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Algorithms in new application areas like machine learning and data

analytics usually operate on unstructured sparse graphs. Writing efficient

parallel code to implement these algorithms is very challenging for a number

of reasons.

First, there may be many algorithms to solve a problem and each al-

gorithm may have many implementations. Second, synchronization, which is

necessary for correct parallel execution, introduces potential problems such as

data-races and deadlocks. These issues interact in subtle ways, making the

best solution dependent both on the parallel platform and on properties of the

input graph. Consequently, implementing and selecting the best parallel so-

lution can be a daunting task for non-experts, since we have few performance

models for predicting the performance of parallel sparse graph programs on

parallel hardware.
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This dissertation presents a synthesis methodology and a system, Elixir,

that addresses these problems by (i) allowing programmers to specify solutions

at a high level of abstraction, and (ii) generating many parallel implementa-

tions automatically and using search to find the best one. An Elixir specifi-

cation consists of a set of operators capturing the main algorithm logic and

a schedule specifying how to efficiently apply the operators. Elixir employs

sophisticated automated reasoning to merge these two components, and uses

techniques based on automated planning to insert synchronization and syn-

thesize efficient parallel code.

Experimental evaluation of our approach demonstrates that the per-

formance of the Elixir generated code is competitive to, and can even outper-

form, hand-optimized code written by expert programmers for many interest-

ing graph benchmarks.
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Chapter 1

Introduction

1.1 Irregular Algorithms: A Challenge for Parallel Pro-
gramming

Our world relies increasingly on computers to handle our communica-

tions, organize our economy, and enable advances in many scientific disciplines.

Parallelism is one of the key ingredients that make computers effective tools

that drive innovation in all these sectors. Consequently, the problem of effi-

cient parallel computation has been the subject of extensive study. Yet, despite

various notable advances, the problem of how to exploit parallelism easily is

far from settled. In fact, due to the growing need for more widespread use

of parallelism, the field of parallel computing is evolving across a number of

different dimensions. These include the problems that we focus on paralleliz-

ing, the people involved with parallel programming, and the architectures that

parallel computing is performed on.

Three decades ago parallel programming was primarily performed on

dedicated supercomputers, and the focus was on problems derived from various

computational science disciplines. These domains include problems like dense

linear algebra, FFT and finite-differences, in which the key data structures

are vectors and dense matrices accessed in statically known patterns, such as
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by rows or blocks. The programmers involved in this process were primarily

computational scientists, who were experts on both the domain in question

and parallel programming, and whose goal was to extract every last bit of

performance out of these complex parallel supercomputers. Consequently, the

parallel programming community has acquired a deep understanding of the

patterns of parallelism and locality for the above regular algorithms. These

insights have led to new languages and tools that make it easier to develop

parallel implementations of such algorithms.

However, outside of computational science most algorithms are irregu-

lar. Irregular algorithms access complex data structures such as unstructured

sparse graphs and sets in ways that are not predictable at compile-time. These

sparse graph computations play a central role in important emerging applica-

tion areas like web search and machine learning on big data. For example,

web search is based on an algorithm called page-rank computation that oper-

ates on the web graph, which is a graph in which nodes represent web-pages

and edges represent hyper-links between web-pages [84]. Many recommender

systems are based on inference on a sparse bipartite graph in which one set

of nodes represents consumers and the other set of nodes represents items for

sale [155, 19]. Because of the enormous size of the data sets and the need for

rapid responses to queries, these kinds of sparse graph computations must be

performed in parallel. In addition to the new problem domains, we also have

a much more diverse set of parallel architectures than before. From high-end

servers that support cloud computing in data-centers to our laptops, effectively
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all machines today are parallel computers. In fact, even our cell phones employ

multicore and heterogeneous processors, such as GPUs, in order to improve

performance. This proliferation of diverse parallel architectures introduces a

much more diverse group of self-trained programmers and data-scientists to

the problem of parallelism. Since such programmers do not necessarily have

the training nor the time to become parallel programming experts, we need

solutions that provide both high productivity and effective utilization of par-

allel architectures. The main challenge today is what kind of programming

methodologies can we provide to this group of programmers in order to deal

with all these irregular applications on this diverse set of parallel architectures?

1.2 Abstractions for Parallelism in Irregular Algorithms

How can one reason about and exploit parallelism in irregular algo-

rithms? The standard abstraction for reasoning about parallelism in regular

algorithms is the dependence graph [76]. However, dependences in most ir-

regular algorithms are functions of runtime values such as the values on the

nodes and edges of a graph, so the static dependence graph is not a useful

abstraction for these algorithms. It is more useful take a data-centric view

that we call the operator formulation, in which an algorithm is viewed as the

iterated application of an operator to a data structure such as a graph [115].

This abstraction is illustrated here using two algorithms for solving the single

source shortest path (SSSP) problem – Dijkstra’s algorithm [34] and chaotic

relaxation [28] – which repeatedly update estimates of the shortest distance to
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Figure 1.1: Operator Formulation

each node from a source until a fixpoint is reached. The key concepts in the

operator formulation are the following:

• Active elements are sites in the graph (nodes or edges) where compu-

tation must be performed. For the SSSP algorithms, active nodes are

nodes whose distance estimates have been updated; initially, the only

active node is the source. In Figure 1.1, active nodes are shown in red.

• The operator is a description of the work that must be done at an active

node. For SSSP, this is the relaxation operator [34], which updates

the distance estimates of the immediate neighbors of the active node,

if needed. The application of an operator to an active element is an

activity.

• The region of the graph read or written by an activity is called its neigh-

borhood. Operators may add or remove nodes and edges in the neighbor-

hood. Some nodes in the neighborhood may become active themselves.
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Neighborhoods are shaded blue in Figure 1.1. Note that in general,

the neighborhood of an active node is distinct from its neighbors in the

graph.

In general, there may be many active elements in a graph during the ex-

ecution of an algorithm. We can categorize algorithms in two classes, depend-

ing on whether they place constraints on the processing of active elements.

In unordered algorithms, active elements can be processed in any order, al-

though some scheduling orders may be more efficient than others. Unordered

algorithms are usually implemented using worklists organized for a particu-

lar scheduling heuristic. Chaotic relaxation [28] is an unordered algorithm,

since it does not enforce any particular order on the application of relaxations.

Other examples of unordered algorithms are Delaunay mesh generation and

refinement, and preflow-push maxflow computation.

In ordered algorithms, there is some algorithm-specified order in which

active elements must appear to have been processed. This order is usually im-

plemented using a priority queue. Dijkstra’s SSSP algorithm, Prim’s minimum

spanning tree algorithm are two such examples.

Amorphous data-parallelism (ADP) is the parallelism that arises from

simultaneously processing active nodes, subject to neighborhood and order-

ing constraints. ADP is a generalization of conventional data-parallelism [65]

in which (i) concurrently executing operations may conflict with each other,

(ii) activities can be created dynamically, and (iii) activities may modify the
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underlying data structure [115].

1.3 Exploiting Amorphous Data Parallelism

How can one exploit amorphous data parallelism? As we already men-

tioned traditional compile-time parallelization is not a very effective approach,

because dependences between computations are not known statically.

Instead, parallelization methodologies for this domain rely on the no-

tion of optimistic parallelization [115]. In this approach, most of the work

required to parallelize an irregular algorithm is performed at runtime. Each

thread executes a parallel task Ti “optimistically”, that is, under the assump-

tion that other threads will not concurrently execute tasks with conflicting

accesses to the data accessed by Ti. The execution of Ti is performed specu-

latively [57, 62, 126]. In speculative execution, the effects of each task Ti are

made visible to other threads only upon the successful completion of Ti. In

case of conflict between two tasks one of them is aborted and its effects on the

shared state are undone.

The Galois system [81] and systems based on transactional memory [62]

are based on this parallelization strategy. In order to further simplify pro-

gramming in the above methodology the Galois system also exploits the sep-

aration between algorithms and data structures that has become the norm

in object-oriented programming: the application programmer writes sequen-

tial programs in Java or C++ but uses a library of concurrent data struc-

tures that perform all the necessary concurrency management in co-ordination
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with a sophisticated speculation-based runtime system. Since the library data

structures are written by a small number of expert parallel programmers, this

approach simplifies the task of most application programmers.

However, there is a number of significant problems that arise in practice

in performance programming of multicore and manycore processors, which are

not addressed by the above approach. Some of the major complications are

the following.

Choice of algorithm: Programmers usually have a choice of many algo-

rithms for solving a given problem: even a relatively simple problem

like SSSP can be solved using Dijkstra’s algorithm [34], the Bellman-

Ford algorithm [34], the label-correcting algorithm [104], and delta-

stepping [104], among others. Manually implementing and optimizing

a number of different solutions in order to find the best one is a tedious

and time-consuming process.

Architecture trade-offs: There are complicated trade-offs between paral-

lelism and work-efficiency in these algorithms. For example, Dijkstra’s

algorithm orchestrates the application of relexations very carefully and

achieves very good work-efficiency, but it has relatively little parallelism.

Conversely, the Bellman-Ford and label-correcting algorithms are less

strict about the order of applying relaxations and can exhibit a lot of

parallelism but may be less work-efficient. Therefore, the best algorith-

mic choice may depend on the number of cores that are available to solve
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the problem. The best algorithmic choice may depend on the core archi-

tecture. If Single-Instruction Multiple-Data (SIMD) style execution is

supported efficiently by the cores, as is the case with Graphics Process-

ing Units (GPUs), the Bellman-Ford algorithm may be preferable to the

label-correcting or delta-stepping algorithms. Conversely, for Multiple-

Instruction Multiple-Data (MIMD) style execution, label-correcting or

delta-stepping may be preferable.

Input sensitivity: The amount of parallelism in irregular graph algorithms

is usually dependent on the structure of the input graph. For exam-

ple, regardless of which algorithm is used, there is little parallelism in

the SSSP problem if the graph is a long chain (more generally, if the

diameter of the graph is large); conversely, for graphs that have a small

diameter such as those that arise in social network applications, there

may be a lot of parallelism that can be exploited by the Bellman-Ford

and label-correcting algorithms. Therefore, the best algorithmic choice

may depend on the size and structure of the input graph.

Scheduling and synchronization choices: Even for a given algorithm, there

are usually a large number of implementation choices that must be made

by the performance programmer. Each of the SSSP algorithms listed

above has a host of implementations; for example, label corrections in

the label correcting algorithm can be scheduled in FIFO, LIFO, and other

orders, and the scheduling policy can make a big difference in the overall
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performance of the algorithm. Similarly, delta-stepping has a parame-

ter that can be tuned to increase parallelism at the cost of performing

extra computation. As in other parallel programs, synchronization can

be implemented using spin-locks, abstract locks, or Compare-and-Swap

(CAS) operations. These choices can affect performance substantially,

but even expert programmers cannot always make the right choices.

1.4 Elixir: Synthesis of Irregular Algorithms

One promising approach for addressing the above problems is program

synthesis [98, 5, 51]. Instead of writing programs in a high-level language

like C++ or Java, the programmer writes a higher level specification of what

needs to be computed, leaving it to an automatic system to synthesize efficient

parallel code for a particular platform from that specification. This approach

has been used successfully in domains like signal processing where algorithms

have a very concise mathematical expression [124].

In the case of irregular algorithms, however, we currently do not have

a synthesis methodology that (i) allows for a concise, high-level expression of

problems, and (ii) allows one to derive efficient parallel implementations that

are competitive with hand-optimized code. Moreover, we currently have few

insights into the structure of parallelism and locality in irregular algorithms,

which would allow development of techniques and tools that transform irreg-

ular programs to execute efficiently on parallel computers.

To address these problems, this dissertation develops a methodology
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and a system, Elixir, for synthesis of parallel programs from irregular algo-

rithm specifications based on the operator formulation. Elixir [120, 121], starts

from a high-level non-deterministic algorithm specification and produces par-

allel C++ implementations for multicore shared memory machines. The Elixir

methodology can be summarized by the motto:

Algorithm = Operators + Schedule

An Elixir specification consists of two components: (i) a set of opera-

tors over irregular data-structures, which are actions that capture the main

algorithm logic (i.e., what needs to be done to solve a problem), and (ii) a

declarative specification of the parallel schedule (i.e., how to perform these

actions to get an efficient solution). Different algorithm variants for irregular

problems correspond to different schedules for a given set of operators.

Internally, Elixir performs sophisticated compiler analyses to merge and

optimize the two components and inserts automatically synchronization nec-

essary for correct parallelization. The Elixir approach has two advantages.

First, it improves productivity by allowing programmers to express high-level

solutions and avoid writing explicitly parallel code, which introduces problems

such as race conditions and deadlocks. Second, it enables a systematic explo-

ration of the implementation space, simply by describing different scheduling

strategies in the Elixir domain-specific language. Such explorations are nec-

essary to optimize programs for complex parallel platforms, where analytical

10



performance modeling is usually intractable and where the best solution is of-

ten input and platform dependent. Below, we present briefly the main features

of Elixir.

1.4.1 Elixir Language Abstractions and Automated Reasoning

An Elixir specification is an implicitly parallel algorithm description.

The operators, which can be applied non deterministically, capture all the la-

tent concurrency for the family of algorithms using them as their base logic.

Expressing these different variants easily, in order to find the best perform-

ing one, calls for a language that allows to express schedules separately from

the operators, and which permits schedules that can express competitive al-

gorithm variants. Unfortunately, contemporary languages like Java or C++

only support lower-level descriptions of computations and do not provide a

satisfactory solution to this problem. Elixir address this problem by providing

a language that expresses a rich class of schedules and a novel methodology for

knitting the operator and schedule specifications together to produce efficient

parallel programs.

A significant innovation in Elixir is its refined view of the schedule. One

aspect of the schedule is concerned with ordering the processing of different op-

erator instances that are enabled during the algorithm execution. Broadly, one

can implement ordering via dynamic mechanisms that bind operator schedul-

ing at runtime or static mechanisms that fix the scheduling at compile time.

Typically, dynamic mechanisms are implemented as data-structures used by
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the algorithm, e.g. priority queues and sets, that store handles to tasks and

order them based on the values of algorithm-specific ranking functions. Static

mechanisms, on the other hand, manifest as code in the program that corre-

sponds to combinations of simpler operators that either perform more complex

updates in the same portion of the graph or update larger portions of the graph.

A different aspect of the schedule is concerned with finding the delta of each

operator, that is, the new tasks generated as a result of the operator execution.

Hence, the implementation must also contain logic to discover and schedule

the delta. Usually, algorithm variants differ in their choices of static mecha-

nisms, dynamic mechanisms, as well as the logic for scheduling the operator

delta.

The Elixir language allows users to specify both static and dynamic

parts of the schedule. Additionally, Elixir infers the operator delta automati-

cally. Inferring the delta requires performing sophisticated static analyses in

order to reason about the effects of each operator and identify the new work

that it generates as a side-effect. Once Elixir infers the operator deltas, it then

fuses the operators and the different ingredients of the schedule together to

create an algorithm variant, and it also adds synchronization code to execute

operators atomically for correct parallel execution. This provides a significant

advantage over existing parallel programming frameworks. In existing frame-

works the schedule is fused together with the operators into a single software

artifact. Consequently, the programmer has to disentangle and re-assemble

these elements manually and reason about the correctness of the new solution.
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This makes it very hard to experiment with different algorithm variants. In

Elixir, on the contrary, the programmer generates different variants by simply

changing elements of the high-level specification and letting the tool take care

of the implementation details.

Furthermore, Elixir can automatically customize the synchronization

code to the operator and schedule, which is not possible in existing program-

ming frameworks.

1.4.2 Synthesis via Automated Planning

Another innovation of the Elixir methodology relates to the synthesis

techniques it uses to automatically explore various implementation strategies

for irregular problems. As a first step, Elixir fuses the operators and the sched-

ule and creates a high-level imperative program that is implemented in terms

of statements in a high-level intermediate representation (HIR), as typically

found in compilers. Turning such high-level solutions into efficient parallel

programs in a language like C++ requires applying certain key transforma-

tions: (i) inserting synchronization to ensure atomic operator execution, (ii)

selecting efficient implementations of HIR statements, and (iii) finding a good

ordering of HIR statements.

The space of possible programs to consider is usually large, since there

are multiple valid statement execution orders and candidate implementations

for each statement, as well as multiple synchronization policies to consider.

Since different policies for each transformation interact in subtle ways,
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and since the best solution is usually input and platform dependent, selecting

a priori the combination that leads to the best parallel implementation is

intractable. Consequently, it is necessary to have a method that generates

multiple efficient programs automatically so that we can find the best program

through search-based techniques.

One solution is to approach the issue via a traditional compilation strat-

egy, where transformations are applied as different phases, in some order, to

produce the final program. This solution suffers from the well-known phase

ordering problem and may not lead to the highest quality code for many prob-

lems. Elixir addresses this problem by using a novel synthesis approach based

on automated planning [121]. The Elixir synthesizer encodes each of the above

transformations declaratively via constraints as a planning problem, and then

combines their respective constraints to create a composite planning problem.

Elixir uses off-the-shelf planners to find solutions to the composite problem.

Each individual solution corresponds to a correctly synchronized program in

which HIR statements have been reordered and lowered to specific implemen-

tations. The key advantage of this approach is that searching for solutions that

simultaneously solve all constraints avoids the phase-ordering problem and pro-

duces better code. This methodology leads to the first integrated compilation

approach involving tasks such as scheduling and synchronization.
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1.5 Contributions and Organization

This thesis makes several contributions in the areas of programming

languages, program synthesis, and parallel programming.

• Synthesis for irregular graph problems. This thesis presents the

first approach that is able to synthesize efficient parallel programs for

the very challenging domain of sparse graph problems. Chapter 2 and

Chapter 3 present the design of Elixir, which is the first system that

achieves high productivity and high performance for this domain. Chap-

ter 4 discusses a number of case studies that demonstrate the ability of

Elixir to synthesize parallel implementations that perform competitively

with, and in many cases even outperform highly optimized hand-written

implementations.

• Language Abstractions for concisely expressing parallel irregu-

lar problems. Chapter 2 presents a language that enables programmers

to express irregular programs abstractly as operators plus schedules,

along with a scheduling language that can express various interesting

algorithmic variants for each problem. Chapter 5 presents an extended

case study on the problem of betweenness centrality. This study demon-

strates how the Elixir language can be used as a conceptual tool both for

understanding existing algorithms for irregular problems and for design-

ing new efficient parallel algorithms.
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• Automated reasoning for synthesizing incremental computa-

tions. Chapter 2 describes a static analysis that can infer the new work

that gets generated as a side effect of applying a specific operator. In

the context of Elixir this is useful in order to synthesize work-efficient

algorithms that incrementally update the graph in order to compute

the solution efficiently. In a more general context, this technique can

be use for inferring incremental computations from a non-deterministic

specification.

• An integrated compilation approach for synthesis of efficient

parallel graph programs. Chapter 3 presents the first integrated

compilation approach for the very challenging domain of sparse graph

problems. Our approach uses automated planning as a mechanism to

declaratively specify and compose a number of program transformations

that are necessary for synthesizing efficient parallel graph programs. Our

formulation of integrated compilation via planning is generic and can be

applied to contexts that are different from the synthesis of graph pro-

grams.

• Static analysis techniques that mitigate the overheads of spec-

ulative parallelization. In Chapter 6 we focus on the optimization of

irregular algorithms in a more conventional programming setting where

solutions are expressed in languages like C++ or Java and are paral-

lelized using speculation-based approaches. Examples of speculative sys-

tems are the Galois system [81] and transactional memory variants. In
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such programming environments we show how static analysis can be used

to optimize the overheads of speculative parallelization of irregular algo-

rithms. Given an input program containing regions with transactional se-

mantics, the analysis calculates a per program point over-approximation

of the set of acquired locks. Using this information it detects cases where

synchronization is redundant (an object is already locked). More impor-

tantly, this analysis identifies fail-safe points – points after which trans-

actions are guaranteed to commit and speculation (locking and recording

undo actions) is no longer necessary. This analysis also identifies irregu-

lar programs called cautious operators, which read all shared state before

modifying any shared data. Such programs do not require storing roll-

back information. Reasoning about irregular graph problems automati-

cally to identify such patterns is particularly challenging, since the space

of possible program configurations is infinite. Our analysis uses a novel

abstraction scheme to record sets of locked objects residing deeply in the

heap, in a way that deals with the so-called “state-space explosion” phe-

nomenon, which occurs when a static analysis explores a prohibitively

large number of “abstract states”, exhausting space or time resources.

In Chapter 7 we review the literature of related work and in Chapter 8

we conclude with a summary of our contributions and discussion of future

work. Parts of the work presented in this thesis have appeared in the following

publications [120, 119, 121, 122].
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Chapter 2

Elixir: A System for Synthesizing Irregular

Graph Algorithms

In this chapter 1, we describe a system called Elixir that synthesizes par-

allel programs for shared-memory multicore processors, starting from irregular

algorithm specifications based on the operator formulation of algorithms [115].

The operator formulation is a data-centric description of algorithms in which

algorithms are expressed in terms of their action on data structures rather

than in terms of program-centric constructs like loops. There are three key

concepts: active elements, operator, and ordering.

Active elements are sites in the graph where there is computation to

be done. For example, in SSSP algorithms, each node has a label that is the

length of the shortest known path from the source to that node; if the label

of a node is updated, it becomes an active node since its immediate neighbors

must be examined to see if their labels can be updated as well.

1 Part of the work presented in this chapter has appeared in “Dimitrios Prountzos,
Roman Manevich, Keshav Pingali. ‘Elixir: A System for Synthesizing Concurrent Graph
Programs’. In Proceedings of the ACM International Conference on Object Oriented Pro-
gramming Systems Languages and Applications (OOPSLA) 2012”. The first author is
responsible for the conception and the implementation of the ideas presented in this publi-
cation. Additional authors provided assistance with the presentation of the material.
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The operator is a description of the computation that is done at an

active element. Applying the operator to an active element creates an activ-

ity. In general, an operator reads and writes graph elements in some small

region containing the active element. These elements are said to constitute

the neighborhood of this activity.

The ordering specifies constraints on the processing of active elements.

In unordered algorithms, it is semantically correct to process active elements

in any order, although different orders may have different work-efficiency and

parallelism. A parallel implementation may process active elements in parallel

provided the neighborhoods do not overlap. The non-overlapping criterion can

be relaxed by using commutativity conditions, but we do not consider these in

this thesis. The preflow-push algorithm for maxflow computation, Boruvka’s

minimal spanning tree algorithm, and Delaunay mesh refinement are exam-

ples of unordered algorithms. In ordered algorithms on the other hand, there

may be application-specific constraints on the order in which active elements

are processed. Discrete-event simulation is an example: any node with an in-

coming message is an active element, and messages must be processed in time

order.

The specification language described in this chapter permits application

programmers to specify (i) the operator, and (ii) the schedule for processing

active elements; Elixir takes care of the rest of the process of generating parallel

implementations. Elixir addresses the following major challenges.
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• How do we design a language that permits operators and scheduling

policies to be defined concisely by application programmers?

• The execution of an activity can create new active elements in general.

How can newly created active elements be discovered incrementally with-

out having to re-scan the entire graph?

• How should synchronization be introduced to make activities atomic?

The rest of this chapter is organized as follows. Section 6.2 presents

the key ideas and challenges, using a number of algorithms for the SSSP prob-

lem. Section 2.2 formally presents the Elixir graph programming language and

its semantics for the simple case of dynamic scheduling alone. Section 2.3

formalizes the semantics of statements combining both static and dynamic

scheduling. Section 2.4 describes the automated reasoning techniques that

Elixir uses to merge the operators with the schedule and create a high-level

incremental algorithm.

2.1 An Informal Introduction to the Elixir Approach

In this section, we present the main ideas behind Elixir, using the SSSP

problem as a running example. In Section 2.1.1 we discuss the issues that arise

when SSSP algorithms are written in a conventional programming language.

In Section 2.1.2, we describe how operators can be specified in Elixir indepen-

dently of the schedule. and how a large number of different scheduling policies

can be specified abstractly by the programmer. In particular, we show how
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the Dijsktra, Bellman-Ford, label-correcting and delta-stepping algorithms can

be specified in Elixir just by changing the scheduling specification. Finally,

in Section 2.1.3 we sketch how Elixir addresses the two most important synthe-

sis challenges: how to synthesize efficient implementations, and how to insert

synchronization.

2.1.1 SSSP Algorithms and the Relaxation Operator

Given a weighted graph and a node called the source, the SSSP problem

is to compute the distance of the shortest path from the source node to every

other node (we assume the absence of negative weight cycles). As mentioned

in Section 1.3, there are many sequential and parallel algorithms for solving

the SSSP problem such as Dijkstra’s algorithm [34], the Bellman-Ford algo-

rithm [34], the label-correcting algorithm [104], and delta-stepping [104]. In

all algorithms, each node a has an integer attribute a.dist that holds the length

of the shortest known path to that node from the source. This attribute is

initialized to ∞ for all nodes other than the source where it is set to 0, and is

then lowered to its final value using iterative edge relaxation: if a.dist is low-

ered and (i) there is an edge (a, b) of length wab, and (ii) b.dist > a.dist +wab,

the value of b.dist is lowered to a.dist + wab. However, the order in which

edge relaxations are performed can be different for different algorithms, as we

discuss next.

In Figure 2.1 we present pseudocode for the sequential label-correcting

and the Bellman-Ford SSSP algorithms with the edge relaxation highlighted
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in grey. Although both algorithms use relaxations, they may perform them in

different orders and different numbers of times. We call this order the schedule

for the relaxations. The label-correcting algorithm maintains a worklist of

edges for relaxation. Initially, all edges connected to the source are placed on

this worklist. At each step, an edge (a, b) is removed from the worklist and

relaxed; if there are several edges on the worklist, the edge to be relaxed is

chosen heuristically. If the value of b.dist is lowered, all edges connected to

b are placed on the worklist for relaxation. The algorithm terminates when

the worklist is empty. The Bellman-Ford algorithm performs edge relaxations

in rounds. In each round, all the graph edges are relaxed in some order.

A total of |V | − 1 rounds are performed, where |V | is the number of graph

nodes. Although both algorithms are built using the same basic ingredient,

as Figure 2.1 shows, it is not easy to change from one to another. This is

because the code for the relaxation operator is intertwined intimately with the

code for maintaining worklists, which is an artifact of how the relaxations

are scheduled by a particular algorithm. In a concurrent setting, the code for

synchronization makes the programs even more complicated.

2.1.2 SSSP in Elixir

Figure 2.2 shows several SSSP algorithms written in Elixir. The major

components of the specification are the following.
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1 Label Correcting

3 INITIALIZATION:
4 for each node a in V {
5 if (a == Src) a.dist = 0;
6 else a. dist = ∞;
7 }
8 RELAXATION:
9 Wl = new worklist();

10 // Initialize worklist .
11 for each e = (Src, , ) {
12 Wl.add(e);
13 }
14 while (!Wl.empty()) {
15 (a,b,w) = Wl.remove();

16 if (a.dist + w < b.dist) {

17 b.dist = a.dist + w;

18 for each e = (b, c, w’)
19 Wl.add(e);
20 }
21 }

1 BellmanFord

3 INITIALIZATION:
4 for each node a in V {
5 if (a == Src) a.dist = 0;
6 else a. dist = ∞;
7 }
8 RELAXATION:
9 for i = 1..|V | − 1 {

10 for each e = (a, b, w) {
11 if (a.dist + w < b.dist) {

12 b.dist = a.dist + w;

13 }
14 }

Figure 2.1: Pseudocode for label-correcting and Bellman-Ford SSSP algo-
rithms.

2.1.2.1 Operator Specification

Lines 1–2 define the graph. Nodes and edges are represented abstractly

by relations that have certain attributes. Each node has a unique ID attribute

(node) and an integer attribute dist; during the execution of the algorithm,

the dist attribute of a node keeps track of the shortest known path to that

node from the source. Edges have a source node, a destination node, and an

integer attribute wt, which is the length of that edge. Line 4 defines the source

node. SSSP algorithms use two operators, one called initDist to initialize

the dist attribute of all nodes (lines 6–7), and another called relaxEdge to

perform edge relaxations (lines 9–13).

Operators are described by rewrite rules in which the left-hand side is a
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1 Graph [ nodes(node : Node, dist : int)
2 edges(src : Node, dst : Node, wt : int) ]

4 source : Node

6 initDist = [ nodes(node a, dist d) ] →
7 [ d = if (a == source) 0 else ∞ ]

9 relaxEdge = [ nodes(node a, dist ad)
10 nodes(node b, dist bd)
11 edges(src a, dst b, wt w)
12 ad + w < bd ] →
13 [ bd = ad + w ]

15 init = foreach initDist
16 sssp = iterate relaxEdge � sched
17 main = init; sssp

Algorithm Schedule specification

Dijkstra 1 sched = metric ad � group b

Label-correcting 1 sched = group b � unroll 2 � approx metric ad

∆-stepping-style 1 DELTA : unsigned int
2 sched = metric (ad + w) / DELTA

Bellman-Ford

1 NUM NODES : unsigned int
2 // override sssp
3 sssp = for i=1..(NUM NODES −1)
4 step
5 step = foreach relaxEdge

Figure 2.2: Elixir programs for SSSP algorithms.
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predicated subgraph pattern, called the redex pattern, and the right-hand side

is an update.

A predicated subgraph pattern has two parts, a shape constraint and

a value constraint. A subgraph G′ of the graph is said to satisfy the shape

constraint of an operator if there is a bijection between the nodes in the shape

constraint and the nodes in G′ that preserves the edge relation. The shape

constraint in the initDist operator is satisfied by every node in the graph,

while the one in the relaxEdge operator is satisfied by every pair of nodes

connected by an edge. A value constraint filters out some of the subgraphs that

satisfy the shape constraint by imposing restrictions on the values of attributes;

in the case of the relaxEdge operator, the conjunction of the shape and value

constraints restricts attention to pairs of nodes (a, b) which have an edge from

a to b, and whose dist attributes satisfy the constraint a.dist + wab < b.dist.

