39 research outputs found

    High Performance Reference Counting and Conservative Garbage Collection

    No full text
    Garbage collection is an integral part of modern programming languages. It automatically reclaims memory occupied by objects that are no longer in use. Garbage collection began in 1960 with two algorithmic branches — tracing and reference counting. Tracing identifies live objects by performing a transitive closure over the object graph starting with the stacks, registers, and global variables as roots. Objects not reached by the trace are implicitly dead, so the collector reclaims them. In contrast, reference counting explicitly identifies dead objects by counting the number of incoming references to each object. When an object’s count goes to zero, it is unreachable and the collector may reclaim it. Garbage collectors require knowledge of every reference to each object, whether the reference is from another object or from within the runtime. The runtime provides this knowledge either by continuously keeping track of every change to each reference or by periodically enumerating all references. The collector implementation faces two broad choices — exact and conservative. In exact garbage collection, the compiler and runtime system precisely identify all references held within the runtime including those held within stacks, registers, and objects. To exactly identify references, the runtime must introspect these references during execution, which requires support from the compiler and significant engineering effort. On the contrary, conservative garbage collection does not require introspection of these references, but instead treats each value ambiguously as a potential reference. Highly engineered, high performance systems conventionally use tracing and exact garbage collection. However, other well-established but less performant systems use either reference counting or conservative garbage collection. Reference counting has some advantages over tracing such as: a) it is easier implement, b) it reclaims memory immediately, and c) it has a local scope of operation. Conservative garbage collection is easier to implement compared to exact garbage collection because it does not require compiler cooperation. Because of these advantages, both reference counting and conservative garbage collection are widely used in practice. Because both suffer significant performance overheads, they are generally not used in performance critical settings. This dissertation carefully examines reference counting and conservative garbage collection to understand their behavior and improve their performance. My thesis is that reference counting and conservative garbage collection can perform as well or better than the best performing garbage collectors. The key contributions of my thesis are: 1) An in-depth analysis of the key design choices for reference counting. 2) Novel optimizations guided by that analysis that significantly improve reference counting performance and make it competitive with a well tuned tracing garbage collector. 3) A new collector, RCImmix, that replaces the traditional free-list heap organization of reference counting with a line and block heap structure, which improves locality, and adds copying to mitigate fragmentation. The result is a collector that outperforms a highly tuned production generational collector. 4) A conservative garbage collector based on RCImmix that matches the performance of a highly tuned production generational collector. Reference counting and conservative garbage collection have lived under the shadow of tracing and exact garbage collection for a long time. My thesis focuses on bringing these somewhat neglected branches of garbage collection back to life in a high performance setting and leads to two very surprising results: 1) a new garbage collector based on reference counting that outperforms a highly tuned production generational tracing collector, and 2) a variant that delivers high performance conservative garbage collection

    Cautiously Optimistic Program Analyses for Secure and Reliable Software

    Full text link
    Modern computer systems still have various security and reliability vulnerabilities. Well-known dynamic analyses solutions can mitigate them using runtime monitors that serve as lifeguards. But the additional work in enforcing these security and safety properties incurs exorbitant performance costs, and such tools are rarely used in practice. Our work addresses this problem by constructing a novel technique- Cautiously Optimistic Program Analysis (COPA). COPA is optimistic- it infers likely program invariants from dynamic observations, and assumes them in its static reasoning to precisely identify and elide wasteful runtime monitors. The resulting system is fast, but also ensures soundness by recovering to a conservatively optimized analysis when a likely invariant rarely fails at runtime. COPA is also cautious- by carefully restricting optimizations to only safe elisions, the recovery is greatly simplified. It avoids unbounded rollbacks upon recovery, thereby enabling analysis for live production software. We demonstrate the effectiveness of Cautiously Optimistic Program Analyses in three areas: Information-Flow Tracking (IFT) can help prevent security breaches and information leaks. But they are rarely used in practice due to their high performance overhead (>500% for web/email servers). COPA dramatically reduces this cost by eliding wasteful IFT monitors to make it practical (9% overhead, 4x speedup). Automatic Garbage Collection (GC) in managed languages (e.g. Java) simplifies programming tasks while ensuring memory safety. However, there is no correct GC for weakly-typed languages (e.g. C/C++), and manual memory management is prone to errors that have been exploited in high profile attacks. We develop the first sound GC for C/C++, and use COPA to optimize its performance (16% overhead). Sequential Consistency (SC) provides intuitive semantics to concurrent programs that simplifies reasoning for their correctness. However, ensuring SC behavior on commodity hardware remains expensive. We use COPA to ensure SC for Java at the language-level efficiently, and significantly reduce its cost (from 24% down to 5% on x86). COPA provides a way to realize strong software security, reliability and semantic guarantees at practical costs.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/170027/1/subarno_1.pd

