
m

n
u
m

b
er

of
p
ac

ke
ts

th
at

ca
n

b
e

q
u
eu

ed
M
a
x
Q
u
e
u
e
T
i
m
e

30
s

M
ax

im
u
m

ti
m

e
d
u
ra

ti
on

fo
r

w
h
ic

h
p
ac

ke
ts

ca
n

b
e

q
u
eu

ed
M
a
x
Q
u
e
u
e
d
P
a
c
k
e
t
s
P
e
r
D
s
t

5
M

ax
im

u
m

n
u
m

b
er

of
p
ac

ke
ts

th
at

ca
n

b
e

b
u
ff

er
ed

p
er

d
es

ti
n
at

io
n

H
o
l
d
t
i
m
e
s

3
N

u
m

b
er

of
ti

m
es

P
e
r
i
o
d
i
c
U
p
d
a
t
e
I
n
t
e
r
v
a
l

to
p
u
rg

e
a

ro
u
te

E
n
a
b
l
e
R
o
u
t
e
A
g
g
r
e
g
a
t
i
o
n

f
a
l
s
e

E
n
ab

le
s

ag
gr

eg
at

io
n

of
D

S
D

V
u
p

d
at

es
ov

er
a

p
er

io
d

of
ti

m
e

R
o
u
t
e
A
g
g
r
e
g
a
t
i
o
n
T
i
m
e

1
s

T
im

e
ov

er
w

h
ic

h
D

S
D

V
u
p

d
at

es
ar

e
ag

gr
eg

at
ed

T
a
b
le

3
.1
.

D
S
D
V

at
tr
ib
u
te
s
an

d
d
ef
au

lt
va
lu
es

28

3.1.2 Header

The DSDV message header (DsdvHeader) is 32 bits wide with the total header

size of 12 bytes as shown in Figure 3.2. The fields in the DSDV header are the

node’s IP address, the number of hops required to reach that node, and its last

known sequence number. The latter two are 32-bits long in our implementation to

provide word alignment and allow simulation of very large networks, even though

the ns-2 implementation used 16-bit fields. Note that unlike AODV and OLSR,

there is no DSDV RFC to guide standards compliance. DSDV is encapsulated

in User Datagram Protocol (UDP) segments that are then encapsulated in IP

packets, as shown in Figure 3.3.

Destination Address

Hop Count

Sequence Number

Figure 3.2. DSDV message header

DSDVDSDVDSDVUDPIP …

Figure 3.3. DSDV header encapsulation

3.1.3 Routing Table

The structure of the DSDV RoutingTable is implemented as follows. Each

entry implemented by the RoutingTableEntry class corresponds to a node in the

network and the entry is mapped to that node’s IP address. Every entry stores

29

the following attributes of a node: its IP address, interface address, a pointer to

its ns-3 net device, last known sequence number of the node, hop-count to reach

the node, timestamp of the last update received for the node, and the settling

time for that node. Also, we maintain a boolean value that specifies whether

the entry for this node has changed since the last periodic update. This helps

filter DSDV updates that are broadcasted through the trigger update mechanism.

The RoutingTable class has methods to add, delete, update, look up, and print

entries. It also defines the event functions explained in Section 3.1.5.2.

DSDV maintains two routing tables: a permanent routing table and an ad-

vertising routing table. These tables store the permanent stable routes and the

recently received routes respectively. The recently received routes might be un-

stable; therefore, when the node identifies a route to be stable, it advertises that

route and moves it to the permanent routing table. This mechanism of identify-

ing stable routes is done using SettlingTime, explained in detail in Section 3.1.4.

Furthermore, a node can identify the stability of a route based on the sequence

number and hop count received through the update, explained in Section 3.1.5.

3.1.4 Routing Advertisements

A node combines all the DSDV messages that it has to transmit into a single

packet over RouteAggregationTime, if RouteAggregation is enabled. However,

to keep the packet size under the maximum transmission unit (MTU) in the

implementation, we split the packets and send them separately if the packet size

is longer than the MTU. As mentioned earlier, DSDV sends both periodic update

messages and trigger messages. As soon as the routing protocol in the node

is initialised, the node broadcasts its DSDV update message to the network to

30

announce its presence. Each node periodically broadcasts its own routing table

and all the nodes that are in range of this advertisement use this information to

update their routing tables. They may further trigger these updates to other nodes

in their broadcast range. This mechanism is also used to keep the neighborhood

relationship alive. One of the attributes that can be set for the routing protocol is

the duration between these periodic updates, known as periodic update interval,

using PeriodicUpdateInterval. It specifies the time duration for which a node

has to wait before broadcasting its routing table. A node uses the trigger update

mechanism when there are only a few updates to be transmitted. However, if the

node identifies that the number of updates sent per trigger is comparable to that

of a periodic update, then it sends a periodic update instead.

One more feature of DSDV routing protocol is the settling time, which is used

to prevent the advertisement of an unstable route that arrives at the node before

a stable route. Since DSDV uses broadcasting to propagate these changes, it

would create unnecessary overhead in the network. Thus, a node waits for the

period of SettlingTime before propagating any update. However to make sure

updates for stable routes are not delayed, we use the attribute WeightedFactor.

This is used to calculate the weighted average of the settling times for the updates

received from a node. If the update is for an old and stable route, the settling time

decreases. A node can not process multiple update messages simultaneously. If the

nodes are highly mobile, the node might have to send many updates as there would

be a lot of route changes. This leads to more overhead in the network that may

increase the number of collisions. To reduce overhead, we use RouteAggregation.

This optional feature enables multiple update messages to be sent out as a single

update message. The period over which routes are aggregated can be modified by

31

RouteAggregationTime attribute.

3.1.5 Processing of Updates

As mentioned in Section 3.1.4, a node might receive many updates stacked

within a single packet. Since the DSDV header size is fixed to 12 bytes, we iterate

over the packet until it is empty to extract all the 12 B DSDV control messages.

Each message is processed as it is extracted. We first verify the destination ad-

dress in the extracted message. If it is same as the node’s IP address, the message

is discarded. If not, the protocol verifies whether the received update is for a new

route with a valid sequence number. In this case the route is added to the perma-

nent routing table and broadcast immediately. Otherwise, if the node already has

an update for that IP address the protocol verifies the sequence number. If the

sequence number is odd and if the node from which this update was received is the

next hop neighbour in the table, then the route is deleted from the routing table

and triggers an update of this broken route to other nodes immediately. However

if the sequence number is valid we have three cases in which the sequence number

can relate to the sequence number from the table:

• Received > Local : The protocol verifies the received hop-count with the

local value of hop count. If they are not equal, the node updates its local

entries in the advertising routing table and waits for settling time period if

SettlingTime is enabled. This is implemented using events in ns-3. This

mechanism is explained briefly in Section 3.1.5.2. If the received hop-count

is same as the local value, then the node does not wait for the settling time

interval as this is an update for the stable route.

• Received = Local : If the received hop-count is less than the local value,

32

then the local value is updated and the protocol waits for settling time to

make sure that this update is not an unstable one. If it does not receive

any further update for that destination address, the protocol updates the

permanent table with this update and triggers this update back to all its

neighbours. However if the received hop-count is greater than or equal to

the local value, the message is discarded.

• Received < Local : The protocol discards this update message as it already

has a most recent update from that destination.

After processing messages from the packet, the SendTriggeredUpdate method

is called. SendTriggeredUpdate iterates over the advertising routing table, com-

putes all the needed updates, and creates a new packet with these updates and

broadcasts.

3.1.5.1 Stale Entries

DSDV has a mechanism of removing stale entries from the node’s routing

table. If a node does not receive any updates for a destination over a period of

time, it removes that entry from the routing table. In our implementation, DSDV

waits for Holdtimes × PeriodicUpdateInterval interval. The default value of

Holdtimes is set to 3, i.e. a node waits for 3 times the PeriodicUpdateInterval

before deleting the route. Furthermore, the node must delete all the routes for

which the deleted neighbour was the next hop.

3.1.5.2 Event Processing

In the implementation of DSDV we use EventId ns3::EventId to schedule

events and keep track of them. These are declared in the RoutingTable class.

33

The IP address of a node is mapped to the event id. We use these events to keep

track of the updates in advertising table and broadcast them when their settling

time is complete. When a node receives an update for a destination that is already

waiting in the advertising table, the running event might be replaced by a new

one depending on the new update received.

3.1.6 Packet Buffering

We have implemented a buffering mechanism for DSDV although it is not

part of the DSDV as originally described [20], to allow fairer comparisons with

disruption-tolerant networks (DTN) and domain-specific MANET routing pro-

tocols that do buffer packets that cannot be immediately sent [13, 37]. We im-

plemented two classes in a manner similar to the routing table implementation.

QueueEntry class is the entry that is stored in the queue, implemented from

RequestQueue class. If the destination address for a packet is not present in

the protocol’s routing table, then the packet is buffered. As DSDV is a proac-

tive protocol, it does not initiate any route discovery mechanism to identify the

route to that destination. It has to only rely on the messages received from its

neighbours through trigger and periodic updates. DSDV periodically verifies the

buffer and look for packets with valid routes in the routing table and transmits

them. By default, our DSDV implementation buffers up to 5 packets per destina-

tion. This can however be changed by modifying the MaxQueuedPacketsPerDst

attribute. Furthermore, packets that are buffered for a long time are dropped

from the queue. The time interval for which a packet can be buffered is set using

MaxQueueTime. By default packet buffering is enabled, but this can be disabled

by setting EnableBuffering to false.

34

3.1.7 Parameter Tuning

An advantage of DSDV is that it is relatively simple compared to other

MANET routing protocols. It is also similar to the conventional wired distance-

vector routing protocols, with only minimum adaptations made. However, the

drawback of DSDV is that its periodic overhead for broadcasting is unavoidable

even if the network is static. If the node density increases in the network, the

routing table also becomes larger. This leads to more updates with larger packet

sizes. With a highly dynamic network, the routing updates may take up the

available bandwidth of channel. Furthermore, before the time of update, inter-

mediate nodes may use stale information to forward packets. Thus proper choice

of PeriodicUpdateInterval and SettlingTime is important in a highly mobile

environment.

3.1.8 DSDV Module Evaluation

To evaluate the performance of our DSDV routing protocol implementation,

we performed simulations using the ns-3.9 version of the network simulator2. To

verify its functionality, we investigate the DSDV performance with varying node

densities as well as compared to the other existing MANET routing protocols in

ns-3: OLSR and AODV. Note that a comparison to the DSR implementation

currently in progress is future work.

3.1.8.1 Performance Metrics

The performance metrics for evaluation of the DSDV routing protocol are

packet delivery ratio (PDR), routing overhead, and delay.

2Before our DSDV was included in the ns-3 distribution in ns-3.10.

35

• Packet Delivery Ratio PDR: The number of packets received divided by

the number of packets sent by the application.

• Routing Overhead: The fraction of bytes used by the protocol for DSDV

control messages

• Delay: The time taken by the packet to reach the destination node’s MAC

protocol from the source node’s MAC protocol.

3.1.8.2 Simulation Setup

We performed the simulations over an area of 1500 × 300 m2. All the sim-

ulations were averaged over 10 runs with each simulation running for 1000 s.

Simulations were performed with varying node densities: 10, 20 and 30 nodes.

The communication model is peer-to-peer communication with as many flows as

the number of nodes in the network. We initially performed some simulations

with 1000 byte packets but observed that the PDR was low, therefore we used a

packet size of 64 bytes based on previous study [38]. All the nodes are configured

to send 4 packets/s. Using this lower packet size, we can correctly evaluate the

performance of the protocol. We use the ns-3 On-Off application to generate CBR

(constant-bit rate) traffic. The 802.11b MAC is used over Friis propagation loss

model to limit the transmission ranges of nodes. The transmit power was set to

8.9048 dBm to achieve a 250 m transmission range. The mobility model used

is random waypoint with random velocities from 0 – 20 m/s and pause times of

100 – 800 s. When comparing DSDV performance against AODV and OLSR, we

use 0 s pause time. DSDV performance with optional buffer mode enabled was

analysed. We used the default DSDV parameters values described above except

for PeriodicUpdateInterval which was varied among {4, 5, 8, 12, 15, 30} s

36

and SettlingTime which was varied among {0, 1, 2, 3, 4, 5, 6} s. Some of the

simulation parameters were chosen based on the previous MANET comparison

studies [38].

3.1.8.3 Simulation Analysis

In the first scenario, we vary the pause time in the random waypoint mobility

model so that we can analyse the performance of DSDV in both mobile and static

scenarios. For this scenario, the PeriodicUpdateInterval is set to 15 s and

SettlingTime is 6 s. Figure 3.4 shows the variation of PDR by varying the pause

times.

pa
ck

et
 d

el
iv

er
y

ra
tio

pause times [s]

10 nodes

20 nodes

30 nodes

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0 200 400 600 800 1000

Figure 3.4. PDR with varying pause time

We can see that as the number of nodes is increased the packet delivery ratio

also increased. This is due to the fact that when there are only 10 nodes, the

chances of link breaks and network partitioning is more likely to happen than when

37

there are more nodes making the network connected for most of the time. However,

PDR for 20 nodes is greater than that for 30 nodes for all pause times. This might

be because as the node density increases, the routing overhead also increases and

this leads to more collisions in the network. Note the 95% confidence-interval error

bars in Figure 4. As the pause time increases, so does the variation in packet delay

(as depicted by error bars) for all the 3 curves for 10 nodes, 20 nodes and 30 nodes.

This can be attributed to how the nodes were positioned in the network initially

since very long pause times reduce movement from the initial position.

The routing overhead for different node densities with varying pause times is

shown in Figure 3.5. This plot shows that overhead increases with the number

of nodes. This is expected for DSDV since it is a proactive protocol and every

node keeps track of all the other nodes in the network; when a node sends out a

periodic update, it is flooded to all other nodes. Depending on the changes based

on an update received, a node may further trigger updates to other nodes.

The overhead as shown in Figure 3.5 slightly increased for all the 3 curves

moving from a pause time of 0 s to 100 s. With zero pause time the nodes collect

less information from the network because they are continuously moving. With

the larger pause time of 100 s they collect more information from the network.

This translates to more updates. Furthermore, as pause time is increased, the

overhead is reduced.