A subgraph that satisfies both the shape and value constraints of an operator

is said to match the predicated sub-graph pattern of that operator, and will

be referred to as a redex of that operator.

The right-hand side of a rewrite rule specifies updates to some of the

value attributes of nodes and edges in a subgraph matching the predicated

subgraph pattern on the left-hand side of that rule. To simplify exposition, we

restrict attention to local computation algorithms [115] that are not allowed to

morph the graph structure by adding or removing nodes and edges. Addition-

ally, we assume that our operators work over a bounded number of nodes and
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edges. Elixir allows disjunctive operators of the form:

op1 or . . .or opk

Problems like betweenness centrality [20], connected components, and preflow-

push use disjunctive operators with multiple disjuncts.

Statements define how operators are applied to the graph. A loop-

ing statement has one the forms ‘foreach op’, ‘for i=low..high op’, or

‘iterate op’ where op is an operator. A foreach statement finds all matches

of the given operator and applies the operator once to each matched subgraph

in some unspecified order. Line 15 defines the initialization statement to be

the application of initDist once to each node. A for statement applies an

operator once for each value of i between low and high. An iterate state-

ment applies an operator ad infinitum by repeatedly finding some redex and

applying the operator to it. This statement terminates when no redexes exist.

Line 16 expresses the essence of the SSSP computation as the repeated appli-

cation of the relaxEdge operator (for now, ignore the text “>> sched”). It

is the responsibility of the user to guarantee that iterate arrives to a fixed-

point after a finite number of steps by specifying meaningful value constraints.

Finally, line 17 defines the entire computation to be the initialization followed

by the distances computation.

Elixir programs can be executed sequentially by repeatedly searching

the graph until a redex is found, and then applying the operator there. Three

optimizations are needed to make this baseline, non-deterministic interpreter,
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efficient.

1. Even in a sequential implementation, the order in which redexes are ex-

ecuted can be important for work-efficiency and locality. The best order

may be problem-dependent, so it is necessary to give the application

programmer control over scheduling. Section 5.3 gives an overview of

the scheduling constructs in Elixir.

2. To avoid scanning the graph repeatedly to find redexes, it is desirable to

maintain a worklist of potential redexes in the graph. The application

of an operator may enable and disable redexes, so the worklist needs to

be updated incrementally whenever an operator is applied to the graph.

The worklist can be allowed to contain a superset of the set of actual

redexes in the graph, provided an item is tested when it is taken off the

worklist for execution. Section 2.1.3.1 gives a high-level description of

how Elixir maintains worklists.

3. In a parallel implementation, each activity should appear to have exe-

cuted atomically. Therefore, Elixir must insert appropriate synchroniza-

tion. Section 2.1.3.2 describes some of the main issues in doing this.

2.1.2.2 Scheduling Constructs

Elixir provides a compositional language for specifying commonly used

scheduling strategies declaratively and automatically synthesizes efficient im-

plementations of them.

We use Dijkstra-style SSSP computation to present the key ideas of
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our language. This algorithm maintains nodes in a priority queue, ordered

by the distance attribute of the nodes. In each iteration, a node of minimal

priority is removed from the priority queue, and relaxations are performed on

all outgoing edges of this node. This is described by the composition of two

basic scheduling policies:

1. Given a choice between relaxing edge e1 = (a1, b1) and edge e2 = (a2, b2)

where a1.dist < a2.dist, give e1 a higher priority for execution. In Elixir,

this is expressed by the specification metric ad (recall that ad is the

distance of the edge source a).

2. To improve spatial and temporal locality, it is desirable to co-schedule

active edges that have the same source node a, in preference to inter-

leaving the execution of edges of the same priority from different nodes.

In Elixir this is expressed by the specification group b, which groups

together relaxEdge applications on all edges outgoing from a to a suc-

cessor b. This can be viewed as a refinement of the metric ad specifi-

cation, and the composition of these policies is expressed as metric ad

>> group b.

These two policies exemplify two general scheduling schemes: dynamic

and static scheduling. Scheduling strategies that bind the scheduling of redexes

at runtime are called dynamic scheduling strategies, since they determine the

priority of a redex using values known only at runtime. Typically, they are

implemented via a dynamic worklist data-structure that prioritizes its contents
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based on the specific policy. In contrast, static scheduling strategies, such

as grouping, bind scheduling decisions at compile-time and are reflected in

the structure of the source code that implements composite operators out

of combinations of basic ones. One of the contributions of our work is the

combination of static and dynamic scheduling strategies in a single system.

The main scheduling strategies supported by Elixir are the following.

metric e The arithmetic expression e over the variables of the redex pattern

is the priority function. In practice, many algorithms use priorities heuristi-

cally so they can tolerate some amount of priority inversion in scheduling.

Exploiting this fact can lead to more efficient implementations, so Elixir sup-

ports a variant called approx metric e.

group V specifies that every redex pattern node v ∈ V should be matched

in all possible ways.

unroll k Some implementations of SSSP perform two-level relaxations: when

an edge (a,b) is relaxed, the outgoing edges of b are co-scheduled for relax-

ation if they are active, since this improves spatial and temporal locality. This

can be viewed as a form of loop unrolling. Elixir supports k-level unrolling,

where k is under the control of the application programmer.

(op1 or op2) � fuse specifies that instances of op1, op2 working on the same

redex should create a new composite operator applying the operators in se-
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quence (in left-to-right order of appearance). Fusing improves locality and

amortizes the cost of acquiring and releasing locks necessary to guarantee

atomic operator execution.

The group, unroll, and fuse operations define static scheduling strate-

gies. We use the language of Nguyen et al. [108] to define dynamic scheduling

policies that combine metric with LIFO and FIFO policies, and use implemen-

tations of these worklists from the Galois framework [2].

Figure 2.2 shows the use of Elixir scheduling constructs to define a

number of SSSP implementations. The label-correcting variant [104] is an

unordered algorithm, which, on each step, starts from a node and performs

relaxations on all incident edges, up to two “hops” away. The delta-stepping

variant [104] operates on single edges and uses a ∆ parameter to partition

redexes into equivalence classes. This heuristic achieves work-efficiency by

processing nodes in order of increasing distance from the source, while also

exposing parallelism by allowing redexes in the same equivalence class to be

processed in parallel. Finally Bellman-Ford [34] works in a SIMD style by

performing a series of rounds in which it processes all edges in the graph.

2.1.3 Synthesis Challenges

We finish this section with a brief description of the main challenges

that Elixir addresses. First, we discuss how Elixir optimizes worklist mainte-

nance and second how it synchronizes code to ensure atomic operator execu-

tion.
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2.1.3.1 Synthesizing Work-efficient Implementations

To avoid scanning the graph repeatedly for redexes, it is necessary to

maintain a worklist of redexes, and update this worklist incrementally when a

redex is executed since this might enable or disable other redexes. To under-

stand the issues, consider the label-correcting implementation in Figure 2.1,

which iterates over all outgoing edges of b and inserts them into the worklist.

Since the worklist can be allowed to contain a superset of the set of the redexes

(as long as items are checked when they are taken from the worklist), another

correct but less efficient solution is to insert all edges incident to either a or b

into the worklist. However, the programmer manually reasoned that the only

place where new “useful” work can be performed is at the outgoing edges of b,

since only b.dist is updated. Additionally, the programmer could experiment

with different heuristics to improve efficiency. For example, before inserting

an edge (b, c) into the worklist, the programmer could eagerly check whether

b.dist + wbc ≥ c.dist.

In a general setting with disjunctive operators, different disjuncts may

become enabled on different parts of the graph after an operator application.

Manually reasoning about where to apply such incremental algorithmic steps

can be daunting. Elixir frees the programmer from this task. In Figure 2.2

there is no code dealing with that aspect of the computation; Elixir automati-

cally synthesizes the worklist updates and also allows the programmer to easily

experiment with heuristics like the above without having to write much code.

Another means of achieving work-efficiency is by using a good prior-
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ity function to schedule operator applications. In certain implementations of

algorithms such as betweenness centrality and breadth first search, the algo-

rithm transitions through different priority levels in a very structured manner.

Elixir can automatically identify such cases and synthesize customized dy-

namic schedulers that are optimized for the particular iteration patterns.

2.1.3.2 Synchronizing Operator Execution

To guarantee correctness in the context of concurrent execution, the

programmer must make sure that operators execute atomically. Although it

is not hard to insert synchronization code into the basic SSSP relaxation step,

the problem becomes more complex once scheduling strategies like unroll and

group are used since the resulting “super-operator” code can be quite complex.

There are also many synchronization strategies that could be used such as ab-

stract locks, concrete locks, and lock-free constructs like CAS instructions, and

the trade-offs between them are not always clear even to expert programmers.

Elixir frees the programmer from having to worry about these issues

because it automatically introduces appropriate fine grained locking. This

allows the programmer to focus on the creative parts of problem solving and

still get the performance benefits of parallelism.

2.2 The Elixir Graph Programming Language

In this section, we formalize our language whose grammar is shown in

Figure 2.3. Technically, a graph program defines graph transformations, or
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attid Graph attributes
acid Action identifiers
opid Operation identifiers
var Operator variables and global variables

ctype C++ type

program ::= graphDef global+ opDef+ actionDef+

graphDef ::= Graph [ nodes(attDef+ edges(attDef+) ]
attDef ::= attid : ctype | attid : set[ctype]

global ::= var : ctype

opDef ::= opid = opExp
opExp ::= [ tuple∗ (boolExp) ] → [ assign∗ ]

tuple ::= nodes(att∗) | edges(att∗)
boolExp ::= !boolExp | boolExp & boolExp | arithExp < arithExp

| arithExp == arithExp | var in setExp
arithExp ::= number | var | arithExp + arithExp | arithExp - arithExp

| if (boolExp) arithExp else arithExp
setExp ::= empty | {var} | setExp + setExp | setExp - setExp
assign ::= var = arithExp | var = setExp | var = boolExp

att ::= attid var

actionDef ::= acid = stmt
stmt ::= iterate schedExp | foreach schedExp

| for var = arithExp .. arithExp stmt | acid
| invariant? stmt invariant?
| stmt; stmt

schedExp ::= ordered | unordered
unordered ::= disjuncts

ordered ::= opsExp fuseTerm? groupTerm? metricTerm
disjuncts ::= disjunctExp | disjunctExp or disjuncts

disjunctExp ::= opsExp statSched dynSched
opsExp ::= opid | opid or opsExp

statSched ::= fuseTerm? groupTerm? unrollTerm?
dynSched ::= approxMetricTerm? timeTerm?
fuseTerm ::= >> fuse

groupTerm ::= >> group var∗

unrollTerm ::= >> unroll number
metricTerm ::= >> metric arithExp

approxMetricTerm ::= >> approx metric arithExp
timeTerm ::= >> LIFO | >> FIFO

Figure 2.3: Elixir language grammar (EBNF).
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actions, that may be used within an application. It first defines a graph type

by listing the data attributes associated with its nodes and edges. Next, a

program defines global variables that actions may access for reading. Global

variables may be accessed for reading and writing outside of actions by the

larger application. The graph program then defines operators and actions.

Operators define unit transformations that may be applied to a given sub-

graph. They are used as building blocks in statements that apply operators

iteratively. An important limitation of operators is that they may only update

data attributes, but not morph the graph (add or remove nodes and edges).

Actions compose statements and name them. They compile to C++ functions

that take a single graph reference argument.

2.2.1 Graphs and Patterns

Let Attr denote a finite set of attributes. An attribute denotes a subtype

of one of the following types: the set of numeric values Num (integers and

reals), graph nodes Node and sets of graph nodes ℘(Node). Let Val
def
= Num∪

Node ∪ ℘(Node) stand for the union of those types.

Definition 2.2.1 (Graph). 2 A graph G = (V G, EG,AttG) is a triple where

V G ⊂ Node the graph nodes, EG ⊆ V G × V G are the graph edges, and AttG :

((Attr×V G)→ Val)∪ ((Attr×V G×V G)→ Val) associates values with nodes

and edges. We denote the set of all graphs by Graph.

2Our formalization naturally extends to graphs with several node and edge relations, but
for simplicity of the presentation we have just one of each.
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Definition 2.2.2 (Pattern). A pattern P = (V P , EP ,AttP ) is a connected

graph over variables. Specifically, V P ⊂ Var are the pattern nodes, EP ⊆

V P × V P are the pattern edges, and AttP : (Attr× V P )→ Var∪ (Attr× V P ×

V P )→ Var associates a distinct variable (not in V P ) with each node and edge.

We call the latter set of variables attribute variables. We refer to (V P , EP )

as the shape of the pattern.

In the sequel, when no confusion is likely, we may drop superscripts

denoting the association between a component and its containing compound

type instance, e.g., G = (V,E).

Definition 2.2.3 (Matching). Let G be a graph and P be a pattern. We say

that µ : V P → V G is a matching (of P in G), written (G, µ) |= P , if it is one-

to-one, and for every edge (x, y) ∈ EP there exists an edge (µ(x), µ(y)) ∈ EG.

We denote the set of all matchings by Match : Var→ Node.

We extend a matching µ : V P → V G to evaluate attribute variables

µ : (Graph × Var) → Val as follows. For every attribute a, pattern nodes

y, z ∈ V P , and attribute variable x, we define:

µ(G, x) = AttG(a, µ(y)) if AttP (a, y) = x ,

µ(G, x) = AttG(a, µ(y), µ(z)) if AttP (a, y, z) = x .

Lastly, we let µ extend to evaluate expressions over the variables of

a pattern by structural induction over the natural definitions of the sub-

expression types defined in Figure 2.3.
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2.2.2 Operators

In the sequel, we will denote syntactic expressions by referring to their

respective non-terminals in Figure 2.3.

Definition 2.2.4 (Operator). An operator is a triple denoted by op = [Rop,Gdop]→

[Updop] where Rop is called the redex pattern; Gdop is a Boolean-valued ex-

pression over the variables of the redex pattern, called the guard; and Updop :

V R → Expr contains an assignment per attribute variable in the redex pattern,

in terms of the variables of the redex pattern (for brevity, we omit identity

assignments).

We now define the semantics of an operator as a function that trans-

forms a graph for a given matching [[·]] : opExp→ (Graph×Match)→ Graph.

Let op = [R,Gd]→ [Upd] be an operator and let µ : V R → V G be a matching

(of R in G). We say that µ satisfies the shape constraint of op if (G, µ) |= R.

We say that µ satisfies the value constraint of op (and shape constraint), writ-

ten (G, µ) |= R,Gd, if µ(G,Gd) = True. In such a case, µ induces the subgraph

D denoted by µ(R), which we call a redex and define by:

V D def
= {µ(x) | x ∈ V R} ,

ED def
= EG ∩ (V D × V D) ,

AttD
def
= AttG|(Att×V D)∪(Att×V D×V D) .

We define an operator application by:

[[op]](G, µ) =

{
G′ = (V G, EG,Att′), (G, µ) |= R,Gd;
G, else
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(a) A redex pattern.
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Figure 2.4: A redex pattern and a graph where the pattern can be matched.

We have that D = µ(R) and the node and edge attributes in D are

updated using the expressions in Upd, respectively:

Att′(a, v) =

 µ(G,Upd(y)),
v ∈ V D, v = µ(xv)
and AttR(a, xv) = y;

Att(a, v) else.

Att′(a, u, v) =

 µ(G,Upd(y)),
(u, v) ∈ ED,
u = µ(xu), v = µ(xv)
and AttR(a, xu, xv) = y;

Att(a, u, v) else.

Example 2.2.5. Figure 2.4a shows the redex pattern of the relaxEdge operator

and Figure 2.4b shows a graph instance. The matching µ1,2 = {a 7→ n1, b 7→

n2} yields the following evaluations:

µ1,2(G, ad) = 0
µ1,2(G,w) = 1
µ1,2(G, bd) = 3

µ1,2(G, ad + w < bd) = True .

Therefore, the subgraph induced by the nodes n1 and n2 is a redex.

The operator application [[relaxEdge]](G, µ1,2) = G′ establishes the fol-
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lowing evaluations where differences are shown in boxes:

µ1,2(G′, ad) = 0
µ1,2(G′, w) = 1

µ1,2(G′, bd) = 1

µ1,2(G′, ad + w < bd) = False .

The remainder of this section defines the semantics of statements.

iterate and foreach statements have two distinct flavors: unordered iter-

ation and ordered iteration. We define them in that order. We do not define

for statements as their semantics is quite standard in all imperative languages.

2.2.3 Semantics of Unordered Statements

Unordered statements have the form

iterate schedExp1or . . .or schedExpk

or

foreach schedExp1or . . .or schedExpk

where each schedExpi has the form

opsExp >> statSched >> dynSched .

The expression opsExp is either a single operator op or a disjunction

of operators op1 or . . .or opk having the same shape (Rop1 = . . . = Ropk).

Intuitively, a disjunction represents alternative graph transformations. We

define the shorthand opi..j = opi or . . .or opj.
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The expression statSched, called a static schedule, is a possibly empty

sequence of static scheduling terms, which may include fuse, group, and

unroll. If opsExp is a disjunction then it must be followed by a fuse term.

An expression of the form opsExp� statSched defines a composite operator by

grouping together operator applications in a statically-defined (i.e., determined

at compile-time) way. We refer to such an expression as a static operator.

The expression dynSched, called a dynamic schedule, is a possibly empty

sequence of dynamic scheduling terms, which may include approx metric,

LIFO, and FIFO. A dynamic schedule determines the order by which static

operators are selected for execution by associating a dynamic priority with

each redex.

To simplify the exposition, in this section we present the semantics

under the simplifying assumption that statSched is empty. Section 2.3 contains

the details for the general case.

2.2.3.1 Preliminaries

Definition 2.2.6 (Active Element). An active element, denoted by elem〈op, µ〉,

pairs an operator op with a matching µ ∈ Match. It stands for the potential

application of op to (G, µ). We denote the set of all active elements by A.

We define the new set of redexes for an operator and for a disjunction

of operators, respectively by

Rdx[[op]]G
def
= {µ ∈ Match | (G, µ) |= Rop,Gdop} ,

Rdx[[op1..k]]G
def
= Rdx[[op1]]G ∪ . . . ∪Rdx[[opk]]G .
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We define the set of redexes of an operator op′ created by an application

of an operator op by

Delta[[op, op′]] (G, µ)
def
=

let G′ = [[op]](G, µ)
in Rdx[[op′]]G′ \Rdx[[op′]]G .

We lift the operation to disjunctions:

Delta[[opa, opc..d]] (G, µ)
def
=

⋃
c≤i≤d

Delta[[opa, opi]] (G, µ) .

2.2.3.2 Defining Dynamic Schedulers

Let iterate exp be a statement and let op1..k be the operators be-

longing to exp. An iterate statement executes by repeatedly finding a re-

dex for an operator and applying that operator to the redex. An execution

of iterate yields a (possibly infinite) sequence G = G0, . . . , Gk, . . . where

Gi+1 = [[op]](Gi, µi).

We now define a scalar priority pr(t, e, Gi) and partial order ≤t for a

scheduling term t ∈ {metric, approx metric, LIFO, FIFO}, an active element

e, and a graph Gi:

pr(metric a, e,Gi)
def
= µi(Gi, a)

pr(approx metric a, e,Gi)
def
= fuzz(µi(Gi, a))

pr(LIFO, e, Gi) = pr(FIFO, e, Gi)
def
= i

p ≤metric a p
′ ⇔ p ≤ p′

p ≤approx metric a p
′ ⇔ p ≤ p′

p ≤LIFO p
′ ⇔ p ≥ p′

p ≤FIFO p
′ ⇔ p ≤ p′

where fuzz(x) is some approximation of x.
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For an expression d = t1>> . . . >>tk ∈ dynSched, we define pr(d, e,Gi)
def
=

〈pr(t1, e, Gi), . . . , pr(tk, e, Gi)〉 and p ≤d p′ by the lexicographic quasi order

≤lex, which is also defined for vectors of different lengths. A prioritized active

element elem〈op, µ, p〉 is an active element associated with a priority. We

denote the set of all prioritized active elements by AP . For two prioritized

active elements v = (opv, µv, pv) and w = (opw, µw, pw), we define v ≤ w if

pv ≤lex pw

We define the type of prioritized worklists by WP def
= AP∗. We say

that a prioritized worklist ω = e1 · . . . · ek ∈ WP is ordered according to a

dynamic scheduling expression d ∈ dynSched, if ei ≤d ej implies i ≤ j for

every 1 ≤ i ≤ j ≤ k. We write Priority[[d]]ω = ω′ if ω′ is a permutation of

ω preserving the quasi order ≤d. We define the following worklist operations

for a dynamic scheduling expression d:

Empty
def
= ε ,

Pop ω
def
= (head(ω), tail(ω)) ,

Merge[[d]] (ω, δ)
def
= Priority[[d]] (ω · δ) ,

Init[[d]]G
def
= Merge[[d]] (ε,Rdx[[op1..k]]G)

where head(ω) and tail(ω) refer to the first element and (possibly empty) suffix

of a sequence, respectively.

2.2.3.3 Iteratively Executing Operators

Consider the set of program states Σ
def
= Graph∪Graph×WP . We will

write G + Wl to denote a graph-worklist pair. The meaning of statements is

given in terms of a transition relation with two forms of transitions:
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iterateinit starts executing iterate e by initializing a worklist
with the set of redexes found in G
〈iterate exp, G〉 =⇒ 〈iterate exp, G+ Wl〉 if
Wl = Init[[exp]]G
iteratestep executes an operator opi in exp
〈iterate exp, G+ Wl〉 =⇒ 〈iterate exp, G′ + Wl′′〉 if
(elem〈opi, µ, p〉,Wl′) = Pop Wl
G′ = [[opi]](G, µ)
∆ = Delta[[opi, op1..k]] (G, µ)
Wl′′ = Merge[[exp]] (Wl′,∆)
iteratedone returns the graph when no more operators can be
scheduled
〈iterate exp, G+ Empty〉 =⇒ G

foreachinit, foreachdone same rules as for iterate
foreachstep executes an operator opi in exp
〈foreach exp, G+ Wl〉 =⇒ 〈foreach exp, G′ + Wl′〉 if
(elem〈opi, µ, p〉,Wl′) = Pop Wl
G′ = [[opi]](G, µ)

Figure 2.5: An operational semantics for Elixir statements.

1. 〈S, σ〉 =⇒ σ′, means that the statement S transforms the state σ into σ′

and finishes executing;

2. 〈S, σ〉 =⇒ 〈S ′, σ′〉, means that the statement S transform the state σ

into σ′ to which the remaining statement S ′ should be applied.

The definition of =⇒ is given by the rules in Figure 2.5. The semantics

induced by the transition relation yields (possibly infinite) sequences of states

σ1, . . . , σk, . . .. A correct parallel implementation gives the illusion that each

transition occurs atomically, even though the executions of different transitions

may interleave.
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2.2.4 Semantics of Ordered Statements

Ordered statements have the form

iterate opsExp >> metric exp >> statSched .

The static scheduling expression statSched is the same as in the unordered

case, except that we do not allow unroll. The expression opsExp is either a

single operator op or a disjunction of operators op1..k having the same shape.

If opsExp is a disjunction then it is followed by a fuse term.

Prioritized active elements are dynamically partitioned into equivalence

classes Ci based on the value of exp. The execution then proceeds as follows:

We start by processing active elements from the equivalence class C0, which

has the lowest priority. Applying an operator to active elements from Ci can

produce new active elements at other priority levels, e.g., Cj. Once the work

at priority level i is done we start processing work at the next level. We will

restrict our attention to the class of algorithms where the priority of new active

elements is greater than or equal to the priority of existing active elements

(i ≤ j). Under this restriction, we are guaranteed to never miss work as we

process successive priority levels. The execution terminates when all work (at

the highest priority level) is done. All the algorithms that we studied belong to

this class. The above execution strategy admits a straightforward and efficient

parallelization strategy: associate with each Ci a bucket Bi and process in

parallel all work in bucket Bi before moving to Bi+1. This implements a

generic “level-by-level” parallel execution strategy. Instances of this scheme
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have been used to parallelize algorithms like breadth-first-search (e.g. [9]).

2.2.5 Using Strong Guards for Fixed-Point Detection

Our language allows defining iterate actions that do not terminate

for all inputs. It is the responsibility of the programmer to avoid defining

such actions. When an action does terminate for a given input, it is the

responsibility of the compiler to ensure that the emitted code detects the

fixed-point and stops.

Let µ be a matching and D = µ(G) be the matched subgraph. Further,

let G′ = [[op]](G, µ). One way to check whether an operator application leads

to a fixed-point is to check whether an operator has had an any effect, i.e.,

Att′D
?
= AttD. This requires comparing the result of the operator application

to a backup copy of D, created prior to its application. However, this ap-

proach is rather expensive. We opt for a more efficient alternative by placing

a requirement on the guards of operators, as explained next.

Definition 2.2.7 (Strong Guard). We say that an operator op has a strong

guard if for every matching µ, applying the operator disables the guard. That

is, if G′ = [[op]](G, µ) then (G′, µ) 6|= Gdop.

A strong guard allows to check (G, µ) 6|= Gdop, which involves just

reading the attributes of D and evaluating a Boolean expression.

Further, strong guards help us improve the precision of our incremental

worklist maintenance by supplying more information to the automatic reason-
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ing procedure, as explained in Section 2.4.3. Our compiler checks for strong

guards at compile-time and signals an error to the programmer otherwise (see

details in Section 2.4.3). In our experience, strong guards do not limit expres-

siveness. For efficiency, operators are usually written to act on a graph region

in a single step, which leads to disabling their guard.

2.3 Combining Static and Dynamic Scheduling — the
General Case

In this section, we present the semantics of static scheduling expres-

sions and explain how to combine static and dynamic scheduling to execute

statements.

2.3.1 Semantics of Static Operators

Let statOp ::= opsExp >> statSched denote the language of static oper-

ator expressions.

Our next goal is to define the semantics of a static operator Static[[·]] :

statOp → (Graph × Match) → Graph. Intuitively, a static operator can be

thought of as a small program where each scheduling term represents a nested

loop (nesting level goes from right to left). A fused disjunction represents a

loop executing its inner operators from left to right. Evaluation of a static

operator on a given graph and matching is done by step-wise execution of

these loops. Some of the steps create new redexes, which themselves require

more steps, until no more redexes appear. We use two concepts to represent
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these execution steps: partially evaluated expressions, or pe-exprs for short,

and extended active elements. A pe-expr contains two types of cursors : •,

which appears to the right of a scheduling term or an operator and acts as

a program counter; and ◦, which appears to the right of an unroll term to

denote an unfinished execution of the corresponding loop. We define extended

active elements, which generalize active elements, below.

Definition 2.3.1 (Extended Active Element). An extended active element,

denoted by elem〈e, µ〉, pairs a pe-expr e ∈ statOp with a matching µ ∈ Match.

Intuitively, it means that e is currently evaluating at µ. We denote the set of

all extended active elements by E.

For a sequence of matchings µ = µ1 · . . . ·µk and expression e ∈ statOp,

we define a constructor for a sequence of extended active elements as follows:

elems〈e, µ〉 def
= elem〈e, µ1〉 · . . . · elem〈e, µk〉.3 We write Pat(opsExp) to denote

the shape of the patterns appearing in the operators in opsExp (the shape

should be equal for all of them).

We define the following helper operation. Let R = Rop be the pattern

of an operator op and v ⊆ V R be a subset of the pattern nodes. We require

V R \ v be non-empty and induce a connected subgraph of R. We define the

set of matchings V R → G identifying with µ on the node variables v by

Expand[[R, v]](G, µ)
def
= {µ′ ∈ V R → V G | µ|v = µ′|v}

Expand[[op, v]](G, µ)
def
= Expand[[Pat(op), v]](G, µ) .

3We write α · β to denote the concatenation of two sequences α and β.
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We lift the Delta operation to disjunctions of general expressions:

Delta[[opa..b, opc..d]] (G, µ)
def
=⋃

a≤i≤b,c≤j≤d
Delta[[opi, opj]] (G, µ) .

The type SW def
= E∗, which we refer to as a static worklist, denotes all

sequences of extended active elements. For a non-empty sequence e · s where

s is possibly the empty sequence, we define head(e · s) = e and tail(e · s) = s.

With slight abuse of notation, we will often view a multiset as an arbitrary

sequence containing the same elements, allowing the use of operations such as

union. For a sequence ω and a multiset of extended active elements X, write

ω ∪X to denote any sequence ω′ containing all elements of ω and X.

We define the semantics of an extended active element for a graph

E [[·]] : E → Graph → (Graph × SW) in Figure 2.6. An application of the

function to a graph, E [[e, µ]]G = (G′, ω), returns the mutated graph G′ along

with any new extended active elements required for completing the execution

of e.