    Verifikation Nicht-blockierender Datenstrukturen mit Manueller Speicherverwaltung

    Get PDF
    Verification of concurrent data structures is one of the most challenging tasks in software verification. The topic has received considerable attention over the course of the last decade. Nevertheless, human-driven techniques remain cumbersome and notoriously difficult while automated approaches suffer from limited applicability. This is particularly true in the absence of garbage collection. The intricacy of non-blocking manual memory management (manual memory reclamation) paired with the complexity of concurrent data structures has so far made automated verification prohibitive. We tackle the challenge of automated verification of non-blocking data structures which manually manage their memory. To that end, we contribute several insights that greatly simplify the verification task. The guiding theme of those simplifications are semantic reductions. We show that the verification of a data structure's complicated target semantics can be conducted in a simpler and smaller semantics which is more amenable to automatic techniques. Some of our reductions rely on good conduct properties of the data structure. The properties we use are derived from practice, for instance, by exploiting common programming patterns. Furthermore, we also show how to automatically check for those properties under the smaller semantics. The main contributions are: (i) A compositional verification approach that verifies the memory management and the data structure separately. (ii) A notion of weak ownership that applies when memory is reclaimed and reused, bridging the gap between garbage collection and manual memory management (iii) A notion of pointer races and harmful ABAs the absence of which ensures that the memory management does not influence the data structure, i.e., it behaves as if executed under garbage collection. Notably, we show that a check for pointer races and harmful ABAs only needs to consider executions where at most a single address is reused. (iv) A notion of strong pointer races the absence of which entails the absence of ordinary pointer races and harmful ABAs. We devise a highly-efficient type check for strong pointer races. After a successful type check, the actual verification can be performed under garbage collection using an off-the-shelf verifier. (v) Experimental evaluations of the aforementioned contributions. We are the first to fully automatically verify practical non-blocking data structures with manual memory management.Verifikation nebenläufiger Datenstrukturen ist eine der herausforderndsten Aufgaben der Programmverifikation. Trotz vieler Beiträge zu diesem Thema, bleiben die existierenden manuellen Techniken mühsam und kompliziert in der Anwendung. Auch automatisierte Verifikationsverfahren sind nur eingeschränkt anwendbar. Diese Schwächen sind besonders ausgeprägt, wenn sich Programme nicht auf einen Garbage-Collector verlassen. Die Komplexität manueller Speicherverwaltung gepaart mit komplexen nicht-blockierenden Datenstrukturen macht die automatisierte Programmverifikation derzeit unmöglich. Diese Arbeit betrachtet die automatisierte Verifikation nicht-blockierender Datenstrukturen, welche ihren Speicher manuell verwalten. Dazu werden Konzepte vorgestellt, die die Verifikation stark vereinfachen. Das Leitmotiv dabei ist die semantische Reduktion, welche die Verifikation in einer leichteren Semantik erlaubt, ohne die eigentliche komplexere Semantik zu betrachten. Einige dieser Reduktion beruhen auf einem Wohlverhalten des zu verifizierenden Programms. Dabei wird das Wohlverhalten mit Bezug auf praxisnahe Eigenschaften definiert, wie sie z.B. von gängigen Programmiermustern vorgegeben werden. Ferner wird gezeigt, dass die Wohlverhaltenseigenschaften ebenfalls unter der einfacheren Semantik nachgewiesen werden können. Die Hauptresultate der vorliegenden Arbeit sind die Folgenden: (i) Ein kompositioneller Verifikationsansatz, welcher Speicherverwaltung und Datenstruktur getrennt verifiziert. (ii) Ein Begriff des Weak-Ownership, welcher selbst dann Anwendung findet, wenn Speicher wiederverwendet wird. (iii) Ein Begriff des Pointer-Race und des Harmful-ABA, deren Abwesenheit garantiert, dass die Speicherverwaltung keinen Einfluss auf die Datenstruktur ausübt und somit unter der Annahme von Garbage-Collection verifiziert werden kann. Bemerkenswerterweise genügt es diese Abwesenheit unter Reallokation nur einer fixex Speicherzelle zu prüfen. (iv) Ein Begriff des Strong-Pointer-Race, dessen Abwesenheit sowohl Pointer-Races als auch Harmful-ABA ausschließt. Um ein Programm auf Strong-Pointer-Races zu prüfen, präsentieren wir ein Typsystem. Ein erfolgreicher Typcheck erlaubt die tatsächlich zu überprüfende Eigenschaft unter der Annahme eines Garbage-Collectors nachzuweisen. (v) Experimentelle Evaluationen. Die vorgestellten Techniken sind die Ersten, die nicht-blockierende Datenstrukturen mit gängigen Speicherverwaltungen vollständig automatisch verifizieren können