We also consider the packet delay for data packets between source and des-

tination. Figure 3.6 shows the variations in packet delay (as depicted by error

bars) increase as the pause time is increased for all the 3 curves for 10 nodes, 20

nodes and 30 nodes. This is because as the pause time is increased the nodes

are immobile for longer durations and thus the link connectivity depends on the

38

av
er

ag
e

ov
er

he
ad

 [k
b/

s]

pause times [s]

10 nodes

20 nodes

30 nodes
0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Figure 3.5. Overhead with varying pause time

pa
ck

et
 d

el
ay

 [s
]

pause times [s]

10 nodes

20 nodes

30 nodes

0

2

4

6

8

10

12

14

16

18

0 200 400 600 800 1000

Figure 3.6. Packet delay with varying pause time

39

position of the nodes, which directly affects the packet delay.

pa
ck

et
 d

el
iv

er
y

ra
tio

number of nodes

DSDV-b

DSDV-u

OLSR

AODV

0.0

0.2

0.4

0.6

0.8

1.0

10 15 20 25 30 35 40 45 50

Figure 3.7. PDR with varying node density

In Figure 3.7 we compare the packet delivery ratio of existing MANET routing

protocols implemented in ns-3 with DSDV. From the plot we can clearly see that

OLSR outperforms DSDV-buffer mode, DSDV-unbuffer mode, and AODV. This

is expected as OLSR implementation in ns-3 exchanges TC messages every 5 s [21],

thus the routing tables are computed/re-computed every 5 s. However DSDV uses

a PeriodicUpdateInterval of 15 s making the convergence of nodes running

OLSR quicker compared to those running DSDV. In DSDV the routes are not

always accurate as it depends only on periodic and trigger messages to update

the routes. AODV’s performance was expected to be higher, however the current

implementation of AODV has some bugs that need to be fixed3.

3We have been working with ns-3 developers to report AODV performance issues, and the
situation has been improving.

40

av
er

ag
e

ov
er

he
ad

 [k
b/

s]

number of nodes

DSDV-b

DSDV-u

OLSR

AODV

0E+00

1E+03

2E+03

3E+03

4E+03

5E+03

6E+03

10 15 20 25 30 35 40 45 50

Figure 3.8. Overhead with varying node density

In our analysis, we also compare the routing overhead involved with all these

protocols, AODV incurs significant overhead shown in Figure 3.8. DSDV and

OLSR generates about 112 kb/s and 65 kb/s of routing overhead respectively for

30 nodes. However as the number of nodes increases, the overhead increases as

well. For a 50 node simulation, DSDV incurred an overhead of 215 kb/s compared

to 113 kb/s for OLSR.

We analyse the packet delay for these protocols. The packet delay is greater

for DSDV when compared with OLSR as shown in Figure 3.9. For a 30 node

simulation, packet delay for DSDV was 10 s whereas it was 6 s for OLSR. Since

these scenarios were generally connected, the results for DSDV-buffer and DSDV-

unbuffer mode results were not significantly different. The performance of the

ns-3 AODV model is considerably less than expected.

41

pa
ck

et
 d

el
ay

 [s
]

number of nodes

DSDV-b

DSDV-u

OLSR

AODV

0

50

100

150

200

250

300

10 15 20 25 30 35 40 45 50

Figure 3.9. Packet delay with varying node density

3.2 Time Division Multiple Access

Time division multiple access is a contention-free medium access protocol.

The channel bandwidth that is shared by all nodes in the network is partitioned

into time slots for dedicated use among those nodes. Each node transmits data

only during its allotted time slot. The transmission slots are usually of fixed

time intervals. In an airborne telemetry network, the GS takes responsibility

of assigning transmission slots to the AN’s. The GS splits the frame into slots

depending on the number of AN’s and the number of slots it requires for itself.

Each transmission slot is separated by a guard interval so that the transmissions

do not overlap. The value of the guard interval is determined by the GS. It is

usually the amount of time it takes for a packet to travel the distance specified

by the transmission range. In this simple TDMA model, it is assumed that the

42

clocks of the nodes are synchronised.

3.2.1 Difference between IEEE 802.11 and TDMA

Many collisions in MANETs are caused by hidden node problem. When two

nodes which are outside the transmission range of each other send data to the

same receiver, packets from both transmitters collide at receiver. This is known as

hidden node problem. The protocols with proposed solutions can be divided into

two categories, contention-based and contention-free. IEEE 802.11 is a contention

based MAC protocol whereas TDMA is contention-free MAC protocol.

3.2.2 Implementation of TDMA protocol in ns-3

The ns-3 implementation of TDMA4 uses a centralised TDMA controller that

assigns transmission slots to various nodes in the network. Figure 3.10 shows

the class-interaction diagram between various classes used in the implementation.

ns3::TdmaController, ns3::TdmaCentralMac, and ns3:TdmaMacQueue are the

major classes in this implementation. ns3::TdmaController controls the schedul-

ing aspect of the protocol. TDMA frame processing, creating MAC headers and

trailers, and MAC callback mechanisms are handled by ns3::TdmaCentralMac.

ns3::TdmaMacQueue takes care of the packet queueing and dequeuing.

3.2.2.1 ns3::TdmaCentralMac

ns3::TdmaMac is the base class from which ns3::TdmaCentralMac is derived.

The current implementation considers a simple centralised TDMA MAC. However,

considering the other possible implementations of distributed TDMA models, we

4The ns-3 TDMA model was developed as part of the thesis; the 802.11 model is in the
standard ns-3 distribution

43

+Enqueue()
+StartTransmission()
-Receive()
-ForwardUp()
+SetTdmaController()

-macTxTrace
-macRxTrace
-macPromiscTrace

TdmaCentralMac

+Enqueue() : bool
+Dequeue() : bool
-IsEqual() : bool
+Peek() : bool

-maxLen
-queueTimeout
-queueEntry : QueueEntry

TdmaMacQueue

+Serialize()
+Deserialize()
+GetTypeId()
+GetAddr1()
+GetAddr2()
+GetAddr3()

-addr1
-addr2
-addr3

TdmaMacHeader

TdmaMac

-StartTdmaSessions()
-ScheduleTdmaSession()
-UpdateFrameLength()
-CalculateTxTime()

-dataRate
-slotTime
-gaurdTime
-interFrameTime
-totalSlotsAllowed : int
-tdmaMode

TdmaController

+SetPacket()
+GetPacket()
+SetMacHeader()
+GetMacHeader()
+SetExpireTime()
+GetExpireTime()

-packet
-header
-timestamp

QueueEntry

-Table

1

-Entry

* Header

Channel

+Send()
-GetDevice()
-GetNDevices()
+AddDevice()

-maxRange
-macLowList

SimpleWirelessChannel

-ForwardDown()
-Receive()
+StartTransmission()
+CalculateTxTime()
+SetRxCallback()

-ssid
TdmaMacLow

Figure 3.10. TDMA class diagram

created a common base class so that other implementations could be derived from

it. All the data packets ready for transmission by the node are sent down either

from AeroNP or IP to TdmaCentralMac. TdmaCentralMac upon receiving the pack-

ets, enqueues them and waits for its turn to transmit. As soon as this node gets

its turn to transmit, TdmaCentralMac looks up the ns3::TdmaMacQueue for any

queued packets. It then iteratively dequeues packets from the queue, attaches the

MAC headers and trailers and them sends them to ns3::SimpleWirelessChannel.

Before sending them, TdmaCentralMac calculates the transmission time required

based on the packet size and data rate. It adds up the transmission times of all

the packets sent and compares it with the transmission time-slot allotted to it by

the TdmaController. If it could not transmit any more packets in that slot, the

loop terminates stopping further transmissions. SimpleWirelessChannel forwards

44

the packets to all the nodes which are within the MaxRange attribute value spec-

ified by the user at the start of simulation. TdmaCentralMac also takes care of

the packets received from SimpleWirelessChannel. It removes the attached MAC

headers and trailers and forwards the packet to either AeroNP or IP.

3.2.2.2 ns3::TdmaMacQueue

TDMA maintains a drop-tail queue to store packets received from the network

layer until it gets its transmission slot. The attributes that can me modified for

this class are MacQueueLength and MacQueueTime. So all the packets trying to

be enqueued after the queue size reaches MacQueueLength are be dropped and

packets stored in the queue for a time-interval longer than MacQueueTime are

also dropped.

3.2.2.3 ns3::TdmaController

ns3::TdmaController takes care of all the scheduling aspects of the proto-

col. It initiates the TDMA sessions and authorises the nodes to transmit in the

slots specified by it. The number of slots alloted for transmission along with

the slots durations are provided to it as attributes specified by the user at start

of simulation. The list of attributes along with their default values associated

with TdmaController are shown in Table 3.2. A ns3::TdmaHelper takes all these

attributes along with a list on nodes and initialises the TdmaController. Tdma-

Controller maintains a list of MAC pointers associated with all the nodes. Based

on the slot assignment provided by the user, this list is populated by TdmaHelper

class before the simulation starts. The user can provide the slot assignments for

nodes either through the simulation script or an external file. After the simula-

45

tion starts, the TdmaController initiates scheduling of TDMA sessions based on

the node ids. It calls the ns3::TdmaCentralMac from its list of MAC pointers and

instructs the node that it could transmit for a particular SlotTime. As soon as the

transmission slot for that node is complete, the TdmaController waits for Gaurd-

Time and then calls the next node from the list and so on. Once all the nodes from

the list are assigned a transmission slot, the controller waits for InterFrameTime

before starting with the same procedure again.

Attribute Default Value Summary
DataRate 11 mb/s The default data rate for links
SlotTime 1100 µ s The duration of a transmission slot
GuardTime 100 µ s Guard time between transmission slots
InterFrameTime 10 µ s The wait time between consecutive frames
TotalSlotsAllowed 1 Number of total slots allowed per frame

Table 3.2. Attributes with default values for TdmaController

46

Chapter 4

Design of AeroRP with GS

The main goal of this thesis is to design and implement the GSAs (ground

station advertisements) as one of the neighbour discovery processes in AeroRP.

In this chapter we will look at how the GSAs are broadcasted by the GS and how

they are processed by the ANs1. This chapter is organised as follows. Section 4.1

details the message formats used by AeroRP to send GSAs. The mechanism

employed by the GS to broadcast these GSAs is briefly explained in Section 4.2

and processing of GSAs by the ANs is explained in Section 4.3.

4.1 AeroRP Header Format

In this section we will look at the AeroRP message header formats. AeroRP

uses TypeHeader, GSGeoLocationHeader, and GSTopologyHeader. The latter two

are exclusively used by the GS to send our GSAs.

1This chapter is mainly based on the “Performance Analysis of AeroRP with Ground Station
Updates in Highly-Dynamic Airborne Telemetry Networks” paper [39], for which the author of
this thesis is primary author

47

4.1.1 Type Header

The introduction of ground station updates required a change in header format

used in [6]. For compatibility reasons after introducing AeroNP, AeroRP message

formats were significantly modified so that a common TypeHeader message can be

attached at beginning of every AeroRP update. TypeHeader shown in Figure 4.1

specifies the type of AeroRP message attached to it, flags required for processing

the attached AeroRP message(s), and header length. A summary of the contents

of TypeHeader follows:

header length AeroRP type flags

AeroRP type messages

Figure 4.1. Packet format for TypeHeader

• AeroRP type: 8 bits

The AeroRP type field indicates the type of AeroRP message attached below.

The type can be HelloHeader, GSGeoLocationHeader, and GSTopologyHeader.

• flags: 8 bits

The eight bits of flags field are used to unpack and process attached AeroRP

message.

– bit 0: Reserved, must be set to 0

– bit 1: Reserved, must be set to 0

– bit 2: Reserved, must be set to 0

– bit 3: Reserved, must be set to 0

48

– bit 4: This bit helps a node to identify a packet with GS updates sent

by neighbouring node. This message is initiated by a neighbour node

if it discovers that this node has outdated information from the GS.

0 = No GS update attached, 1 = GS update attached.

– bit 5: (GF) This bit is used by the GS to differentiate between periodic

updates and trigger updates.

0 = Trigger update, 1 = Periodic update.

– bit 6: (GE) This bit is used along with HelloHeader. It tells if a node

wants to exchange ground station updates with other nodes in network.

0 = Disable GS sequence number exchange, 1 = Enable GS sequence

number exchange.

– bit 7: (EB) This bit tells the node whether to rebroadcast this update

message again or not.

0 = Disable rebroadcast, 1 = Enable rebroadcast.

• header length: 8 bits

This field specifies the total AeroRP message header length attached to the

packet.

• AeroRP type message: variable bits

This field is a placeholder for the other AeroRP messages to be attached as

specified in the AeroRP type field.

4.1.2 Hello Header

HelloHeader format is significantly modified since [6]. The required HelloHeader

fields such as node’s geolocation and velocity information fields are moved to the

49

AeroNPHeader that is explained in Chapter 5. So if a node wants to send a

hello message, it uses a TypeHeader with AeroRP type as hello and attaches an

AeroNPHeader to it.

4.1.3 GSGeoLocation Header

GSGeoLocation is introduced to broadcast geolocation information of all the

ANs. It carries a node’s geolocation coordinates, velocity components, start time,

and end time. Figure 4.2 illustrates the fields used and a detailed explanation

follows.

reserved

end time

x-coordinate

y-velocity

x-velocity

node id

start time

z-coordinate z-velocity

y-coordinate

Figure 4.2. Packet format for GSGeoLocationHeader

• node id: 16 bits

The node id field indicates the node’s 16-bit id generated by AeroGateway,

whose geolocation information and velocity components are present in the

fields below.

• reserved: 16 bits

This field is currently reserved for future use.

• x-coordinate: 19 bits

This field specifies the cartesian x coordinate based on the current location

of the node.

50

• x-velocity: 13 bits

This field specifies the velocity component of the node in x direction.

• y-coordinate: 19 bits

This field specifies the cartesian y coordinate based on the current location

of the node.

• y-velocity: 13 bits

This field specifies the velocity component of the node in y direction.

• z-coordinate: 19 bits

This field specifies the cartesian z coordinate based on the current location

of the node.

• z-velocity: 13 bits

This field specifies the velocity component of the node in z direction.

• start time: 16 bits

start time is used if an AN follows a pre-determined trajectory. This infor-

mation is used by the other ANs to start using the location information of

this AN from start time in making routing decisions.

• end time: 16 bits

end time is used if the GS identifies that this AN will deviate from a prede-

termined path at a particular time. This information is used by the other

ANs to stop using the location information of this AN after end time in

making routing decisions.

51

4.1.4 GSTopology Header

GSTopologyHeader is used to broadcast the link information of all the nodes.

The fields present in the GSTopologyHeader are 16-bit node-ids of both the nodes

forming this link, the link start and expire times, and the link cost. Figure 4.3

illustrates the fields followed by a detailed explanation.

node2 id node1 id

link cost

link start time

link end time

Figure 4.3. Packet format for GSTopologyHeader

• node1 id: 16 bits

The node1 id field indicates a node’s 16-bit id generated by AeroGateway

that formed a link with node whose id is present in node2 id field.

• node2 id: 16 bits

This field specifies a node’s 16-bit id that formed a link with the node whose

id is present in node1 id field.

• start time: 16 bits

This start time specifies the time at which this link is formed.

• end time: 16 bits

This end time specifies the time at which this link is predicted to go down.