We define the helper function ExhaustStatic, which accepts a graph

and a static worklist, and iteratively applies each extended active element

in the worklist to the graph until no new work is discovered. This process

terminates as unrolling is performed for a fixed number of times. A static

operator executes by starting with a static worklist containing a single element,

which is constructed from the input expression and matching, and executing
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E [[elem〈op • >>s, µ〉]]G def
=

let G′ = [[op]](G, µ)
in (G′, ε)

E [[elem〈op • >>b ◦ >>s, µ〉]]G def
=

let G′ = [[op]](G, µ)

δ = Delta[[op, op]] (G, µ)

ω = elems〈op >>b • >>s, δ〉
in (G′, ω)

E [[elem〈op1..k >> fuse • >>s, µ〉]]G def
=

let ω = elem〈op1 • or op2..k >> fuse>>s, µ〉
in (G,ω)

E [[elem〈op1..j • or opj+1..k >> fuse>>s, µ〉]]G
def
=

let G′ = [[opj]](G, µ)
ω = elem〈op1..j+1 • or opj+2..k >> fuse>>s, µ〉

in (G′, ω)

E [[elem〈op1..k • >> fuse>>s, µ〉]]G
def
=

let G′ = [[opk]](G, µ)
in (G′, ε)

E [[elem〈op1..k • >> fuse>>b ◦ >>s, µ〉]]G
def
=

let G′ = [[opk]](G, µ)

δ = Delta[[op1..k, op1..k]] (G, µ)

ω = elems〈op1..k >> fuse>>b • >>s, δ〉
in (G′, ω)

E [[elem〈p >>group v • >>s, µ〉]]G def
=

let R = Pat(p)
α = Expand[[R, v]](G, µ)
ω = elems〈p • >>group v>>s, α〉

in (G,ω)

E [[elem〈p >>unroll 0 • >>s, µ〉]]G def
= E [[elem〈p • >>s, µ〉]]G

For k > 0 and k′ = k − 1

E [[elem〈p >>unroll k•, µ〉]]G def
=

let ω = elem〈p • >>unroll k′ ◦ >>unroll 1, µ〉
in (G,ω)

Figure 2.6: Rules for evaluating extended active elements. The expression
‘>> s’ is a possibly empty sequence of static scheduling terms and ‘b ◦’ captures
the leftmost appearance of a ◦.
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ExhaustStatic to completion:

ExhaustStatic(G,ω)
def
=

let e = head(ω)
(G′,∆) = E [[e]]G
ω′ = tail(ω) ∪∆

in if ω = ε then (G, ε) else ExhaustStatic(G′, ω′) .

Static[[e]](G, µ)
def
=

let (G′, ε) = ExhaustStatic(G, elem〈e•, µ〉)
in G′ .

Example 2.3.2 (Static Operator Execution). We show an example execution

of the static operator

relaxEdge >> group b >> unroll 1

on the graph G shown in Figure 2.4b and the matching µ1,2 = {a 7→ n1, b 7→ n2}

using the shorthand notation µi,j for the matching {a 7→ ni, b 7→ nj}.

The procedure Static starts by passing the input graph G and the

initial extended active element shown on the first line of Figure 2.7 to the

ExhaustStatic procedure, which proceeds to evaluate the graph-worklist pairs

until the worklist becomes empty. Figure 2.7 shows graph and static worklist

after each step involving the evaluation of a single extended active element. We

use a LIFO order for the union of a delta and the current worklist. Finally,

the graph G2 is returned as a result.

2.3.2 Executing Statements with Static and Dynamic Scheduling

We now explain how to extend program states to support interleaved

execution of static operators and multiple disjuncts (having separate static
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Graph Static Worklist
G elem〈relaxEdge >> group b >> unroll 1•, µ1,2〉
G elem〈relaxEdge >> group b • >> unroll 0 ◦ >>unroll 1, µ1,2〉
G elem〈relaxEdge • >> group b >> unroll 0 ◦ >> unroll 1, µ1,2〉

elem〈relaxEdge • >> group b >> unroll 0 ◦ >> unroll 1, µ1,3〉
G1 = G[n2.dist = 1] elem〈relaxEdge >> group b>> unroll 0 • >> unroll 1, µ2,3〉

elem〈relaxEdge • >> group b >> unroll 0 ◦ >> unroll 1, µ1,3〉
G1 elem〈relaxEdge >> group b • >> unroll 1, µ2,3〉

elem〈relaxEdge • >> group b >> unroll 0 ◦ >> unroll 1, µ1,3〉
G1 elem〈relaxEdge • >> group b >> unroll 1, µ2,3〉

elem〈relaxEdge • >> group b >> unroll 0 ◦ >> unroll 1, µ1,3〉
G2 = G1[n3.dist = 2] elem〈relaxEdge • >> group b >> unroll 0 ◦ >> unroll 1, µ1,3〉
G2 ε

Figure 2.7: A static operator evaluation example.

and dynamic scheduling expressions).

Intuitively, an iterate statement executes an unbounded number of

static operator instances (i.e., a static operator together with a given matching)

in parallel. This requires the ability to “pause” the execution of one static

operator instance, in order to switch to (partially) executing another static

operator instance, and then resume the execution of the paused static operator.

The semantics of static operator is already geared towards this pause-resume

mode of execution — a static worklist captures every intermediate state of

the static operator execution. To express the interleaved execution of a set

of static operators we maintain a multiset of “paused” static worklists of the

type Statics
def
= SW∗.

To support multiple disjuncts we maintain a separate prioritized work-
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list per disjunct via a map DWP : disjunctExp → WP . We extend the oper-

ations defined in the previous sections as follows: Empty returns the empty

map; Pop arbitrarily chooses a disjunct d and pops the corresponding pri-

oritized worklist DWP(d); Merge merges elements, each belong to a given

disjunct, to their corresponding prioritized worklist; and Init initializes each

prioritized worklist with the elements belonging to the corresponding disjunct.

We combine the two components defined above into a scheduler type:

Θ : DWP×Statics. We also define the operation Add, which merges extended

active elements into a given static worklist. The order of elements in the

resulting static worklist is arbitrary.

We extend the Delta operation to general expressions containing by

removing the static scheduling sub-expressions.

We generalize program states by replacing worklists with schedulers:

Σ
def
= Graph ∪Graph×Θ. We denote such states by G+ DWl + statics.

Figure 2.8 shows the semantics of iterate and foreach statements for

general expressions.p

2.4 Synthesis

Elixir fuses together the operators and schedule and generates a program

expressed in an imperative, high-level intermediate representation (HIR). Sub-

sequently, it lowers the HIR code to parallel C++ code.

In this section, we explain how to emit HIR code to implement Elixir
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iterateinit starts executing iterate e by initializing a scheduler
with the set of redexes found in G
〈iterate exp, G〉 =⇒ 〈iterate exp, G+ DWl + ε〉 if
DWl = Init[[exp]]G
iterateschedule schedules a new static operator for execution
〈iterate exp, G+ DWl + statics〉 =⇒ 〈iterate exp, G+ DWl′ + statics′〉 if
(DWl′, elem〈e, µ〉) = Pop DWl
statics′ = Add(statics, elem〈e•, µ〉)
iteratestep advances an already executing static operator one step
〈iterate exp, G+ DWl + statics〉 =⇒ 〈iterate exp, G′ + DWl′ + statics′′〉 if
(statics′, elem〈e, µ〉) = Pop statics
(G′, ω) = E [[elem〈e, µ〉]]G
statics′′ = Add(statics′, ω)
∆ = Delta[[e, exp]] (G, µ)
DWl′ = Merge[[exp]] (DWl,∆)
iteratedone returns the graph when no more operators can be
scheduled and all executing static operators have finished
〈iterate exp, G+ Empty[[exp]]〉 =⇒ G

foreachinit, foreachdone, foreachschedule same rules as for iterate
iteratestep advances a static operator one step
〈foreach exp, G+ DWl + statics〉 =⇒ 〈foreach exp, G′ + DWl + statics′′〉 if
(statics′, elem〈e, µ〉) = Pop statics
(G′, ω) = E [[elem〈e, µ〉]]G
statics′′ = Add(statics′, ω)

Figure 2.8: An operational semantics for Elixir statements — the general case.
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statements. In Chapter 3 we discuss how to synthesize parallel code from this

HIR.

We use the notation Code(e) for the code fragment implementing the

mathematical expression e in our HIR imperative language.

This section is organized as follows. First, we discuss our assumptions

regarding the HIR language. Section 2.4.1 describes the synthesis of operator-

related procedures. Section 2.4.2 describes the synthesis of the Expand oper-

ation, which is used to synthesize Rdx and as a building block in synthesizing

Delta. Section 2.4.3 describes the synthesis of Delta via automatic reason-

ing. Section 2.4.4 puts together the elements needed to synthesize unordered

statements.

Implementation Language and Notational Conventions

We assume an HIR language containing standard constructs for se-

quencing, conditions, looping, and evaluation of arithmetic and Boolean ex-

pressions such as the ones used in Elixir. Operations on sets are realized via

methods on set data structures. We assume that the language allows static

typing by the notation v : t, meaning that variable v has type t. To promote

succinctness, variables do not require declaration and come into scope upon

initialization. We write vi..j to denote the sequence of variables vi, . . . , vj.

Record types are written as record[f1..k], meaning that an instance r of the

record allows accessing the values of fields f1..k, written as r[fi]. We use static

loops (loops preceded by the static keyword) to concisely denote loops over
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a statically-known range, which the compiler unrolls, instantiating the induc-

tion variables in the loop body as needed. We similarly use static conditions.

In defining procedures, we will use the notation f [statArgs](dynArgs) to mean

that f is specialized for the statically-given arguments statArgs and accepts

at runtime the dynamic arguments dynArgs. We note that, since we assume a

single graph instance, we will usually not explicitly include it in the generated

code.

Graph Data Structure. We assume the availability of a graph data struc-

ture supporting methods for reading and updating attributes, and scanning

the outgoing edges and incoming edges of a given node. The code statements

corresponding to these methods are as follows. Let vn and vm be variables

referencing the graph nodes n and m, respectively. Let a be a node attribute

and b be an edge attribute. Let da and db be variables of the appropriate types

for attributes a and b, respectively, having the values d and d′, respectively.

• da = get(a, vn) assigns AttG(a, n) to da and db = get(a, vn, vm) assigns

AttG(b, n,m) to db.

• set(a, vn, da) updates the value of the attribute a on the node n to d:

Att′ = Att(a, n) 7→ d, and set(b, vn, vm, db) updates the value of the

attribute b on the edge (n,m) to d′: Att′ = Att(b, n,m) 7→ d′.

• edge(vn, vm) checks whether (n,m) ∈ EG.

• nodes returns (an iterator to) the set of graph nodes V G.
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In addition, we require that the graph data structure be linearizable4.

2.4.1 Synthesizing Atomic Operator Application

Let op = [nt1..k, et1..m, bexp] → [nUpd1..k, eUpd1..m] be an operator con-

sisting of the following elements, for i = 1..k and j = 1..m: (i) node attributes

nti = nodes(node ni, ai vi); (ii) edge attributes etj = edges(src sj, dst dj, bj wj);

(iii) a guard expression bexp = opGd; (iv) node updates nUpdi = vi 7→ nExpi;

and (v) edge updates eUpdj = wj 7→ eExpj.

We note that in referring to pattern nodes the naming of variables ni,

sj, dj, etc. are insignificant in themselves, but rather stand for different ways

of indexing the actual set of variable names. For example n1 and s2 may both

stand for a variable ‘a’.

Figure 2.9 shows the codes we emit, as procedure definitions, for (a)

evaluating an operator, (b) for checking a shape constraint, and (c) for checking

a value constraint.

The procedure apply must use synchronization to ensure atomicity.

There are multiple synchronization protocols one can implement to ensure

atomic operator execution. For example, one can use speculative locking to

ensure atomicity similar to what is supported by transactional memory sys-

tems. For problems like the single-source shortest path problem, which do not

4In practice, our graph implementation is optimized for action that don’t mutate the
graph structure. We rely on the locks acquired by the synthesized code to correctly syn-
chronize concurrent accesses to graph attributes.
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mutate the graph structure and which employ operators working over a small

bounded number of nodes, one could simply acquire a spinlock on each node.

We dub this protocol as order-and-spin.

The HIR that Elixir generates simply contains the outlines of atomic

sections that must be executed transactionally in order to have correct par-

allel execution. In Chapter 3 we will discuss how one can encode different

synchronization protocols as planning problems and use a planner to gener-

ate the right lock acquire and release instrumentation statements in order to

implement these atomic sections. To improve clarity of exposition, in this

section we present the synchronization instrumentation that is required for

correct parallel execution inlined to the HIR code that Elixir generates.

The procedure apply first reads the nodes from the matching variable

‘mu’ into local variables. It then copies the variables to another set of variables

used for locking. We assume a total order over all nodes, implemented by

the procedure lock less, which we use to ensure absence of deadlocks. The

statement sort(lock less, lk1..k) sorts the lock variables, i.e., swaps their values

as needed, using the sort procedure. Next, the procedure acquires the locks

in ascending order (we use spin locks), thus avoiding deadlocks. Then, the

procedure reads the node and edge attributes from the graph and evaluates

the guard. If the guard holds the update expressions are evaluated and used

to update the attributes in the graph. Finally, the locks are released.

Since operators do not morph the graph checkShape does not require

any synchronization. The procedure checkGuard is synchronized using the
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same strategy as apply.

Figure 2.10 shows the code we emit for Code([[relaxEdge]]).

2.4.2 Synthesizing Expand

We now define an operation Expand, which is used for implementing

the group static scheduling term, Rdx, and Delta.

Let R be a pattern and v1..m ⊆ V R and vm+1..k = V R \ v1..m be two

complementing subsets of its nodes such that v1..m induces a connected sub-

graph of R. We define the set of matchings V R → G identifying with µ on the

node variables v by

Expand[[op, v]](G, µ)
def
= {µ′ ∈ V R → V G | µ|v = µ′|v} .

We now explain how to synthesize a procedure that accepts a matching µ ∈

W → V G, where W is any superset of v1..m, and computes all matchings

µ′ ∈ V R → V G such that µ(vi) = µ′(vi) for i = 1..m.

We can bind the variables vm+1..k to graph nodes in different orders and

using different methods of the graph API. For example, one can scan the entire

set of graph nodes for each unbound pattern node and check whether it is a

neighbor of the right set of bound nodes, according to the shape constraint.

An alternative, and potentially more efficient way, is to choose an order that

enables scanning the edges incident to nodes that are already bound. In this

section we will create HIR code that is generic enough to support various

implementation and scheduling alternatives. Later, in Chapter 3 we will show
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def apply[op](mu : record[n1..k]) =
static for i = 1..k {ni = mu[ni]}
if checkShape[op](mu)
static for i = 1..k {lk i = ni}
sort(lock less, lk 1..k)
static for i = 1..k {lock(lk i)}
static for i = 1..k {vi = get(ai, ni)}
static for j = 1..m {wj = get(bj , sj , dj)}
if Code(bexp)
static for i = 1..k {set(ai, ni,Code(nExpi))}
static for j = 1..m {set(bj , sj , dj ,Code(eExpj))}

static for i = 1..k {unlock(lk i)}
(a) Code([[op]]).

def checkShape[op](mu : record[n1..k]) : bool =
static for i = 1..k {ni = mu[ni]}
// Now sj and dj correspond to µ(sj) and µ(dj).
static for i = 1..k
static for j = 1..k
if ni = nj // Check if µ is one-to-one.
return false

static for j = 1..m
if ¬edge(sj , dj) // Check for missing edges.
return false

return true
(b) Code((G,µ) |= Rop).

def checkGuard[op](mu : record[n1..k]) : bool =
static for i = 1..k {ni = mu[ni]}
static for i = 1..k {vi = get(ai, ni)}
static for j = 1..m {wj = get(bj , sj , dj)}
return Code(bexp)

(c) Code(µ(G,Gdop)).

Figure 2.9: Operator-related procedures.
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1 def apply[relaxEdge](mu : record[a, b]) =
2 a = mu[a]; b = mu[b];
3 if (a != b ∧ edge(a, b)) // Inline checkShape[relaxEdge](mu).
4 lk 1 = a; lk 2 = b;
5 if lock less (lk 2 , lk 1) // inline sort
6 swap(lk 1, lk 2);
7 lock(lk 1) ; lock (lk 2) ;
8 ad = get(dist, a); bd = get(dist, b);
9 w = get(wt, a, b);

10 if ad + w < bd // Inline checkGuard[relaxEdge](mu).
11 set(dist , b, ad + w);
12 unlock(lk 1); unlock (lk 2);

Figure 2.10: Code([[relaxEdge]]).

how we can cast the problem of selecting a valid schedule of API calls to bind

nodes as a planning problem. We represent each efficient binding order by

a permutation of vm+1..k, which we denote by um+1..k, and by an auxiliary

sequence T (R, vm+1..k) = (um+1, wm+1), . . . , (uk, wk) where each tuple defines

the connection between an unbound node uj and a previously bound node wj.

The procedure expand, shown in Figure 2.11, first updates µ′ for 1..m

and then uses T (R, vm+1..k) to bind nodes vm+1..k. Each node is bound to all

possible values by a loop using the procedure expandEdge, which handles one

tuple in (uj, wj). The loops are nested to enumerate over all combinations of

bindings.

We note that a matching computed by the enumeration does not nec-

essarily satisfy the shape constraints of R as some of the pattern nodes may

be bound to the same graph node and not all edges in R may be present

between the corresponding pairs of bound nodes. It is possible to filter out

matchings that do not satisfy the shape constraint or guard via checkShape
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def expand[op, v1..m, T : record[nm+1..k]]
(mu : record[n1..k],
f : record[n1..k]⇒ Unit) =

mu′ = record[n1..k] // Holds the expanded matching.
static for i = 1..m {mu′[vi] = mu[vi]}
expandEdge[m+ 1,
expandEdge[m+ 2,
. . .

expandEdge[k, f(mu′)] . . .]

// Inner function.
def expandEdge[i, code] =
[ui, wi] = T [i] // ui is unbound and wi is bound.
for s ∈ nodes
mu′[ui] = s
if Edge(wi, ui)
code // inline code

Figure 2.11: Code applying function f to matchings in
Expand[[op, v1..m]](G, µ)

and checkGuard, respectively.

We use expand to define Code(Rdx[[op]](G, µ)) in Figure 2.12.

def redexes[op](f : record[n1..k]⇒ Unit) =
for v ∈ nodes
mu = record[n1]
expand[op, n1, T (R,n2..k)](mu, f ′)

def f ′(mu : record[n1..k]) =
if checkShape[op](mu) ∧ checkGuard[op](mu)
f(mu)

Figure 2.12: Code for computing Rdx[[op]](G, µ) and applying a function f to
each redex.
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2.4.3 Synthesizing Delta via Automatic Reasoning

We now explain how to automatically obtain an overapproximation

of Delta[[op, op′]] (G, µ) for any two operators op = [R,Gd] → [Upd] and

op′ = [R′,Gd′]→ [Upd′] and a matching µ, and how to emit the corresponding

code.

The definition of Delta given in Section 2.2 is global in the sense that

it requires searching for redexes in the entire graph, which is too inefficient.

We observe that we can redefine Delta by localizing it to a subgraph affected

by the application of the operator op, as we explain next.

For the rest of this subsection, we will associate a matching µ with the

corresponding redex pattern R using the notational convention µR.

Let µR and µR′ be two matchings corresponding to the operators above.

We say that µR and µR′ overlap, written µR f µR′ , if the matched subgraphs

overlap: µR(V R) ∩ µR′(V R′
) 6= ∅. Then, the following equality holds:

Delta[[op, op′]] (G, µR) =
let G′ = [[op]](G, µR)
in {µR′ | µR′ f µR,

(G, µR′) 6|= R′,Gd′,
(G′, µR′) |= R′,Gd′ .

We note that any overapproximation of Delta can be used in cor-

rectly computing the operational semantics of an iterate statement. How-

ever, tighter approximations lead to reduction in useless work. We proceed by

developing an overapproximation of the local definition of Delta.
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Given a matching µR, the set of overlapping matchings µR′ can be

classified into statically-defined equivalence classes, defined as follows. If µR′f

µR then the overlap between µR(V R) and µR′(V R′
) induces a partial function

ρ : V R ⇀ V R′
defined as ρ(x) = x′ if µR(x) = µR′(x′). We call the function

ρ the influence function of R and R′ and denote the domain and range of ρ

by ρdom and ρrange, respectively. Two matchings µ1
R′ and µ2

R′ are equivalent if

they induce the same influence function ρ. We can compute the equivalence

class [ρ] of an influence function ρ by

[ρ] = Expand[[op′, ρrange]](G, µR) .

Let infs(op, op′) = ρ1..k denote the influence functions for the redex

patterns R and R′. We define the function shift : Match × (V R → V R′
) →

Match, which accepts a matching µR and an influence function ρ and returns

the part of a matching µR′ restricted to ρrange:

shift(µR, ρ)
def
= {(ρ(x), µR(x)) | x ∈ ρdom} .

The first overapproximation we obtain is

Delta1[[op, op′]] (G, µR)
def
=⋃

ρ∈infs(op,op′)

Expand[[op′, ρrange]](G, shift(µR, ρ)) .

A straightforward way to obtain a tighter approximation is to filter out

matchings not satisfying the shape and value constraints of op′.

We say that an influence function ρ is useless if for all graphs G and

all matchings µR′ the following holds: for G′ = [[op]](G, µR) either (G, µR′) |=
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Rop′
,Gdop′

, meaning that an active element elem〈op′, µR′〉 has already been

scheduled, or (G′, µR′) 6|= Rop′
,Gdop′

, meaning that the application of op to

(G, µR) does not modify the graph in a way that makes µR′(G′) a redex of

op’. Otherwise we say that ρ is useful. We denote the set of useful influ-

ence functions by useInfs(op, op′). We can obtain a tighter approximation

Delta2[[op, op′]] (G, µR) via useful influence functions:

Delta2[[op, op′]] (G, µR)
def
=⋃

ρ∈useInfs(op,op′)

Expand[[op′, ρrange]](G, shift(µR, ρ)) .

We use automated reasoning to find the set of useful influence functions.

Influence Patterns. For every influence function ρ, we define an influence

pattern and construct it as follows.

1. Start with the redex pattern Rop and a copy R′ of Rop′
where all variables

have been renamed to fresh names.

2. Identify a node variable x ∈ V R with a node variable ρ(x) and rename

node attribute variables in R′ to the variables used in the corresponding

nodes of R. Similarly rename edges attributes for identified edges.

Example 2.4.1 (Influence Patterns). Figure 2.14 shows the six influence pat-

terns for operator relaxEdge (for now, ignore the text below the graphs). Here

Rop consists of the nodes a and b (and the connecting edge) and R′ consists of

the nodes c and d (and the connecting edge). We display identified nodes by

listing both variables inside the node ellipse.
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1 assume (Gd)
2 assume ! ( Gd’ ) // comment out i f i d e n t i t y pattern
3 update (Upd)
4 assert ! ( Gd’ )

Figure 2.13: Operator Delta Query.

Intuitively, the patterns determine that candidate redexes are one of the

following types: a successor edge of b, a successor edge of a, a predecessor edge

of a, a predecessor edge of b, an edge from b to a, and the edge from a to b

itself.

Query Programs. To detect useless influence functions, we generate a

straight-line program over the variables of the corresponding influence pat-

tern, as shown in Figure 2.13.

Intuitively, the program constructs the following verification condition:

(1) if the guard of R, Gd, holds; and (2) the guard of R′, Gd′, does not hold;

and (3) the update Upd assign new values; then (4) the guard Gd′ does not hold

for the updated values. Proving the assertion means that the corresponding

influence function is useless.

The case of op = op′ and the identity influence function is special. The

compiler needs to check whether the guard is strong, and otherwise emit an

error message. This is done by constructing a query program where the second

assume statement is removed.

We pass these programs to a program verification tool (we use Boo-
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gie [10] and Z3 [35]) asking it to prove the last assertion. This amounts to

checking satisfiability of a propositional formula over the theories correspond-

ing to the attributes types in our language — integer arithmetic and set theory.

When the verifier is able to prove the assertion, we remove the corresponding

influence function. If the verifier cannot prove the assertion or a timeout is

reached, we conservatively consider the function as useful.

Example 2.4.2 (Query Programs). Figure 2.14 shows the query programs

generated by the compiler for each influence pattern. Out of the six influence

patterns, the verifier is able to rule out all except (a) and (e), which together

represent the edges outgoing from the destination node, with the special case

where an outgoing edge links back to the source node. Also, the verifier is able

to prove that the guard is strong for (f). This results with the tightest

approximation of Delta.

We note that if the user specifies positive edges weights (weight :

unsigned int) then case (e) is discovered to be spurious.

Figure 2.15 shows the code we emit for Delta2. We represent influence

functions by appropriate records.

2.4.4 Synthesizing Unordered Statements

We implement the operational semantics defined in Section 2.2.3.3 by

utilizing the Galois system runtime, which enables us to: (i) automatically

construct a concurrent worklist from a dynamic scheduling expression, and
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b,c d

dist=bd dist=dd

a

dist=ad
wt=w wt=w2

b

d

dist=bd

dist=dd

a,c

dist=ad
wt=w

wt=w2

1 assume ( ad + w < bd)
2 assume ! ( bd + w2 < dd)
3 new bd = ad + w
4 assert ! ( new bd + w2 < dd)

1 assume ( ad + w < bd)
2 assume ! ( ad + w2 < dd)
3 new bd = ad + w
4 assert ! ( ad + w2 < dd)

(a) (b)

bc

dist=bddist=cd

a,d

dist=ad
wt=w2 wt=w

b,d

c

dist=bddist=ad
wt=w

wt=w2

a

dist=cd

1 assume ( ad + w < bd)
2 assume ! ( cd + w2 < ad )
3 new bd = ad + w
4 assert ! ( cd + w2 < ad )

1 assume ( ad + w < bd)
2 assume ! ( cd + w2 < bd)
3 new bd = ad + w
4 assert ! ( cd + w2 < new bd )

(c) (d)

b,c

dist=bd

a,d

dist=ad
wt=w

wt=w2
b,d

dist=bd

a,c

dist=ad
wt=w

1 assume ( ad + w < bd)
2 assume ! ( bd + w2 < ad )
3 new bd = ad + w
4 assert ! ( new bd + w2 < ad )

1 // check whether guard i s s t rong
2 assume ( ad + w < bd)
3 new bd = ad + w
4 assert ! ( ad + w < new bd )

(e) (f)

Figure 2.14: Influence patterns and corresponding query programs for
relaxEdge; (b), (c), (d), and (f) are spurious patterns.
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def delta2[op, op′, ρ1..q](mu : record[n1..k],
f : record[n1..k]⇒ Unit) =

static for i = 1..q // For each useful influence function.
mu′ = record[n1..k]
// Assume len(ρi) = |ρidom|.
for j = 1..len(ρi) // Initialize mu′ for ρidom.
mu′[ρ(nj)] = mu[nj ]

expand[op′, ρirange, T (R′, V R′ \ ρirange)](mu′, f ′)

def f ′(mu : record[n1..k]) =
if checkShape[op′](mu) ∧ checkGuard[op′](mu)
f(mu)

Figure 2.15: Code for computing Delta2[[op, op′]] (G, µ) and applying a func-
tion f to each matching.

def execute[iterate exp] =
// Initialize worklist.
wl : Wl[exp]()
for i = 1..k { redexes[opi](addToWl) }
foreach e in wl // Parallel loop via a Galois unordered iterator.
// e = elem〈op, µ〉
Code([[op]])
static for i = 1..k

delta2[op, opi, useInfs(op, opi)](µ, addToWl)

def addToWl(mu) = wl.add(mu)

Figure 2.16: Code([[iterate exp]])

(ii) process the elements in the worklist in parallel by a given function. We

use the latter capability by passing the code we synthesize for operator appli-

cation followed by the code for Delta2[[op, op′]] (G, µ), which inserts the found

elements to the worklist for further processing. The code we emit is shown

in Figure 2.16.
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1 assume (Gd)
2 pr1 = pr ( op ’ )
3 update (Upd)
4 assume (Gd’ )
5 assert pr1 = pr ( op ’ )

Figure 2.17: Ordered Operator Delta Query.

2.4.5 Synthesizing Ordered Statements

In this section we discuss extra reasoning is performed by Elixir for the

case of ordered statements.

2.4.5.1 Synthesizing Ordered Delta

For the case of ordered statements we augment the delta computa-

tion analysis to also identify cases where an application of an operator op =

[R,Gd] → [Upd] simply changes the priority of op′ = [R′,Gd′] → [Upd′]. As

mentioned in Section 2.2.4, execution proceeds by exploring the different pri-

ority classes in a strict level-by-level order. Thus, whenever op can change the

priority of op′, we should consider op′ as part of the delta of op. The query

in Figure 2.17 identifies influence patterns where the priority of op′ remains

the same and therefore no scheduling of op′ is necessary. The set of useless

influence patterns consists of all cases for which we can prove assertions of

both query programs from Figure 2.13 and Figure 2.17.
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2.4.5.2 Customizing Ordered Parallelization

Certain algorithms, such as [87, 8], have additional properties that en-

able optimizations over the baseline ordered parallelization scheme discussed

in Section 2.2.4. For example, in the case of Breadth-First-Search (BFS), one

can show that when processing work at priority level i, all new work is at

priority level i+ 1. This allows us to optimize the implementation to contain

only two buckets: Bc that holds work items at the current priority level, and

Bn that holds work items at the next priority level. Hence, we can avoid the

overheads associated with the generic scheme, which supports an unbounded

number of buckets. Additionally, since Bc is effectively read-only when op-

erating on work at level i, we can exploit this to synthesize efficient load-

balancing schemes when distributing the work contained in Bi to the worker

threads. Currently Elixir uses these two insights to synthesize specialized dy-

namic schedulers (using utilities from the OpenMP library) for problems such

as breadth-first search.

Automating the Optimizations We now discuss how we use automated

reasoning to enable the above optimizations. What we aim to show is that

if the priority of active elements at the current level is an arbitrary value k,

then all new active elements have the same priority k + s, where s ≥ 1. We

heuristically guess values of s by taking all constant numeric values appearing

in the program s = C1, . . . , Cn. We illustrate this process for the BFS example.

In the case of BFS the worklist delta consists only of a case similar to that of
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1 assume ( ad == k )
2 assume ( s == C i )
3 assume ( ad + 1 < bd)
4 new bd = ad + 1
5 assume ( cd == new bd )
6 assume ( cd + 1 < dd)
7 assert ( ad == k & new bd == k + s )

Figure 2.18: Query program to enable leveled worklist optimization. C i

stands for a heuristically guessed value of s.

Figure 2.14(a) with all weights equal to one. The query program we construct

is shown in Figure 2.18. The program checks that the difference between the

priority of the shape resulting from the operator application and the shape

prior to the operator application is an existentially quantified positive constant.