    Domain Specific Memory Management for Large Scale Data Analytics

    Get PDF
    Hardware trends over the last several decades have lead to shifting priorities with respect to performance bottlenecks in the implementations of dataflows typically present in large-scale data analytics applications. In particular, efficient use of main memory has emerged as a critical aspect of dataflow implementation, due to the proliferation of multi-core architectures, as well as the rapid development of faster-than-disk storage media. At the same time, the wealth of static domain-specific information about applications remains an untapped resource when it comes to optimizing the use of memory in a dataflow application. We propose a compilation-based approach to the synthesis of memory-efficient dataflow implementations, using static analysis to extract and leverage domain-specific information about the application. Our program transformations use the combined results of type, effect, and provenance analyses to infer time- and space- effective placement of primitive memory operations, precluding the need for dynamic memory management and its attendant costs. The experimental evaluation of implementations synthesized with our framework shows both the importance of optimizing for memory performance, as well as significant benefits of our approach, along multiple dimensions. Finally, we also demonstrate a framework for formally verifying the soundness of these transformations, laying the foundation for their use as a component of a more general implementation synthesis ecosystem

    Cancer and the Politics of Care: Inequalities and interventions in global perspective

    Get PDF
    This timely volume responds to the epic impacts of cancer as a global phenomenon. Through the fine-grained lens of ethnography, the contributors present new thinking on how social, economic, race, gender and other structural inequalities intersect, compound and complicate health inequalities. Cancer experiences and impacts are explored across eleven countries: Argentina, Brazil, Denmark, France, Greece, India, Indonesia, Italy, Senegal, the United Kingdom and the United States. The volume engages with specific cancers from the point of primary prevention, to screening, diagnosis, treatment (or its absence), and end-of-life care. Cancer and the Politics of Care traverses new theoretical terrain through explicitly critiquing cancer interventions, their limitations and success, the politics that drive them, and their embeddedness in local cultures and value systems. It extends prior work on cancer, by incorporating the perspectives of patients and their families, ‘at risk’ groups and communities, health professionals, cancer advocates and educators, and patient navigators. The volume advances cross-cultural understandings of care, resisting simple dichotomies between caregiving and receiving, and reveals the fraught ethics of care that must be negotiated in resource-poor settings and stratified health systems. Its diversity and innovation ensures its wide utility among those working in and studying medical anthropology, social anthropology and other fields at the intersections of social science, medicine and health equity