• link cost: 32 bits

Link cost is used by the AN to identify a shortest path to a destination.

The GS can take many factors in determining this link cost. The lower

52

the link cost, the better it is to send traffic over it. Some of the factors in

determining link cost are highlighted below.

1. Duration for which a link will be active.

2. Links where one of the node has more resources or has more paths to

a destination

4.2 Operations of Ground Station

The ground station is responsible for monitoring location information of all

the ANs and broadcasting updates on their location to the other ANs.

4.2.1 GS Update Mechanism

A ground station broadcasts updates for all the ANs periodically over a time-

interval called the periodicUpdateInterval. Depending on velocities of the ANs

and the frequency at which they change direction, the periodicUpdateInterval is

set. The frequency at which the GS sends these updates affects the protocol’s

performance significantly. If the periodicUpdateInterval is low, the GS broadcasts

updates more frequently resulting in increased control overhead. On the contrary,

if the periodicUpdateInterval is high, the GS broadcasts updates less frequently

resulting in the ANs not having up-to-date information about the other ANs.

Velocities of all the ANs are unlikely to be uniform and some of the ANs may

change their direction more frequently than others. Therefore, sending updates of

all the ANs for every periodicUpdateInterval alone is not sufficient. There is a need

for a mechanism where the ground station can broadcast updates in-between the

periodicUpdateIntervals as well, called the trigger update mechanism. Whenever

53

the GS identifies a change in direction of any AN, it immediately broadcasts the

changed location and velocity information of the AN. Highly dynamic changes re-

sult in the GS sending trigger updates more frequently that leads to more control

overhead and increased packet collisions in the network. To avoid this, trigger

updates over a time-interval specified by triggerUpdateInterval are aggregated into

a single update and sent together. On the other hand, the GS verifies if a trigger

update can be cancelled and the change be sent in the next periodic update. If the

time duration to the next periodic update is less than the triggerUpdateInterval,

then the trigger update is not sent.

To make sure the GS advertisements do not violate the maximum transmission

unit (MTU) of 1500 B set by the MAC layer, they are fragmented to multiple

packets. Each packet is uniquely identified by the time the topology table in the

GS is updated and by a 16-bit fragment number.

4.2.2 Types of GS Updates

The ground station sends two types of advertisements: GSGeoLocation and

GSTopology. The GSGeoLocation and GSTopology advertisements are explained in

the following sub sections.

4.2.2.1 GSGeoLocation Advertisements

Geolocation information of all the nodes is advertised by ground station using

GSGeoLocation advertisements. This advertisement carries multiple GSGeoLoca-

tionHeaders containing the geolocation coordinates and the velocity components

in x, y, and z directions. Figure 4.2 shows the header format for GSGeoLocation-

54

Header. A ground station also maintains a topology table similar other ANs. The

difference is that the ANs fill their table on receiving AeroRP updates, whereas the

GS topology table is assumed to have updated information of the entire network

based on the predetermined flight plans. The ground station uses this information

to send out geolocation updates. It sets the EnableBroadcast flag to true so that

this message can be rebroadcasted among all the ANs. Depending on the update

mechanism used, the GS sends out updates for all the ANs or only for the ANs

with changed information since the last update. The GS creates multiple geoloca-

tion headers, one for each node and adds them to a packet. It then creates a single

TypeHeader, populates the necessary fields and adds it on top of the geolocation

headers. The packet format for TypeHeader is shown in Figure 4.1. This packet

is then broadcasted in the network. Every AN receiving the packet processes the

type header, identifies the type of headers present in the packet and based on the

header length it processes each header separately.

Geolocation updates have an option for adding start time and end time as well.

These fields are used if an AN is flying in a pre-determined path. If the start time

is populated, it is interpreted as the AN is located at the location coordinates

specified by the geolocation header. The end time field is the time from when the

ANs should stop using this location information. This field can also be set to next

periodicUpdateInterval or the predicted time after which the AN might go out of

the network.

4.2.2.2 GSTopology Advertisements

GSTopology advertisements carry multiple GSTopologyHeaders for all the links

formed among nodes in the network. Figure 4.3 shows the header format for

55

GSTopologyHeader. Each GSTopologyHeader carries two 16-bit node-id addresses

of the ANs forming the link, the start and the expire times for that link, and the

link cost. The start and expire times are calculated based on node’s geolocation

and velocity information. A link is said to be established between two nodes

if the euclidean distance between the two is less than their transmission range.

The assumption here is that all nodes have the same transmission range. Based

on the nodes geolocation coordinates the euclidean distance is calculated. The

link expire time is also predicted based on the node’s geolocation and velocity

components. The expire time for an active link is increased until the euclidean

distance between the new predicted locations of the two nodes is greater than

their transmission ranges. GS calculates this information for all the possible links

that can be established among all the nodes in the network. If there are n nodes

in a network, considering the best case scenario where every node is connected to

every other node, the total number of possible links are n× (n− 1)/2.

4.3 Processing of AeroRP updates

AeroRP uses a protocol id of 251 and works in conjunction with the AeroNP

network protocol. The AeroNP protocol on receiving any packet from the MAC

layer identifies an AeroRP packet by looking at the protocol id field in the AeroN-

PHeader, and if it is equal to 251, AeroNP delivers the packet to the AeroRP

routing protocol along with the extracted AeroNPHeader. Each AN examines the

sourceTimestamp field present in the AeroNPHeader. It compares this timestamp

value with the stored, last-received timestamp value for that neighbouring node

in its topology table. If the received timestamp is newer, the protocol updates its

topology table with the geolocation information present in the AeroNPHeader. It

56

also updates the congestion and corruption indicators for the node from which this

packet was received. AeroRP then compares its own GSTimestamp value with that

of the neighbouring node’s GSTimestamp value. If it identifies that the neighbour

node does not have a newer update from the GS, it unicasts the GS updates that

were received since the GSTimestamp of the neighbouring node. This mechanism

ensures that every node has consistent information from the GS.

yes

no

no

yes

yes

yes

Extract TypeHeader and
look at message type

Discard packet

Rebroadcast packet

Receive AeroRP message

Extract AeroRP messages
and populate topology or

link tables

All
messages
extracted?

AeroNP
timestamp

newer?

Construct adjacency
matrix using Dijkstra

algorithm

yes

no Link
updates?

Rebroadcast
bit set?

Figure 4.4. Flowchart for processing a GS advertisement

As explained in Sections 2.2.1 and 4.2, AeroRP uses three types of control

messages to broadcast its updates. They are hello messages, GSGeoLocation ad-

vertisements, and GSTopology advertisements. The hello message is only used to

inform the neighbours of a node about its presence. It uses the AeroNP header to

57

carry the node’s geolocation information if AeroRP is operating in location-aware

mode. AeroRP upon receiving a hello message, extracts the geolocation informa-

tion from the AeroNP header and update its topology table. Let us assume a

node A received a hello message from node B. If the topology table present in

node A does not have any update for B, then A updates its topology table with

the information received through the hello message and set the expire time as

neighbourHoldTime. However, if A already has a GS update for B, it then verifies

if B is still moving in the same direction and with the same speed as specified in

the topology table. If true, node A does not update its topology table with the

information present in hello message. If node A identifies that B has changed its

direction or speed, it overwrites the information in the topology table with that

received from the hello message and sets the expire time to neighbourHoldTime.

In location-unaware mode, AeroRP verifies the link cost and if it receives a hello

message with lower link cost, it updates its topology table and recomputes the

routes using the Dijkstra shortest-path algorithm.

Upon receiving a GSGeoLocation advertisement, AeroRP unpacks all the GSGe-

oLocationHeaders one by one and updates the topology table entry for that node.

The topology table is updated based in the timestamp at which the geolocation

information is gathered. If the receiving node has a latest update from a node, it

verifies if the GS update received for that node also predicted the node movement

in the same direction and with the same speed. If true, the expire time for that

node is updated with the expire time present in the GS update. GSTopology adver-

tisements are also be processed the same way as a GSGeoLocation advertisements

by extracting the GSTopologyHeaders. However, after all the GSTopologyHeaders

are updated in the node’s topology table, the protocol determines if the Dijkstra

58

shortest-path algorithm should be run based on the changed link state informa-

tion. If there is a change in the link state information, AeroRP runs the Dijkstra

algorithm, otherwise the algorithm is scheduled to run at the time determined

by the creation of a new link based on the predicted geo-coordinates and velocity

components. A timer schedules the Dijkstra algorithm by keeping track of the new

link formations or breakages based on the information from the topology table.

Figure 4.4 is the flowchart showing the GS update process.

4.4 Aero Gateway

Airborne communication data is expected to originate from a system sup-

porting TCP/UDP/IP. This data should be moved over the domain-specific pro-

tocol suite and handed over to the destination which is again expected to be

TCP/UDP/IP based. All the current iNET telemetry applications and devices

are IP based which arises compatibility issues of the new protocol suite. To over-

come this, we have introduced an interface called the aero gateway (AeroGW) [5],

which resides on every node in the telemetry network including the GS. Data

originating from, or destined to these applications is processed by the AeroGW

to convert to the ANTP protocol suite. The AeroGW [5] translates the IP header

to the AeroNP header and the TCP or UDP header to the AeroTP header. The

original TCP/UDP/IP headers are removed from the packet and replaced with the

newly generated AeroTP/AeroNP headers. Figure 4.5 shows the protocol stack

architecture in the proposed ANTP protocol suite in the telemetry environment.

The AeroGW simulation in ns-3 was implemented with only the functionality

of translating IP addresses used by the GS and the ANs to 16-bit device id used

in the ANTP protocol suite. As the ANTP protocol suite is being simulated in

59

Airborne

network

GS-GW AN-GW

iNET MAC

iNET PHY

AeroTP

AeroNP

iNET MAC

iNET PHY

AeroN|RP

iNET MAC

iNET PHY

AeroTP

AeroNP

link/MAC

PHY

TCP

IP

link/MAC

PHY

TCP

IP

RN or AN

AN

peripherals

Ground

network

Figure 4.5. Protocol stack translation architecture ([5])

ns-3 that creates all sockets by binding them to IP addresses, it is necessary for

the protocols being simulated in ns-3 to use IP addresses. To correctly evaluate

the performance of the Aero protocols, the 32-bit IP addresses are mapped to a

16-bit device ids in these AeroGWs.

60

Chapter 5

Design of AeroNP

The AeroNP network protocol provides services to the AeroTP transport pro-

tocol as well as the AeroRP routing protocol. AeroNP encapsulates the packets

coming from AeroTP and AeroRP protocols in the AeroNP protocol header. As

mentioned in Section 2.2.2, AeroNP provides QoS, congestion-control and error

detection services to the transport layer protocol. QoS is provided by maintaining

a priority queues for the different levels of priorities specified by the mission plan.

Congestion-control and error-detection mechanisms are implemented by maintain-

ing a table that stores the congestion and corruption indicators of neighbouring

nodes.

This chapter is organised as follows. Section 5.1 discusses the header format

used by AeroNP. Sections 5.2.1, 5.2.2, and 5.2.3 briefly describe the QoS services,

congestion-control, and error-detection mechanisms within AeroNP along with the

design decisions made while implementing them in ns-3. The AeroNP protocol’s

packet transmission mechanism is explained in Section 5.3.2 and received packet

processing mechanism is explained in Section 5.3.3.

61

5.1 AeroNP Header Format

The AeroNPHeader is of variable length due to the optional fields that can be

added based on the location-aware or location-unaware routing employed. The

optional fields that can be present in the AeroNP header are the transmitting

node’s geolocation information, destination node’s geolocation information, and

the latest GS timestamp and the fragment number present at the transmitting

node. The geolocation information occupies 16 bytes of header space and the

ground station’s update information takes up 6 bytes. All these options are in-

dependent of each other. The presence of these options is indicated by the flags

present in the header. AeroNPHeader with any of these options enabled is called

AeroNPExtendedHeader and the one with none of these options enabled is called

the AeroNPBasicHeader. The header length of AeroNPExtendedHeader with all

options enabled is 60 bytes whereas the length of AeroNPBasicHeader is 20 bytes.

Figures 5.1 and Figure 5.2 depict the AeroNPBasicHeader and AeroNPExtended-

Header respectively. AeroNPHeaders are custom modified to suit the needs of ns-3

implementation. The field previous hop AN address in both headers and reserved

field in the AeroNPExtendedHeader are added to resolve the ns-3 implementation

issues. Each of the AeroNP header fields are explained in detail below.

• vers: 4 bits

The vers field indicates the AeroNP’s version number.

• CI: 2 bits

The CI field indicates the congestion level for the type of traffic at the trans-

mitting node’s AeroNP queues. This field is used to regulate traffic flows in

the network.

62

flags

NP HEC CRC-16

priority type C CI vers

source dev id dest dev id

AeroTP payload

length

next hop AN address

IP protocol id IP ECN/DSCP

previous hop AN address

source AN address destination AN address

Figure 5.1. Packet format for AeroNPBasicHeader

destination z-coordinate destination z-velocity

destination x-velocity

destination y-velocity destination y-coordinate

destination x-coordinate

transmitter z-velocity transmitter z-coordinate

transmitter timestamp

transmitter y-velocity transmitter y-coordinate

transmitter x-velocity transmitter x-coordinate

reserved GS fragment number

NP HEC CRC-16

GS timestamp

dest dev id source dev id

flags length

previous hop AN address next hop AN address

destination AN address

IP ECN/DSCP

source AN address

IP protocol id priority type C CI vers

AeroTP payload

destination timestamp

Figure 5.2. Packet format for AeroNPExtendedHeader

63

• C: 2 bits

The C field indicates the packet corruption indicator at the transmitting

node for the type of traffic data carried by the header.

• type: 4 bits

This field specifies the type of traffic carried by this header.

• priority: 4 bits

This field specifies the packet priority.

• protocol id: 8 bits

This field specifies the upper layer’s or the AeroRP’s protocol id.

• IP ECN/DSCP: 8 bits

This field carries the explicit congestion notification bits and the DSCP bits

from IPHeader.

• sourceAN address: 16 bits

This field specifies the source AN’s 16-bit node id that transmitted this

packet.

• destination AN address: 16 bits

This field specifies the ultimate destination AN’s 16-bit id.

• next hop AN address: 16 bits

This field specifies the next hop AN’s 16-bit id.

• previous hop AN address: 16 bits

This field specifies the previous hop AN’s 16-bit id. This field is specifically

created to resolve implementation issues in ns-3.

64

• length: 16 bits

This field specifies the AeroNPHeader length.

• flags: 16 bits

This flags field is specifies the type of option fields carried by the AeroNP

header.

• source dev id: 8 bits

This field specifies the transmitter’s interface id.

• dest dev id: 8 bits

This field specifies the destination’s interface id.

• NP HEC CRC-16: 16 bits

This field is used to carry the CRC for error detection.