Additionally, we must guarantee that when we initialize the worklist all work

is at the same priority level. Our compiler emits a simple check on the priority

value on each item inserted in the worklist during initialization to guarantee

that this condition is satisfied.
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Chapter 3

Planning-based Synthesis

How can one effectively transform a program expressed in a high level

language to an equivalent and efficient lower level program? This question,

which is as old as the first compilers, is the subject of this chapter 1. As

we discussed in the previous chapter, the Elixir front-end starts with a non-

deterministic algorithm specification and after computing the operator delta

fuses the operators with the schedule to create a high-level, incremental algo-

rithm. This high-level algorithm is a description of the problem that is much

closer to conventional imperative code, and it can be expressed as a program

in a high-level intermediate representation (HIR), similar to the ones we have

in a traditional compiler. The next goal of Elixir is to transform this HIR pro-

gram to an efficient low-level intermediate representation (LIR), and finally

generate explicitly parallel C++ code.

We identify three key problems that need to be solved in order to

1 Part of the work presented in this chapter has appeared in “Dimitrios Prountzos,
Roman Manevich, Keshav Pingali. ‘Synthesizing Parallel Graph Programs via Automated
Planning’. In Proceedings of the ACM Conference on Programming Language Design and
Implementation (PLDI) 2015.” The first author is responsible for the conception and
the implementation of the ideas presented in this publication. Additional authors provided
assistance with the presentation of the material.
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generate efficient parallel code from this HIR:

1. Inserting synchronization to ensure atomic operator execution.

2. Finding a good schedule of HIR statements.

3. Selecting efficient implementations of HIR statements.

One design strategy for the compiler is to implement separate compiler phases

for each problem, but this introduces the familiar phase ordering problem that

prevents generating high-quality code for many problems. Integrated compila-

tion tackles phase-ordering by combining compiler phases and simultaneously

solving them. However, it is unclear how to perform integrated compilation

encompassing the above-mentioned tasks. The main contributions of the work

discussed in this chapter are:

• We present a framework using a novel approach based on automated

planning (Section 3.3) for synthesizing efficient parallel code. Our frame-

work (Section 3.4) encodes individual tasks via constraints and can use

an off-the-shelf planner to simultaneously solve them. This enables the

first integrated compilation approach for tasks such as scheduling and

synchronization. Moreover, our framework is parametric in the input

language and can be potentially applied to other compilation problems.

• We instantiate our framework with Elixir and use it synthesize paral-

lel code for a number of challenging graph problems. To the best of our

knowledge, this is the first time that parallel solutions were automatically
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synthesized for problems of this complexity. We automatically explore

various scheduling, implementation-selection, and synchronization poli-

cies that capture algorithmic and implementation insights, such as using

efficient iteration patterns based on graph data structure properties.

• We present Aliasing tracking-based synchronization (ATS), a novel spec-

ulative locking protocol that is synthesized by our system, and provides

custom synchronization for each operator (Section 3.5). ATS can handle

operators working on an unbounded neighborhood and can outperform

generic runtime-based solutions for speculation.

The rest of this chapter is organized as follows: Section 3.1 informally

discusses the synthesis challenges and motivates our solutions through a se-

ries of examples. Section 3.2 presents informally our planning-based synthesis

framework. Section 3.3 gives necessary background on automated planning

and defines various planning mechanisms used by our framework. Section 3.4

and Section 3.5 discuss planning-based synthesis in detail, both for the se-

rial and the parallel setting. Finally, Section 3.6 presents we instantiate our

framework inside Elixir.

3.1 Generating Parallel Code: Challenges

In this section we present a number of challenges that must be ad-

dressed in order to generate efficient parallel code from an HIR program. We

use two running examples to illustrate different aspects of the HIR and mo-

tivate different challenges. In Section 3.1.1 we disccuss the triangle counting
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(Triangles) problem, while in Section 3.1.2 we present the maximal indepen-

dent set problem (MIS). In Section 3.1.3 we discuss three major problems that

must be solved to produce efficient parallel code from HIR.

3.1.1 Example: Triangles

Figure 3.1(a) illustrates an Elixir program for counting the number of

triangles (cycles of exactly three edges) in an undirected graph. The program

consists of the following elements:

Data-Structures: A global integer variable (line 1) stores the number of

counted triangles. A graph (lines 3,4) consists of two relations, one for

nodes and one for edges. Each node is implicitly given a unique number.

The relations also specify attributes for nodes and edges; in this problem

there are none.

Operators: The countTriangle operator (lines 6–14) defines a pattern, where

three edges over distinct nodes connect in a cycle and their end-points are

ordered (the latter condition is used to avoid counting the same triangle

more than once). When such a subgraph is detected, the right-hand side

increments the triangle counter.

Schedule: A foreach statement (line 16) computes the set of redexes, and

applies the count operator once to each redex, in some arbitrary order.

It is possible to define, via an optional scheduling tactic (� sched), the

order in which redexes are dispatched in order to achieve greater rates
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1 ”Int counter = 0;”

3 Graph [ nodes(node : Node)
4 edges(src : Node, dst : Node) ]

6 countTriangle(a, b, c) = [
7 distinct({a, b, c}) // Automatically inserted
8 edges(a, b)
9 edges(b, c)

10 edges(c, a)
11 (a < b ∧ b < c ∧ a < c)
12 ] → [
13 ”counter++;”
14 ]

16 countTriangles = foreach countTriangle � sched

18 tactic edges: sortedIncreasing
(a)

Algorithm Schedule specification

A-start 1 sched = group b,c

B-start 1 sched = group a,c

C-start 1 sched = group a,b
(b)

Figure 3.1: Elixir program for triangle counting: (a) High-level program pa-
rameterized by a scheduling specification; (b) Three scheduling specifications;

75



of convergence and to tune performance. In this example, it may be

beneficial, in order to exploit locality, to co-schedule for each node a, all

redexes over its neighbors b and c. To achieve this, we use the scheduling

tactic group b,c. This tactic specifies that the pattern nodes b, c should

be matched in all possible ways, thus forming a composite rewrite rule

that groups together individual redex applications. In Figure 3.1(b) we

present three different ways of using group. These give rise to three

different algorithm variants, which start from a different initial node x

(a partial redex) and find all possible completions for that redex.

Figure 3.2(a) shows the program TrH, which implements this specifica-

tion. This program, written in pseudo-code corresponding to the Elixir HIR,

iterates over all node triplets (a,b,c); for each triplet, it increments the counter

if there is an edge between every ordered pair of nodes. The graph ADT needs

to support a method edges(a,b) that checks whether an edge exists between

nodes a and b.

3.1.2 Example: Maximal Independent Set

A maximal independent set of nodes in an undirected graph G = (V,E)

is a set S ⊆ V such that a node is in S iff its immediate neighbors are not in S.

Figure 3.3(a) shows an Elixir program for computing MIS. For MIS, the graph

(lines 2-4) is described by two relations, one for nodes and one for edges. Each

node has a status attribute, which is initialized to Unmatched. The algorithm

sets this attribute to Matched if the node is added to S and to NMatched if
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one of its neighbors is added to S. The match operator (lines 6-11) defines

a graph rewrite rule. The left-hand side, called the operator guard, defines a

predicated subgraph pattern in which node a is Unmatched and none of its

neighbors, N (a), is Matched. When such a subgraph, dubbed as a redex, is

detected, the right-hand side of the rewrite rule is executed, which adds a to

S and updates the status of a and its neighbors appropriately. Elixir provides

special looping instructions to encode operators working on an unbounded

number of nodes. The ∀ predicate (line 9) holds if sb 6= Matched is true for

all b ∈ N (a). The map instruction (line 11) updates to NMatched the status

of every neighbor of a distinct from a (nodes may have self-loops). Finally, a

foreach statement (line 12) computes the initial set of redexes, and applies

match once to each redex, in some non-deterministic order. Optionally, a

scheduling tactic could be used to refine the execution order of redexes.

Figure 3.3(b) shows misH, the HIR for implementing the specification.

This program expresses the execution of multiple operators according to the

schedule. For MIS this is straightforward: the ‘for a : nodes do’ statement

(line 1) iterates over all nodes and executes match transactionally for each

a. Similar to the triangle counting problem, the use of the foreach schedule

directive indicates that no operator delta should be considered.

3.1.3 Producing Efficient Parallel Code from HIR code

Even the generation of efficient sequential implementations from Elixir

programs is very challenging since it requires solving two difficult tasks: (i)
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(a) Elixir specification (b) misH

1 Graph[
2 nodes(n : Node, status:int)
3 edges(src:Node, dst:Node)
4 ]

6 match(a) =
7 [ nodes(a, sa)
8 sa = Unmatched ∧
9 ∀ b. {edges(a, b) nodes(b, sb) :

sb 6= Matched }
]→

10 [sa := Matched;
11 map { edges(a, c) nodes(c, sc) :

c 6= a :
sc := NMatched };

]
12 mis = foreach match

1 for a : nodes do
2 var sa := status(a);
3 if sa = Unmatched
4 if forall b : N (a) {

status(b) 6= Matched }
5 status(a) := Matched;
6 map c : N (a) { c 6= a :

status(c) := NMatched };
7 fi
8 fi
9 od

(c) misV1 (d) misV2

1 for a : nodes do
2 lock a ctx ∅ ;
3 var sa := status(a);
4 if sa = Unmatched
5 lock N (a) ctx a ;
6 if forall b : N (a) {

status(b) 6= Matched }
7 status(a) := Matched;
8 map c : N (a) { c 6= a :

status(c) := NMatched };
9 unlock a,N (a);

10 else unlock a,N (a) fi // forall b
11 else unlock a fi //sa=Unmatched
12 od

1 for a : nodes do
2 lock a ctx ∅ ;
3 var sa := status(a);
4 if sa = Unmatched
5 if forall b : N (a) {

status(b) 6= Matched } with
N (a) ctx a

6 status(a) := Matched;
7 mapAndUnlock c : N (a) {

c 6= a : status(c) := NMatched
} with a,N (a) ctx a,N (a);

8 fiUnlock N (a), a ctx N (a), a
9 else unlock a fi

10 od

Figure 3.3: (a) MIS Elixir specification; (b) HIR; (c) ATS-instrumented HIR;
(d) Alternative ATS-instrumented variant.
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finding a good schedule of HIR statements, and (ii) selecting efficient im-

plementations of HIR statements (in the context of conventional compilers,

analogs of these tasks are instruction scheduling and instruction selection).

To generate efficient parallel code, we also have to insert synchronization to

ensure that operator execution is transactional. We argue that unless all three

problems are solved simultaneously, there is a phase-ordering problem that

prevents the generation of efficient parallel code.

Scheduling of HIR Statements Intuitively conjunctions, disjunctions,

nested node iterators, and invariant predicates within node iterators in Elixir

programs give rise to opportunities for scheduling HIR statements in different

orders, and some orders may be far more efficient than others.

A simple example is an Elixir guard p1(a) ∧ p2(b) (for example, lines 8-9

of Figure 3.3(a)), which can be implemented by HIR of the form if p1(a) if p2(b)....

or of the form if p2(b) if p1(a).... Depending on the selectivity of the predi-

cates, one order may be more efficient than the other.

A more important scheduling opportunity arises from invariant predi-

cates within node iterators. TrH and TrH1 in Figure 3.2 show an example. Since

the predicates a<b and edges(a, b) are invariant within the ‘for c : nodes do’

loop, they can be lifted out and the execution of the loop can be made condi-

tional on these predicates as shown in TrH1. In a sparse graph, the predicate

edges(a,b) is false for most pairs of nodes (a,b), so the optimized code is far

more efficient than the original code. Even for a very dense graph, executing
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(a) (b)

1 TrL1 =
2 for a : nodes do
3 for b : Succ(a) do
4 if a < b
5 for c : Succ(b) do
6 if b < c
7 if a < c
8 if edges(c, a)
9 ”counter++;”

10 fi
11 fi
12 fi
13 odSucc
14 fi
15 odSucc
16 od

1 TrL2 =
2 for a : nodes do
3 for b : sortedLTSucc(a) do
4 for c : sortedLTSucc(b) do
5 if a < c
6 if sortedEdges(c, a)
7 ”counter++;”
8 fi
9 fi

10 odLTSucc
11 odLTSucc
12 od

Tiles
tile(for b : Succ(a) do) = for b : nodes do, if edges(a, b)

tile(for b : sortedLTSucc(a) do) = for b : nodes do, if edges(a, b), if a < c

Figure 3.4: Triangles LIR programs: (a) LIR program using the successors
tile; (b) LIR program under different tiling.

the c loop conditionally depending on the predicate (a<b) will halve the total

execution time. Note that these kinds of transformations are well beyond the

capabilities of conventional loop invariant removal algorithms [4] since these

algorithms only move invariant computations out of loops, and cannot make

the execution of a loop dependent on the value of an invariant predicate within

it.
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Implementation Selection It may be possible to improve performance by

exploiting how the graph is stored in memory. A common representation for

sparse graphs is the Compressed Sparse Row (CSR) format which permits

indexed access to the neighbors of a node. For this format, the HIR code pat-

tern ‘for b : nodes do if edges(a,b)...’ can be implemented more efficiently

by the code ‘for b : Succ(a) do...’, where Succ(a) are the successors of node

a, leading to the code TrL1 in Figure 3.4(a). Note that to obtain TrL1 from

TrH1, it is necessary to reschedule TrH1 to obtain the code TrH2 shown in Fig-

ure 3.2(c), and then detect the efficient iteration pattern supported by CSR.

We will call this kind of pattern matching and replacement tiling since

it is similar to the tiling approach to instruction selection in retargetable com-

pilers. The synthesis methodology that we describe in this chapter is parame-

terized by a set of tiles, which represent, among other things, efficient iteration

patterns of this sort that are supported by the graph representations used with

the generated code. For example, assume that node successors are sorted in

increasing order. Then, instead of linearly scanning all of a’s neighbors b in the

range [first , last) and checking whether a < b for each b, we can use a custom

iterator ‘for b : sortedLTSucc(a) do’ that initially performs binary search

to find the first element bfirst : a < bfirst , and then linearly scans all nodes in

[bfirst , last), which definitely satisfy this constraint. Figure 3.4(b) shows the

implementation TrL2 exploiting this property, as well as the tiles that lead to

implementations such as TrL1 and TrL2.
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Synchronization Producing parallel code adds extra complexity to code

generation, since it is necessary to insert locking code to ensure transactional

execution of the operators. Transactional execution can be achieved using

synchronization protocols such as order-and-spin locking or speculative locking.

Order-and-spin locking associates an exclusive spin-lock with each node.

A total order ≺ is imposed on all nodes, and locks on nodes must be acquired

in this order, so as to avoid deadlock. This can be achieved by sorting all

nodes accessed by the threads according to ≺ before acquiring any lock. This

approach is attractive for problems with operators working over a bounded

number of nodes, since the sorting can be customized and inlined inside the

operator. For example, it can be an effective solution for problems such as the

single-source shortest-path problem that we presented in Chapter 2. For oper-

ators such as match that work on an unbounded number of nodes, it may not

be the most effective approach because the upfront sorting of a large number of

nodes may be quite expensive. Moreover, this scheme is difficult to implement

for problems where operators destructively update the graph structure.

In this chapter, we focus on speculative locking since it is used in existing

graph frameworks [2, 92]. At a high level, correct parallel execution of match in

MIS requires the following actions: (i) lock a and its neighbors, (ii) perform the

checks on the status fields of these nodes, (iii) set these fields appropriately,

and (iv) release all the locks. If a lock cannot be acquired in step (i), all

currently held locks are released, and match is retried later. Each of these

four steps can be implemented by code that touches node a and iterates over
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its neighbors; we call this the baseline version.

Rescheduling this code to interleave some of these steps produces vari-

ants that may perform better. For example, steps (i) and (ii) can be interleaved

so that the status of a neighbor b is examined as soon as it is locked; if b’s sta-

tus is Matched, the operator execution can be terminated without examining

more neighbors. Although this seems desirable, note that if the probability of

conflicts is high, the baseline version that acquires all locks before performing

any checks might perform better since it reduces wasted computation because

of aborts. Which version performs better therefore may depend on the graph

structure, the thread count, etc. Similar choices arise in steps (iii) and (iv).

Fusing the status updates with lock releases results in tighter atomic sections

and fewer conflicts potentially, whereas the baseline version may permit the

use of vector store instructions. Synchronization therefore introduces new

scheduling opportunities.

Moreover, implementing any of these variants requires book-keeping

code to keep track of locks acquired by an operator execution. An operator-

agnostic generic implementation is the stamp-and-log strategy: each thread

maintains a runtime log of locked nodes and releases the log contents when the

operator execution terminates. A stamp associating each node with its current

owner is used during lock acquires to detect conflicts. This strategy is used

by systems that delegate concurrency management to a runtime system [2].

However, compile-time reasoning of locks acquired along different paths in the

HIR code permit the generation of synchronization code that is customized to
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the operator and does not need such runtime structures.

ATS relies on static information about node may-aliases, and per-program-

point information about the set of node references through which lock acquires

have already been performed. This allows ATS to: (i) statically insert the right

lock releases for program-points where operator execution may terminate; (ii)

synthesize custom conflict-detection checks using alias-checking with already

acquired nodes. misV1 is an ATS synchronized version of misH. In line 5 N (a)

are locked in a context where only a is locked (ctx a). We need to perform a

lock(b) only for b ∈ N (a) such that b 6= a. This is because a, which is already

locked, may be aliased to b — elements of N (a) are not aliased to one-another,

so no further checks are needed. If lock(b) fails, then the thread definitely

does not own b and a conflict occurs. Such thread-local alias checks obviate

the need for a stamp and are amenable to further compile-time optimization.

Similarly, line 4 evaluates a predicate in ctx a. If it’s false, we simply release

a (line 11) and terminate operator execution. Statically computing this infor-

mation allows simply emitting an ‘unlock a’, obviating the need for a runtime

log.

3.1.4 The Need for an Integrated Solution

How should scheduling, synchronization and implementation selection

be implemented in a compiler that generates parallel code from HIR programs?

A staged approach with separate compiler passes per task is easy to imple-

ment but introduces the phase-ordering problem. We illustrate this using the
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Triangles example from Figure 3.2 and Figure 3.4. Starting with TrH, we can

apply scheduling (TS) and implementation selection (TIS) in either order, us-

ing phase-local optimization heuristics. For TS, the obvious heuristic is to nest

node iterators within conditionals whenever possible; moreover, complex con-

ditionals involving graph data (e.g., if edges(a, b)) should be nested within

scalar ones (if a < b) if possible. TIS favors maximal tile usage since tiles

encode efficient implementations of HIR statement sequences.

If TS followed by TIS are applied to TrH, TS produces TrH1, an optimal

schedule, which is left unchanged by TIS since there is no opportunity to

apply tiling. If TIS is followed by TS, no tiling is possible in TrH, so TIS

produces TrH, and TS then produces TrH1, which does not use tiles at all. In

contrast, our planning approach starts from TrH and produces TrL1, which

has an optimal schedule and makes maximal tile usage. Conceptually, during

the search for an optimal plan, it considers TrH2, which permits the use of

two tile instances, thus leading to TrL1. When synchronization is involved,

finding the optimal solution becomes even harder with the staged approach

whereas planning remains equally effective. Moreover, planning is superior to

exhaustive search of the implementation space, which would consider many

more sub-optimal variants that do not use tiling.

3.2 A Planning-based Synthesis Framework

In this chapter, we show that these parallel code generation problems

can be formulated using constraints, and that these constraints can be solved
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Figure 3.5: Planning framework architecture. Prob : planning problem.

efficiently using planning. A STRIPS-style planning problem [43] is specified

by an initial state, a goal state, and a set of actions that can be used to

transition from one state to another (Section 3.3 provides a detailed definition).

The planning problem is to synthesize a sequence of actions that lead from

the initial state to the goal state. Properties that a solution must satisfy

are encoded by temporal constraints. There are two main advantages to this

approach.

Integration: Searching for solutions that simultaneously solve all constraints

avoids the phase-ordering problem and produces better code.

Engineering: Each code generation problem is defined declaratively and suc-

cinctly; different correctness and profitability concerns are seamlessly

composed together, allowing easy construction and experimentation.
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Figure 3.5 shows our system, which is parameterized by: (i) the HIR

description; (ii) a dependence analysis; (iii) a resource analysis; and (iv) a tile

schema for each statement type in the low-level language. At a high level, the

system works as follows. The HIR program Phigh is fed to several planning

problem construction units, and each unit emits a planning problem related to

a different code generation problem. Individual problems are then combined

to define a single composite planning problem that is fed to a planner, which

emits the LIR program. One detail is that since planners deal with sequences

rather than nested structures, the HIR program is flattened by producing an

in-order representation of its abstract syntax tree, and this sequence is ac-

tually the input to the planning problem construction units. Although our

planning-based transformations are rewrites on sequences of actions, they can

alternatively be reinterpreted in a more traditional form as tree rewrites on a

structured IR. At the other end, the planner produces an in-order represen-

tation of the LIR program, which is unflattened to produce the actual LIR

program.

To permit the system to be used for other code generation problems,

the descriptions of the HIR, LIR and the tiles are inputs to the system, as

shown in Figure 3.5. Our current system has the following planning problem

construction units for tasks related to parallel code generation for graph pro-

grams: (i) ensuring that the output program is syntactically and semantically

correct (Wellformedness), (ii) is equivalent to the input program (Reschedul-

ing), (iii) is properly synchronized (Synchronization), and (iv) is implemented
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by statements in the low-level language (Lowering). Since rescheduling must

respect dependences, it takes the results of a dependence analysis as input.

The Resource Analysis module extracts all accesses to shared resources in the

program, so that these can be synchronized properly; for our code generation

problem, these are accesses to shared-memory variables.

MIS Synthesis as a Planning Problem We now explain the flow though

some of the modules in Figure 3.5 by showing how to derive misV1 and misV2

from misH.

First we decompose the structured program misH to its basic syntac-

tic units. Their set U is fed to the problem construction units. Different

misH schedules correspond to permutations of U ’s contents. However, not all

permutations encode programs that are both syntactically correct and seman-

tically equivalent to misH. To automatically get desired solutions, we encode

a planning problem requiring each unit-action appear exactly once, and aug-

ment it with temporal constraints expressing syntactic wellformedness and

the results of a dependence analysis. Such constraints restrict solutions to

plans encoding syntactically correct programs that are equivalent to (satisfy

the same dependences) misH. For example, consider i, j ∈ U corresponding to

‘if sa = Unmatched’ and ‘status(a) := Matched’, respectively. We encode the

control dependence between i, j using the temporal constraint ¬jW i. This

requires that the first plan state si where i has executed precedes the first plan

state sj where j has executed.
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The ATS planning problem augments U with a set L of lock/unlock

statements. L contains multiple instruction variants for each node to be locked,

one per history of previous lock acquisitions. For example, in misH node a

can be locked before N (a) or after it. Hence, L includes ‘lock a ctx ∅’ and

‘lock a ctx N (a)’. The encoding of ATS planning actions enables only valid

combinations in plans, and allows locking customization to specific schedules.

For example, in misV1 the combination is lock a ctx ∅, lock N (a) ctx a.

Such statements encode all the information necessary to perform conflict detec-

tion and which locks to release in case of aborts. Temporal constraints enforce

global correctness properties of ATS. For example, to encode two-phase lock-

ing, which guarantees serializable execution, we require that all locks happen

before unlocks. Additionally, to guarantee operator cautiousness2, which en-

ables transactional execution without storing rollback information, we require

all locks to occur before shared state updates. ATS is a very good example of

the value that planning adds to the field of program transformations. Here,

the planning system does not merely find a permutation that reorders state-

ments subject to the partial order dictated by program dependences but it

synthesizes the right sequence of actions that constitute a custom version of a

locking protocol for a specific program.

The input HIR instantiates a set of tile-schemas. Lowering adapts

the planning problem to also use tile-releated actions. Solutions to the new

2Cautious operators are formally defined in Chapter 6.
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planning problem encode low-level programs. For example, the tile

tile[∀(b) with rs1 ctx rs2] , lock rs1 ctx rs2,∀(b)

combines locking and the ∀ evaluation in misV2 (Figure 3.3(d), line 5) .

3.3 Planning with Temporally Extended Goals

This section provides background on automated planning with tempo-

ral goals. We also describe two operations employed by our framework: (i)

conjunction of planning problems, and (ii) translation of problems over indi-

vidual actions to problems over constant-length “macro” actions.

Classical STRIPS-style Planning Problems. A planning problem is a

quadruple P = 〈FlntsP, InitP,ActP,GoalP〉 where FlntsP is a set of proposi-

tional facts, called fluents ; InitP ⊆ FlntsP represents the initial state; ActP

represents the set of actions (defined next); and GoalP ⊆ FlntsP represents

the goal. In the sequel, we shall drop the superscript P when it is obvious

from the context. An action o ∈ Act is represented by an identifier Id(o) and

four sets of propositions called the Add, Del, Pret, and Pref . Add describes

the fluents that o makes true, Del, the fluents that o makes false, Pret (Pref ),

the fluents that must be true (false) in order for o to be applicable. We will

often conflate an action with its identifier, when no confusion arises.

Action Notation. We lift negation to sets of fluents by writing ¬S for

{¬f | f ∈ S}. We denote actions by 〈I〉 o 〈O〉 where o is an identifier; I =
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I t ∪ ¬If and O = Ot ∪ ¬Of ; and I t, Ot, If , and Of are sets of fluents. Thus,

Pret(o) = I t, Pref (o) = ¬If , Add(o) = Ot, and Del(o) = ¬Of .

States and State Transformers. A state σ ⊆ Flnts represents a truth-

assignment σb : Flnts → {0, 1} such that σb(p) = 1 if and only if p ∈ σ. An

action o ∈ Act denotes a partial state transformer [[o]] : Σ ⇀ Σ such that

[[o]]σ = σ′ if Pret(o) ⊆ σ, σ ∩ Pref (o) = ∅, and σ′ = (σ \ Del(o)) ∪ Add(o)

hold.

Plans. A plan π is a sequence of actions o1, . . . , ok
3 such that [[ok]] ◦ . . . ◦

[[o1]] Init ⊇ Goal . We write Plans(P) for the set of plans of a planning problem

P. For a given plan length, it is possible to efficiently encode the planning

problem as a propositional formula, which can be handed to a SAT solver.

Shortest plans can be found by searching for plans of increased length [75].

Planning with Temporally Extended Goals. Temporal goals specify

the conditions that plans must satisfy. We express such conditions in (a sub-

set of) linear temporal logic (LTL), whose models are the sequences of states

generated by the corresponding plans, starting from the initial state. Plan-

ning problems may be extended by a set of temporal goals, specified by LTL

formulas.

3In practice, we will be interested in the sequence of action identifiers.
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In Section 3.4 and Section 3.5, we define temporal goals via the following

operators:

Formula Description

Fϕ
def
= ϕ occurs at least once.

F!ϕ
def
= ϕ occurs exactly once.

ϕW ϕ′
def
= ϕ′ occurs and ϕ occurs (at least) until ϕ′,

or ϕ always occurs.

ϕ @ ϕ′
def
= ϕ first occurs (if at all) before ϕ′.

ϕ1 @ . . . @ ϕn
def
=

∧n−1
i=1 ϕi @ ϕi+1.

(a, a′)⊗ (b, b′)
def
= (Balanced parentheses)

(a @ a′ @ b @ b′) ∨ (b @ b′ @ a @ a′)
∨(a @ b @ b′ @ a′) ∨ (b @ a @ a′ @ b′).

Conjoining Planning Problems. To allow solving tasks in a modular way,

we define an appropriate conjunction operation. This enables us to encode sub-

tasks by individual planning problems and then conjoin them into a planning

problem that solves the entire task. We have that for two planning problems

P and Q, the following holds: Plans(P ∧Q) ⊇ Plans(P ) ∩ Plans(Q).

Inverse Homomorphism. A macro action is a sequence of actions, writ-

ten as m = o1; . . . ; ok. A sequence of actions can be composed into a sin-

gle action: [[m]] = [[ok]] ◦ . . . ◦ [[o1]]. We write m = o1, . . . , ok for the cor-

responding sequence of actions identifiers. Given a planning problem P

and set of macro actions M over ActP, we wish to obtain another planning

problem PM such that Plans(PM) = {m1, . . . ,mk | for i ∈ [1, k] : mi ∈
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M and m1, . . . ,mk ∈ Plans(P)} . That is, the language Plans(PM) is in-

duced by the inverse homomorphism h−1 where h(m)
def
= m. This language

can be obtained by transforming the planning problem appropriately, which

we denote by InvHom(P,M) = PM .

3.4 Formal Synthesis Framework

This section shows how compilation tasks other than the insertion of

synchronization can be formulated as planning problems. Synchronization is

treated in Section 3.5.

3.4.1 The Parametric Language DWhile

We now describe the class of data-intensive programming languages

targeted by our synthesis framework. It is parameterized by: (i) type of

atomic state-changing statements, (ii) Boolean expressions, and (iii) data

range expressions. We call the languages obtained by instantiating these pa-

rameters with the grammar shown in Figure 3.6(a) DWhile languages. Pro-

grams may refer to global variables, defined externally, via update state-

ments. We use attribute grammars [77] (AG for short) to impart semantic

conditions to our parametric language and define functions. A statement

for x : r do S od has a dual role: (i) iterating over a range of data val-

ues (defined by r), and (ii) introducing a scope in which the local immutable

variable x is bound and initialized to the single-value range r. We use the

predicate val(r) to test whether a range expression denotes a single value.