    POLLUTION KNOWLEDGE AND URBAN WATER POLITICS IN THE GANGES RIVER BASIN (INDIA)

    Get PDF
    Millions of people rely upon the Ganges River as a source of water provision and a site of disposal for sewage, solid waste, agricultural runoff and industrial effluent. The river is also a goddess in the Hindu pantheon who is worshipped for her purificatory powers, despite water quality levels that fall far short of standards for use in bathing, washing, and drinking. In recent years, a number of non-governmental organizations (NGOs) have formed to oppose both pollution of the river and the failure of state-run pollution abatement programs. They are joined by an increasingly frequent number of seemingly spontaneous protests held during the large Kumbh Mela festival gatherings at Allahabad, Uttar Pradesh. Led by priests, sadhus and religious leaders, these protestors refuse to participate in the ritual bathing that is central to river worship until local and state officials take action to improve water quality at the site. These events indicate that the politics surrounding pollution abatement in the Ganges River Basin (GRB) are changing and that civil society organizations are struggling to gain greater representation and influence in the processes that shape pollution abatement and water use management in the GRB. This dissertation investigates the growing debate around pollution and pollution abatement in the Ganges River Basin and interprets the struggle over pollution abatement and river water management as a struggle over meaning in which various groups attempt to influence the context and context of local environmental knowledge(s). The research compares abatement efforts, civil society activity, and the pollution knowledge and water use practices of water users in three urban centers in the central GRB. An analysis of archival data, policy documents, a survey of water users, and interviews with government officials, NGO leaders and members, and other local scientists and activists conducted during fieldwork in 2008 and 2009. Discussion centers on the meta-discursive productions surrounding public participation and popular awareness as precursors to public participation in decisionmaking and policy-making processes. Findings indicate that water users in the GRB are well aware of pollution in the river and that many users exhibit a degree of cognitive dissonance in their pollution knowledge, indicating that a disconnection may exist between the knowledge that guides opinion and the knowledge that guides water use activity. Anti-pollution social movement organizations are found to employ methods and tactics that reflect local contexts of environmental degradation and pollution production, but which ultimately aim to reproduce broads shifts in the ideas, values, and power relations associated with water quality and water use in the Basin. Discussion considers the politics of upstream/downstream relations in shaping pollution abatement measures and the occurrence of missing movements , or the absence of anti-pollution civil society activity. Research findings contribute to literature on the role of environmental knowledge in shaping the “politics of meaning” around which ideological struggles over natural resource use, access, and conservation are waged