• GS timestamp [optional]: 32 bits

This field specifies the ground station’s timestamp that the node last re-

ceived.

• GS fragment number [optional]: 16 bits

This field specifies the ground station’s fragment number that node last

received.

• reserved [optional]: 16 bits

This field added for word alignment after adding the previous hop AN address

field. This field is only part of the AeroNP header used for ns-3 implemen-

tation.

• transmitter x-coordinate [optional]: 19 bits

65

This field specifies the transmitter node’s x coordinate based on its current

location.

• transmitter x-velocity [optional]: 13 bits

This field specifies the transmitter’s velocity component in x direction.

• transmitter y-coordinate [optional]: 19 bits

This field specifies the transmitter node’s y coordinate based on its current

location.

• transmitter y-velocity [optional]: 13 bits

This field specifies the transmitter’s velocity component in y direction.

• transmitter z-coordinate [optional]: 19 bits

This field specifies the transmitter node’s z coordinate based on its current

location.

• transmitter z-velocity [optional]: 13 bits

This field specifies the transmitter’s velocity component in z direction.

• transmitter timestamp [optional]: 32 bits

This field specifies the timestamp at which the transmitter’s geolocation

information is recorded.

• destination x-coordinate [optional]: 19 bits

This field specifies the destination node’s x coordinate based on its current

location.

• destination x-velocity [optional]: 13 bits

This field specifies the destination’s velocity component in x direction.

66

• destination y-coordinate [optional]: 19 bits

This field specifies the destination node’s x coordinate based on its current

location.

• destination y-velocity [optional]: 13 bits

This field specifies the destination’s velocity component in y direction.

• destination z-coordinate [optional]: 19 bits

This field specifies the destination node’s x coordinate based on its current

location.

• destination z-velocity [optional]: 13 bits

This field specifies the destination’s velocity component in z direction.

• destination timestamp [optional]: 32 bits

This field specifies the timestamp at which the destination’s geolocation

information is recorded.

• AeroTP payload:

AeroTP’s payload is attached at the end of the AeroNP header.

5.2 Services provided by AeroNP

In this section we will briefly discuss the various services provided by AeroNP

to the AeroTP transport protocol. We will also discuss about some of the design

and implementation aspects of AeroNP.

67

5.2.1 QoS Mechanism

The packets coming from the AeroTP or AeroRP protocols are tagged with

a priority value that can range from 0 − 3. This priority value can be per flow

or per application and that is determined by the mission plan. Drop-tail priority

queues are maintained by AeroNP for each of the priority values. If a packet is

not tagged with any priority value, AeroNP determines the priority of the packet

based on the type of packet. The QoS services provided by AeroNP are thus based

on type and priority of a packet. Upon receiving a packet, AeroNP enqueues the

packet in one of the priority queues determined by the packet priority. Based on

the priority scheduling algorithm employed, the packets are then retrieved from

the queue and forwarded based on a route determined by the AeroRP routing

protocol.

5.2.2 Congestion-control Mechanism

AeroNP provides congestion control service to AeroTP based on its neighbour’s

congestion indicator. AeroNP maintains a CCState table of the node’s neighbours

and their corresponding congestion indicator values for the various priority queues

they maintain. A node advertises its congestion indicator by setting the Conges-

tionIndicator bits in the AeroNP header. The neighbouring nodes operating in

promiscuous mode capture the packet and update their CCState table with the

congestion indicator value present in the AeroNP header. While determining a

route for a packet with a specific priority, AeroRP selects the best next hop node

by excluding the congested neighbours identified from this table for that priority.

However if the congested node is the final destination for the packet, AeroNP

forwards the packet to that node irrespective of its congestion level.

68

5.2.3 Error-Detection Mechanism

The AeroNP header has a field to store a 16-bit CRC used for detecting errors.

Error detection should be implemented here as it helps in detecting packet errors

at an early stage and rectify them either by resending the packet or trying to

correct the errors.

5.3 Implementation of AeroNP in ns-3

AeroNP posed many issues during its implementation in ns-3. The AeroNP

protocol does not identify nodes by their IP addresses but by the 16-bit node-ids.

However the address format used by ns-3 is IPv4 and the sockets created in ns-3 are

tightly bound to these addresses. Furthermore, protocol implementations are IP

dependent in ns-3. So to plug-in AeroNP as a shim between IP and the transport

layer posed another issue. In the current implementation of AeroNP in ns-3,

AeroNP acts a layer-4 protocol that uses the services of IP. Figure 5.3 shows how

AeroNP packets are encapsulated within IP in ns-3. Therefore, AeroNP should

bypass IP’s forward callback mechanism implemented in ns-3 and implement its

own forward callback mechanism. To do this, the destination address in IP header

is is always set to the gateway address which is the next hop address for the packet.

AeroRP / AeroTP / UDP AeroNP IP …

Figure 5.3. Header Encapsulation within IP

The IPHeader’s destination address is always set as the next hop neighbour

chosen by AeroRP. Thus AeroNP can choose what to do with the received packets,

whether to deliver the packets locally to the transport layer if it is the destination

69

node or to forward packet to its neighbouring node. In the following section

we will see how the various classes in AeroNP module interact and the packet

transmission and receive mechanisms are implemented by AeroNP.

-Receive()
-SetDownTarget()
+Send()

-securityMode
-aerorp : AeroRPRoutingProtocol
-aeroGateway : AeroGateway
-priorityQueue : PriorityQueue
-ccState : AeroNPCCState

AeroNPL3Protocol

+Enqueue() : bool
+Dequeue() : bool
+GetSize() : int
+Flush() : bool

-maxSize
-maxDelay
-queueEntry : PriorityQueueEntry

PriorityQueue

+Serialize()
+Deserialize()
+GetTypeId()
+GetSerializedSize()
+GetSourceId()
+GetAeroNPMessageType()

-sourceId
-destinationId
-type
-priority

AeroNPHeader

Ipv4L4Protocol

+RouteOutput()
+RouteInput()
-SendPeriodicUpdate()
-ProcessAeroNPHeader()
-ProcessAeroRPHeader()

-mainAddress
-transmissionRange
-beaconMode
-nodeType

AeroRPRoutingProtocol

+SetPacket()
+GetPacket()
+SetPacketType()
+GetPacketType()
+SetProtocolId()
+GetProtocolId()

-packet
-ipv4Header
-ipv4Route
-destinationId
-protocolId
-packetType

PriorityQueueEntry

Header

-destination
-congestionIndicator
-corruptionIndicator
-updatedTime

«struct»AeroNPCCStateEntry

+UpdateCCStateEntry()
+GetCCStateEntry()
+DeleteCCStateEntry()

-ccStates : AeroNPCCStateEntry
AeroNPCCState

-CCState

1

-Entry

*

-NP

1

-CCState

1

-CreateNewId()
+GetIPAddressFromId()
+GetIdFromIPAddress()

-aeroId
-addrTable

AeroGateway

-Queue

1

-Entry

*

-NP

1

-RP

1

-NP 1

-GW

1

-NP1

-Header*

-NP1

-Queue*

Figure 5.4. Class interaction diagram for AeroNP

5.3.1 Class interaction in AeroNP module

Figure 5.4 shows the various classes written as part of the AeroNP implemen-

tation in ns-3. ns3::AeroNPL3Protocol is the main class that takes care of all

the AeroNP tasks with the help of other classes shown in this figure. It is derived

from ns3::Ipv4L4Protocol base class. ns3::PriorityQueue implements the

priority queues required by AeroNP to provide QoS. ns3::AeroNPCCState holds

the congestion and corruption indicators of the node’s neighbours to aid AeroNP

in providing congestion-control and corruption-control services to AeroTP. ns3

70

::AeroNPL3Protocol takes services from the ns3::AeroRPRoutingProtocol and

ns3::AeroGateway for identifying valid routes to destinations and for translating

IP addresses to node ids and vice-versa respectively.

no

yes

Insert packet into
respective priority queue

Receive packet from
AeroTP/AeroRP

Space
in MAC
queue?

yes

AeroNP Scheduler

Received
route from
AeroRP?

Wait for MAC callback
no

Drop packet

More
packets in
queue?

Build AeroNP header
based on mission plan

Add AeroNP header and
forward packet

yes

Figure 5.5. Packet transmission by AeroNP

When a simulation starts, ns3::AeroNPL3Protocol creates various instances

of ns3::PriorityQueue depending on the number of priority levels specified

by the mission plan and a single instance of ns3::AeroNPCCState. A maxi-

mum of 16 priority queues can be created as the AeroNP header uses 4 bits to

carry the packet priority. ns3::PriorityQueue keeps a vector of pointers of type

ns3::PriorityQueueEntry. It creates an instance of ns3::PriorityQueueEntry

after receiving a request to queue a packet. Once the packet is dequeued, it de-

71

stroys the earlier created instance. ns3::AeroNPCCState also works in the same

way except in this case, ns3::AeroNPCCStateEntry is a struct. ns3::AeroNPHeader

that is extended from a generic ns3::Header class, holds all the code for creating

both AeroNPBasicHeader and AeroNPExtendedHeader. An instance of this class is

created whenever an AeroNP header is created.

5.3.2 Packet transmission by AeroNP

The process flow for transmitting a packet by AeroNP is depicted in Figure 5.5.

ns3::PriorityQueue class stores all the packets coming from AeroTP or AeroRP.

Along with storing the packets, it also stores source and destination addresses, IP-

Header and AeroNPHeader if it is a forwarded packet, and the AeroNPMessageType.

AeroNPMessageType helps in identifying the priority of packets. After buffering

the packet, AeroNP invokes the AeroNPScheduler. This AeroNPScheduler can be

invoked either directly by AeroNP or by the ns-3 callback mechanism from the

MAC layer. This callback is invoked whenever the MAC dequeues a packet and

transmits it. Based on the size of the ns3::PriorityQueue, the congestion in-

dicator of the node is varied. AeroNPScheduler removes a packet from the queue

based on the priority scheduling algorithm. The ns-3 simulation model of AeroNP

currently employs a simple scheduling algorithm based on the priority value.

5.3.3 Received Packet Processing by AeroNP

The IP protocol transfers all packets received from the MAC layer to AeroNP.

AeroNP on receiving these packets decides whether to forward a packet or deliver

the packet locally either to AeroTP, AeroRP, or UDP. It makes this decision

by looking at the destination address in the AeroNP header. If the packet is

72

destined for itself, AeroNP delivers it locally. If the received node is not the final

destination, AeroNP moves the packet to the respective priority queue based on

the type and priority fields in the packet. AeroNP scheduler is then invoked to

identify a route to the destination as explained in Section 5.3.2.

73

Chapter 6

Simulations Analysis

The new GS update mechanism provides more options for ANs to select the

best next hop neighbours and also provide a mechanism for the GS to broadcast

strategic mission plans to the ANs. AeroRP with GS updates is implemented and

simulated with ns-3 network simulator. ns-3 is a discrete event network simulator

written in C++. The MANET routing protocols in the mainline release of ns-3 are

DSDV 1, OLSR, and AODV. DSR routing protocol for ns-3 is being implemented

by the ResiliNets group and will be part of the future mainline release of ns-3. In

this chapter, we compare AeroRP and other MANET routing protocols in ns-3 by

varying various parameters that affect their network performance. This chapter

is organised as follows. The network performance metrics used for the analysis

are detailed in Section 6.1. Section 6.2 briefly explains the different simulation

parameters considered for this analysis. Section 6.3 analyses the variations in pro-

tocol’s performance while running over a TDMA and an 802.11b MAC protocol.

Section 6.4 analyses the protocols under varying node densities and Section 6.5

analyses them under varying node velocities.

1implemented as part of this thesis

74

6.1 Performance Metrics

The performance metrics considered for the evaluation of AeroRP are packet

delivery ratio (PDR), accuracy, routing overhead, and delay.

• Packet Delivery Ratio (PDR): The ratio of the number of packets re-

ceived at the destination to the number of packets sent by the application.

All packets sent down by the application are not be sent by the routing

protocol if there is no route to the destination.

• Accuracy: Accuracy is the ratio of the number of packets received at the

destination to the number of packets that were sent by the MAC layer. This

is a good metric to gauge the quality of a route in a highly dynamic topology

where the validity of a route can rapidly change.

• Routing Overhead: The fraction of bytes used by the protocol for AeroRP

control messages. Overhead for data packets is calculated by subtracting the

transport protocol’s payload length from the IP header length. As for the

control messages sent by routing protocols, the total IP header length is

considered as the overhead. Thus overhead includes all the AeroRP control

messages along with the AeroNP headers attached to every packet.

• Delay: The time taken by a packet to reach the destination node’s MAC

from the source node’s MAC. Delay is calculated since the time it leaves the

source node to the time it reaches the destination. It also includes the time

the packet is buffered in the neighbouring node’s queue.

The plots in the following sections detail the above metrics and contain con-

fidence interval bars at the points in the plot. Since each simulation is run 10

75

times, the 95% confidence intervals are calculated using a t-distribution [40]. This

is calculated as M ±A× s√
n

where M is the mean, A is the t-distribution value, s

is the standard deviation, and n is the number of simulation runs for each point.

The t-distribution value is 2.23 for 10 simulation runs with a 95% confidence.

Note that some points may seem to not have any confidence interval bars. This

is because they are too small to be seen on the plot. This indicates a higher

confidence in the values that make up the mean.

6.2 Simulation Setup

This section highlights the various simulation parameters used for simulating

these routing protocols in ns-3. Table 6.1 shows the parameters that are varied

with all the routing protocols.

Table 6.1. Simulation variables
Variable Values

Routing protocol OLSR, AODV, DSDV, DSR, and AeroRP
AeroRP modes GS–Location-aware, GS–Location-unaware, NotGS–

Location-aware, and NotGS–Location-unaware
Node density 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 nodes
Mobility model 3D Gauss-Markov, Random waypoint, and Constant po-

sition
Velocity 10 m/s, 100 m/s, 200 m/s, 400 m/s, 600 m/s, 800 m/s,

1000 m/s, 1200 m/s, and a uniform distribution between
200 m/s and 1200 m/s

Link layer TDMA and 802.11b

Table 6.2 highlights the general simulation parameters used for performing

these simulations. All simulations are performed on ns-3.11 for a total simulation

time of 1500 s. A warm-up time of 100 s is set so that the mobility models can

reach a steady-state and the simulation is not affected by any initial conditions.

However the warm-up time cannot affect the simulations using constant-position

76

mobility model as the nodes are immobile and are scattered randomly at the start

of the simulation. Therefore the initial conditions in all simulations except for the

ones using constant-position mobility model do not affect the outcome of these

simulations as we are using the warm-up time. Constant bit-rate (CBR) traffic is

sent from 100 s to 1100 s. A cool-down time of 400 s is set so that any packets that

are buffered can be transmitted during this time. This ensures that all the CBR

packets sent by a source has enough time to reach the destination. A transmit

power of 50 dbm is chosen to achieve a transmission range of 27800 m (15 nautical

mi).

