1,539 research outputs found

    Carbon Responder: Coordinating Demand Response for the Datacenter Fleet

    Full text link
    The increasing integration of renewable energy sources results in fluctuations in carbon intensity throughout the day. To mitigate their carbon footprint, datacenters can implement demand response (DR) by adjusting their load based on grid signals. However, this presents challenges for private datacenters with diverse workloads and services. One of the key challenges is efficiently and fairly allocating power curtailment across different workloads. In response to these challenges, we propose the Carbon Responder framework. The Carbon Responder framework aims to reduce the carbon footprint of heterogeneous workloads in datacenters by modulating their power usage. Unlike previous studies, Carbon Responder considers both online and batch workloads with different service level objectives and develops accurate performance models to achieve performance-aware power allocation. The framework supports three alternative policies: Efficient DR, Fair and Centralized DR, and Fair and Decentralized DR. We evaluate Carbon Responder polices using production workload traces from a private hyperscale datacenter. Our experimental results demonstrate that the efficient Carbon Responder policy reduces the carbon footprint by around 2x as much compared to baseline approaches adapted from existing methods. The fair Carbon Responder policies distribute the performance penalties and carbon reduction responsibility fairly among workloads

    Datacenter Traffic Control: Understanding Techniques and Trade-offs

    Get PDF
    Datacenters provide cost-effective and flexible access to scalable compute and storage resources necessary for today's cloud computing needs. A typical datacenter is made up of thousands of servers connected with a large network and usually managed by one operator. To provide quality access to the variety of applications and services hosted on datacenters and maximize performance, it deems necessary to use datacenter networks effectively and efficiently. Datacenter traffic is often a mix of several classes with different priorities and requirements. This includes user-generated interactive traffic, traffic with deadlines, and long-running traffic. To this end, custom transport protocols and traffic management techniques have been developed to improve datacenter network performance. In this tutorial paper, we review the general architecture of datacenter networks, various topologies proposed for them, their traffic properties, general traffic control challenges in datacenters and general traffic control objectives. The purpose of this paper is to bring out the important characteristics of traffic control in datacenters and not to survey all existing solutions (as it is virtually impossible due to massive body of existing research). We hope to provide readers with a wide range of options and factors while considering a variety of traffic control mechanisms. We discuss various characteristics of datacenter traffic control including management schemes, transmission control, traffic shaping, prioritization, load balancing, multipathing, and traffic scheduling. Next, we point to several open challenges as well as new and interesting networking paradigms. At the end of this paper, we briefly review inter-datacenter networks that connect geographically dispersed datacenters which have been receiving increasing attention recently and pose interesting and novel research problems.Comment: Accepted for Publication in IEEE Communications Surveys and Tutorial

    Scheduling and efficient energy utilization in cloud system

    Get PDF
    Cloud computing is an emerging topic on software and distributed computing based on Internet, which means users can access storages and applications from remote servers by web browsers or other fixed or mobile terminals. In a cloud framework different services such as servers, storage in the form of data as well as Big data, resources etc are given to a management's computers and different devices on interest through the Internet. Multiple clients want to run their jobs or cloudlets in the cloud at a particular instant of time. The tasks are executed depending on the number of processors available and the scheduling policy of the cloud. In a cloud simulation software such as CloudSim a two level scheduling in the form of Space-shared and Time-shared can be used in collaboration with First Come First Serve(FCFS). An efficient way of job scheduling in cloud is to assign weightage or priority to the various parameters coming along with the job also taking into consideration the priority value set by the client to the task. In this thesis an attempt has been made to develop an efficient priority algorithm for the jobs running in the cloud. Also an attempt has been made to reduce the energy consumption at a particular over utilized node as well as switching idle nodes to the sleep mode thereby optimizing resource usage and reducing energy consumption

    Energy-aware scheduling in virtualized datacenters

    Get PDF
    The reduction of energy consumption in large-scale datacenters is being accomplished through an extensive use of virtualization, which enables the consolidation of multiple workloads in a smaller number of machines. Nevertheless, virtualization also incurs some additional overheads (e.g. virtual machine creation and migration) that can influence what is the best consolidated configuration, and thus, they must be taken into account. In this paper, we present a dynamic job scheduling policy for power-aware resource allocation in a virtualized datacenter. Our policy tries to consolidate workloads from separate machines into a smaller number of nodes, while fulfilling the amount of hardware resources needed to preserve the quality of service of each job. This allows turning off the spare servers, thus reducing the overall datacenter power consumption. As a novelty, this policy incorporates all the virtualization overheads in the decision process. In addition, our policy is prepared to consider other important parameters for a datacenter, such as reliability or dynamic SLA enforcement, in a synergistic way with power consumption. The introduced policy is evaluated comparing it against common policies in a simulated environment that accurately models HPC jobs execution in a virtualized datacenter including power consumption modeling and obtains a power consumption reduction of 15% with respect to typical policies.Peer ReviewedPostprint (published version

    Power Management Techniques for Data Centers: A Survey

    Full text link
    With growing use of internet and exponential growth in amount of data to be stored and processed (known as 'big data'), the size of data centers has greatly increased. This, however, has resulted in significant increase in the power consumption of the data centers. For this reason, managing power consumption of data centers has become essential. In this paper, we highlight the need of achieving energy efficiency in data centers and survey several recent architectural techniques designed for power management of data centers. We also present a classification of these techniques based on their characteristics. This paper aims to provide insights into the techniques for improving energy efficiency of data centers and encourage the designers to invent novel solutions for managing the large power dissipation of data centers.Comment: Keywords: Data Centers, Power Management, Low-power Design, Energy Efficiency, Green Computing, DVFS, Server Consolidatio
    corecore