    An Extensible Theorem Proving Frontend

    Get PDF
    Interaktive Theorembeweiser sind Softwarewerkzeuge zum computergestützten Beweisen, d.h. sie können entsprechend kodierte Beweise von logischen Aussagen sowohl verifizieren als auch beim Erstellen dieser unterstützen. In den letzten Jahren wurden weitreichende Formalisierungsprojekte über Mathematik sowie Programmverifikation mit solchen Theorembeweisern bewältigt. Der Theorembeweiser Lean insbesondere wurde nicht nur erfolgreich zum Verifizieren lange bekannter mathematischer Theoreme verwendet, sondern auch zur Unterstützung von aktueller mathematischer Forschung. Das Ziel des Lean-Projekts ist nichts weniger als die Arbeitsweise von Mathematikern grundlegend zu verändern, indem mit dem Computer formalisierte Beweise eine praktible Alternative zu solchen mit Stift und Papier werden sollen. Aufwändige manuelle Gutachten zur Korrektheit von Beweisen wären damit hinfällig und gleichzeitig wäre garantiert, dass alle nötigen Beweisschritte exakt erfasst sind, statt der Interpretation und dem Hintergrundwissen des Lesers überlassen zu sein. Um dieses Ziel zu erreichen, sind jedoch noch weitere Fortschritte hinsichtlich Effizienz und Nutzbarkeit von Theorembeweisern nötig. Als Schritt in Richtung dieses Ziels beschreibt diese Dissertation eine neue, vollständig erweiterbare Theorembeweiser-Benutzerschnittstelle ("frontend") im Rahmen von Lean 4, der nächsten Version von Lean. Aufgabe dieser Benutzerschnittstelle ist die textuelle Beschreibung und Entgegennahme der Beweiseingabe in einer Syntax, die mehrere teils widersprüchliche Ziele optimieren sollte: Kompaktheit, Lesbarkeit für menschliche Benutzer und Eindeutigkeit in der Interpretation durch den Theorembeweiser. Da in der geschriebenen Mathematik eine umfangreiche Menge an verschiedenen Notationen existiert, die von Jahr zu Jahr weiter wächst und sich gleichzeitig zwischen verschiedenen Feldern, Autoren oder sogar einzelnen Arbeiten unterscheiden kann, muss solch eine Schnittstelle es Benutzern erlauben, sie jederzeit mit neuen, ausdrucksfähigen Notationen zu erweitern und ihnen mit flexiblen Regeln Bedeutung zuzuschreiben. Dieser Wunsch nach Flexibilität der Eingabesprache lässt sich weiterhin auch auf der Ebene der einzelnen Beweisschritte ("Taktiken") sowie höheren Ebenen der Beweis- und Programmorganisation wiederfinden. Den Kernteil dieser gewünschten Erweiterbarkeit habe ich mit einem ausdrucksstarken Makrosystem für Lean realisiert, mit dem sich sowohl einfach Syntaxtransformationen ("syntaktischer Zucker") also auch komplexe, typgesteuerte Übersetzung in die Kernsprache des Beweisers ausdrücken lassen. Das Makrosystem basiert auf einem neuartigen Algorithmus für Makrohygiene, basierend auf dem der Lisp-Sprache Racket und von mir an die spezifischen Anforderungen von Theorembeweisern angepasst, dessen Aufgabe es ist zu gewährleisten, dass lexikalische Geltungsbereiche von Bezeichnern selbst für komplexe Makros wie intuitiv erwartet funktionieren. Besonders habe ich beim Entwurf des Makrosystems darauf geachtet, das System einfach zugänglich zu gestalten, indem mehrere Abstraktionsebenen bereitgestellt werden, die sich in ihrer Ausdrucksstärke unterscheiden, aber auf den gleichen fundamentalen Prinzipien wie der erwähnten Makrohygiene beruhen. Als ein Anwendungsbeispiel des Makrosystems beschreibe ich eine Erweiterung der aus Haskell bekannten "do"-Notation um weitere imperative Sprachfeatures. Die erweiterte Syntax ist in Lean 4 eingeflossen und hat grundsätzlich die Art und Weise verändert, wie sowohl Entwickler als auch Benutzer monadischen, aber auch puren Code schreiben. Das Makrosystem stellt das "Herz" des erweiterbaren Frontends dar, ist gleichzeitig aber auch eng mit anderen Softwarekomponenten innerhalb der Benutzerschnittstelle verknüpft oder von ihnen abhängig. Ich stelle das gesamte Frontend und das umgebende Lean-System vor mit Fokus auf Teilen, an denen ich maßgeblich mitgewirkt habe. Schließlich beschreibe ich noch ein effizientes Referenzzählungsschema für funktionale Programmierung, welches eine Neuimplementierung von Lean in Lean selbst und damit das erweiterbare Frontend erst ermöglicht hat. Spezifische Optimierungen darin zur Wiederverwendung von Allokationen vereinen, ähnlich wie die erweiterte do-Notation, die Vorteile von imperativer und pur funktionaler Programmierung in einem neuen Paradigma, das ich "pure imperative Programmierung" nenne
    corecore