Table 6.2. General simulation parameters
Parameter Value

ns-3 version ns-3.11
Number of times to run each simulation 10
Simulation area 150 km × 150 km × 1000 m
Initial position allocator Random rectangle
Warmup time 100 s
Application sending time 1000 s
Cool-down time 400 s
Packet size 64 B
Sending rate 1 pkt/s
Packet fragmentation? no
Propagation loss model Friis
Transmission power 50 dBm
Transport protocol UDP

All the OLSR routing protocol parameters are set the same as present in

ns-3.11 except for the ones highlighted in Table 6.3. HelloInterval was changed

from a default of 5 s to 1 s to suit the highly dynamic nature of this simulation

environment. Similarly TclInterval is set to 5 s and MidInterval is set to 5 s as well.

Table 6.4 highlights the parameters chosen for AODV routing protocol. Simi-

lar to the way OLSR routing protocol parameters were modified to suit the highly

77

Table 6.3. OLSR parameters
Parameter Value
HelloInterval 1 s
TcInterval 5 s
MidInterval 5 s

Table 6.4. AODV parameters
Parameter Value

HelloInterval 1 s
RreqRetries 2 retries for a route
RreqRateLimit 5 RREQ per second
NodeTraversalTime 40 ms
NextHopWait 50 ms
ActiveRouteTimeout 3 s
MyRouteTimeout 11.2 s
BlackListTimeout 5.6 s
DeletePeriod 8 s
NetDiameter Number of nodes - 1
NetTraversalTime 2.8 s
PathDiscoveryTime 5.6 s
MaxQueueLen 500 packets
MaxQueueTime 30 s
AllowedHelloLoss 2 hellos
GratuitousReply TRUE
DestinationOnly FALSE
EnableHello TRUE
EnableBroadcast TRUE

dynamic nature of the simulation environment, some of AODV’s parameters were

also modified. RreqRateLimit was changed from its default value of 10 to 5. AODV

model in ns-3 suffers from the RERR implosion problem. Though the ns-3 main-

tainers tried to rectify this issue, we still do not see any improvements in the

performance of AODV. https://www.nsnam.org/bugzilla/show_bug.cgi?id=

1099 was opened to resolve this issue and it highlights the various issued faced

with AODV. The maintainers insist that all the parameters are set as per the

experimental AODV RFC [23].

78

https://www.nsnam.org/bugzilla/show_bug.cgi?id=1099
https://www.nsnam.org/bugzilla/show_bug.cgi?id=1099

Table 6.5. DSDV parameters
Parameter Value

ForwardingInterval 4 s
SettlingTime 0 s
MaxQueueLen Number of nodes × MaxQueuedPacketsPerDst
MaxQueuedPacketsPerDst 500 packets
MaxQueueTime 30 s
EnableBuffering TRUE
EnableWST FALSE
Holdtimes 3 × ForwardingInterval
EnableRouteAggregation FALSE

DSDV routing protocols parameters are highlighted in Table 6.5. Forwarding-

Interval as modified from its default value of 15 s to 4 s and the SettlingTime was

changed from 5 s to 0 s. With a SettlingTime of 0 s, DSDV uses a route in its

perusal immediately without waiting to see if the route is stable or not. Also,

buffering is enabled in DSDV with a maximum queue size set to 500 packets per

destination.

Table 6.6 shows the DSR routing protocol’s attributes and their values. Node-

TraversalTime is the time a node waits for a passive acknowledgement or a reply

from the neighbouring node indicating the successful transmission of the data

packet that is set to 100 ms.

Table 6.6. DSR parameters
Parameter Value

NodeTraversalTime 30 ms
PacketRetry 2
RouteCacheTimeout 30 s
MaxMaintTime 100 s
MaxMaintLen 500
MaxSendBuffLen 500
MaxSendBuffTime 100 s
PassiveAckTimeout 110 ms

79

Table 6.7. AeroRP parameters
Parameter Value

Hello beacon interval 1 s
Neighbour hold time 4 s
Transmission range 27800 m
GSUpdateType GeoLocationInformation and TopologyIn-

formation depending on the type of rout-
ing mechanism used (location-aware or
location-unaware)

GSUpdateInterval 20 s
GSTriggerUpdateInterval 5 s
GPSMode TRUE (for GS) and FALSE (for ANs)
Ferry TRUE
Transmission range 27800 m (15 nautical mi)

AeroRP sends out hello beacons for every 1 s if operating in beacon mode

and if there is no data being sent out. It however does not send any beacons in

beaconless mode. The GS update interval is set to 20 s and the trigger updates

are aggregated over a GSTriggerUpdateInterval of 5 s. Table 6.7 shows the various

parameters used for AeroRP routing protocol.

6.3 Analysis of TDMA vs 802.11

In this section we will analyse the effects of link layer protocols on the perfor-

mance of the routing protocols. The link layer protocols used for these simulations

are TDMA MAC protocol running on a simple-wireless channel and an 802.11b

protocol running on YansWifiChannel model built in ns-3.

Figure 6.1 compares the variations in performance of DSDV, AeroRP with GS–

Location-unaware mode, and AeroRP with NotGS–Location-aware mode running

over TDMA and 802.11b. The variation in performance of the protocols is clearly

visible in case of DSDV routing protocol. DSDV sends periodic updates for every

80

p
a

c
k
e

t
d

e
liv

e
ry

 r
a

ti
o

number of nodes

NotGS - Location-aware - TDMA

NotGS - Location-aware - 802.11

GS - Location-unaware - TDMA

GS - Location-unaware - 802.11

DSDV - TDMA

DSDV - 802.11
0.0

0.2

0.4

0.6

0.8

1.0

10 20 30 40 50 60 70 80 90 100

Figure 6.1. TDMA vs 802.11 on PDR (GM, 1200 m/s)

periodic update interval and trigger updates whenever it determines a change in

its routing table. With the increase in number of nodes, the number of links in

the network also increases thereby increasing the frequency of link state changes.

Thus DSDV sends more and more updates as the number of nodes increases. Let

us analyse the effect of this while using a TDMA MAC protocol. With the TDMA

MAC protocol, every node has a specified slot allotted in a TDMA frame for it

to transmit any packets. During this time all the other nodes will be in listen

state. Hence there is no chance of collisions in TDMA network as opposed to the

802.11b network where every node simultaneously transmits packets leading to

packet collisions in the channel. Though DSDV at every node takes care of sending

these updates by waiting for a random time interval before transmission, most of

the packet are lost due to collisions in the channel. In Figure 6.1, we can see that

at 10 nodes, the performance of DSDV in TDMA and 802.11 networks is similar.

81

However with the increase in number of nodes, the packet delivery ratio of DSDV

running on 802.11b drops but increases while using TDMA, which is expected as

the network becomes more connected. This is the same with AeroRP running on

GS–Location-unaware mode. In this mode, as the number of links increase with

increase in the number of nodes, the GS sends more and more updates that get

broadcasted among the ANs. Thus with the same reasoning applied for DSDV,

AeroRP performs better on TDMA with the increase in number of nodes than

when it runs over 802.11b. The PDR results for NotGS–Location-aware mode

in both TDMA and 802.11 are similar as the overhead in this case is very less

and both the MAC protocols are able to process all the packets generated by the

AeroRP protocol.

a
v
e

ra
g

e
 o

v
e

rh
e

a
d

 [
k
b

/s
]

number of nodes

DSDV - TDMA

DSDV - 802.11

GS - Location-unaware - TDMA

GS - Location-unaware - 802.11

NotGS - Location-aware - 802.11

NotGS - Location-aware - TDMA

0

500

1000

1500

2000

10 20 30 40 50 60 70 80 90 100

Figure 6.2. TDMA vs 802.11 on routing overhead (GM, 1200 m/s)

Figure 6.2 shows the variations in control overhead for DSDV and AeroRP with

GS–Location-unaware and NotGS–Location-aware modes. We can see that the

82

control overhead is greater for all the protocols operating in TDMA as compared

to them operating over 802.11. This is because more packets get through while

using TDMA than while using 802.11. As most of the control packets get through,

the nodes are aware of the changes in the network topology and thus they could

recalculate routes to destinations based on these new changes. We can thus see an

increase in the PDR in Figure 6.1 in which the protocols are running over TDMA.

The overhead for NotGS–Location-aware mode in both TDMA and 802.11 is same

as the overhead generated by AeroRP is significantly less and both the TDMA

and 802.11 MAC protocols were able to transmit those packets without any packet

loss.

Most of the analysis here is done by simulating these protocols on a TDMA

MAC protocol as opposed to the 802.11b protocol. The main reason for using

the TDMA MAC protocol for analysis is that the airborne networks run on a

centralised TDMA MAC protocol developed by the iNet group. Furthermore,

AeroRP being a geographic routing protocol, inherently keeps track of the node’s

transmission range and makes all its routing decisions based on this. However,

with the current WifiNetDevice implementation in ns-3, a node’s transmission

range could only be limited by varying its transmit power. Thus a 50 dBm trans-

mit power is chosen to have better throughput based on the research done in [6]

for a 27800 m (15 nautical mi) transmission range. However this transmit power

does not strictly limit the transmission range to 27800 m. Upon investigating, two

nodes separated by a distance of 30000 m were also able to establish routes using

OLSR. This is not a fair comparison between AeroRP that could not identify

neighbours separated by more than 27800 m and OLSR that could identify neigh-

bours even at 30000 m. The TDMA MAC protocol on the other hand is built over

83

a simple wireless channel model in which we can specify the desired transmission

range as one of its parameters. This simple wireless channel model delivers all the

packets to nodes that are within the specified transmission range. Also, the lower

layer effects such as channel loss are not implemented in this channel model. We

can thus analyse the performance of the upper layer protocols without worrying

about the effects of the lower layers.

6.4 Effects of Node Density

In this section we will analyse the performance of protocols under varying

node densities. As the grid boundary for the simulation area is fixed at 150 km

× 150 km, the effects of the variations in node density can be analysed correctly

with nodes confined to a particular region. The simulations are performed with

node density varying from 10 to 100 nodes. The velocity of nodes is kept constant

at 1200 m/s for the plots analysed in this section. Furthermore, the TDMA MAC

protocol is used for the analysis as it removes the effects of the lower layers on the

routing protocol performance as explained in Section 6.3.

Figure 6.3 shows the variation of PDR as node density increases from 10 nodes

to 100 nodes. AeroRP in most of its modes has performed better when compared

to DSDV, OLSR, AODV, and DSR. GS–Location-aware mode performs better

compared to all other protocols with increase in node density. With the help of

GS updates, AeroRP is able to have a full view of the network and is able to

make better routing decisions. However the PDR for GS–Location-unaware mode

drops slightly as the node density increases. At 1200 m/s, with the increase in node

density, the number of links going up and down also increases. Thus the GS sends

more and more trigger updates when it sees a change in the link state information.

84

p
a

c
k
e

t
d

e
liv

e
ry

 r
a

ti
o

number of nodes

GS - Location-aware

NotGS - Location-aware

GS - Location-unaware

NotGS - Location-unaware

DSDV

OLSR

AODV

DSR
0.0

0.2

0.4

0.6

0.8

1.0

10 20 30 40 50 60 70 80 90 100

Figure 6.3. Node density vs PDR (TDMA, GM, 1200 m/s)

Further more, AeroNP gives highest preference to these AeroRP control packets

over the data packets. Thus even though the network is more connected with the

increase in node density, PDR for GS–Location-unaware mode remains nearly the

same as there is significant control overhead sent by the GS. The PDR for DSDV

and OLSR increases as the network is more and more connected with the increase

in the node density. The main reason why GS–Location-unaware mode performs

better at low node density when compared with either DSDV or OLSR is because

of the use of store and haul mechanism [37].

Figure 6.4 shows the variation of control overhead with varying node density.

We can see that the control overhead for DSDV increases more rapidly compared

to other protocols as the node density increases from 10 to 100 nodes. At a high

velocity of 1200 m/s, the link state information in the network changes more

frequently with increase in node density. DSDV sends trigger updates whenever

85

a
v
e

ra
g

e
 o

v
e

rh
e

a
d

 [
k
b

/s
]

number of nodes

DSDV

OLSR

GS - Location-unaware

GS - Location-aware

NotGS - Location-aware

NotGS - Location-unaware

0

500

1000

1500

2000

10 20 30 40 50 60 70 80 90 100

Figure 6.4. Node density vs overhead (TDMA, GM, 1200 m/s)

it identifies an existing link going down or when it identifies a new link with the

shortest hop count metric. Thus the control overhead of DSDV shoots up with the

increase in node density. The control overhead for GS–Location-unaware mode

also increases as the node density increases which can also be attributed to an

increase in the frequency of links going up and down among nodes. The GS tries

to send trigger updates whenever it sees a change in the link state information in

the network. But these updates are aggregated over an interval known as GSTrig-

gerUpdateInterval reducing the number of updates propagated in the network.

This mechanism ensures that the control overhead does not shoot up like it did

for DSDV routing protocol. On the other hand NotGS–Location-unaware mode

has a very low overhead. This is because in this mode, the nodes do not exchange

any information among themselves and they do not add geolocation information

to the AeroNPHeader. The location-aware modes with and without GS updates

86

show a slight increase in control overhead with the increase in node density. This

is expected as with the increase in the number of nodes, the number of messages

with geolocation information present in their AeroNP headers also increase. The

control overhead for DSR and AODV is considerably more compared to other

protocols as shown in Figure 6.5.

a
v
e

ra
g

e
 o

v
e

rh
e

a
d

 [
k
b

/s
]

number of nodes

AODV

DSR

DSDV

OLSR

GS - Location-unaware

GS - Location-aware

NotGS - Location-aware

NotGS - Location-unaware

0E+00

1E+03

2E+03

3E+03

4E+03

5E+03

6E+03

7E+03

10 20 30 40 50 60 70 80 90 100

Figure 6.5. Node density vs overhead (AODV, TDMA, GM,
1200 m/s)

Figure 6.5 also depicts the variation in overhead as node density increases from

10 nodes to 100 nodes at 1200 m/s. The control overhead for AODV increases

considerably with increase in node density and is thus plotted exponentially on

the y-axis. AODV and DSR being reactive routing protocols, request a route

whenever they receive a packet for transmission. Though the routes are cached,

the link changes in the network are very frequent forcing the protocols to send

more RREQ and RERR messages. The overhead for AODV is nearly 6 Mb/s at

87

100 nodes which is significantly higher than it should be. This issue was raised

with the ns-3 developer team and we are working with them to identify if this is

how AODV behaves or if there is some bug in the ns-3 AODV code. On the other

hand, DSR has comparatively low overhead as it unicasts the RERR messages

whereas AODV broadcasts them.

p
a

c
k
e

t
d

e
la

y
 [

m
s
]

number of nodes

GS - Location-aware

NotGS - Location-aware

DSR

GS - Location-unaware

DSDV

OLSR

NotGS - Location-unaware

AODV

0

5000

10000

15000

20000

25000

30000

35000

40000

10 20 30 40 50 60 70 80 90 100

Figure 6.6. Node density vs delay (TDMA, GM, 1200 m/s)

Figure 6.6 analyses the change in packet delay with increase in node density.