94



Meta Variable Description
x A program variable x ∈ Var
b Boolean expression
r Data range expression
rs A sequence of range expressions
Upd State update

Attribute Value Type (inherited/synthesized)

boundVars(·) 2Var (inherited)
vars(·) 2Var (synthesized)

Production Semantic Rules

S ::= for x : r doL B1 odL if x ∈ boundVars(S) then error,
if vars(r) * boundVars(S) then error,
boundVars(B1) = boundVars(S) ∪ {x}.

| while b doL B2 odL if vars(b) * boundVars(S) then error,
boundVars(B2) = boundVars(S).

| if bL Bt elseL skipL fiL if vars(b) * boundVars(S) then error,
boundVars(Bt) = boundVars(S).

B ::= S boundVars(S) = boundVars(B).
| A boundVars(A) = boundVars(B).

A ::= AtomUpd boundVars(AtomUpd) = boundVars(A).
| lock rs1 ctx rsL2 ;A1 if vars(rs1, rs2) * boundVars(A) then error.

boundVars(A1) = boundVars(A).

| if bL At elseL R exitL fiL if vars(b) * boundVars(A) then error,
boundVars(At) = boundVars(R) = boundVars(A).

| for x : r doL Ab odL if ¬val(r) then error,
if vars(r) * boundVars(A) then error,
if x ∈ boundVars(A) then error,
boundVars(Ab) = boundVars(A) ∪ {x}.

R ::= ε
| unlock rsL if vars(rs) * boundVars(R) then error.

AtomUpd ::= Upd;R; commit boundVars(Upd) = boundVars(R) = boundVars(AtomUpd).

Upd ::= UpdL if vars(Upd) * boundVars(Upd) then error.
| lock rs1 ctx rsL2 if vars(rs1, rs2) * boundVars(Upd) then error.
| Upd1; Upd2 boundVars(Upd1) = boundVars(Upd2) = boundVars(Upd).

(a)
Meta variable Description

L A label L ∈ Label

U ::= UpdL | commitL | if bL | elseL | exitL | fiL
| while b doL | for x : r doL | odL

| lock rs1 ctx rsL2 | unlock rsL | skipL

F ::= U | U F
(b)

Figure 3.6: (a) AG for DWhile, and (b) A regular grammar for flat (labelled)
DWhile.
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A statement var x := r;S introduces a scoped local variable and is syntac-

tic sugar for if ¬empty(r) for x : r do S od fi. The AG ensures that:

(i) local variables are only accessed within their scope, never hiding other

variables; (ii) there exists at most one atomic section4; and (iii) updates ap-

pear only in the inner-most nesting level5. In the sequel, we fix a high-level

language, DWhileH , and a low-level language, DWhileL. The synchronization-

related statements lock rs1 ctx rs2 and unlock rs, which are explained in

Section 3.5, do not appear in the input program. We slightly abuse notation

by conflating meta variables and their terminals/non-terminals. Finally, we

abbreviate “if b S else N fi” (N is either exit or skip) by “if b S fi”.

3.4.2 Flattening and Unflattening DWhile Programs

Our synthesis technique operates over a deconstructed form of DWhile

programs, which we call flat programs, defined by the regular grammar in

Figure 3.6(b). Flat programs consist of a sequence of units. The function

flat : DWhile → F labels each unit in the input program and returns them in

order, taking care to associate the same label with units matching a given HIR

statement: {if bL, elseL, exitL,fiL}, {if bL, elseL, skipL,fiL},

{while b doL,odL}, and {for x : r doL,odL}.

For the remainder of this section, we fix a labelled high-level program

4 To simplify the exposition we allow at most one atomic section and let sequential
composition appear only inside an atomic section.

5This condition is only necessary to handle our specific synchronization protocol and can
be removed for sequential code.
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S ∈ DWhileH and F [ = flat(S).

We invert flattening by defining the (pseudo-inverse) function unflat :

F → DWhile such that flat(unflat(F [)) = F [. unflat can be implemented by

an LALR(1) parser operating on the sequence of tokens that are the units of

F [.

Permuting Flat Programs. We are now interested in defining plan-

ning problems that encode the constraints between F [ and the output of the

planner F [′ such that F [′ is a permutation of F [ that represents an equivalent-

meaning program. Let F [ be the sequence of units u1 · . . . · un. We write

F [(i) = ui, and |F [| = n for the length of F [. We abbreviate {1, . . . , n} by

1..n. A permutation Π : 1..n→ 1..n induces a transformation Π : F→ F over

flat programs, defined as Π(F [) = F [(Π(1)) · . . . · F [(Π(n)). We define the

equivalence relation F1 ≈Π F2 if and only if F1 is a permutation of F2.

3.4.3 Encoding Wellformedness by a Planning Problem

We say that a flat program F [′ is wellformed if there exists a program

S ′ ∈ DWhile such that flat(S ′) = F [′.

Lemma 1. Figure 3.7 defines the planning problem WF(S) whose plans are

all wellformed permutations of flat(S):

Plans(WF(S)) = {F [′ | F [′ ≈Π flat(S), F [′ is wellformed} . (3.1)
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Attribute Value Type

prn(·) ℘(ULabel ×ULabel) (synthesized)

ite(·) ℘(ULabel ×ULabel ×ULabel) (synthesized)
boundFnts(·) ℘(B[Var]) (synthesized)
boundActs(·) ℘(Act) (synthesized)

Production Semantic Rules

N ::= UpdL prn(N) = ite(N) = boundFnts(N) = ∅,
boundActs(N) = { 〈B[vars(UpdL)]〉UpdL 〈〉 }.

| N1;N2 prn(N) = prn(N1) ∪ prn(N2),
ite(N) = ite(N1) ∪ ite(N2),
boundFnts(N) = boundFnts(N1) ∪ boundFnts(N2),
boundActs(N) = boundActs(N1) ∪ boundActs(N2).

| if bL prn(N) = {(if bL,fiL)} ∪ prn(N1) ∪ prn(N2),

N1 ite(N) = {(if bL, elseL,fiL)} ∪ ite(N1) ∪ ite(N2),

elseL boundFnts(N) = boundFnts(N1) ∪ boundFnts(N2),
N2 boundActs(N) = boundActs(N1) ∪ boundActs(N2)∪

fiL { 〈B[vars(b)]〉 if bL 〈〉 }.
| while b doL prn(N) = {(while b doL,odL)} ∪ prn(Nb),
Nb ite(N) = ite(Nb),

odL boundFnts(N) = boundFnts(Nb),
boundActs(N) = boundActs(Nb)∪
{ 〈B[vars(b)]〉while b doL 〈〉 }.

| for x : r doL prn(N) = {(for x : r doL,odL)} ∪ prn(Nb),
Nb ite(N) = ite(Nb),

odL boundFnts(N) = {B[x]} ∪ boundFnts(Nb),
boundActs(N) = boundActs(Nb)∪
{ 〈¬B[x],B[vars(r)]〉 for x : r doL 〈B[x]〉,
〈〉odL 〈¬B[x]〉 }

(a)

FlntsWF(S) = {flat(S)} ∪ boundFnts(S)

ActWF(S) = {〈〉u 〈only(u)〉 | u ∈ flat(S)} ∧ boundActs(S)

InitWF(S) = ∅

GoalWF(S) =
5⋃
i=1

Goal
WF(S)
i

Goal
WF(S)
1 = {F!u | u ∈ {flat(S)}}

Goal
WF(S)
2 = {po @ pc | (po, pc) ∈ prn(S)}

Goal
WF(S)
3 = {i @ e @ f | (i, e, f) ∈ ite(S)}

Goal
WF(S)
4 = {p⊗ p′ | p, p′ ∈ prn(S), p 6= p′}

Goal
WF(S)
5 = {(i @ po @ e⇒ pc @ e) |

(po, pc) ∈ prn(S), (i, e, f) ∈ ite(S)} .
(b)

Figure 3.7: (a) AG for computing delimiters, fluents for tracking bound variables,
and actions for tracking sets of bound variables over units. To avoid clutter, we han-
dle productions of similar form together by letting the meta non-terminals N,N1, N2

stand for potions of the right-hand sides of productions in Figure 3.6(a). (b) plan-
ning problem for wellformedness. We write {flat(S)} for the set of units in the
sequence flat(S) and B[vars(e)] for the set {B[z] | variable z appears in e}.
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To ensure syntactic wellformedness, the planning problem WF contains

a fluent u and the action 〈〉u 〈only(u)〉 per unit u in the original program where

only(u)
def
= {u} ∪ {¬v | v ∈ flat(S) \ {u}}. This ensures each action emits the

corresponding fluent at the instant it appears in a plan by setting it at the

post state and turning off unit-fluents from the previous action. This allows us

to express temporal goals over the units of the output program. The first goal

establishes that the output program is a permutation of the input program.

We refer to units of the form if bL, while b doL, and for x : r doL as opening

delimiters and units of the form fiL and odL as closing delimiters, as they

immediately precede and succeed compound statements. Units of the form

elseL are considered as a closing delimiter (of the then-branch statement)

immediately followed by an opening delimiter (of the else-branch statement).

The other goals establish that delimiters appear in correct order and form

nested scopes. To ensure semantic wellformedness, we use fluents of the form

B[x], per variable appearing in a for statement. A for x : r doL unit adds a

B[x] fluent and the corresponding odL removes it to signify that only units in

the sub-plan between these units, which correspond to the body of the loop,

may access the variable.

3.4.4 Encoding Rescheduling by a Planning Problem

Let [[S]] denote the semantics of a program S. The plans in Plans(WF(S))

are wellformed permutations of flat(S), however, they do not necessarily pre-

serve the semantics of S. We add goals to ensure that the semantics is pre-
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served.

Let �⊆ 1..n × 1..n be a partial order over 1..n. We say that a per-

mutation Π : 1..n → 1..n is monotone w.r.t �, written Π�, if i � j implies

Π(i) � Π(j). We say that a partial order �⊆ 1..n × 1..n is dependence pre-

serving if every monotone permutation Π� induces an equivalent program:

[[S]] = [[unflat(Π�(flat(S)))]]. A dependence preserving partial order � induces

an equivalence relation among programs: S and S ′ are dependence-equivalent,

written S ≈� S ′, iff there exists a monotone permutation Π� : 1..n → 1..n

such that S ′ = unflat(Π�(flat(S))).

We say that Dependences : DWhileH → N × N is a dependence anal-

ysis if Dependences(S) is a dependence preserving partial order for every

S ∈ DWhileH . Notice that in our definition a dependence analysis returns

a result over flat programs. This allows us to uniformly express transforma-

tions such as loop and condition reordering, hoisting statements out of loops,

and reordering updates. We encode a dependence analysis by temporal goals

as follows:

GoalDependences(S) def
= {ui @ uj | i � j ∈ Dependences(S), i 6= j} . (3.2)

Lemma 2. Define Equiv(S) = WF(S) ∧ GoalDependences(S) to be WF(S) ex-

tended with the dependence analysis goals. The plans of Equiv(S) are all flat
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programs that can be unflattened to a dependence-equivalent program:

Plans(Equiv(S)) = {F [′ | S ≈� unflat(F [′)} . (3.3)

3.4.5 Encoding Lowering by a Planning Problem

Tiles and Tilings. Let FDWhileH and FDWhileL denote the flat languages

corresponding to DWhileH and DWhileL, respectively. A tile associates a

sequence of (high-level) units from FDWhileH with a (low-level) unit from

FDWhileL, written as tile(lu) = hu1, . . . , huk. We say that a flat low-level

program FL = lu1, . . . , lum is a tiling of the flat high-level program: FH =

tile(FL) = tile(lu1), . . . , tile(lum). We also say that lui covers tile(lui) in FH .

Intuitively, tiles provide customized implementations that take advantage of,

e.g., specific data structure implementations and properties of the runtime

platform, to achieve better efficiency.

The Tile-Based Lowering Problem. For SH ∈ DWhileH , a set of tiles M ,

and a dependence analysis Dependences, find a program SL ∈ DWhileL such

that there exists a dependence-equivalent program SH
′ ≈� SH and flat(SL) is

a tiling of flat(SH
′
) where � = Dependences(SH).

Multi Tiles. Tiles implementing loops and conditions usually cover only one

delimiter of the loop or condition statement. To cover the remaining delimiters,

we couple them with additional tiles. These tiles appear in tandem, covering
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all of the delimiters of a high-level statement (2 for loops and up to 3 for

conditionals). We call these multi tiles.

Example 1. The following tile takes advantage of a graph data structure where

the successors of a node can be efficiently accessed:

tile[for b : Succ(a) do] = for b : nodes do, if edges(a, b) .

The tile above is coupled with the following tile, which is used as a

closing delimiter: tile[odSucc] = fi, od.

Theorem 1. For SH ∈ DWhileH and a set of (multi) tiles M , define the

planning problem

LowerM(SH)
def
= InvHom(Equiv(SH),M) . (3.4)

Then, π ∈ Plans(LowerM(SH)) if and only if unflat(π) is a solution to the

tile-based lowering problem for SH and M .

3.5 Planning-Based Synchronization

We now turn to parallel DWhile programs and the problem of synchro-

nizing them both correctly and efficiently. Let [[r]]σ mean the set of objects

denoted by range expression r in a program state σ. To support parallelism,

we assume that the outermost loop takes parallel semantics.6 We have that

[[for x : r do S od]]σ = [[S(x := v1)‖ . . . ‖S(x := vk)]]σ

6We also assume that the parallel loop does not contain while loops.
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where [[r]]σ = {v1, . . . , vk} and [[S(x := vi)]] denotes the atomic execution of

the loop body in the context where x is bound to vi. The tasks S(x := vi)

execute in parallel while ensuring serializability. When a task aborts due to a

conflict, it is re-executed. General techniques for synchronizing arbitrary pro-

grams usually rely on variants of transactional memory [115, 61]. We consider

these approaches as a reference for comparison. We define an efficient specu-

lative lock-based synchronization technique (Section 3.5.1), dubbed ATS, that

can achieve better performance than the reference synchronization techniques.

Finally, we define a planning problem (Section 3.5.2) to automatically insert

synchronization statements that realize ATS.

Resources and Resource Expressions. We assume an analysis that com-

putes for each unit u the sets of expressions rd(u) and wt(u), which denote the

(overapproximation of) shared runtime objects that it may directly access for

reading and writing, respectively. We define res(u) = rd(u) ∪ wt(u). For

example, res(mis) = {a,N (a)} for misH in Figure 3.3(b).

Stable Ranges. We further assume that the range expressions appearing in

an DWhile program are invariant for each update statement Upd appearing in

it: [[r]]σ = [[r]] ◦ [[Upd]]σ. This condition must be checked for each instantiation

of DWhile in order for our synchronization technique to work correctly. For

the class of Elixir programs considered in this thesis, this amounts to checking

that the sets of nodes and edges remain constant.
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3.5.1 Alias Tracking-Based Synchronization (ATS)

Our synchronization technique is a variant of two-phase locking where

each shared object obj is associated with an atomic bit field isLk. When

obj.isLk = 1 it means that the object is owned for exclusive access by some

task. However, isLk does not convey which task owns the object. This means

that when an attempt to acquire obj by a test-and-set instruction through the

resource expression r fails there are two possible reasons: (i) the obj is cur-

rently owned by another task; or (ii) obj has been previously acquired by the

current task, perhaps through another resource expression r′ aliased with r.

To differentiate between the two cases, it is possible to track the set of resource

expressions rs that were used earlier in the execution to acquire objects and

dynamically check whether the objects in r are a subset of rs: [[r]]σ ⊆ [[rs]]σ. If

so, the object is owned by the current task. To achieve this form of synchro-

nization we introduce the following instrumentation statements.

“unlock rs” releases the objects in [[rs]], by setting isLk = 0, taking

care to reset the bit of each object at most once. This is done by checking

each object for aliasing against the sub-resource expressions of rs already used

for releasing objects.

“lock rs1 ctx rs2” attempts to acquire the objects in [[rs1]] where rs2

denotes the set of objects already owned by the current task, which we call

context. If [[rs1]]σ ⊆ [[rs2]]σ the operation succeeds; otherwise, if locking rs1 fails

then the objects denoted by rs2 and the portion of rs1 successfully acquired

are unlocked and the task is re-executed.
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We say that a DWhile program is correctly synchronized by ATS when

all shared data structures are linearizable [63] and the following conditions

hold: (C1) Isolation: each resource is acquired before accessed; (C2) Two-

phase locking: all unlocks happen after all locks; (C3) Release: all locks

are released when execution aborts or commits; (C4) Cautious: all locks are

acquired before any updates occur, which ensures that on abort, no rollback

operations are required to restore state to the one at the beginning of the task;

and (C5) Locks tracking: “lock rs1 ctx rs2” statements execute with the

correct context. C1–3 ensure serializability. In Figure 3.3(c), misV1 is correctly

synchronized by ATS7. It is obtained from misH by applying instrumentation,

as explained next.

3.5.2 Instrumenting DWhile for ATS via Planning

Figure 3.8 defines the planning problem Synch(S) used for instrument-

ing DWhile programs, which ensures that C1–5 hold on every execution path.

Encoding a Lockset Analysis. Let res(S) denote the set of all resources

in S. We encode a flow-sensitive dataflow may-analysis, which tracks the set

of acquired resources via the powerset lattice 〈℘(res(S)),⊆,∪,∩, ∅, res(S)〉.

We encode lattice elements by the set of fluents {locked[r] | r ∈ res(S)} and

define the shorthand notation D[rs]
def
= locked[rs] ∪ ¬locked[res(S) \ rs] to refer

to a specific lattice element in action pre-/postconditions. The definition of

7 For simplicity, we removed the exit and commit statements.
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Act2 requires that expressions rs1 have not been acquired and in such a case

adds the correct dataflow facts to the postcondition. Act3 ensures that a rel

statement releases all locks. To capture the control flow of conditions, Act4

records the lattice element upon entry to the condition and Act5 re-establishes

that element in the else branch.

Notice that since update statements may only appear before the commit

statement (by a control dependence), then Goal3 restricts lock statements to

appear before commit. Together with Goal4, they restrict lock statements to

appear inside the atomic section.

We ensure C1 via the fluents {read[r],write[r] | r ∈ res(S)} and Goal1.

We ensure C2 by Goal2. We ensure C3 by Act6 — all locks should be released

as a precondition to committing or exiting a condition via the else branch

(which is where a exit unit would appear). We ensure C4 by Goal3. Finally,

we ensure C5 by having plans that choose lock rs1 ctx rs2 statements that

satisfy the lockset analysis defined above.

3.6 Elixir

Figure 3.9 summarizes the overall structure of Elixir when instantiated

with our planning-based synthesis framework. Our synthesizer accepts an Elixir

program and generates an implementation in three phases described next.

Enhancement. The first phase achieves two main tasks: (1) in case of a

fixed-point iteration loop, it uses automatic reasoning to infer the code needed
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Meta variable Description
r Resource expression r ∈ res(S)
r′ Data range expression
rs Resource set expression rs ⊆ res(S)
u Any unit type referenced below u ∈ flat(S)

FlntsSynch(S) = {locked[r], read[r],write[r]} ∪ {afterUpd}∪
{if bL ctx rs} ∪ {lock rs1 ctx rs2 \ rs1}∪
{flat(S)} ∪ {B[vars(unlock rs)]}∪
{B[vars(lock rs1 ctx rs2 \ rs1)]}

ActSynch(S) =
∧7
i=1 Act

Synch(S)
i

Act
Synch(S)
1 = {〈〉u 〈read[rd(u)] ∪ write[wt(u)]〉}

Act
Synch(S)
2 = {〈D[rs2 \ rs1],B[vars(lock rs1 ctx rs2 \ rs1)]〉

lock rs1 ctx rs2 \ rs1

〈locked[rs1], only(lock rs1 ctx rs2 \ rs1)〉}
Act

Synch(S)
3 = {〈D[rs1],B[vars(unlock rs1)]〉unlock rs1

= 〈D[∅], only(unlock rs1)〉}
Act

Synch(S)
4 = {〈D[rs]〉 if bL 〈if bL ctx rs〉}

Act
Synch(S)
5 = {〈if bL ctx rs〉 elseL 〈D[rs]〉}

Act
Synch(S)
6 = {〈D[∅]〉 commit 〈〉, 〈D[∅]〉 exit 〈〉}

Act
Synch(S)
7 = {〈〉Upd 〈afterUpd〉}

InitSynch(S) = ∅

GoalSynch(S) =
4⋃
i=1

Goal
Synch(S)
i

Goal
Synch(S)
1 = {F locked[r]} ∪ {locked[r] @ (read[r] ∨ write[r])}

Goal
Synch(S)
2 = {lock rs1 ctx rs2 \ rs1 @ unlock rs}

Goal
Synch(S)
3 = {locked[r] @ afterUpd}

Goal
Synch(S)
4 = {for x : r′ do @ lock rs1 ctx rs2 \ rs1 | ¬val(r′)}

Figure 3.8: ATS problem. To avoid clutter, set formers don’t specify that:
L ∈ Label, u ∈ flat(S), rs, rs2 ⊆ res(S), rs1 ⊆ res(S) \ {}.
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Figure 3.9: Architecture of the Elixir synthesizer.

to compute the fixpoint, which amounts to adding future redexes to the work-

list; and (ii) lowering the program to a high-level intermediate language (HIR)

program, which in particular explicitly represents the chosen (static) schedul-

ing tactic.

Lowering. The second phase first simplifies the input by heuristically apply-

ing rewrite rules to remove redundant conditions from the guard of operators

and unify delta clauses. It then produces a low-level intermediate language

(LIR) program, as described in Section 3.4 and Section 3.5.

Code Generation. A C++ back-end generates a C++ implementation us-

ing spin locks for synchronization and the Galois system [2].
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Chapter 4

Experimental Evaluation of Elixir

One of the main difficulties in writing high-performance graph analytics

programs is that there is usually no single implementation that performs well

for all graph types. For example, some implementations may perform well for

high-diameter graphs like road-networks but perform poorly for low-diameter

graphs like social-networks, and vice versa. Consequently, it may be necessary

to have several implementations of the same basic algorithm, and choose the

appropriate one for a given input graph, using some insight about the graph.

Elixir is the first system that allows to automatically synthesize efficient

parallel implementations for the complex domain of sparse graph problems. To

demonstrate its effectiveness in generating efficient parallel implementations

and enabling input adaptivity, we now present an in-depth performance anal-

ysis for several challenging sparse graph problems 1.

1 Part of the work presented in this chapter has appeared in “Dimitrios Prountzos,
Roman Manevich, Keshav Pingali. ‘Synthesizing Parallel Graph Programs via Automated
Planning’. In Proceedings of the ACM Conference on Programming Language Design and
Implementation (PLDI) 2015,” and “Dimitrios Prountzos, Roman Manevich, Keshav Pin-
gali. ‘Elixir: A System for Synthesizing Concurrent Graph Programs’. In Proceedings of the
ACM International Conference on Object Oriented Programming Systems Languages and
Applications (OOPSLA) 2012.” The first author is responsible for the conception and the
implementation of the ideas presented in these publications. Additional authors provided
assistance with the presentation of the material.
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Our evaluation methodology is as follows: For each problem we consider

an implementation space consisting of different Elixir schedules capturing algo-

rithmic insights, and different plans capturing different implementation-level

insights. Using Elixir we automatically generate a large number of variants

and then use exhaustive search over the implementation space to find the

best-performing variants for a number of interesting inputs. Subsequently, we

compare these best-performing solutions against hand-optimized implementa-

tions by expert programmers.

The hand-optimized solutions we compare against are implemented on

top of the state-of-the-art Galois, Cilk and OPENMP frameworks. While we

cannot know what would be the fastest hand-tuned implementation for the

problems we study, we believe that all the solutions we compare against are

very competitive. The interested reader is referred to [132] for a recent study

by Intel, which compares existing graph frameworks and shows that Galois

performs competitively against other frameworks as well as hand-written ex-

pert implementations. Similarly, [109] compares favorably Galois with other

popular frameworks, such as Ligra [139] and GraphLab [92].

Additionally, we note that some of the solutions we compare against use

customized, elaborate synchronization requiring expert parallel-programming

skills. For example, the hand-written single-source shortest path, breadth-

first-search, and connected-components solutions on top of Galois, as well as

all the Cilk-based solutions, use specialized lock-free synchronization (not au-

tomatically supported by Galois), which can be more efficient than the default
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Galois synchronization.

This chapter is organized into two main sections: In Section 4.1 we fo-

cus on the use of the Elixir scheduling language as a means to explore different

implementations. In Section 4.2 we focus on the use of the planning infras-

tructure to explore complementary dimensions of the implementation space.

Each section contains detailed performance analysis for a number of interesting

case-studies.

4.1 Exploring Elixir Schedules

In this section we demonstrate a subset of the capabilities of Elixir by

exploring an implementation space consisting purely of different Elixir sched-

ules and considering one arbitrary plan for each such schedule. To evaluate

the effectiveness of Elixir, we perform studies on three problems: single-source

shortest path (SSSP), breadth-first-search (BFS), and betweenness centrality

(BC). In the following paragraphs we present detailed experimental results for

each of these problems and show how varying the schedule leads to programs

with different performance.

Section 4.1.1 discusses in details the dimensions of the implementation

space that we considered in our case-studies. Section 4.1.2 presents details of

the experimental setup that we considered. Section 4.1.3 presents in detail re-

sults for the SSSP problem, Section 4.1.4 discusses results for the BFS problem,

and Section 4.1.5 presents results for the BC problem.
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Dimension Value Range
Worklist (WL) {CF, CL, OBM, BS, LGEN, LOMP}

Group (GR) {a, b, NONE}
Unroll Factor (UF) {0, 1, 2, 10, 20, 30}

VC Check (VC) {ALL,NONE,LOCAL}
SC Check (SC) {ALL,NONE}

Table 4.1: Dimensions explored by our synthesized algorithms.

4.1.1 Design Space

Table 4.1 shows the dimensions of the design space supported in Elixir,

and for each dimension, the range of values explored in our evaluations.

Worklist Policy (WL): The dynamic scheduler is implemented by a work-

list data structure. To implement the LIFO, FIFO, and approx metric policies,

Elixir uses worklists from the Galois system [88, 108]. These worklists can be

composed to provide more complex policies. To reduce overhead, they manip-

ulate chunks of work-items. We refer to the chunked versions of FIFO/LIFO

as CF/LF and to the (approximate) metric-ordered worklist composed with a

CF as OBM. We implemented a worklist (LGEN) to support general, level-by-level

execution (metric policy). For some programs, Elixir can prove that only two

levels are active at any time. In these cases, it can synthesize an optimized,

application-specific scheduler using OpenMP primitives (LOMP). Alternatively,

it can use a bulk-synchronous worklist (BS) provided by the Galois library.
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Grouping: In the case of the SSSP relaxEdge operator, we can group either

on a, or b, creating a “push-based” or a “pull-based” version of the algorithm.

Additionally, Elixir uses grouping to determine the type of worklist items.

For example, worklist items for SSSP can be edges (a,b), but if the group

b directive is used, it is more economical to use node a as the worklist item.

In our benchmarks, we consider using either edges or nodes as worklist items,

since this is the choice made in all practical implementations.

Unroll Factor: Unrolling produces a composite operator. This operator

explores the subgraph in a depth-fist order.

Shape/Value constraint checks (VC/SC): We consider the following

class of heuristics to optimize the worklist manipulation. After the execution of

an operator op, the algorithm may need to insert into the worklist a number of

matchings µ, which constitute the delta of op. Before inserting each such µ, we

can check whether the shape constraint (SC) and/or the value constraint (VC)

is satisfied by µ, and if it is not, avoid inserting it, thus reducing overhead.

Eliding such checks at this point is always safe, with the potential cost of

populating the worklist with useless work.

In practice, there are many more choices such as the order of checking

constraints and whether these constraints are checked completely or partially.

In certain cases, eliding check ci may be more efficient since performing ci may

require holding locks longer. Elixir allows the user to specify which SC/VC
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checks should be performed and provides three default, useful polices: ALL for

doing all checks, NONE for doing no checks, and LOCAL for doing only checks that

can be performed by using graph elements already accessed by the currently

executing operator. The last one is especially useful in the context of parallel

execution. In cases where both VC and SC are applied, we always check them

in the order SC, VC.

4.1.2 Implementation and Experimental Details

We use Elixir to automatically enumerate and synthesize a number of

program variants for each problem, and compare the performance of these

programs to the performance of existing hand-tuned implementations. In the

SSSP comparison, we use a hand-parallelized code from the Lonestar bench-

mark suite [79]. In the BFS comparison, we use a hand-parallelized code from

Leiserson and Schardl [87], and for BC, we use a hand-parallelized code from

Bader and Madduri [8]. In all cases, our synthesized solutions perform com-

petitively, and in some cases, they outperform the hand-optimized implemen-

tations. More importantly, these solutions were produced through a simple

enumeration-based exploration strategy of the design space, and do not rely

on expert knowledge from the user’s part to guide the search.

Elixir produces both serial and parallel C++ implementations. Intu-

itively, Elixir generates a (parallel) loop iterating over the contents of a worklist

W containing the redexes that remain to be executed. The dynamic compo-

nent of the schedule denotes the order in which the we iterate over the contents
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of W . The static component corresponds to a hard-coded schedule of multiple

operator instances that are executed on each loop iteration, starting from an

initial (potentially partial) redex. Each iteration may conditionally schedule

new redexes. Different plans correspond to different implementations of this

loop iteration. Elixir relies on a host runtime to provide a parallel loop con-

struct. The synthesized code also assumes there is a graph data structure

that supports a generic API with methods such as ‘for b : Succ(a) do’.

In our experiments we used parallel loops, graphs, and work-lists from the

Galois runtime. The graph implementations are variants of the Compressed

Sparse Row (CSR) format. Implementations of standard collections such as

sets and vectors are taken from the C++ standard library. Galois provides its

own synchronization but we disabled this feature, and use Elixir-synthesized

synchronization following the order-and-spin policy for the three case-studies

presented in this section.

In our experiments, we use the following input graph classes:

Road networks: These are real-world, road network graphs of the USA from

the DIMACS shortest paths challenge [1]. We use the full USA network

(USA-net) with 24M nodes and 58M edges, the Western USA network

(USA-W ) with 6M nodes and 15M edges,and the Florida network (FLA)

with 1M nodes and 2.7M edges.