The packet delay in the location-aware modes of AeroRP is significantly higher

compared to the AeroRP location-unaware modes and other MANET protocols.

This is because of the time-to-intercept (TTI) metric used by the location-aware

modes. The TTI metric predicts the amount of time a packet needs to be buffered

before being able to find a route to deliver it to the destination. The location-

aware mode can only choose a best next hop neighbour that is moving towards

the destination, contrary to the location-unaware mode that can identify an end-

88

Direction of motion

Location-aware routing

Location-unaware routing

S

D

B

A

Figure 6.7. Location-aware vs Location-unaware mode in AeroRP

to-end route to the destination by selecting a next hop neighbour that is moving

away from the destination. In Figure 6.7, source S wants to send a packet to

destination D. S has two neighbours A and B with A moving towards the desti-

nation and B moving away from the destination. In location-aware routing, the

TTI metric selects the best next hop neighbour as node A that is moving towards

the destination. Node A then buffers the packet in its queue and delivers it to the

destination upon reaching it. However in the case of location-unaware routing,

AeroRP looks for end-to-end path and in this case selects node B that has a route

to the destination. Thus the packet delay for location-aware routing modes in

AeroRP is always more compared to the location-unaware modes. The packet

delay for the other protocols such as DSDV, OLSR, AODV, and DSR is also very

significantly as they also find the end-to-end path to a destination. We can see

89

that the packet delay for location-aware modes decreases as the number of nodes

increase. This is because with the increase in number of nodes, the chances of

identifying a node moving towards the destination also increases.

6.5 Effects of Velocity

The analysis of the variations in network performance caused by varying node

velocities is important especially for highly dynamic airborne networks. In a

typical airborne tactical network, nodes move at very high speeds and often the

contact duration is less than 10 s. The increase in node velocity should not degrade

the performance of the routing protocols. This is where the advantage of position

based protocols is visible compared to other MANET routing protocols. AeroRP

has many mechanisms built into it such as store and haul that are necessary for

routing packets in this highly dynamic environment.

Figure 6.8 shows the variation of PDR as velocity is increased from 10 m/s

to 1200 m/s. We can see that at low velocities the traditional MANET protocols

perform better AeroRP. This is because at low velocities the links are quite stable

and the end-to-end path is almost always stable. Location-aware modes of AeroRP

do not perform well at low velocities. The 3D Gauss-Markov mobility model

specifies a time step of 20 s after which every node changes its direction. Thus

at a velocity of 10 m/s the node could only travel a distance of 200 m before it

changes direction. There is a chance that with the new direction, the packet’s

initial source node is now moving towards the destination and the neighbour

node that was moving towards the destination earlier is now moving away from

it making the initial source node the best next hop neighbour. Furthermore, the

3D–Gauss-Markov mobility model of ns-3 [41] with the given set of parameters

90

p
a

c
k
e

t
d

e
liv

e
ry

 r
a

ti
o

velocity [m/s]

GS - Location-aware

NotGS - Location-aware

GS - Location-unaware

DSDV

NotGS - Location-unaware

OLSR

AODV

DSR
0.0

0.2

0.4

0.6

0.8

1.0

200 400 600 800 1000 1200

Figure 6.8. Node velocity vs PDR (TDMA, GM, 60 nodes)

makes the nodes move in nearly straight lines (α = 0.85) and when they reach the

simulation boundary, they usually take a near 180◦ turn and repeat the process.

Thus the packets do not reach the final destination but come across dead-end

situations. A dead-end situation occurs when a node does not have any other

node to forward a packet or when it identifies the initial source node of the packet

to be the best next hop neighbour. However as the velocity increases, the location-

aware modes of AeroRP start to perform better than the other MANET protocols.

With increase in velocity, the nodes move longer distances are are able to come

in contact with many other nodes that may be moving towards the destination.

As the node velocities increase, the traditional MANET routing protocols are not

able to cope with increased frequency of links going up and down. This results in

increased number of control messages transmitted over the network. The effects

of increase in control overhead on PDR is lower since we are using a TDMA MAC

91

protocol on a simple wireless channel model. However, at high velocities the end-

to-end path is not stable at any time and there is considerable packet loss that

decreases the PDR for DSDV, OLSR, DSR, and AODV. GS–Location-unaware

mode along with the other MANET protocols also tries to find the end-to-end

path and thus faces the same issues faced by the MANET protocols.

p
a

c
k
e

t
d

e
la

y
 [

m
s
]

velocity [m/s]

GS - Location-aware

NotGS - Location-aware

GS - Location-unaware

DSR

DSDV

OLSR

NotGS - Location-unaware

AODV

0

50000

100000

150000

200000

250000

200 400 600 800 1000 1200

Figure 6.9. Node velocity vs delay (TDMA, GM, 60 nodes)

The packet delay plot shown in Figure 6.9 provides a very interesting analysis

of AeroRP at low velocities and when it has information about the entire network.

In location-aware routing, a node requires the neighbour’s geolocation information

to determine its TTI value. This geolocation information is exchanged only in the

AeroNP header apart from the GS updates. A node could gather this geolocation

information of its neighbours by snooping on the packets transmitted by them.

However, a node operating in NotGS–Location-aware mode and moving towards

the destination does not transmit any packets, rather buffers those packets in its

92

AeroRP queue as it has a better chance to deliver them. Any node not moving

towards the destination tries to find the TTI of its neighbours but, it does not

have geolocation information of any of its neighbours. So it buffers the packet

in its AeroRP queue. In the GS–Location-aware mode, all nodes know the ge-

olocation information of every other node in the network. So, they know their

neighbours that are moving towards the destination in spite of those neighbours

not transmitting any packets. Thus any node having a neighbour moving towards

the destination forwards its packets to that neighbour expecting it to deliver

those packets to the GS. A thing to note here is that, in the NotGS–Location-

aware mode, the source node buffers the packets and in the GS–Location-aware

mode the neighbouring node buffers the packets. The packet delay is the time

interval from the time a packet leaves the source node to the time it reaches the

destination. So packet delay in GS–Location-aware mode is larger compared to

NotGS–Location-aware mode.

One more thing to observe here is that the packet delay is higher at low

velocities (as high as 150000 ms) and as the velocity increases it drops to around

7000 ms. This can be attributed to the same reason why PDR is low at low

velocities in location-aware modes of AeroRP. At low velocities, the chances of a

node that is moving towards the destination and reaching it are minimal and the

packets stay in a node’s queue for a very long time increasing the packet delay.

However, as the velocity increases, the chances of nodes communicating with

other nodes is greater as they could travel longer distances before they change

direction. So the delay decreases as there is more chance of the packet reaching

the destination at high velocities. The packet delay for other protocols that look

for full end-to-end path is low for obvious reasons as they do not transmit packet

93

p
a

c
k
e

t
d

e
la

y
 [

m
s
]

velocity [m/s]

GS - Location-aware

NotGS - Location-aware

DSR

GS - Location-unaware

DSDV

OLSR

NotGS - Location-unaware

AODV

0

20000

40000

60000

80000

100000

120000

200 400 600 800 1000 1200

Figure 6.10. Node velocity vs delay (TDMA, RWP, 60 nodes)

unless they have a route to the destination.

Figure 6.10 shows the variation of packet delay using random waypoint mobil-

ity model [42]. We can see that the packet delay at lower velocities is much lower

compared to the same using Gauss-Markov mobility model shown in Figure 6.9.

The nodes in random waypoint mobility model choose a random position and

move towards that position for a random time interval. During their movement,

if they come across the simulation boundary, they choose a new direction and new

time interval. Hence the nodes running random waypoint mobility model have

more chance to come across other nodes during their movement and thus have

better chance of delivering the packet to the destination in spite of moving at low

velocities.

Accuracy analysis is also very important especially in highly dynamic envi-

ronments as it determines how good a route identified by the routing protocol is.

94

a
c
c
u

ra
c
c
y

velocity [m/s]

NotGS - Location-unaware

NotGS - Location-aware

GS - Location-aware

GS - Location-unaware

DSDV

OLSR

AODV

DSR
0.0

0.2

0.4

0.6

0.8

1.0

200 400 600 800 1000 1200

Figure 6.11. Node velocity vs accuracy (TDMA, GM, 60 nodes)

Figure 6.11 shows the variation of accuracy as the velocity increases from 10 m/s

to 1200 m/s. The accuracy of the location-aware modes of AeroRP is 1.0 at al-

most all the velocities. The accuracy for GS–Location-aware mode at velocities

less than 400 m/s is around 0.5. This is because of the way mobility models func-

tion in ns-3. At low velocities the there are more chances of reaching a dead end

than there are to successfully deliver the packet to the destination. The nodes do

not cover more distances at these low velocities as the mobility models change di-

rections after a particular time interval. The movement pattern of Gauss-Markov

mobility model is shown in Figure 6.12.

We can see that the nodes almost always move in straight lines and they

come back. Let us consider a source node S forwarded a packet to its neighbour

node A considering node A to move towards the destination. However with these

low velocities, node A travels for some specific amount of time and they returns

95

Figure 6.12. Node movement in 3D–Gauss-Markov model [6]

back. The chances of node A coming across the source node S in Gauss-Markov

mobility model are greater as the nodes move in straight lines. When they meet,

the neighbour node now is moving away form the destination and the source

node S is moving towards the destination. Node A then forwards the packet

to node S. However, as the packet initially was originated by node S, it drops

the packet. This is most common dead-end case for AeroRP at low velocities.

However in real airborne networks, the node movement will be somewhat different

to what we see in these simulations. As the velocity increases, the probability of

more nodes coming across each other increases thereby increasing the chances of

transmitting packets to destination. Thus the accuracy of geolocation modes of

AeroRP increases to 1.0 as velocity increases. Accuracy for protocols determining

end-to-end path decreases as the velocity increases from 10 m/s to 1200 m/s.

96

As the velocity increases, the link-state information could change after an end-

to-end path is determined and a packet is sent over it. The accuracy for the

NotGS–Location-unaware mode is always 1.0 and it only has information of its

neighbours at all times.

a
v
e

ra
g

e
 o

v
e

rh
e

a
d

 [
k
b

/s
]

velocity [m/s]

DSDV

OLSR

GS - Location-unaware

GS - Location-aware

NotGS - Location-aware

NotGS - Location-unaware

0

100

200

300

400

500

600

700

800

200 400 600 800 1000 1200

Figure 6.13. Node velocity vs overhead (TDMA, GM, 60 nodes)

Figure 6.13 shows how the control overhead varies as node velocity changes

from 10 m/s to 1200 m/s. We can see that the control overhead remains nearly

constant in the absence of GSAs as the velocities increases from 200 m/s to

1200 m/s. However, in the presence of GSAs the overhead slightly increases. This

increase is more evident in GS–Location-unaware routing as the GS sends more

trigger updates with increase in the frequency of change in link state information

as node velocity increases. Furthermore, the number of trigger updates sent by

the GS are decreased by the use of GSTriggerUpdateInterval that aggregates all

the trigger updates into a single update. Every node in DSDV has to broadcast

97

an update whenever its link state information changes as opposed to only the

GS broadcasting this update in AeroRP. Furthermore, every other node receiving

that information, updates its routing table and broadcasts this information again.

This may create a broadcast storm and thus the DSDV control overhead shoots

up to nearly 500 kb/s at velocity of 1200 m/s. The overhead for AeroRP modes

in the absence of GSAs is comparatively less than the other protocols and only

slightly increases with increase in node velocity. In the absence of GSAs, the only

overhead in the network is the AeroNP header information.

a
v
e

ra
g

e
 o

v
e

rh
e

a
d

 [
k
b

/s
]

velocity [m/s]

AODV

DSR

DSDV

OLSR

GS - Location-unaware

GS - Location-aware

NotGS - Location-aware

NotGS - Location-unaware

0E+00

5E+02

1E+03

2E+03

2E+03

2E+03

3E+03

200 400 600 800 1000 1200

Figure 6.14. Node velocity vs overhead (AODV, TDMA, GM, 60
nodes)

Figure 6.14 is the same plot as Figure 6.13 but with the control overhead results

for AODV and DSR included. The control overhead for AODV increases rapidly

with increase in velocity and is thus plotted exponentially on the y-axis. We can

see that the overhead for AODV is around 500 kb/s at 10 m/s and increases

98

rapidly to around 2.1 Mb/s at 1200 m/s. As the velocity increases, the links

among nodes go up and down more frequently thus forcing AODV to send out

more RREQ and RERR messages that increase the control overhead.

99

Chapter 7

Conclusions and Future Work

This chapter provides the concluding remarks in Section 7.2 and highlights

the advantages of having GS updates to improve the overall network performance.

Section 7.4 considers the future work required to improve on the current design

and implementation of AeroRP and port it to miniature models and test it real

time.

7.1 Contributions

The contributions of this thesis are:

• Design the AeroRP message headers and model the protocol for improving

its performance

– Choose the protocol parameters that can be used to modify the protocol

operation

– Incorporate GS updates and device a methodology of broadcasting these

updates

100

– Modify the protocol to use geolocation and topology information broad-

casted by the GS in making routing decisions

• Implement AeroNP network protocol in ns-3

– Modify AeroNP headers to suit the implementation decisions

– Implement the QoS and congestion control services provided by the

AeroNP protocol

• Implement the GS update mode and location-unaware routing in AeroRP

routing protocol and the AeroNP network protocol in ns-3 network simulator

• Implement DSDV routing protocol in ns-3 to compare against AeroRP

• Implement TDMA MAC protocol in ns-3 over a simple-wireless channel

model

• Analyse the performance of AeroRP in its various modes of operation and

compare its performance against other MANET routing protocols such as

OLSR, AODV, DSDV, and DSR in ns-3

7.2 Conclusions

This thesis provides a new neighbour discovery mechanism for AeroRP using

ground station updates. It also provides a mechanism for AeroRP to operate in

the absence of geolocation information. This thesis provides an overall view of

MANET routing protocols and analyses their performance in high velocity sce-

narios and compares them against AeroRP in ns-3 network simulator. Chapter 2

discussed the various MANET routing mechanisms and protocols at our disposal

101

and highlights the drawbacks of conventional topology-based MANET routing

protocols against the position-based protocols especially in the highly dynamic

airborne network environment. Chapters 4 and 5 provide details about the design

of AeroRP with GS updates and their implementation along with the implemen-

tation details of AeroNP network protocol. AeroRP’s performance in its different

modes is analysed in Chapter 6.

The nodes in highly dynamic airborne networks move at very high velocities.

At these high velocities where the contact duration among nodes is as low as

10 s, the routing protocols should not concentrate on establishing the routes, but

rather be ready to send out data packets as soon as they come in contact with

their neighbour. AeroRP does this job well as we have seen in the analysis. It is

an opportunistic geographic routing protocol that can predict the node movement

and identify its neighbours via the three neighbour discovery mechanisms such as

GS updates, active snooping, and hello beacons.

At low velocities the GS–Location-unaware mode works better compared to the

location-aware modes of AeroRP. The location-unaware mode determines the end-

to-end path whereas the packets are buffered in the location-aware mode. Though

the buffered packets will reach the destination ultimately, the delay involved is

greater as the nodes move slowly. The variations in link-state information is

also less at low velocities thus decreasing the frequency of sending GS updates.

So it is suggested to operate AeroRP in the GS–Location-unaware mode at low

velocities. However as the velocities increase, the location-aware routing performs

better. With the increase in velocity, there is more chance of the nodes coming

in contact with each other thereby increasing the chances of delivering the packet

to the destination. Furthermore, we have seen that as the velocity increases,

102

the accuracy of the protocols using the end-to-end path to perform routing has

decreased.

The parameters for AeroRP must be chosen carefully depending on the net-

work conditions and the mission requirements. The packet delay for AeroRP

operating in the location-aware mode is much larger compared to the location-

unaware mode. Proper care should be taken while selecting this mode for delay

sensitive applications such as web traffic. On the other hand, the accuracy of

packet delivery in location-aware mode if much higher than the location-unaware

mode. The routing overhead can also be controlled by varying the GSPeriodicUp-

dateInterval. The frequency of periodic updates can be reduced if the nodes are

moving at low velocities and can be increased if the nodes are moving at high

velocities that results in often change in node direction.

OLSR sends Tcl messages for every 5 s and DSDV sends periodic updates

for every 4 s. A change in link-state information will affect the routing tables

in these protocols. Thus as the velocities increases, OLSR and DSDV have to

send more and more updates thereby increasing the control overhead. PDR for

OLSR and DSDV also drops and the end-to-end paths are not stable at high

velocities. However, AeroRP operating in GS–Location-aware mode need not

send periodic updates as frequently since the ANs can predict the path based

on the last update received from the GS. As for the GS–Location-unaware mode,

the updates can be aggregated over an interval called GSTriggerUpdateInterval and

sent as a single update. This reduces the number of broadcast messages sent by

the GS. Furthermore, AeroRP implements the store-and-haul mechanism; even

if ANs do not have a route, they can buffer the packet until they can identify a

route.

103

The reactive routing protocols AODV and DSR perform very poorly in this

highly dynamic environment, which is expected. These protocols upon request for

a route will initiate a route request, wait for the route reply from the destination,

and then forward the packet to the destination. During this process if any link in

the end-to-end path breaks, the whole process will be repeated again. However,

AODV apart from being a reactive routing protocol, also has a problem with

the RouteError (RERR) message explosion. The ns-3 model of AODV sends out

enormous amount of RERRs that occupies almost the entire bandwidth of the

channel. We are working with the AODV developers to resolve this issue [43].

DSR on the other hand is currently under development and is not in the mainline

release of ns-3. We are working with the developer within the ResiliNets group to

resolve its issues before being released to the community.

7.3 Publications

This section highlights my publications over the course of my Masters program.

• Hemanth Narra, Yufei Cheng, Egemen K. Çetinkaya, Justin P. Rohrer and

James P.G. Sterbenz, “Destination-Sequenced Distance Vector (DSDV) Rout-

ing Protocol Implementation in ns-3”, in the 4th International ICST Confer-

ence on Simulation Tools and Techniques, Wns3 2011 March 25, Barcelona,

Spain.

• Abdul Jabbar, Hemanth Narra, and James P.G. Sterbenz, “An Approach

to Quantifying Resilience in Mobile Ad hoc Networks”, The 8th IEEE In-

ternational Workshop on the Design of Reliable Communication Networks

(DRCN 2011).

104

• Justin P. Rohrer, Egemen K. Çetinkaya, Hemanth Narra, Dan Broyles,

Kevin Peters, and James P.G. Sterbenz, “AeroRP Performance in Highly-

Dynamic Airborne Networks using 3D Gauss-Markov Mobility Model”, In

Proceedings of the IEEE Military Communications Conference (MILCOM

2011).

• Hemanth Narra, Egemen K. Çetinkaya, and James P.G. Sterbenz, “Perfor-

mance Analysis of AeroRP with Ground Station Updates in Highly-Dynamic

Airborne Telemetry Networks”, in the International Telemetering Confer-

ence (ITC) 2011, Las Vegas, NV.

7.4 Future Work

There is scope for more work to be done on AeroRP along with the other

protocols in ANTP protocol suite. AeroRP operating in location-aware mode may

come across dead end situations in low velocity scenarios. The reason identified is

due to the way mobility models work in a simulation environment. Furthermore,

a valid end-to-end path is not selected even though one exists as location-aware

modes only take TTI metric into consideration. The TTI metric at low velocity

scenarios will specify a packet buffer time in the order of tens of seconds, which

is unacceptable for some types of traffic (web transactions, multimedia, etc.). A

limit on the TTI metric could be specified so that the packets will not be buffered

for long durations. However, selecting the optimal limit is a challenging task;

it depends on the application requirements and network topology and should be

further researched. One more consideration is the creation of a hybrid mode in

which AeroRP chooses the operating modes based on the network topology and

node velocities. At low velocities it could operate in location-unaware mode and

105

at high velocities it could operate in location-aware mode. Though the main use

case for ANTP protocols is not in low velocity scenarios, this should be further

researched when AeroRP is ported onto miniature vehicles. It would also be good

to see how AeroRP performs when some relay nodes are added to the network.

With the introduction of relay nodes, the performance of AeroRP should improve

significantly as they will be able to deliver GS updates more efficiently and also act

as sinks to the data transmitted from the ANs. This would also decrease the packet

delay significantly especially in the location-aware modes. Priority scheduling

in AeroNP should be further analysed and tested by transmitting packets with

different priorities. Furthermore, more efficient priority scheduling algorithms

could be designed and implemented to improve the performance of AeroNP. The

simulations for this thesis were performed by combining AeroRP and AeroNP. All

the protocols in the ANTP suite such as AeroTP, AeroNP, AeroRP, and AeroGW

should be simulated together and see how the performance of AeroTP is affected

in the different modes of AeroRP.

106

Appendices

107

Appendix A

802.11b Plots

The following plots have similar results to the plots analysed in Chapter 6 but

these plots are obtained from simulations running on 801.11b MAC protocol.

p
a

c
k
e

t
d

e
liv

e
ry

 r
a

ti
o

number of nodes

GS - Location-aware

NotGS - Location-aware

OLSR

NotGS - Location-unaware

GS - Location-unaware

DSDV

DSR

AODV
0.0

0.2

0.4

0.6

0.8

1.0

10 20 30 40 50 60 70 80 90 100

Figure A.1. Node density vs PDR (802.11b, GM, 1200 m/s)

108

In Figure A.1 we can see that OLSR performs slightly better over 802.11b MAC

compared to the TDMA MAC as we have seen in Figure 6.3. This is because of

the advantage OLSR has with not being able to strictly control the transmission

range by specifying the transmit power in ns-3. OLSR was able to make more as-

sociations in the network with its higher transmission range whereas AeroRP was

confined to 27800 m transmission range. DSDV’s PDR decreased with increase

in node density as its control overhead increased leading to generation of more

packets that led to collisions in the network.

p
a

c
k
e

t
d

e
liv

e
ry

 r
a

ti
o

number of nodes

GS - Location-aware

NotGS - Location-aware

OLSR

GS - Location-unaware

NotGS - Location-unaware

DSDV

DSR

AODV
0.0

0.2

0.4

0.6

0.8

1.0

10 20 30 40 50 60 70 80 90 100

Figure A.2. Node density vs PDR (802.11b, GM, 200–1200 m/s)

109

p
a

c
k
e

t
d

e
liv

e
ry

 r
a

ti
o

number of nodes

GS - Location-aware

NotGS - Location-aware

OLSR

GS - Location-unaware

NotGS - Location-unaware

DSDV

DSR

AODV
0.0

0.2

0.4

0.6

0.8

1.0

10 20 30 40 50 60 70 80 90 100

Figure A.3. Node density vs PDR (802.11b, RWP, 1200 m/s)

p
a

c
k
e

t
d

e
liv

e
ry

 r
a

ti
o

number of nodes

GS - Location-aware

OLSR

NotGS - Location-aware

GS - Location-unaware

NotGS - Location-unaware

DSDV

DSR

AODV
0.0

0.2

0.4

0.6

0.8

1.0

10 20 30 40 50 60 70 80 90 100

Figure A.4. Node density vs PDR (802.11b, RWP, 200–1200 m/s)

110

p
a

c
k
e

t
d

e
liv

e
ry

 r
a

ti
o

velocity [m/s]

GS - Location-aware

NotGS - Location-aware

OLSR

GS - Location-unaware

NotGS - Location-unaware

DSDV

DSR

AODV
0.0

0.2

0.4

0.6

0.8

1.0

200 400 600 800 1000 1200

Figure A.5. Node velocity vs PDR (802.11b, GM, 60 nodes)

p
a

c
k
e

t
d

e
liv

e
ry

 r
a

ti
o

velocity [m/s]

GS - Location-aware

NotGS - Location-aware

OLSR

GS - Location-unaware

NotGS - Location-unaware

DSDV

DSR

AODV
0.0

0.2

0.4

0.6

0.8

1.0

200 400 600 800 1000 1200

Figure A.6. Node velocity vs PDR (802.11b, RWP, 60 nodes)

111

a
v
e

ra
g

e
 o

v
e

rh
e

a
d

 [
k
b

/s
]

number of nodes

DSR

DSDV

AODV

OLSR

GS - Location-unaware

GS - Location-aware

NotGS - Location-aware

NotGS - Location-unaware

0

500

1000

1500

2000

10 20 30 40 50 60 70 80 90 100

Figure A.7. Node density vs overhead (802.11b, GM, 1200 m/s)

a
v
e

ra
g

e
 o

v
e

rh
e

a
d

 [
k
b

/s
]

number of nodes

DSR

DSDV

AODV

GS - Location-unaware

OLSR

GS - Location-aware

NotGS - Location-aware

NotGS - Location-unaware

0

500

1000

1500

2000

10 20 30 40 50 60 70 80 90 100

Figure A.8. Node density vs overhead (802.11b, RWP, 1200 m/s)

112

a
v
e

ra
g

e
 o

v
e

rh
e

a
d

 [
k
b

/s
]

velocity [m/s]

DSR

AODV

DSDV

OLSR

GS - Location-aware

GS - Location-unaware

NotGS - Location-aware

NotGS - Location-unaware

0

100

200

300

400

500

600

700

800

200 400 600 800 1000 1200

Figure A.9. Node velocity vs overhead (802.11b, GM, 60 nodes)

a
v
e

ra
g

e
 o

v
e

rh
e

a
d

 [
k
b

/s
]

velocity [m/s]

DSR

AODV

DSDV

OLSR

GS - Location-unaware

GS - Location-aware

NotGS - Location-aware

NotGS - Location-unaware

0

100

200

300

400

500

600

700

800

200 400 600 800 1000 1200

Figure A.10. Node velocity vs overhead (802.11b, RWP, 60 nodes)

113

p
a

c
k
e

t
d

e
la

y
 [

m
s
]

number of nodes

GS - Location-aware

NotGS - Location-aware

GS - Location-unaware

DSR

DSDV

OLSR

AODV

NotGS - Location-unaware

0

5000

10000

15000

20000

25000

30000

35000

40000

10 20 30 40 50 60 70 80 90 100

Figure A.11. Node density vs delay (802.11b, GM, 1200 m/s)

p
a

c
k
e

t
d

e
la

y
 [

m
s
]

number of nodes

GS - Location-aware

NotGS - Location-aware

DSR

DSDV

OLSR

AODV

GS - Location-unaware

NotGS - Location-unaware

0

2000

4000

6000

8000

10000

12000

14000

10 20 30 40 50 60 70 80 90 100

Figure A.12. Node density vs delay (802.11b, RWP, 1200 m/s)

114

p
a

c
k
e

t
d

e
la

y
 [

m
s
]

velocity [m/s]

GS - Location-aware

NotGS - Location-aware

GS - Location-unaware

DSR

DSDV

OLSR

NotGS - Location-unaware

AODV

0

50000

100000

150000

200000

250000

200 400 600 800 1000 1200

Figure A.13. Node velocity vs delay (802.11b, GM, 60 nodes)

p
a

c
k
e

t
d

e
la

y
 [

m
s
]

velocity [m/s]

GS - Location-aware

NotGS - Location-aware

DSR

DSDV

AODV

OLSR

GS - Location-unaware

NotGS - Location-unaware

0

20000

40000

60000

80000

100000

120000

200 400 600 800 1000 1200

Figure A.14. Node velocity vs delay (802.11b, RWP, 60 nodes)

115

a
c
c
u

ra
c
c
y

velocity [m/s]

NotGS - Location-unaware

NotGS - Location-aware

GS - Location-aware

GS - Location-unaware

OLSR

DSR

DSDV

AODV
0.0

0.2

0.4

0.6

0.8

1.0

200 400 600 800 1000 1200

Figure A.15. Node velocity vs accuracy (802.11b, GM, 60 nodes)

a
c
c
u

ra
c
c
y

velocity [m/s]

NotGS - Location-unaware

NotGS - Location-aware

GS - Location-aware

GS - Location-unaware

OLSR

DSR

DSDV

AODV
0.0

0.2

0.4

0.6

0.8

1.0

200 400 600 800 1000 1200

Figure A.16. Node velocity vs accuracy (802.11b, RWP, 60 nodes)

116

Appendix B

TDMA Plots

The following plots are obtained by performing simulations over Random way-

point mobility model.

p
a

c
k
e

t
d

e
liv

e
ry

 r
a

ti
o

number of nodes

GS - Location-aware

NotGS - Location-aware

GS - Location-unaware

DSDV

NotGS - Location-unaware

OLSR

AODV

DSR
0.0

0.2

0.4

0.6

0.8

1.0

10 20 30 40 50 60 70 80 90 100

Figure B.1. Node density vs PDR (TDMA, GM, 200–1200 m/s)