Scale-free graphs: These are scale-free graphs that were generated using the

tools provided by the SSCA v2.2 benchmark [6]. The generator is based
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on the Recursive MATrix (R-MAT) scale-free graph generation algo-

rithm [27]. The size of the graphs is controlled by a SCALE parameter;

a graph contains N = 2SCALE nodes, M = 8×N edges, with each edge

having strictly positive integer weight with maximum value C = 2SCALE .

For our experiments we removed multi-edges from the generated graphs.

We denote a graph of SCALE = X as rmatX .

Random graphs: These graphs contain N = 2k nodes and M = 4×N edges.

There are N − 1 edges connecting nodes in a circle to guarantee the

existence of a connected component and all the other edges are chosen

randomly, following a uniform distribution, to connect pairs of nodes.

We denote a graph with k = X as randX .

We ran our experiments on an Intel Xeon machine running Ubuntu

Linux 10.04.1 LTS 64-bit. It contains four 6-core 2.00 GHz Intel Xeon E7540

(Nehalem) processors. The CPUs share 128 GB of main memory. Each core

has a 32 KB L1 cache and a unified 256 KB L2 cache. Each processor has an

18 MB L3 cache that is shared among the cores. For SSSP and BC the compiler

used was GCC 4.4.3. For BFS, the compiler used was Intel C++ 12.1.0. All

reported running times are the minimum of five runs. The chunk sizes in all

our experiments are fixed to 1024 for CF and 16 for CL.

One aspect of our implementation that we have not optimized yet is

the initialization of the worklist, before the execution of a parallel loop. Our

current implementation simply iterates over the graph, checks the operator
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Dimension Value Ranges
Group {a, b, NONE}

Worklist {CF, OBM, LGEN}
Unroll Factor {0, 1, 2, 10, 20, 30}

VC check {ALL,NONE}
SC check {ALL,NONE}

Table 4.2: Dimensions explored by our synthetic SSSP variants.

guards and populates the worklist appropriately when a guard is satisfied.

In most algorithms, the optimal worklist initialization is much simpler. For

example, in SSSP we just have to initialize the worklist with the source node

(when we have nodes as worklist items). A straightforward way to synthesize

this code is to ask the user for a predicate that characterizes the state before

each parallel loop. For SSSP, this predicate would assert that the distance

of the source is zero and the distance of all other nodes is infinity. With

this assertion, we can use our delta inference infrastructure to synthesize the

optimal worklist initialization code. This feature is not currently implemented,

so the running times that we report (both for our programs and programs

that we compare against) exclude this part and include only the parallel loop

execution time.

4.1.3 Single-Source Shortest Path

We synthesize both ordered and unordered versions of single-source

shortest-path (SSSP). In Table 4.2, we present the range of explored values in

each dimension for the synthetic SSSP variants. In Table 4.3, we present the
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Variant GR WL UF VC SC fPr
v50 b OBM 2 X X ad/∆
v62 b OBM 2 × X ad/∆
v63 b OBM 10 × X ad/∆
dsv7 b LGEN 0 X X ad/∆

Table 4.3: Chosen values and priority functions (fPr) for best performing SSSP

variants (Xdenotes ALL, × denotes NONE).

combinations that lead to the three best performing asynchronous SSSP vari-

ants (v50, v62, v63) and the best performing delta-stepping variant (dsv7).

In Figure 4.1 we compare their running times with that of an asynchronous,

hand-optimized Lonestar implementation on the FLA and USA-W road net-

works. We observe that in both cases the synthesized versions outperform the

hand-tuned implementation, with the leveled version also having competitive

performance.

All algorithms are parallelized using the Galois infrastructure, they

use the same worklist configuration, with ∆ = 16384, and the same graph

data-structure implementation. The value of ∆ was chosen through enumer-

ation and gives the best performance for all variants. The Lonestar version

is a hand-tuned lock-free implementation, loosely based on the classic delta-

stepping formulation [104]. It maintains a worklist of pairs [v, dv∗], where

v is a node and dv∗ is an approximation to the shortest path distance of v

(following the original delta-stepping implementation). The Lonestar version

does not implement any of our static scheduling transformations. All syn-

thetic variants perform fine grained locking to guarantee atomic execution of
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operators, checking of the VC and evaluation of the priority function. For the

synthetic delta-stepping variant dsv7 Elixir uses LGEN since new work after

the application of an operator can be distributed in various (lower) priority

levels. An operator in dsv7 works over a source node a and its incident edges

(a, b), which belong to the same priority level.

In Figure 4.2 we present the runtime distribution of all synthetic SSSP

variants. Here we summarize a couple of interesting observations from study-

ing the runtime distributions in more detail. By examining the ten variants

with the worst running times, we observed that they all use a CF (chunked

FIFO) worklist policy and are either operating on a single edge or the imme-

diate neighbors of a node (through grouping), whereas the ten best performing

variants all use OBM. This is not surprising, since by using OBM there are fewer

updates to node distances and the algorithm converges faster. To get the best

performance though, we must combine OBM with the static scheduling transfor-

mations. Interestingly, combining the use of CF with grouping and aggressive

unrolling (by a factor of 20) produces a variant that performs only two to three

times worse than the best performing variant on both input graphs.

4.1.4 Breadth-First Search

We experiment with both ordered and unordered versions of the BFS.

In Table 4.4 and Table 4.5, we present the range of explored values for the

synthetic BFS variants and the combinations that give the best performance,

respectively. In Figure 4.3, we present a runtime comparison between the
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Figure 4.1: Runtime comparison of SSSP algorithms.
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Figure 4.2: Runtime distribution of all synthetic SSSP variants.
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three best-performing BFS variants (both asynchronous and leveled), and two

highly optimized, handwritten, lock-free parallel BFS implementations. The

first handwritten implementation is from the Lonestar benchmark suite and is

parallelized using the Galois system. The second is an implementation from

Leiserson and Schardl [87], and is parallelized using Cilk++. We experiment

with three different graph types. For the rmat20 and rand23 graphs, the

synthetic variants perform competitively with the other algorithms For the

USA-net graph, they outperform the hand-written implementations at high

thread counts (for 20 and 24 threads).

To understand these results, we should consider the structure of the

input graphs and the nature of the algorithms. Leveled BFS algorithms try

to balance exposing parallelism and being work-efficient by working on one

level at a time. If the amount of available work per level is small, then they

do not exploit the available parallel resources effectively. Asynchronous BFS

algorithms try to overcome this problem by being more optimistic. To expose

more parallelism, they speculatively work across levels. By appropriately pick-

ing the priority function, and efficiently engineering the algorithm, the goal is

reduce the amount of mis-speculation introduced by eagerly working on multi-

ple levels. Focusing on the graph structure, we observe that scale-free graphs

exhibit the small-world phenomenon; most nodes are not neighbors of one an-

other, but most nodes can be reached from every other by a small number of

“hops”. This means that the diameter of the graph and the number of levels is

small (12 for rmat20 ). The random graphs that we consider also have a small
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diameter (17 for rand23 ). On the other hand, the road networks, naturally,

have a much larger diameter (6261 for USA-net). The smaller the diameter of

the graph the larger the number of nodes per level, and therefore the larger the

amount of available work to be processed in parallel. Our experimental results

support the above intuitions. For low diameter graphs we see that the best

performing synthetic variants are, mostly, leveled algorithms (v17,v18, v19).

For USA-net which has a large diameter, the per-level parallelism is small,

which makes the synthetic asynchronous algorithms (v11, v12, v14) more effi-

cient than others. In fact, at higher thread counts (above 20) they manage to,

marginally, outperform even the highly tuned hand-written implementations.

For all three variants we use ∆ = 8. This effectively, merges a small number

of levels together and allows for a small amount of speculation, which allows

the algorithms to mine more parallelism. Notice that, similarly to SSSP, all

three asynchronous variants combine some static scheduling (small unroll fac-

tor plus grouping) with a good dynamic scheduling policy to achieve the best

performance.

The main take-away message from these experiments is that no one

algorithm is best suited for all inputs, especially in the domain of irregular

graph algorithms. This validates our original assertion that a single solution

for an irregular problem may not be adequate, so it is desirable to have a system

that can synthesize competitive solutions tailored to the characteristics of the

particular input.

For level-by-level algorithms, there is also a spectrum of interesting
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Dimension Value Ranges
Group {b, NONE}

Worklist {OBM, LOMP, BS}
Unroll Factor {0, 1, 2}

VC check {ALL,NONE}
SC check {ALL,NONE}

Table 4.4: Dimensions explored by our synthetic BFS variants.

choices for the worklist implementation. Elixir can deduce that BFS under the

metric ad scheduling policy can have only two simultaneously active priority

levels. Therefore, it can use a customized worklist in which a bucket Bk

holds work for the current level and a bucket Bk+1 holds work for the next.

Hence, we can avoid the overheads associated with LGEN, which supports an

unbounded number of buckets. BS is a worklist that can be used to exploit

this insight. Additionally, since no new work is added to Bk while working

on level k, threads can scan the bucket in read-only mode, further reducing

overheads. Elixir exploits both insights by synthesizing a custom worklist LOMP

using OpenMP primitives. LOMP is parameterized by an OpenMP scheduling

directive to explore load-balancing policies for the threads querying Bk (in our

experiments we used the STATIC policy).

4.1.5 Betweenness Centrality

The betweenness centrality (BC) of a node is a metric that captures the

importance of individual nodes in the overall network structure. Informally,

it is defined as follows. Let G = (V,E) be a graph and let s, t be a fixed pair
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Figure 4.3: Runtime comparison of BFS algorithms.
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Variant GR WL UF VC SC fPr
v11 b OBM 1 X X ad/∆
v12 b OBM 2 X X ad/∆
v14 b OBM 1 X × ad/∆
v16 b OBM 0 X × ad/∆
v17 b BS 0 X X ad
v18 b LOMP 0 X X ad
v19 b BS 0 X × ad

Table 4.5: Chosen values and priority functions for BFS variants. We chose
∆ = 8. (Xdenotes ALL, × denotes NONE.)

of graph nodes. The betweenness score of a node u is the fraction of shortest

paths between s and t that include u. The betweenness centrality of u is the

sum of its betweenness scores for all possible pairs of s and t in the graph. The

most well known algorithm for computing BC is Brandes’ algorithm [20]. In

short, Brandes’ algorithm considers each node s in a graph as a source node

and computes the contribution due to s to the betweenness value of every other

node u in the graph as follows: In a first phase, it starts from s and explores the

graph forward building a DAG with all the shortest path predecessors of each

node. In a second phase it traverses the graph backwards and computes the

contribution to the betweenness of each node. These two steps are performed

for all possible sources s in the graph. For space efficiency, practical approaches

to parallelize BC (e.g. [8]) focus on processing a single source node s at a time,

and parallelize the above two phases for each such s. Additionally, since it

is computationally expensive to consider all graph nodes as possible source

nodes, they consider only a subset of source nodes (in practice this provides a
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Dimension
Forward Phase Backward Phase

Ranges Ranges
Group {b, NONE} {a}

Worklist {LOMP, BS} {CF}
Unroll Factor {0} {0}

VC check {ALL,NONE} {LOCAL}
SC check {ALL,NONE} {ALL,NONE}

Table 4.6: Dimensions explored by the forward and backward phase in our
synthetic BC variants.

Variant GR WL UF VC SC fPr
v1 NONE BS 0 (X,L) (X,X) ad
v14 b LOMP 0 (X,L) (X,X) ad
v15 b BS 0 (X,L) (×,×) ad
v16 b LOMP 0 (X,L) (×,×) ad
v24 b LOMP 0 (×,L) (×,×) ad

Table 4.7: Chosen values and priority functions for BC variants (Xdenotes ALL,
× denotes NONE, L denotes LOCAL). For the backward phase there is a fixed
range of values for most parameters (see Table 4.6). In the SC column the pair
(F,B) denotes that F is used in the forward phase and B in the backward
phase. fPr is the priority function of the forward phase.

good approximation of betweenness values for real-world graphs [7]).

In Table 4.6 and Table 4.7, we present the range of explored values for

the synthetic BC variants and the combinations that give the best performance,

respectively. We synthesized solutions that perform a leveled parallelization of

the forward phase and an asynchronous parallelization of the backward phase.

In Figure 4.4 we present a runtime comparison between the three best per-

forming BC variants, and a hand-written, OpenMP parallel BC implementation
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by Bader and Madduri [8], which is publicly available in the SSCA benchmark

suite [6]. All algorithms perform the computation outlined above for the same

five source nodes in the graph, i.e. they execute the forward and backward

phases five times. The reported running times are the sum of the individual

running times of all parallel loops.

We observe that in the case of the USA-W road network our synthesized

versions manage to outperform the hand-written code, while in the case of

rmat20 graph the hand-written implementation outperforms our synthesized

versions. We believe this is mainly due to the following reason. During the

forward phase, both the hand-written and synthesized versions build a shortest

path DAG by recording for each node u, a set p(u) of shortest path predecessors

of u. The set p(u) therefore contains a subset of the immediate neighbors of u.

In the second phase of the algorithm, the hand-written version walks the DAG

backward to update the values of each node appropriately. For each node u,

it iterates over the contents of p(u) and updates each w ∈ p(u) appropriately.

Our synthetic codes instead examine all incoming edges to u and use p(u) to

dynamically identify the appropriate subset of neighbors and prune out all

other in-neighbors. In the case of rmat graphs, we expect that the in-degree

of authority nodes to be large, while in the road network case the maximum

in-degree is much smaller. We expect therefore our iteration pattern to be a

bottleneck in the first class of graphs. A straightforward way to handle this

problem is to add support in our language for multiple edge types in the graph.

By having explicit predecessor edges in the graph instead of considering p(u)
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Figure 4.4: Runtime comparison of BC algorithms.

as yet another attribute of u, our delta inference algorithm will be able to infer

the more optimized iteration pattern. We plan to add this support in future

extensions of our work.

4.2 Exploring Elixir Plans

In this section we demonstrate a different subset of the capabilities of

Elixir by fixing the number of Elixir schedules to a small number and explor-

ing an implementation space consisting of different plans for each of the Elixir

schedules. Such plans capture insights about different ways of implementing

synchronization policies or encoding different iteration patterns over the ele-

ments of a graph by using the graph ADT API. In the following paragraphs
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we present results for the following four complex graph problems: maximal

independent set, triangle counting, preflow-push, and connected components.

Section 4.2.1 gives details of the experimental evaluation and experi-

mental setup of the case-studies. Section 4.2.2 presents results for the maximal

independent set problem, Section 4.2.3 presents experiments for the triangle

counting problem, Section 4.2.4 discusses results for the connectected compo-

nents problem, and Section 4.2.5 discusses the preflow-push problem.

4.2.1 Implementation and Experimental Details

In the case-studies presented in this section we used parallel loops,

graphs, and work-lists from the Galois runtime, similarly to the experiments

in Section 4.1. Our case-studies require speculation-based synchronization for

atomic operator execution. Again, we disable the default Galois speculation-

based synchronization scheme and guide Elixir to synthesize customized spec-

ulation implementations based on ATS.

We performed our experiments on a 40-core machine with Intel Xeon

E7-4860 hyper-threaded processors, with 24MB of L3 cache and 128GB of

main memory. The operating system is Scientific Linux 6.3 and the compiler

is GCC 4.8.1 (-O2). We used four kinds of graphs: (i) the DIMACS USA road

network (24M nodes and 58M edges), (ii) the wikipedia-2007 graph (3.5M

nodes and 8M edges), (iii) the rmat24 graph (a=0.5,b=c=0.1,d=0.3), which

is a synthetic scale-free graph (16M nodes,268M edges), and (iv) a number of

random graphs dubbed randX (2X nodes,4 × 2X edges). Since all our input
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problems are defined over undirected graphs we preprocess the inputs to add

symmetric edges, in case they are not already present in the graph. We also

removed multi-edges (otherwise we would not even have a graph). We present

graphs showing the runtime distribution of Elixir solutions, as well as graphs

comparing their performance against the manual implementations. In order to

improve clarity of exposition in the comparison graphs we normalize runtimes

against the fastest single-thread runtime across all implementations (manual

and synthesized) and we report speedups over that baseline. All reported

times are the medians of five runs and baseline times are presented in figure

captions.

4.2.2 Maximal Independent Set

We explore a space of MIS implementations by considering different

variations of ATS speculative locking and different HIR schedules. We gener-

ated 128 variants in total. Their main differences are:

Lock acquire and release for N (a): The incremental strategy fuses the eval-

uation of the ∀ predicate with lockingN (a), whereas one-shot locksN (a)

before evaluating it. Different release policies can be implemented by re-

leasing subsets of locks during the execution of map and releasing the

rest at the operator end.

Conflict resolution: The spin strategy keeps trying to dispatch the same

work-item wi till it succeeds; the back-off strategy chooses a different
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work-item and inserts wi in a special abort queue where it is processed

by a special thread to guarantee forward progress (the default Galois

policy).

The product of all these choices gives us a set of variants that use dif-

ferent ways to grow and shrink the atomic section corresponding to the match

operator, and to resolve conflicts. Figure 4.5a presents the distribution of

best runtimes for all Elixir variants on three input graphs. In Figure 4.5a we

cluster variants in two families, based on the conflict resolution policy. Fig-

ure 4.5b presents comparisons of the best Elixir variants for each input and

family against hand-written implementations. For performance comparisons,

we used the Galois program g-nd, which employs the match operator but uses

the default transactional execution scheme of the Galois system implemented

with stamp-and-log within the Galois data structure library; conflicts are re-

solved using back-off. Additionally, we used pbbs-nd, the non-deterministic

parallelization from the Problem Based Benchmark Suite (PBBS) [16]. pbbs-

nd is a lock-free parallelization using the Cilk runtime (compiled with ICC

13.1). In Figure 4.5b the name e-spin〈i〉 (e-backoff〈i〉) denotes the i-th spin-

based (backoff-based) Elixir variant. The key observations are:

First, for all inputs, spinning is a better conflict resolution policy than

back-off, the default Galois policy. The best synthesized spin version, spin-35

outperforms the Galois version by more than a factor of 2. This shows the ad-

vantages of customizing synchronization policies to applications. Additionally,
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as shown in Figure 4.5a even among Elixir variants spin-based variants tend

to be better performing than backoff-based variants. One could expect that

backoff is always better since it prevents live-locks from happening. However,

depending on the sparsity of the input graphs and the operator structure, the

probability of live-locks may be small. In that case, it may be more beneficial

to simply retry dispatching the same redex, instead of paying the overhead of

an always-on runtime mechanism that prevents livelocks.

Second, one-shot locking performs better than incremental locking, as

is seen from the performance of e-spin35 and e-backoff29, which use one-shot

locking, and e-backoff45 which uses incremental locking. It is likely that this

is because conflicts are detected earlier and there is less wasted work from

aborts, even though locks are held longer.

Third, early release helps marginally. For example, for the road network

graph and the backoff family the runtime of the best performing early-release

variant is 84% of the runtime of the best variant without this optimization.

For other graphs the best early-release variant runtime is 96% of the best non-

early-release runtime. Reducing the size of atomic sections is definitely a useful

optimization, since it decreases the probability of conflict. In our setting, the

benefit would be mostly observable when match is applied to a high-degree

node. Since each match application on a node a renders all its neighbors

NMatched, the probability of successfully applying match on an Unmatched

high-degree node is quite low. Finally, we note that the best Elixir variants

perform competitively with pbbs-nd, and for some inputs can even outperform
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it. The results can be partially attributed to parallelizing solutions on top of

different runtime systems.

4.2.3 Triangle Counting

An Elixir solution to the Triangles problem uses a single, count oper-

ator that checks whether a triple of nodes a, b, c form a triangle. We define

a space of implementations by experimenting with different schedules for the

count operator, and by conditionally customizing the synthesized implementa-

tions to exploit structural invariants of the input graph. First, with respect to

Elixir schedules, we use the group tactic to create a “blocked” composite oper-

ator that co-schedules multiple instances of count. For example, the schedule

‘count � group a,b’ starts from a specific node a and considers all possible

bindings for b and c. Alternatively, we can start from b or c and perform similar

blocked explorations. Second, we consider input graphs where the neighbors

of each node are sorted in increasing order. Communicating this information

to our system allows the planner to use tiles encoding specialized strategies of

iterating over the neighbors of each node.

These two design parameters give us six different algorithm families: A,

B, C, SA, SB, SC, with the first letter denoting the starting node of the blocked

operator, and the conditional prefix S denoting whether sorted property is

taken into consideration or not. For each family, our planner enumerates a

number of solutions that correspond to the different schedules of evaluating the

operator. In total, we have 384 variants. Figure 4.6a presents the distribution
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of best runtimes for the Elixir variants on three input graphs. Figure 4.6b

compares the best performing variants against a version of the node-iterator

algorithm [133] (galois-ni) implemented using the Galois system. The key

observations are:

First, no single variant performs best for all input graphs. In order

to get the best performing solution for each input we need to customize the

implementation to properties of the input graph. The relative performance

of Elixir variants in Figure 4.6a shows that the best performing variants for

the road network and random graphs use simple implementations of iterating

over the node neighbors. Since the average node degree is small and uniform,

a simple strategy of iterating through all neighbors can incur less overhead

than a more elaborate strategy that tries to find the right set of neighbors to

start iterating over. This effect is more obvious in the road network graph,

while in the random graph the differences between the different families are

smaller. When we move to the scale-free Wikipedia graph however, which has

few nodes with very high connectivity, the more elaborate iteration pattern

is essential in getting performance. For this input, we do not report times

for variants in the A,B,C families because their running time (80 threads)

exceeded a timeout of 300 seconds.

Second, we note that the schedule of evaluating the operator constraints

greatly affects performance. For example, as we can see in Figure 4.6a variants

of the A, SA families outperform Elixir variants in SB across all examined

inputs. Moreover, there is variation even within the same family. Studying
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Figure 4.6: Triangles variants runtime-distribution and comparison with
hand-written code. Base-time (ms): 909 (usa-all), 19367 (rand25), 52590
(wikipedia-2007).
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the Wikipedia graph results reveals that the best Elixir variant in the SB

family, which takes 1.5 seconds, iterates over all neighbors a of b, and for each

a examines all potential c’s. A sub-family that first iterates over all neighbors

c, and for each c iterate again over the neighbors of b to find an appropriate

a gives a best runtime of 12.8 seconds. Similar performance variations exist

in the SA family, with the best variant being more than 4 times faster than

galois-ni on Wikipedia (5.5 seconds), while being slower on the random

graph.

The key take away is that finding the best implementation requires

picking the right combination of schedule for the operator constraints, and ap-

propriate specialization to the input graph properties. Programmer intuition

can be an unreliable guide, and the ability to quickly experiment with different

schedules and tiles to find the best variant for a specific input and architecture

is important.

4.2.4 Connected Components

The classic formulation [69] applies the hook and compress operators

non-deterministically up to a fixpoint. A popular scheduling heuristic, which

is adapted both in the PRAM literature [138] and in multicore implementa-

tions [33], is to alternate hook and compress rounds, selecting the number of

applied operators in each round heuristically. We generate 3200 variants by

considering different operator schedules yielding different mixes of operators

per round, and different plans for each schedule.
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Figure 4.7 presents a comparison of the best variants for each in-

put against two manually parallelized solutions in Galois. The first, g-uf ,

is based on the union-find-based algorithm [34] (union and find are merely

hook/compress schedules). The second solution, g-l , is a parallelization of the

label-propagation algorithm, as implemented in the Ligra framework [139].

The g-l solution relies on an implementation of the Ligra API on top of Galois,

which performs competitively with the original Ligra implementation [109].

Both solutions use lock-free synchronization and represent a level of perfor-

mance that cannot be obtained (automatically) by systems such as Galois, but

instead requires expert parallel programming knowledge.

In all cases, the synthetic variants perform competitively with the hand-

written implementations. For the road-network graph, g-uf takes 59% of the

runtime of the best Elixir variant, and both are roughly two orders of magnitude

faster than g-l . In the other cases, g-l outperforms g-uf and the best Elixir

variant is faster than g-l (takes 95% of the g-l time on rmat24 and 67% on

rand23 ). The best runtime difference between the best and worst variants is

at most ×3.3 for rmat24, ×2 for usa-all, and ×3.5 for rand23.

To understand these results a bit better we focus on a key characteristic

of the above solutions. All algorithms work greedily to identify component

representatives. g-l is more conservative, since it performs a local search to

guess a node representative. The g-uf and Elixir variants employ different

hook/compress mixes to perform more expanded searches, with g-uf being

the most aggressive. An expanded search improves the convergence rate, and
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Figure 4.7: Elixir CC variants comparison with hand-written codes. Base-time
(ms): 2007 (usa-all), 2282 (rand23), 7813 (rmat24).

it can be useful for long diameter graphs, such as the road network (note

the very poor performance of g-l on this graph). However it can lead to

more contention, so for graphs with smaller diameter (rmat24, rand23 ), g-

uf performance decreases, whereas g-l improves. Unsurprisingly, how greedy

the algorithm should be depends on the input. The problem with the hand-

implemented solutions is that their strategy is fixed. This is a key benefit of

Elixir, since it enables a more adaptive approach by automatically generating

solutions with varying mixes of operators and different evaluation orders of

each individual operator.
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4.2.5 Preflow-Push

The preflow-push algorithm [50] is an efficient solution to the maximum-

flow problem. The main algorithm kernel non-deterministically applies the

push and relabel operators until reaching a fixpoint. We guide Elixir to generate

solutions closely matching the static schedule of the discharge kernel in the

relabel-to-front algorithm [34]. This schedule considers a node a and alternates

between pushing flow to all its neighbors b and relabeling a. In addition, we

use a worklist with fifo policy (chunk-size: 32) to dynamically schedule new

redexes. For this schedule, we select the first 50 variants returned by the

planner. We compare their performance against a hand-written solution on

top of Galois, which uses the same worklist policy and a roughly similar static

operator schedule.

Figure 4.8 shows the performance of the best-performing Elixir solutions

for each input and the Galois code. We observe that for both inputs Elixir

variants are competitive with the hand-written code. On the usa-all graph

elixir8 is the fastest and its runtime is roughly 93% of the time taken by the

hand-written code. On the rand23 graph the Galois code takes roughly 91%

of the time taken by elixir3 and 63% of the time taken by elixir8. For lack of

space we do not present analytical plots of the best runtimes distribution of

the Elixir variants. We note however, that the time of the best Elixir variant is

60% of the time of the worst Elixir variant for the rand23 graph and 72% for

the usa-all graph.

The three solutions differ primarily in the synchronization implemen-
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tation. The Elixir variants use ATS to synchronize individual operators par-

ticipating in the schedule, while the Galois variant considers the entire static

schedule as a single composite transaction synchronized by stamp-and-log. The

static schedule constitutes a cautious composite operator [115] (each individ-

ual operator is also cautious). Consequently, no state rollback is necessary to

in the case a transaction aborts.

A notable difference between the two Elixir variants is the synchroniza-

tion of relabel. This operator checks a predicate over a node and its neighbors,

similar to match in MIS. In elixir8 the locking of neighbors is performed in-

crementally as each neighbor is visited, while in elixir3 locking and predicate

evaluation are not fused. Elixir currently does not support synthesizing solu-

tions that emulate the synchronization of the Galois variant, which shares locks

across operators. This requires encoding a more complete dataflow analysis in

our planning framework, and is a subject of future work.
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Chapter 5

Betweenness Centrality: An Exercise in

Parallel Algorithm Design

In the previous three chapters we introduced the Elixir methodology

for expressing algorithms at the high level and for automatically generating

parallel implementations from such high-level specifications. Focusing on the

Elixir language itself, we saw that its distinctive characteristic comes from

separating the main logic of an algorithm from the specification of how to

orchestrate that logic to efficiently compute a solution. Additionally, with

respect to the specification of the schedule, the Elixir language is informed by

a refined view of the different ingredients of the schedule — the static and

dynamic components and the operator delta.

Given that Elixir provides a language that requires the programmer to

think in a way that deviates from the traditional notations for expressing algo-

rithms, a natural question to ask is how worthwhile is it for the programmer to

undertake this task. Of course, in our opinion, the existence of a tool like Elixir

that takes such a sequential, non-deterministic specification and automatically

produces efficient parallel code is a worthwhile enough reason to consider this
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approach. In this chapter 1 we would like to demonstrate an additional reason:

Utilizing the concepts of the Elixir language and methodology can help the

programmer gain insights that will enable the design of new parallel algorithms

for the problems they consider.

To support this point, we present a case-study on the derivation of new

parallel algorithms for a well known graph analytics problem. In particular,

we study the problem of computing the betweenness centrality of nodes in

a graph. Our exercise starts by studying existing solutions for this problem

and understanding them through the Elixir lens. Armed with the concepts of

the Elixir language we dissect these solutions to operators and the different

ingredients of the schedule. Having lifted existing solutions to this elemental

form, we then discuss how to extend the algorithm logic to derive new families

of algorithms for this problem that expose more concurrency. Subsequently,

we discuss how to optimize the different aspects of the schedule (dynamic,

static, operator delta) to arrive to increasingly efficient versions of the new

algorithms.

The rest of the chapter is organized as follows. Section 5.1 presents

background on the problem of betweenness centrality. Section 5.2 presents an

operator formulation of BC and describes how existing algorithms for BC can

1 Part of the work presented in this chapter has appeared in “Dimitrios Prountzos,
Keshav Pingali. ‘Betweenness Centrality: Algorithms and Implementations’. In Proceedings
of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP) 2013.” The first author is responsible for the conception and the implementation
of the ideas presented in this publication. Additional authors provided assistance with the
presentation of the material.
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be viewed as implementations of different schedules for applying the operators

to the graph. Section 5.3 describes how to derive and optimize a new asyn-

chronous algorithm for BC by appropriately controlling operator scheduling.

Finally, Section 5.4 presents our experimental evaluation on two multicore

architectures using inputs from multiple graph classes.

5.1 The Problem of Betweenness Centrality

Centrality metrics are essential in understanding network structure,

since they capture the relative importance of individual nodes in the overall

network. Here, we examine Betweenness Centrality (BC) [44], a commonly

used metric that is based on shortest path computation. If G = (V,E) is a

graph and s, t are a specific pair of graph nodes, the betweenness score of a

node v for this node pair is the fraction of shortest paths between s and t

that include v. The betweenness centrality of v is the sum of its betweenness

scores for all possible pairs of s and t in the graph. More formally, let σst be

the number of shortest paths between s and t, and let σst(v) be the number of

those shortest paths that pass through v. The betweenness centrality of node

v is defined as: BC(v) =
∑

s 6=v 6=t∈V
σst(v)
σst

.

BC is useful in the study of diseases in sexual networks [90], find-

ing important actors in terrorist networks [78, 31], lethality in biological net-

works [70, 36], and contingency analysis for power grid component failures [71].

BC is also used as a heuristic in other algorithms; for example [48] proposes

an algorithm for community detection and clustering in large networks, based
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on the BC of the network edges.

5.1.1 Brandes’ Algorithm: a Basis for Parallel BC Algorithms

An efficient sequential algorithm for computing BC was proposed by

Brandes [20], and it has been the basis for many parallelization approaches [8,

93, 40, 137, 32]. Below, we outline the main ideas behind Brandes’ algorithm.

We define the dependency of a source vertex s on a vertex v as:

δs(v) =
∑
t∈V

σst(v)

σst

The betweenness centrality of a vertex v is then expressed using Eq. 5.1.

The key insight is that δs(v) satisfies the recurrence 5.2, where pred(s, w) is a

list of immediate predecessors of w in the shortest paths from s to w.

BC(v)=
∑
s6=v∈V

δs(v) (5.1)

δs(v)=
∑

w : v∈pred(s,w)

σsv
σsw

(1 + δs(w)) (5.2)

Brandes’ algorithm uses this insight and it works as follows. Each

s ∈ V is considered as a source of shortest-paths and the contribution of s to

BC(v), for all v 6= s is computed in two phases. In the first phase, a shortest-

path computation is performed from s, that computes pred(s, v) and σsv for

all nodes. The predecessor lists induce a DAG D over the graph G. In a

second phase, D is traversed backward (in non-increasing distance order) and

for each v ∈ V , δs(v) is computed based on 5.2, and the contribution to BC(v)
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1 Graph G = /∗ read input graph ∗/
2 Worklist wl = {v : v ∈ G.nodes}
3 foreach s : Node ∈ wl {
4 forall v : Node ∈ G: // Compute shortestpath DAG D
5 compute σsv
6 compute pred(s, v)
7 forall v : Node ∈ D: // Traverse DAG D backward
8 compute δs(v)
9 BC(v) += δs(v)

10 forall (u, v) : Edge ∈ G: // Reset graph attributes
11 reset (u,v)
12 }

Figure 5.1: Pseudocode for Brandes’ algorithm.

is computed based on 5.1. The process is described in Figure 5.1. Between

processing successive sources, node and edge attributes are reset.

5.1.2 Understanding Parallelism in BC

This algorithm has parallelism at multiple levels. First, we can process

multiple source nodes in parallel (loop in line 3 in Figure 5.1). In this coarse-

grained parallelization strategy, each thread picks an arbitrary graph node s

and computes its contribution to the betweenness values of other nodes. Each

of these computations is independent, and the updates on each BC(v) form

a simple reduction. This parallelization strategy is simple and effective, but

each outer loop iteration that is performed in parallel requires its own storage,

so the space overhead of this scheme can be substantial. Therefore, it is used

only for relatively small graphs. We will refer to approaches using this strategy
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as outer-level schemes. Alternatively, we can expose parallelism by focusing

on processing a single source node and performing each of the computation

steps in parallel (loops in lines 4, 7, 10 in Figure 5.1). This fine-grained, inner

level approach is more space-efficient since we only need to maintain a single

graph instance, but poses a more challenging goal for parallelization due to

non-trivial data dependencies. Finally one can combine the two techniques

by processing several source nodes in parallel and performing the per-node

computations in parallel.

5.1.3 Previous Work

Examples of the outer-level approach are [154, 71, 23]. Parallel per-

formance is excellent, as expected, but the size of the input graph is very

small or a big distributed cluster is used [23]. Bader et al. in [8] were the

first to present an approach that targets both outer-level and inner-level par-

allelism. This work focuses on unweighted graphs, where the shortest path ex-

ploration can be performed by a breadth-first-search (BFS) exploration. Both

of the main phases of the algorithm are performed in a level-parallel manner.

Within level i all nodes are processed in parallel but only edges between nodes

in levels i and i + 1 are allowed to be processed. Similarly, in the backward

DAG traversal, only nodes between levels i and i− 1 are processed in parallel.

The strong ordering between levels is achieved by using barriers. Subsequent

work by Madduri et al. [93], improves the algorithm to use successors instead

of predecessors in the computation of the DAG D, which produces a more
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efficient, locality-friendly algorithm. [32] targets outer-level parallelism and

also performs prefetching and appropriate re-layout of the graph nodes to im-

prove locality. [148] presents a variation of [8] where the graph is logically

partitioned among processors, locking is coarsened to a lock per partition,

and the predecessor lists are distributed across partitions; [147] extends this

work with architecture specific optimizations for the IBM Cyclops64 proces-

sor. Similarly, in [137] a GPU level-synchronous parallelization is presented,

where graph edges are partitioned among the threads.

Edmonds et al. [40] present an approach that targets fine-grained par-

allelism and focuses on a distributed memory environment. This work deals

with both weighted and unweighted graphs. In the case of weighted graphs,

the level-parallel BFS approach is not applicable. Their solution breaks up the

DAG construction phase into a number of sub-phases, separated again by bar-

riers. Initially a label-correcting single-source shortest-path (SSSP) algorithm

is employed [103, 114] to compute the shortest path distances and predecessor

lists. Then, using the predecessor lists the node successors are computed. Fi-

nally, a third sub-phase computes σsv in a level-parallel BFS style, using the

node successors. The backward traversal of the DAG is performed without

using barriers by using the predecessor lists. [153] presents a serial adaption of

Brandes that deals with weighted graphs by adding virtual nodes to turn them

into unweighted graphs, where a BFS exploration can be performed. These

algorithms compute the exact value of BC. To reduce the computational cost,

a number of approximation algorithms have been proposed [21, 7, 45]. For
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example, instead of computing the contribution of all source nodes s 6= v to

BC(v) in Eq. 5.1, we can compute the contributions of a subset of source

nodes.

5.1.4 Goals and Contributions

Our work makes three contributions.

• We show that the problem of computing BC can be formulated abstractly

in terms of the operator formulation of algorithms [115].

• We show that existing parallel BC algorithms can be viewed as imple-

mentations of different Elixir schedules for applying the operators to the

graph, permitting all these algorithms to be formulated in a single frame-

work.

• The full set of our operators can correctly compute BC under any arbi-

trary schedule and can therefore be the basis for a new class of algorithms

that can potentially mine more parallelism. This is especially true for the

case of weighted graphs, where a purely level-synchronous approach can-

not be used. Using these operators, we derive a new parallel algorithm

by carefully controlling and optimizing the scheduling of operators. It

is space-efficient because it targets fine-grained parallelism. It is able to

expose a lot of parallelism because it breaks away from the level parallel

mode of execution. It deals with both weighted and unweighted graphs,

and, as we show experimentally, has good scalability. Our current im-
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plementation targets multicore systems; it is straightforward to adopt it

to a distributed setting.

5.2 A Framework for Expressing BC Algorithms

In this section, we formulate the computation of betweenness central-

ity in terms of the operator formulation of algorithms [115]. Operators act on

graph nodes and edges and update their attributes.We describe a generic al-

gorithm that computes BC by repeatedly applying operators in an unspecified

order to the graph until a fixpoint is reached (that is, when no new operator

applications can happen). We also show that existing algorithms for BC can

be viewed as particular schedules for applying these operators.

To introduce the notion of operators, we consider the simpler problem

of computing the breadth-first-search level of nodes in a directed graph. Each

node u has a field l(u) (for level), initialized to 0 for Root , and to ∞ for

all other nodes. When the algorithm terminates, the level of a node will

be equal to the length of the shortest path from Root to that node. The

algorithm discovers paths from Root incrementally, so during the execution of

the algorithm, the level of a node v is equal to the length of the shortest path

to v that has been discovered so far.

Figure 5.2 shows the operator formulation for BFS. This operator is ap-

plied to a single edge of the graph and to the two nodes that are its end-points.

An operator has a left hand side that specifies the precondition (predicate) un-

der which it can be applied; an edge that satisfies this precondition is called
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an active edge. An active edge can be updated as shown in the right-hand side

of the operator.

Initial state: ∀u 6= Root : l(u) =∞, l(Root) = 0

u

v

lu

lv

u

v

lu

lu+1
lv > lu+1

Figure 5.2: BFS expressed using a single operator for computing shortest
paths.

The operator of Figure 5.2 can be described in words as follows: an

edge (u, v) is active if l(v) > l(u) + 1; such an edge can be updated by setting

l(v) to l(u)+1. If there are several active edges in a graph, an implementation

is allowed to update them concurrently, provided that active edge attributes

are updated atomically. It can be shown that as long as the scheduling of

active edges is fair (that is, the selection of an active edge is not postponed

indefinitely), (i) the computation will terminate within some finite number of

steps, and (ii) upon termination, for each node u, l(u) will be its BFS level.

5.2.1 Operators for BC

We now show how to express BC using a small set of operators. To

keep the presentation simple, we focus first on unweighted graphs, and then

extend our approach to the case of weighted graphs. Our solution operates

in two phases. In the first phase, it builds the BFS DAG. As in the BFS

computation described above, the first phase discovers and records paths from
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Root to other nodes incrementally. The second phase performs a bottom-up

walk of the DAG to compute betweenness centrality.

For each node u we maintain a number of attributes:

• the shortest path distance (l(u)) of u,

• the number of shortest paths (σ(u)) of length l(u) from Root to u,

• a list of nodes (preds(u)), each of which is the predecessor of u on a

shortest path from Root to u, and

• a list of nodes (succs(u)), each of which is a successor of u on a shortest

path from Root. Our implementation actually maintains only the number

of the successors of a node and not the full list; for expository purposes

we describe the operators using the successor list attribute.

Additionally, we associate with each edge (u, v) a level (l(uv)) and a path-

count (σ(uv)) attribute; these are used for book-keeping during the algorithm

execution, as explained below.

5.2.1.1 Operators for the DAG Construction Phase

The goal of the first phase is to construct the shortest-path DAG D and

also compute the path-count σ(u) for each node u. There are four operators,

shown in Figure 5.3. Below, we discuss each in detail.

Shortest Path (SP): This is the same as the BFS operator except that it

also resets σ(v), preds(v) and succs(v) to their default values. This is

the only operator that modifies levels of nodes. It is enabled when the
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following guard predicate gSP (uv) is true:

gSP (uv) := l(v) > l(u) + 1

First Update (FU ): This operator is applied to an edge connecting nodes

at successive levels. It updates σ(v) with the current value of σ(u) and it

also updates the predecessor and successor lists of v and u. The operator

is enabled when gFU holds:

gFU(uv) := l(v) = l(u) + 1 ∧ l(uv) 6= l(u)

The second constraint ensures that the operator is applied only once,

since after the operator application, l(uv) = l(u) as long as l(u) is

stable. There may be several incoming edges to node v at level l + 1

from nodes at level l, and this operator will be applied once for each

such edge. These applications will be preceded by an application of the

SP operator that brings node v to level l + 1.

Update Sigma (US): This operator is applied on an edge connecting nodes

at successive levels, and it propagates changes to the path-count (σ(u))

of u to v. The previous update of σ(v) from σ(u) is stored in σ(uv),

which is used to compute the correct incremental update. The operator

is enabled when gUS holds:

gUS(uv) := l(u) = l(uv) ∧ l(v) = l(u) + 1 ∧ σ(uv) 6= σ(u)
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Correct Node (CN ): This operator corrects the successor list of u in case

its neighbor v moves to a lower level after having received some updates

from u. Note that it is unnecessary to remove u from preds(v) since

preds(v) would have been set to ∅ when v moved to a lower level as a

result of applying SP. The operator is enabled when gCN holds:

gCN(uv) := l(u) ≥ l(v) ∧ l(uv) = l(u) ∧ l(u) 6=∞

Example 2 (Sample execution of the first phase). In Figure 5.4 we show

a sample execution of the operators for the DAG construction phase of the

algorithm. The Root node is s. Then, nodes a, b, c are at distance 1 and node

d is at distance 2. Initially, all nodes other than s have distance ∞. First, we

explore all nodes across the path (s, a, c, d). This results in a sequence of SP

and FU applications that set l(a) = 1, l(c) = 2, l(d) = 3, update all path-counts

to 1, and set successors and predecessors accordingly. Subsequently, we explore

the path (s, b, c, d) and perform a similar sequence of operator applications.

Note that, when we process (c, d), we apply US(cd) to correct c’s contribution to

d’s path-count. When we explore path (s, c, d), the levels of c and d are lowered.

Finally, we must also update the information of a and b to correctly reflect that

c is no longer their successor. This is done by applying CN(ac),CN(bc). At

this point, no more operators can be applied and thus we have reached the

fixpoint.
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Initial state:
∀u ∈ nodes \ Root : [σ, l, preds, succs](u) = (0,∞, ∅, 0)

[σ, l, preds, succs](Root) = (1, 0, ∅, 0)
∀(u, v) ∈ edges : [l, σ](u, v) = (∞, 0)

(a) Shortest Path

u

v

lu,σu

luv,σuv
lv,σv

u

v

lu,σu

luv,σuv
lu+1,0

preds(v)=∅

succs(v)=∅ 

lv > lu+1

(b) First Update

u

v

lu,σu

luv,σuv

lu+1,σv

u

v

lu,σu

lu,σu

lu+1,σv+σu

l
uv

≠ lu preds(v)∪=u

succs(u)∪=v 

(c) Update Sigma

u

v

lu,σu

lu,σuv
lu+1,σv

u

v

lu,σu

lu,σu

lu+1,σv+σu-σuv 
σ
uv

≠ σu

(d) Correct Node

u

v

lu,σu

lu,σuv

lv,σv

lu≠ ∞ ∧ lu≥lv   
succs(u)-= v u

v

lu,σu

∞,σuv

lv,σv

Figure 5.3: Operators for shortest-path DAG construction phase for un-
weighted graphs.
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5.2.1.2 Operators for Backward DAG Traversal

The goal of the second phase is to update the dependency δ(u) and

the contribution to the centrality BC(u) for each node u, based on equations

5.2 and 5.1, respectively. This is achieved by applying the single operator in

Figure 5.5a until we reach a fixpoint. The operator is applied on a single edge

(u, v) of the graph, such that u ∈ preds(v). Hence, (u, v) is also an edge of the

shortest-path DAG D. The operator guard is:

g := succs(v) = ∅ ∧ u ∈ preds(v)

When the operator is applied, the value of δ(u) is updated based on

the value of δ(v) as specified by Eq.5.2, that is:

δ(u)
+
=
σsu
σsv

(1 + δ(v))

Additionally, v is removed from the successors of u, and u from the predecessors

of v. Finally, BC(v) is updated conditionally, based on δ(v). This happens

during the update of the last predecessor u of v. The operator applies when

succs(v) = ∅, that is, when v has no successors, or has received updates from

all its successors. This way, the backward traversal of the DAG D is performed

in a data driven manner, breaking away from a level-parallel implementation.

In Figure 5.5b we present a composite operator that is produced by merging

together a number instances of the above backward traversal operator. This

is an instance of an optimization we call operator merging, discussed in detail

in Section 5.3.3.
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Initial state: ∀u ∈ nodes( : , δ)s(u) = 0

(a) Initial formulation

v u

succs(v)=∅ 

v u

δ(u)=f( δ(u),δ(v),σu,σv) 

succs(u)-= v 

if(preds(v)=∅)

  BC(v)+=δ(v) 

u ∈ preds(v) preds(v)-= u 

Initial state: ∀u ∈ nodes( : , δ)s(u) = 0

(b) Formulation after operator merging

v

u
1

u
n

.

.

.

Succs(v)=∅ 

v

u
1

u
n

.

.

BC(v)+=δ(v) 

δ(u1)=f( δ(v),δ(u1),σv,σu1
 ) 

Succs(u1)-= v 

δ(un)=f( δ(v),δ(un),σv,σun
 ) 

Succs(un)-= v 

ui∈ preds(v),i∈[1,n] ui∈ preds(v),i∈[1,n] 

Figure 5.5: Operator for backward DAG traversal phase
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5.2.2 Operators for Weighted Graphs

In Figure 5.6 we show the operators for the weighted case. We assume

that each edge (u, v) has a strictly positive weight w(uv). SP discovers a

new shortest path from Root to v through u when l(u) + w(uv) < l(v) and

sets l(v) = l(u) + w(uv). Similarly, gFU, gUS are changed to properly identify

successive nodes on shortest paths from Root. Finally, gCN is modified to check

for l(u) +w(uv) > l(v) in order to capture the case when a shorter path v has

been discovered after v has received an update from u. It is easy to see that

the operators in Figure 5.3 are derived from the ones in Figure 5.6 by setting

we = 1 for each edge e in the graph. The second phase is the same as in the

unweighted case.

5.2.3 Characterizing BC Algorithms

Algorithms for BC in the literature can be viewed as implementations

of particular schedules for the operators of Figures 5.3, 5.5 and 5.6. Some of

the operators are not required for certain schedules.

Unweighted graphs: We first describe algorithms for unweighted graphs.

The algorithms by Bader [8] and Madduri [93] build the BFS DAG level by

level; each level is built in parallel, with barrier synchronization between lev-

els. The construction of each level essentially involves executions of the SP

and FU operators of Figure 5.3; US and CN are unnecessary in such level-

by-level algorithms since nodes reach their final levels in a single step rather
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(a) Shortest Path

u

v

lu,σu

luv,wuv,σuv
lv,σv

u

v

lu,σu

luv,wuv,σuv

lu+wuv,0

preds(v)=∅

succs(v)=∅ 
lv > lu+wuv

(b) First Update

u

v

lu,σu

luv,wuv,σuv

lu+wuv,σv

u

v

lu,σu

lu,wuv,σu

lu+wuv,σv+σu

l
uv

≠ lu preds(v)∪=u

succs(u)∪=v 

(c) Update Sigma

u

v

lu,σu

lu,wuv
,σ
uv

lu+wuv
,σv

u

v

lu,σu

lu,wuv
,σu

lu+wuv
,σv+σu-σuv 

σ
uv

≠ σu

(d) Correct Node

u

v

lu,σu

lu,wuv,σuv

lv,σv

lu≠ ∞ ∧ lu+w
uv

>lv     

succs(u)-= v u

v

lu,σu

∞,wuv,σuv

lv,σv

Figure 5.6: Operators for shortest-path DAG construction phase for weighted
graphs. Initialization same as in Figure 5.3
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than being lowered to that level by relaxation, and the path-counts of nodes

at the current level are finalized before moving to the next level. The second

phase of [8], which traverses the DAG backward to compute betweenness cen-

trality, can be described by applications of the operator in Figure 5.5b; once

again, these applications are not performed in a data-driven manner but in

a level-parallel manner using an auxiliary stack data structure populated in

the first phase. The second phase of [93] operates in a similar manner except

that each node “pulls” information from all its successors instead of “push-

ing” information to its predecessors, and can be described by a similar oper-

ator. Approaches that exploit just coarse grained [32, 71] or both coarse and

fine-grained parallelism [8] are also straightforward to describe with the same

operators. An open question is what is the best policy for mapping operators

from multiple iterations to the available computational resources. Approaches

such as [148, 137] perform the level synchornous approach using the operators

of Figure 5.3. Logically partitioning the graph among threads and having each

thread be responsible for its partition, is a different way of scheduling the op-

erators and of achieving their atomic execution. Similarly, [23] can be seen as

a SIMDization of the operators of Figure 5.3. Data structure optimizations

in the implementation of the graph abstract data type, such as the re-layout

of graph nodes [32] or the distributed storage of the predecessor list [148], are

orthogonal to our description of the algorithm and their effect on improving

performance is complementary.
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Weighted graphs: The algorithm for weighted graphs by Edmonds et al. [40]

breaks down the forward pass in a number of sub-phases. It performs a first

phase where applications of SP and FU are applied asynchronously in order to

update the distance of nodes and the predecessor lists. Then in a subsequent

phase, the path-counts are updated by using applications of the US operator

in a level-synchronous manner. The US operator in that phase is simplified in

that no corrections in the estimation of σ are necessary, due to the constraint

on the schedule. Essentially, [40] acts as a label-correcting algorithm for only a

subset of the node attributes (l(u), preds(u)) and as a label-setting algorithm

for the rest (σ(u), succs(u)). Therefore, it is restricted to level-synchronous

schedules for the computation of the latter. Our operators, on the other hand,

provide a label-correcting capability for all node attributes and are able to

merge the above two phases in a single, fully asynchronous phase, potentially

exposing more parallelism. Finally, the backward DAG traversal is performed

asynchronously using the operator in Figure 5.5b.

5.2.4 Correctness of BC Operators

In this section, we state the main correctness results of our operator

formulation of BC.

Forward Pass We start with the operators for the forward pass, presented

in Figure 5.3. We prove that the first phase terminates, and that upon termi-

nation all node attributes have correct values. We consider the most general
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setting where operators are allowed to execute in any order. The computa-

tion is modeled by a history, which is a sequence of operator applications,

each of which is considered to be an instantaneous event that changes the

state of the graph. We denote an operator application on an edge (u, v) by

op(uv), op ∈ {SP ,FU,US,CN}. To capture meaningful computations, we re-

strict attention to well-formed histories, which are histories where each time an

operator is enabled on an edge, its execution cannot be postponed indefinitely.

Correctness follows from the following two theorems.

Theorem 2. (Termination) Any well-formed history H of events op(uv), op ∈

{SP ,FU,US,CN} of the operators in Figure 5.3 to a graph G = (V,E) has

finite length.

Theorem 3. At the fixpoint, the following facts hold for an arbitrary node v:

(a) l(v) is equal to the length of the shortest path to v from Root. (b)

u is the predecessor of v in a shortest path to v from Root ⇐⇒ u ∈ preds(v)

and v ∈ succs(u). (c) σ(v) is the number of shortest paths from Root to v.

The full proofs are presented in Appendix B. Here we briefly state

the main ideas. Th. 2 is proven by showing that each operator can appear

only a finite number of times in an arbitrary history H. We prove that the

SP operator appears only a finite number of times, and that successive SP

applications partition H into “windows”, within which we can only have a

finite number of FU,US,CN applications. Th. 3(a): We consider the parti-

tioning of nodes P = {P0 . . . Pn}, where P0 contains the Root and Pi contains
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nodes at shortest path distance i, that is, nodes directly connected to nodes

in Pi−1 but not to nodes in P0, . . . , Pi−2. We show that at the fixpoint the

partitioning induced by our algorithm is equivalent to P . Th. 3(b): (⇒) We

examine an arbitrary history, and show that for an arbitrary edge (u, v) there

always exists an FU application that updates appropriately succs(v), preds(v)

after u, v finally settle as successive nodes on a shortest path from Root. (⇐)

Considering u ∈ preds(v) and v ∈ succs(u) at the fixpoint we show by in-

duction on l(u) that there exists a shortest path to v through u. Th. 3(c):

By induction on the shortest path length, using the fact that at the fixpoint

σ(v) =
∑

u∈preds(v) σ(u).

Backward Pass We now discuss the correctness of the operator in Fig-

ure 5.5a for the backward pass. Proving termination is straightforward. Ini-

tially there is a fixed number of predecessor edges between the nodes com-

prising the shortest-path DAG. Each operator application depends on finding

one such predecessor edge (u, v) and removes it from the graph. Therefore,

the number of predecessor edges decreases monotonically and eventually be-

comes zero. At that point no more applications are enabled and the algorithm

terminates. Correctness at the fixpoint follows from the theorem below:

Theorem 4. Let preds init(v), BCinit(v) denote the values of the respective node

attributes at the beginning of the backward pass. At the fixpoint, the following

facts hold for an arbitrary node v: (a) δ(v) =
∑

w : v∈predsinit (w)
σsv
σsw

(1 + δs(w))

(b) if v 6= Root then BC(v) = BCinit(v) + δ(v), else BC(v) = BCinit(v).
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5.3 Derivation of New Asynchronous Algorithms

The operators in Figures 5.3, 5.6, 5.5a can be applied in any order,

and as long as no enabled operator application is postponed indefinitely, the

implementation will terminate and produce the right BC values. However, the

number of operator applications, which is one measure of work-efficiency, may

be very different for different orders. In addition, some orders may exploit

locality better than others. Getting a scalable solution greatly depends on

performing the right operator scheduling. Exploiting scheduling to improve

parallelism is a well-studied area [17, 18, 30, 15]. Here, we derive asynchronous

algorithms by choosing particular scheduling policies for operator execution.

A simple approach is to repeatedly scan all the edges of the graph in

some order, applying all applicable operators to an edge when it is visited.

This is inefficient since most edges will not have any operators that can be

applied to them. Instead, we use a worklist-based approach. The unit of work

in our setting is processing a single edge, which may trigger applications at

neighboring edges. Therefore, we maintain a multiset of edges, implemented

as a dynamic worklist Wl. At each step, we pick an edge e from Wl, apply

an operator to it, and add to Wl new edges that may need processing. In

a concurrent setting, Wl must support concurrent add and poll operations.

Atomic operator execution is achieved by acquiring locks on the edge end-

points during the operator execution.

In Section 5.3.1 we discuss the most performance-critical aspect of our

design: the policy for processing Wl elements. In Section 5.3.2 we discuss how
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to incrementally update the Wl. In Section 5.3.3, Section 5.3.4 we describe key

scheduling optimizations for improving the basic algorithm. Finally, in Sec-

tion 5.3.5 we present two algorithm variants that we can derive by exploiting

all the scheduling insights.

5.3.1 Choosing a Dynamic Scheduling Policy

During the algorithm execution, Wl will usually contain many edges

where operators may be applied. An important design decision is picking a

work-efficient order to process edges, since this will affect the convergence rate

of the algorithm [103, 58, 108].

During the DAG construction phase, the shortest-path exploration (SP

operator) is the backbone of our algorithm. The number of all other operator

applications is ultimately a function of the times we mispredict the length of

the shortest path to a node. Hence, a good ordering policy in our case is one

that efficiently identifies shortest-paths, but which is also flexible enough to

allow threads to optimistically try to expose parallelism. In the unweighted

case, for example, a level-parallel approach allows only nodes within successive

levels to be processed concurrently and can stifle parallelism if there are not

enough nodes in a level. However, an approach that allows exploration of

arbitrary paths on the graph may end up performing too much wasted work

since it may mispredict the distance of nodes multiple times.

Our approach is loosely based on the ∆-stepping approach of Meyer et

al. [103] and effectively tackles such problems. We partition the edges (u, v)

167



in Wl into equivalence classes based on an approximation l∗(v) of l(v) defined

as l∗(v) := l(u)+w(uv)
∆

. The term l(u) + w(uv) is the length of the path from

the Root to v through u. ∆ is a user specified parameter that defines a range

of distance values that fall in the same equivalence class. Each equivalence

class is associated with a bucket Bi. Each time an edge (u, v) is inserted in

Wl, we compute l∗(v) and place it in the appropriate Bi. Intuitively, we want

to explore shorter paths before longer ones in order to minimize the number

of mispredictions on the level of a node. Hence, our policy places these edges

in lower-numbered buckets. Threads query the buckets for work in increasing

order. The deviation from the classic ∆-stepping is that there is no barrier

between the processing of successive buckets. Each thread queries buckets in

increasing order repeatedly until no more work is left, but different threads

can be simultaneously operating on different buckets and, consequently, can

extract more parallelism in case there is limited amount of work in a particular

bucket. The role of ∆ is to control the interplay between exposing parallelism,

decreasing the probability of mispredicting levels, and controlling the overhead

of iterating over and querying buckets in a concurrent setting. This strategy is

enabled only because our operators are general enough to restore the correct

values of attributes, in case of mispeculation. Note that the equivalence class

of an edge can change after the point it is inserted in Bi. This however can only

affect the performance and not the correctness of our algorithm. To mitigate

the overhead even further, each thread gets a chunk of edges out of Bi each

time it queries Wl.
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The backward DAG traversal phase operates in a data-flow driven man-

ner. When the δ value of a node is fully updated, we propagate changes back-

ward by scheduling updates to its DAG predecessors. This scheme avoids a

level-parallel traversal of the shortest-path DAG and can expose more concur-

rency in the case where the DAG contains independent components. Edges

to be processed are inserted into a worklist. A FIFO or LIFO based worklist

policy gave us the best performance.

The best value of ∆ and of the other scheduling parameters varies across

inputs. Section 5.4 provides details about the chosen values.

5.3.2 Incremental Solutions via the Operator Deltas

We first discuss the policy for the DAG construction phase. Finding

the minimal set of edges that need to be processed, and therefore need to be

added to Wl, due to an operator application on edge (u, v) is challenging in

a concurrent setting. This is because the immediate neighborhoods of u and

v are, in general, unbounded. Therefore, we over-approximate the minimal

set of edges by using the following policy: Whenever an operator changes the

attributes of a node v, we add to Wl all edges adjacent to v that may need

to be updated due to the change to v. We determine these edges for each

operator as follows.

SP: An SP (uv) moves v to a new level and identifies a new shortest path P

to v. All outgoing edges of v are inserted to Wl so that the exploration

along P continues. Additionally, incoming edges of v must be examined
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to correctly update neighboring nodes w 6= u that lie on paths P ′ (longer

than P ). Such nodes may have recorded v as their successor. Hence, we

add all adjacent edges to v to Wl.