117

p
a

c
k
e

t
d

e
liv

e
ry

 r
a

ti
o

number of nodes

GS - Location-aware

NotGS - Location-aware

NotGS - Location-unaware

GS - Location-unaware

DSDV

OLSR

AODV

DSR
0.0

0.2

0.4

0.6

0.8

1.0

10 20 30 40 50 60 70 80 90 100

Figure B.2. Node density vs delay (TDMA, RWP, 1200 m/s)

p
a

c
k
e

t
d

e
liv

e
ry

 r
a

ti
o

number of nodes

GS - Location-aware

DSDV

GS - Location-unaware

NotGS - Location-aware

OLSR

NotGS - Location-unaware

DSR

AODV
0.0

0.2

0.4

0.6

0.8

1.0

10 20 30 40 50 60 70 80 90 100

Figure B.3. Node density vs PDR (TDMA, RWP, 200–1200 m/s)

118

p
a

c
k
e

t
d

e
liv

e
ry

 r
a

ti
o

velocity [m/s]

GS - Location-aware

NotGS - Location-aware

DSDV

GS - Location-unaware

OLSR

NotGS - Location-unaware

DSR

AODV
0.0

0.2

0.4

0.6

0.8

1.0

200 400 600 800 1000 1200

Figure B.4. Node velocity vs PDR (TDMA, RWP, 60 nodes)

a
v
e

ra
g

e
 o

v
e

rh
e

a
d

 [
k
b

/s
]

number of nodes

DSDV

GS - Location-unaware

OLSR

GS - Location-aware

NotGS - Location-aware

NotGS - Location-unaware

0

500

1000

1500

2000

10 20 30 40 50 60 70 80 90 100

Figure B.5. Node density vs overhead (TDMA, RWP, 1200 m/s)

119

a
v
e

ra
g

e
 o

v
e

rh
e

a
d

 [
k
b

/s
]

number of nodes

AODV

DSR

DSDV

GS - Location-unaware

OLSR

GS - Location-aware

NotGS - Location-aware

NotGS - Location-unaware

0E+00

1E+03

2E+03

3E+03

4E+03

5E+03

6E+03

7E+03

10 20 30 40 50 60 70 80 90 100

Figure B.6. Node density vs overhead (AODV, TDMA, RWP,
1200 m/s)

a
v
e

ra
g

e
 o

v
e

rh
e

a
d

 [
k
b

/s
]

velocity [m/s]

DSDV

OLSR

GS - Location-unaware

GS - Location-aware

NotGS - Location-aware

NotGS - Location-unaware

0

100

200

300

400

500

600

700

800

200 400 600 800 1000 1200

Figure B.7. Node velocity vs overhead (TDMA, RWP, 60 nodes)

120

a
v
e

ra
g

e
 o

v
e

rh
e

a
d

 [
k
b

/s
]

velocity [m/s]

AODV

DSR

DSDV

OLSR

GS - Location-unaware

GS - Location-aware

NotGS - Location-aware

NotGS - Location-unaware

0E+00

5E+02

1E+03

2E+03

2E+03

2E+03

3E+03

200 400 600 800 1000 1200

Figure B.8. Node velocity vs overhead (AODV, TDMA, RWP,
60 nodes)

p
a

c
k
e

t
d

e
la

y
 [

m
s
]

number of nodes

GS - Location-aware

NotGS - Location-aware

DSR

GS - Location-unaware

DSDV

OLSR

NotGS - Location-unaware

AODV

0

2000

4000

6000

8000

10000

12000

14000

10 20 30 40 50 60 70 80 90 100

Figure B.9. Node density vs delay (TDMA, RWP, 1200 m/s)

121

a
c
c
u

ra
c
c
y

velocity [m/s]

NotGS - Location-unaware

NotGS - Location-aware

GS - Location-aware

GS - Location-unaware

DSDV

OLSR

AODV

DSR
0.0

0.2

0.4

0.6

0.8

1.0

200 400 600 800 1000 1200

Figure B.10. Node velocity vs accuracy (TDMA, RWP, 60 nodes)

122

References

[1] Justin P. Rohrer, Abdul Jabbar, Erik Perrins, and James P. G. Ster-

benz. Cross-layer architectural framework for highly-mobile multihop air-

borne telemetry networks. In Proceedings of the IEEE Military Communica-

tions Conference (MILCOM), pages 1–9, San Diego, CA, November 2008.

[2] M. Mauve, A. Widmer, and H. Hartenstein. A survey on position-based

routing in mobile ad hoc networks. Network, IEEE, 15(6):30–39, 2001.

[3] Stefano Basagni, Imrich Chlamtac, Violet R. Syrotiuk, and Barry A. Wood-

ward. A distance routing effect algorithm for mobility (DREAM). In Pro-

ceedings of the 4th annual ACM/IEEE international conference on Mobile

computing and networking, MobiCom ’98, pages 76–84, New York, NY, USA,

1998. ACM.

[4] Young-Bae Ko and Nitin H. Vaidya. Location-aided routing (LAR) in mobile

ad hoc networks. Wirel. Netw., 6:307–321, July 2000.

[5] Egemen K. Çetinkaya and James P. G. Sterbenz. Aeronautical Gateways:

Supporting TCP/IP-based Devices and Applications over Modern Telemetry

Networks. In International Telemetering Conference, Las Vegas, October

2009.

123

[6] Kevin Peters. Design and Performance Analysis of a Geographic Routing

Protocol for Highly Dynamic MANETs. Master’s thesis, The University of

Kansas, Lawrence, KS, June 2010.

[7] Imrich Chlamtac, Marco Conti, and Jennifer J. N. Liu. Mobile ad hoc net-

working: imperatives and challenges. Ad Hoc Networks, 1(1):13 – 64, 2003.

[8] M. Conti and S. Giordano. Multihop Ad Hoc Networking: The Theory. IEEE

Communications Magazine, 45(4):78–86, April 2007.

[9] iNET Working Group. http://www.inetprogram.org.

[10] iNET Needs Discernment Report, version 1.0. Central Test and Evaluation

Investment Program, May 2004.

[11] Justin P. Rohrer, Abdul Jabbar, Egemen K. Çetinkaya, Erik Perrins, and

James P.G. Sterbenz. Highly-Dynamic Cross-Layered Aeronautical Network

Architecture. IEEE Trans. Aerosp. Electron. Syst., 47(4), October 2011.

[12] Abdul Jabbar and James P. G. Sterbenz. AeroRP: A Geolocation Assisted

Aeronautical Routing Protocol for Highly Dynamic Telemetry Environments.

In International Telemetering Conference, Las Vegas, NV, October 2009.

[13] Kevin Peters, Abdul Jabbar, Egemen K. Çetinkaya, and James P.G. Ster-

benz. A Geographical Routing Protocol for Highly-Dynamic Aeronautical

Networks. In IEEE WCNC, Cancun, Mexico, March 2011.

[14] Kevin Peters, Egemen K. Çetinkaya, and James P. G. Sterbenz. Analysis of

a Geolocation-Assisted Routing Protocol for Airborne Telemetry Networks.

In International Telemetering Conference, San Diego, CA, October 2010.

124

[15] D. B. Johnson. Routing in ad hoc networks of mobile hosts. In Proceedings

of the 1994 First Workshop on Mobile Computing Systems and Applications

(WMCSA), pages 158–163, Washington, DC, USA, 1994. IEEE Computer

Society.

[16] Elizabeth M. Royer and C.-K. Toh. A review of current routing protocols for

ad-hoc mobile wireless networks. IEEE Personal Communications, 6:46–55,

1999.

[17] S. Ramanathan and Martha Steenstrup. A survey of routing techniques for

mobile communications networks. Mob. Netw. Appl., 1:89–104, October 1996.

[18] Fan Bai, Narayanan Sadagopan, and Ahmed Helmy. Important: A framework

to systematically analyze the impact of mobility on performance of routing

protocols for adhoc networks. 2:825–835, March 2003.

[19] Xiaoyan Hong, Taek Jin Kwon, Mario Gerla, Daniel Lihui Gu, and Guangyu

Pei. A mobility framework for ad hoc wireless networks. In Proceedings of

the Second International Conference on Mobile Data Management, MDM ’01,

pages 185–196, London, UK, 2001. Springer-Verlag.

[20] Charles E. Perkins and Pravin Bhagwat. Highly Dynamic Destination-

Sequenced Distance-Vector Routing (DSDV) for Mobile Computers. In SIG-

COMM ’94: Proceedings of the Conference on Communications Architec-

tures, Protocols and Applications, pages 234–244, New York, NY, USA, 1994.

ACM.

[21] T. Clausen and P. Jacquet. Optimized Link State Routing Protocol (OLSR).

RFC 3626 (Experimental), October 2003.

125

[22] C.E. Perkins and E.M. Royer. Ad-hoc On-demand Distance Vector Routing.

In Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems and

Applications (WMCSA), pages 90–100, February 1999.

[23] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc On-Demand Distance

Vector (AODV) Routing. RFC 3561 (Experimental), July 2003.

[24] D. Johnson, Y. Hu, and D. Maltz. The Dynamic Source Routing Protocol

(DSR) for Mobile Ad Hoc Networks for IPv4. RFC 4728 (Experimental),

February 2007.

[25] David B. Johnson and David A. Maltz. Dynamic source routing in ad hoc

wireless networks. In Tomasz Imielinski and Henry F. Korth, editors, Mobile

Computing, volume 353 of The Kluwer International Series in Engineering

and Computer Science, chapter 5, pages 153–181. Kluwer Academic Publish-

ers, Norwood, MA, 1996.

[26] I. Stojmenovic. Position-based routing in ad hoc networks. Communications

Magazine, IEEE, 40(7):128 –134, July 2002.

[27] Silvia Giordano, Ivan Stojmenovic, and Ljubica Blazevic. Position based

routing algorithms for ad hoc networks: A taxonomy. In Ad Hoc Wireless

Networking, pages 103–136. Kluwer, 2001.

[28] H. Takagi and L. Kleinrock. Optimal transmission ranges for randomly dis-

tributed packet radio terminals. Communications, IEEE Transactions on,

32(3):246–257, March 1984.

126

[29] Ting-Chao Hou and Victor Li. Transmission range control in multihop packet

radio networks. Communications, IEEE Transactions on, 34(1):38–44, Jan-

uary 1986.

[30] Justin P. Rohrer, Erik Perrins, and James P. G. Sterbenz. End-to-End

Disruption-Tolerant Transport Protocol Issues and Design for Airborne

Telemetry Networks. In International Telemetering Conference, San Diego,

CA, October 2008.

[31]

[32] Stuart Kurkowski, Tracy Camp, and Michael Colagrosso. MANET Simula-

tion Studies: The Incredibles. SIGMOBILE Mob. Comput. Commun. Rev.,

9(4):50–61, October 2005.

[33] The network simulator: ns-2. http://www.isi.edu/nsnam/ns/, December

2007.

[34] The ns-3 network simulator. http://www.nsnam.org, July 2009.

[35] E. Weingartner, H. vom Lehn, and K. Wehrle. A Performance Comparison

of Recent Network Simulators. In IEEE International Conference on Com-

munications (ICC), pages 1–5, June 2009.

[36] Hemanth Narra, Yufei Cheng, Egemen K. Çetinkaya, Justin P. Rohrer, and

James P.G. Sterbenz. Destination-sequenced distance vector (DSDV) routing

protocol implementation in ns-3. In Proceedings of the ICST SIMUTools

Workshop on ns-3 (WNS3), Barcelona, Spain, March 2011.

[37] Tyson Thedinger, Abdul Jabbar, and James P. G. Sterbenz. Store and haul

with repeated controlled flooding. In Second International IEEE Workshop

127

on Mobile Computing and Networking Technologies (WMCNT), Moscow,

Russia, October 2010.

[38] Josh Broch, David Maltz, David Johnson, Yih-Chun Hu, and Jorjeta

Jetcheva. A Performance Comparison of Multi-Hop Wireless Ad Hoc Network

Routing Protocols. ACM MobiCom, pages 85–97, Oct. 1998.

[39] Hemanth Narra, Egemen K. Çetinkaya, and James P. G. Sterbenz. Per-

formance analysis of aerorp with ground station updates in highly-dynamic

airborne telemetry networks. In Proceedings of the International Telemetering

Conference (ITC), Las Vegas, NV, October 2011. to appear.

[40] Wikipedia. Student’s t-distribution. http://en.wikipedia.org/wiki/

Student’s_t-distribution, 2010. Online; accessed 17-May-2010.

[41] Dan Broyles, Abdul Jabbar, and James P. G. Sterbenz. Design and analysis of

a 3–D gauss-markov mobility model for highly-dynamic airborne networks. In

Proceedings of the International Telemetering Conference (ITC), San Diego,

CA, October 2010.

[42] Dousse O, Thiran P, and Hasler M. Connectivity in ad-hoc and hybrid net-

works. 2:1079–1088, November 2002.

[43] Aodv’s rerr issue in ns-3. https://www.nsnam.org/bugzilla/show_bug.

cgi?id=1099, July 2009.

128

http://en.wikipedia.org/wiki/Student's_t-distribution
http://en.wikipedia.org/wiki/Student's_t-distribution
https://www.nsnam.org/bugzilla/show_bug.cgi?id=1099
https://www.nsnam.org/bugzilla/show_bug.cgi?id=1099

	Acceptance Page
	Abstract
	Introduction and Motivation
	Problem Statement
	Proposed Solution
	Contributions
	Organisation

	Background and Related Work
	MANET Routing Protocols
	Topology-Based Routing Protocols
	Position-Based Routing Protocols
	Advantages of position-based protocols

	ANTP Protocol Suite
	AeroRP
	AeroNP

	Implementation of ns-3 Models
	Implementation of DSDV in ns-3
	DSDV module for ns-3
	Header
	Routing Table
	Routing Advertisements
	Processing of Updates
	Packet Buffering
	Parameter Tuning
	DSDV Module Evaluation

	Time Division Multiple Access
	Difference between IEEE 802.11 and TDMA
	Implementation of TDMA protocol in ns-3

	Design of AeroRP with GS
	AeroRP Header Format
	Type Header
	Hello Header
	GSGeoLocation Header
	GSTopology Header

	Operations of Ground Station
	GS Update Mechanism
	Types of GS Updates

	Processing of AeroRP updates
	Aero Gateway

	Design of AeroNP
	AeroNP Header Format
	Services provided by AeroNP
	QoS Mechanism
	Congestion-control Mechanism
	Error-Detection Mechanism

	Implementation of AeroNP in ns-3
	Class interaction in AeroNP module
	Packet transmission by AeroNP
	Received Packet Processing by AeroNP

	Simulations Analysis
	Performance Metrics
	Simulation Setup
	Analysis of TDMA vs 802.11
	Effects of Node Density
	Effects of Velocity

	Conclusions and Future Work
	Contributions
	Conclusions
	Publications
	Future Work

	Appendices
	802.11b Plots
	TDMA Plots
	References