FU, US : Both operators update σ(v), so all outgoing edges of v are added

to Wl to further propagate this update.

CN : This operator simply corrects the successor list of the source node u of

the edge it is applied on and does not enable any other operators. Hence

no updates to Wl are required.

To initialize Wl, we insert all outgoing edges of the Root to initiate the shortest-

path explorations.

For the backward DAG traversal we use a data-flow driven policy that

considers the minimal set of edges. Whenever succs(v) = ∅ an operator is

enabled on each edge (u, v) between v and u ∈ preds(v). In the baseline

scheme, we add each such (u, v) to Wl. When operator merging is applied

(see Section 5.3.3), Wl can simply contain nodes; in this case we insert v to

Wl. We initialize Wl with all (u, v) (or v), such that v is at the fringe of the

DAG generated in the first phase. Such nodes are easy to identify after the

first phase, since they have no successors. We perform a scan over all nodes

and populate Wl appropriately, when this property is satisfied.
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5.3.3 Static Scheduling Optimization I: Operator Merging

In certain cases it is beneficial for performance reasons to merge multi-

ple operators together and create a new composite operator. Operator merging

is essentially a transformation that binds scheduling decisions at compile-time

and provides benefits similar to classical loop optimizations. Co-scheduling

the application of multiple operators can improve locality. Also, in a similar

spirit to loop fusion, combining multiple operators together improves locality

and reduces loop overheads. We identify two cases where merging is applicable

and describe additional performance benefits it provides.

In the first phase, every SP (uv) will lead to a subsequent FU(uv).

Merging the two firstly improves locality, since the data of v is already local

to the thread due to SP (uv). Second, it reduces the locking overhead, by

eliminating locking for FU(uv). Finally, it reduces the pressure on Wl, since

we need insert the outgoing edges of v to Wl only once in the combined

operator.

In the second phase, we can merge all applications of the operator

between v and its predecessors ui. The composite operator is shown in Fig-

ure 5.5b. Merging firstly permits all updates starting from v to be performed

in a single operator application. Thus, we can avoid the removal of u from

preds(v), because now we do not need to keep track of whether processing v is

over. In order to update BC(v) correctly the composite operator needs to be

applied once per node v and its predecessors. This can be achieved by simply

inserting a single instance of v into Wl, upon receiving an update from the
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last successor. A special check to avoid updating Root is also necessary. Note

that we can perform fine-grained locking on each ui and do not need to access

atomically an unbounded number of nodes.

5.3.4 Optimization II: Heuristics for Tighter Operator Deltas

In Section 5.3.2 we discussed a policy that over-approximates the set

of edges that need to be processed after an operator application, and therefore

need to be added to Wl. We identify various ways of improving that policy.

Our optimizations reduce the number of redundant checks on parts of the graph

for enabled operators and the number of add calls to Wl, thus leading to fewer

accesses to shared resources. In practice they are important in speeding up

the first phase of the algorithm.

First, when an SP (uv) is executed, if preds(v) = ∅, then no incoming

neighbor u of v needs to be processed, since v ∈ succs(u) iff u ∈ preds(v).

Hence, we can avoid inserting incoming edges of v to Wl.

Second, when a US(uv) is executed, if succs(v) = ∅, then we can avoid

adding outgoing edges (v, w) of v to Wl. The reason is that in order for

US(vw) to be executed, w must already be a successor of v (an FU(uv) must

have been executed). Since v has no recorded successors, all (v, w) are already

in Wl waiting to be processed, and we can avoid re-inserting them. This

way, we expose opportunities to batch up all path-count updates and avoid

redundant Wl population.

Third, when using the combined SP (uv),FU(uv) operator, we can
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avoid adding outgoing edges (v, w) after an FU(uv) if succs(v) = ∅, since

they are already there due to the application of the combined operator. Note

that all these optimizations are inexpensive since they require simple checks

on operator-local state, and do not require acquiring extra locks.

5.3.5 Putting it All Together: Derivation of Two Asynchronous
Variants

We now describe how to combine all the ideas presented in the previous

sections in order to produce two asynchronous algorithms.

In the first algorithm, async1 , during the forward phase (line 4 in

Figure 5.1), each thread extracts an edge out of the worklist and tries to find

an operator to apply to it by checking the operator guards in some arbitrary

order, while also merging applications of SP with FU. The order we chose is

[CN, SP ◦FU,FU,US]. Note that the guards are mutually exclusive, therefore

any order of checking the guards is guaranteed not to postpone an operator

application indefinitely. For the backward phase (line 7 in Figure 5.1), each

thread extracts a node out of the worklist and tries to perform the composite

operator in Figure 5.5b to all predecessor nodes. In Figure 5.7 we show in

pseudocode for the forward pass of async1 .

In the second algorithm, async2 , we consider a node and all its imme-

diate neighbors, and statically co-schedule operator applications on the edges

connecting them. Additionally, we perform potential CN applications in place

whenever we discover a new shorter path to a node. The motivation behind
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1 Worklist Wl = {(srcNode, w) : (srcNode, w) ∈ G.edges}

3 foreach (u, v) ∈Wl {
4 lock(u,v)
5 if (gCN(u, v)) {
6 apply CN ; unlock(u,v)
7 } else if (gSP◦FU(u, v)) {
8 apply SP ◦ FU; unlock(u,v)
9 Wl = Wl ∪ {(v, w) : w ∈ outNbrs(v)}

10 if (vHasPreds)
11 Wl = Wl ∪ {(w, v) : w ∈ inNbrs(v)}
12 } else if (gFU(u, v)) {
13 apply FU; unlock(u,v)
14 if (vHasSuccs)
15 Wl = Wl ∪ {(v, w) : w ∈ outNbrs(v)}
16 } else if (gUS(u, v)) {
17 apply US; unlock(u,v)
18 if (vHasSuccs)
19 Wl = Wl ∪ {(v, w) : w ∈ outNbrs(v)}
20 } else { unlock(u,v) }
21 }

Figure 5.7: Pseudocode for forward pass of async1 .
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these design choices is to exploit spatial and temporal locality by having a

a single thread work on an entire neighborhood. A potential issue with this

design though is that it may be harder to load balance work, in case the

node degrees are not evenly distributed. This can be more problematic in an

environment with high degree of parallelism. The pseudocode for async2 is

presented in Figure 5.8. Note that in this algorithm we insert nodes instead

of edges into the worklist. The second phase is the same as in async1 .

To guarantee atomic execution of operators we acquire fine-grained

spinlocks on the end-points of each edge that an operator works on. The

graph nodes are totally ordered based on their runtime (allocation) addresses.

We acquire locks respecting this order to avoid deadlock between threads work-

ing on the same edge. To amortize locking overhead we acquire the locks in

the beginning of the loop iteration and release them after the first successful

operator application, or at the end if no operator is applicable. In case of a

successful operator application we release a lock on a node immediately after

the last access to a node attribute. Inserting edges/nodes in Wl after an oper-

ator application is done without holding any locks. This is because this action

does not access any data attributes, and also because the graph structure is

not mutated. This way we significantly reduce the length of atomic sections

and allow more fine-grained thread interleavings.
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1 Worklist Wl = {srcNode}

3 foreach u ∈Wl {
4 forall v ∈ outNbrs(u) {
5 lock(u,v)
6 if (gSP◦FU(u, v)) {
7 apply SP ◦ FU; unlock(u,v)
8 Wl = Wl ∪ {v}
9 if (vHasPreds) {

10 // Inline CN applications
11 forall w ∈ inNbrs(v) {
12 lock(v,w)
13 if (gCN(w, v)) { apply CN }
14 unlock(v,w)
15 }
16 }
17 } else if (gFU(u, v)) {
18 apply FU; unlock(u,v)
19 if (vHasSuccs) Wl = Wl ∪ {v}
20 } else if (gUS(u, v)) {
21 apply US; unlock(u,v)
22 if (vHasSuccs) Wl = Wl ∪ {v}
23 } else { unlock(u,v) }
24 }
25 }

Figure 5.8: Pseudocode for forward pass of async2 .
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5.4 Experimental Evaluation

We implemented two versions of the algorithm, based on the operators

in Figure 5.3 and Figure 5.6 and compared their performance against a number

of publicly available versions of BC algorithms for weighted and unweighted

graphs. We ran our experiments on two architectures. First, an Intel Xeon

machine (Nehalem) running Scientific Linux 6.3 with four 6-core 2.00 GHz

Intel Xeon E7540 processors that share 128 GB of memory. Second, a Sun

T5440 machine (Niagara) running SunOS 5.10. It contains two 8-core 1.4

GHz Sun UltraSPARC T2 Plus (Niagara 2) processors, and provides 128 con-

current hardware threads, sharing 32 GB of memory. On the Nehalem, the

compiler used was GCC 4.7.1. On the Niagara, the compiler used was GCC

4.5.1. We report the average time (t) of 5 runs and the standard deviation

(sd). We consider the following classes of input graphs:

• Real-world road network graphs of the USA from the DIMACS shortest

paths challenge [1]. We use the full USA network (USA-net) with 24M

nodes and 58M edges and the central USA network (USA-ctr) with 14M

nodes and 34M edges.

• A network of scientific co-authorships [112] (coauth) with 391K nodes and

873K edges, where edge weights are converted to integers (by multiplying

all weights by 1000).

• Scale-free graphs generated using the Recursive MATrix (R-MAT) scale-

free graph generation algorithm [27]. The size of the graphs is controlled
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by a SCALE parameter; a graph contains N = 2SCALE nodes, M = 8×N

edges, with each edge having strictly positive integer weight with max-

imum value C = 2SCALE . The RMAT graphs we used were generated

using the tools provided by the SSCA v2.2 benchmark [6]. The param-

eters used for the graph construction were the default ones, as specified

by the generator (a = 0.55, b = 0.1, c = 0.1, d = 0.25). For our experi-

ments we removed multi-edges from the graphs. We denote a graph of

SCALE = X as rmatX .

• Random graphs containing N = 2k nodes and M = 4×N edges. There

are N − 1 edges connecting nodes in a circle to guarantee the existence

of a connected component and all the other edges are created randomly,

following a uniform distribution. A graph with k = X is denoted as

randX .

For large-scale graphs, it is computationally infeasible to compute BC

by doing shortest path computations from every node of the graph. Therefore,

like previous studies [7, 93, 40, 32], we perform shortest path computations for

only a subset of nodes.

5.4.1 Experiments on Weighted Graphs

We consider two algorithms for weighted graphs: (i) our algorithm

async1 , which is based on the operators of Figure 5.6, with all scheduling

optimizations enabled, and (ii) a serial reference implementation of Brandes’
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algorithm (boost-s) for weighted graphs, available in the Boost Graph Li-

brary [140] V. 1.47.0. The only parallel algorithm for weighted graphs with a

publicly available implementation that we are aware of is [40]. However, that

solution targets a distributed-memory environment while our implementation

targets shared-memory multicores, so a direct comparison of performance is

not meaningful.

5.4.1.1 Implementation Details

We parallelized async1 in C++ using the Galois system [2]. Each

of the two major phases of the algorithm in Figure 5.1 is implemented as a

parallel foreach loop over a worklist of edges and nodes, respectively. Below

we discuss in more detail several aspects of our implementation.

Graph data-structure Our graph implementation is based on the com-

pressed sparse row (CSR) format, with node and edge data stored in two

different arrays. Our graphs were not initialized in a NUMA aware manner.

In our experience this does not have an observable impact on our experimental

machines, since they do not have deep NUMA hierarchies.

Worklist policies We use worklist implementations provided by the Galois

system [2, 108]. In Table 5.1, we present the scheduling parameters that

gave us the best performance. These values were obtained by performing a

small manual search on the parameter space. A more exhaustive search can
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Nehalem Forward Backward
coauth ∆ = 512 CF128 CL256

USA-net ∆ = 32768 CF64 CL256
rmat25 ∆ = 32768 CF256 CL256
Niagara Forward Backward
coauth ∆ = 2048 CF128 CL256

USA-net ∆ = 32768 CF128 CL256
USA-ctr ∆ = 32768 CF128 CL256

Table 5.1: Scheduling parameters for weighted graph experiments.CFx (CLx):
Chunked FIFO (LIFO) with chunk size x.

potentially lead to improved performance; we plan to examine this in future

work. Recall that in the forward pass, we use a delta-stepping-like policy that

prioritizes the work-items into buckets using the parameter ∆. Within each

bucket, our scheme follows a FIFO or LIFO policy with additional chunking of

work. For the backward pass, we use either a chunked FIFO or a chunked LIFO

policy. For example, for the coauth graph forward pass on the Nehalem we use

∆ = 512 and each bucket is implemented using a FIFO policy with chunk size

of 128 edges. For the backward pass we use a LIFO with chunk size 256.

5.4.1.2 Analysis of Results

Table 5.2 presents results for various real-world and one synthetic graph.

Our algorithm scales very well on all graphs across both architectures. On Ne-

halem, async1 achieves (self-relative) scalability of 9.5× on both the USA

road-network, and the rmat25. The high thread count on the Niagara, allows

async1 to mine the available parallelism through the fine-grained operator exe-

cution. For the two road-networks it achieves its best scalability, 32× and 37×,
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Nehalem coauth (500 steps) USA-net (10 steps) rmat25 (10 steps)
Threads t sd t sd t sd

boost-serial 68 0 510 4 3020 53
1 32 3 285 1 1493 102
4 12 0 78 0 383 27
8 10 0 43 1 223 6
12 10 0 34 0 170 8
16 8 0 31 0 163 6
20 8 0 30 0 159 10
24 8 0 30 0 157 15

Niagara coauth (100 steps) USA-net (10 steps) USA-ctr (10 steps)
Threads t sd t sd t sd

boost-serial 83 0 1872 107 1086 1
1 110 0 1583 6 981 5
16 9 0 115 0 69 0
32 6 0 65 0 37 0
48 6 0 53 0 29 0
64 7 0 49 0 26 0
96 10 0 53 1 26 0
128 15 0 61 2 31 2

Table 5.2: Average execution time (sec.) and stdv. of async1 for weighted
graphs

at 64 threads. By exploiting cross-level parallelism async1 is able to achieve

scalability even on the really small co-author network (4× on Nehalem, 18×

on Niagara). We report the boost-s runtime to provide a reference against a

publicly available serial implementation.

5.4.2 Experiments on Unweighted Graphs

We evaluated a number of BC algorithms for unweighted graphs. Be-

low, we describe each of them and give details about the parallelization strat-
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egy and scheduling policy. We note that the graph format for all unweighted

algorithms is based on the CSR format.

outer This is a parallelization only of the outer loop. The graph state is

replicated P times, where P is the number of threads. Each thread performs an

iteration of the outer loop which is mostly independent from other iterations.

The updates on the betweenness value of each node form a reduction which is

straightforward to handle. The serial algorithm executed in the inner loop by

each thread uses the successor lists to represent the DAG, as discussed in [93].

The algorithm was implemented in the Galois system.

async1 , async2 These are our algorithms based on the operators of Fig-

ure 5.3 with all scheduling optimizations enabled. async1 was used on the

Niagara experiments, while async2 was used on the Nehalem experiments.

The algorithms were implemented in the Galois system following the same

design choices as the weighted version in Section 5.4.1.1. We now discuss the

scheduling parameters that we used. On both architectures we select ∆ = 1.

The intuition behind this is that in the case of unweighted graphs the diam-

eter is low, which potentially increases the amount of work per level. Setting

∆ = 1 focuses the search for work in individual levels, while still allowing

for cross-level speculation. We note that setting ∆ = 1 does not make them

level-synchronous algorithms. As discussed in Section 5.3.1 these algorithms

allow threads to simultaneously work on an arbitrary number of buckets. Set-

ting ∆ = 1 simply reduces the speculation window for the threads but does
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not restrict them to a single bucket. If bucket Bi becomes temporarily empty,

threads move to buckets Tj, j > i, and can return later to Ti if new work ex-

ists there. This strategy is applicable only because our operators are general

enough to restore the correct values of attributes in case of mispeculation. On

the Nehalem, where async2 is used, each bucket is processed using a LIFO pol-

icy. For rmat25 we use a chunk size of 8 nodes and for rand26 we use chunks

of 32 nodes. On the Niagara, where async1 is used, each bucket is processed

using a FIFO policy with chunks of edges of size 512. The second phase uses a

LIFO policy with chunk sizes of 16 (Nehalem) and 2048 (Niagara).

preds This algorithm is an inner-level, level-synchronous parallelization pre-

sented in [8]. The implementation is part of the SSCA v2.2 benchmark [6].

The implementation uses OpenMP directives to parallelize the loops and de-

fine their schedules, and OpenMP barriers for the synchronization of levels.

The OpenMP scheduling policy for the forward phase is dynamic and for the

backward phase is static.

succs/succs-serial This algorithm is an inner-level, level synchronous par-

allelization presented in [93]. The implementation is our adaption of the im-

plementation provided in GraphCT v.0.5 [39]. GraphCT is a parallel toolkit

for analyzing massive graphs on the massively multithreaded Cray XMT; the

implementation is optimized for the Cray and uses compiler directives spe-

cific to that system. The algorithm, as presented in [93] admits a lock-free
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implementation. Our adaption is a parallelization using OpenMP. We replace

the original atomic intrinsics with the equivalent ones provided by GCC to

implement it. We experimented with various scheduling policies and present

results for the guided policy, which performed the best. This algorithm also

serves as the serial baseline that we compare all algorithms against.

5.4.2.1 Analysis of Results

In Table 5.3 we present the running time of all four algorithms for 100

iterations of the outer loop. Due to large running times, we present results

only for high thread counts on the rmat25 graph, on the Nehalem. In Ta-

ble 5.4, Table 5.5 we focus on the inner-loop parallelization strategies and

present results for 10 iterations of the outer loop.

First, we discuss performance on the Nehalem (Table 5.3, Table 5.4).

We can make a number of interesting observations. We note that for rmat25

outer is the best performing. We expect this to be the case when the graph

fits in the available memory. However, this comes at the cost of high memory

usage; for 24 threads outer requires about 63% of the 128 GB of main memory

and it will exceed the machine’s memory capacity for larger graphs. For this

reason, we do not present results for outer on rand26 or on the Niagara,

which has less memory and a larger number of threads. Second, preds starts

by being more than 2× slower than succs (due to the locality benefits of succs),

something that is in accordance with previous studies [93]. At higher thread

counts, though, the performance gap between the two is reduced. Interestingly,
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on our system preds is sensitive to thread pinning. Avoiding pinning makes

preds more than 2× slower than succs even on high thread counts (e.g. on 24

threads preds takes 174 sec. for 10 steps on rmat25 on Nehalem). Focusing on

async2 , on the Nehalem, we observe that it is slower than the other algorithms

on the rmat25 graph, while it is the fastest on the rand26. We believe this is

due to the structure of the input graphs. The average longest BFS level for

the outer loop iterations we performed provides an approximation of the graph

diameter. It is 15.9 (stdv. 0.7) on rmat25 and 20.1 (stdv. 0.57) on rand26. By

increasing the “diameter” of the explored graph, hence decreasing the amount

of work per level, an algorithm that tries to mine work from multiple levels

becomes comparatively better.

On the Niagara, we experiment with a different variant of our algorithm,

async1 . In async1 the unit of work is the processing of a single edge instead

of a node and its immediate neighbors. Intuitively, this can lead to more fine-

grained distribution of work, which can be more suitable for an environment

with a high degree of parallelism. async1 is able to scale to high thread counts

on both inputs, as we see in Table 5.5. We do not report performance numbers

on preds , due to execution problems on this platform. Regarding succs , its

best running time is 325 seconds (stdv. 35) for rmat25 and 1044 seconds (stdv.

138) for rand26, both on 16 threads. succs did not scale beyond 16 threads.

We believe this behavior is partly due to the poor exploitation of parallel

resources by the level-parallel approach (more threads means less work per

thread on each level) and partly to scaling issues in the OpenMP runtime on
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the Niagara.

5.4.3 Assessing the Effectiveness of Scheduling

To illustrate the effect of scheduling on the performance we consider

one more experiment using async2 on the rmat25 unweighted graph on the

Nehalem architecture. We execute two outer loop iterations and record the

number of executed operators. We consider the following variants of async2 :

The first, Ord, is the version we already presented with all scheduling op-

timizations enabled. The second variant, Ord-d, is a de-optimized version of

Ord where, the optimizations presented in Section 5.3.4 are disabled. Both Ord

variants use the same worklist policy. Finally, CF is a variant of async2 with

a FIFO worklist policy (with chunk size of 16 nodes) and all other scheduling

optimizations enabled. Using a FIFO schedule for the unweighted operators

gives us the optimal order of processing the edges in the sequential setting.

The CF worklist policy maintains this FIFO order for each thread in the paral-

lel setting, while relaxing the constraint of maintaining a total FIFO ordering

among threads, to achieve better scalability. In Table 5.6, we report the aver-

age number of operator applications and runtime of the forward pass per outer

loop iteration.

Firstly, note that for Ord and CF the operator counts for one thread are

identical. This is natural since, with ∆ = 1, on one thread Ord emulates the

best schedule (FIFO). Additionally, we see that the number of US applications

and CN evaluations is zero. This is normal, since in the best schedule no
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corrections should be done to the path-count and we should never mispredict

the level of a node. This is not the case for Ord-d, though, which disables some

of the optimizations and performs unnecessary work. Also, we note that not all

nodes and edges will be reachable from all possible roots, in a directed graph,

therefore the number of operator applications will not, in general, match the

node and edge count of the graph.

Focusing on runtime performance, we observe a correlation between

the number of operator applications and the running time. CF deviates quickly

from the optimal schedule in terms of operator applications. For 4 threads and

above we observe an increase on the number of SP operators, which translates

to increases in the number of other operators. Although we increase the num-

ber of threads, the extra work eliminates the gain from the increased degree of

parallelism, something that hinders both scalability and absolute performance.

Ord-d does not deviate from the best schedule in terms of SP applications, due

to the use of the right scheduling policy, but lacking the worklist maintenance

optimizations ends up performing much more work (observe the increased val-

ues of e(CN), None). Ord, on the other hand, combines both a good policy

for processing the worklist elements along with a careful policy for populating

the worklist with new work, and manages to outperform both other variants.

As the thread count increases it experiences a much smaller increase in the

number processed elements (mainly manifesting as increased e(CN) and None

values), but scalability is mainly hindered by a slower per-operator processing

time.
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Nehalem async2 succs preds outer
Threads t sd t sd t sd t sd

16 985 8 785 33 1051 4 275 2
20 1010 6 771 6 997 36 242 1
24 1063 6 802 73 960 8 209 4

Table 5.3: Execution time (sec) and stdv. for executing 100 outer-loop itera-
tions on rmat25.

Nehalem rmat25 (10 steps) rand26 (10 steps)
preds succs async2 preds succs async2

Threads t sd t sd t sd t sd t sd t sd
serial 261 16 601 44

1 1014 7 385 1 806 11 1636 4 850 4 1449 24
4 309 2 155 1 205 1 515 4 308 7 364 0
8 161 1 92 1 115 1 266 1 199 8 191 1
12 120 1 80 3 101 1 206 4 202 27 144 0
16 101 0 78 4 99 2 195 5 191 19 128 0
20 91 0 76 2 101 1 187 1 191 18 125 0
24 86 1 74 1 106 1 183 0 190 9 126 0

Table 5.4: Average execution time (sec) and stdv on Nehalem.

Niagara rmat25 (10 steps) rand26 (10 steps)

async1 async1

Threads t sd t sd

succs-serial 1794 39 3265 89
1 5019 81 6444 99
16 350 13 409 6
32 209 12 210 6
48 148 5 151 6
64 123 8 123 10
96 121 14 106 14
128 127 24 98 15

Table 5.5: Average execution time (sec) and stdv on Niagara.
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P SP FU US e(CN) CN None Time/Iter.(sec)

Ord

1 25.3 43.5 0∗ 0∗ 0∗ 190.9 56.5
4 25.3 43.5 0.0 0.0 0.0 190.9 14.13
8 25.4 44.1 4.1 5.6 0.6 198.8 8.1
12 25.4 44.0 3.3 6.4 0.5 198.9 6.6
16 25.5 44.0 3.2 9.3 0.6 202.0 6.3
20 25.5 43.7 0.8 16.7 0.3 209.2 6.6
24 25.7 43.8 1.2 27.2 0.6 222.3 7.2

Ord-d

1 25.3 43.5 0∗ 265.2 0∗ 1934.0 332.2
4 25.3 43.5 0.0 265.5 0.0 1934.8 83.6
8 25.3 43.5 0.0 265.5 0.0 1934.9 50.5
12 25.4 43.5 0.0 265.7 0.0 1935.1 44.2
16 25.4 43.5 0.0 265.7 0.0 1935.2 42.5
20 25.4 43.5 0.0 265.9 0.0 1936.0 42.9
24 25.4 43.5 0.0 266.0 0.0 1935.8 44.5

CF

1 25.3 43.5 0∗ 0∗ 0∗ 190.9 55.2
4 26.4 44.2 9.8 23.1 1.8 497.6 24.6
8 28.3 47.1 18.6 68.9 6.1 979.5 25.6
12 28.6 47.0 17.9 77.2 6.3 995.6 23.2
16 29.4 47.6 19.4 104.3 7.2 1036.7 24.5
20 27.6 45.8 18.5 55.7 4.4 841.8 21.1
24 30.1 48.7 21.3 125.1 8.5 1188.7 29.7

Table 5.6: Average number of operator applications (millions) and runtime
of the forward pass per outer-loop iteration, in an execution of 2 iterations
on unweighted rmat25 (Nehalem). P : thread count, e(CN): is the number of
CN evaluations, CN : is the number of actual CN applications. 0∗ denotes an
absolute zero value. None denotes the number of checked edges for which no
operator is enabled.
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Chapter 6

Optimization of Irregular Programs via Shape

Analysis

6.1 Challenge Overview

In this chapter 1 we focus on the problem of optimizing the overheads

of speculative parallelization of irregular algorithms. The problem setting we

consider is the following: A programmer attempts to parallelize an irregular

algorithm in a conventional programming language (Java in our case). One

general-purpose solution to this problem is to use optimistic parallelization:

computations are performed speculatively in parallel, but the runtime system

monitors conflicts between concurrent computations, and rolls back offending

computations as needed. There are many implementations of this high-level

idea such as thread-level speculation [126], transactional memory [62, 55], and

the Galois system [81]. For concreteness, our results are presented in the

context of the Galois system but they are applicable to other systems as well.

1 Part of the work presented in this chapter has appeared in “Dimitrios Prountzos, Roman
Manevich, Keshav Pingali, Kathryn S. McKinley. ‘A Shape Analysis for Optimizing Parallel
Graph Programs’. In Proceedings of the 38th ACM SIGPLAN Symposium on Principles of
Programming Languages, (POPL) 2011. ” The first author is responsible for the conception
and the implementation of the ideas presented in this publication. Additional authors
provided assistance with the presentation of the material.
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In the Java version of the Galois system, applications programmers

write algorithms in sequential Java augmented with a construct called the

Galois unordered-set iterator2. This iterator iterates in some unspecified order

over a set of active nodes, which are nodes in the graph where computations

need to be performed. The body of the iterator is considered to be an operator

that is applied to the active node to perform the relevant computation, known

as an activity. An activity may touch other nodes and edges in the graph, and

these are collectively known as the neighborhood for that activity. These nodes

and edges must be accessed by invoking methods from graph classes provided

in the Galois library.

a d

c
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e7 1 6

f

4

g
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Figure 6.1: Neighborhoods in Boruvka’s MST algorithm

We illustrate these concepts using Boruvka’s minimal spanning tree

(MST) algorithm [41], the running example in this chapter. The MST starts

as a forest with each node in its own component. The algorithm iteratively

contracts the graph by non-deterministically choosing a graph node, examining

all edges incident on that node to find the lightest weight edge, and contracting

2The Galois system also supports ordered-set iterators, but we do not consider these in
this chapter.
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that edge, which is added to the MST. The algorithm terminates when the

graph has been contracted to a single node. Figure 6.1 shows an undirected

graph. For active node e, the neighborhood of the corresponding activity

consists of nodes d, e and f, and the edges between these nodes, since these

are the edges that must be examined to find and contract the lightest weight

edge connected to e.

In most algorithms, each neighborhood is a small portion of the overall

graph, so it is possible to work on many active nodes concurrently provided

the corresponding neighborhoods do not overlap. For example, in Figure 6.1,

the neighborhood for the activity at node c is disjoint from the neighborhood

for the activity at node e, so these activities can be performed in parallel.

However, the activity at node b cannot be performed concurrently with the

activity at e since the neighborhoods overlap.

In the Galois system, this concurrency is exploited by adding all graph

nodes to the work-set and executing iterations of the Galois set-iterator spec-

ulatively in parallel. All concurrency control is performed within the library

graph classes. Conceptually, an exclusive lock called an abstract lock is associ-

ated with each graph element, and this lock is acquired by an activity when it

touches that element by invoking a graph API method. If the lock has already

been acquired by another activity, a conflict is reported to the runtime system,

which rolls back offending activities. To permit rollback, methods that modify

the state of the graph also record undo actions that are executed on rollback.

The idea of handling conflicts at the abstract data type level rather than at
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the memory level is also used in boosted TM systems [61].

Compared to static parallelization, optimistic parallelization has several

overheads.

1. Wasted work from aborted activities : Because conflicts between activities

are detected online, an activity may be rolled back after it has performed

a lot of computation.

2. Conflict checking : Abstract locks must be acquired and released by ac-

tivities, and this is an overhead even if no activities are ever aborted.

3. Undo actions : These must be registered for every graph API call that

might mutate the graph.

In this chapter, we present a novel shape analysis that can be utilized

to reduce the overheads of conflict checking and registering undo actions (re-

ducing the number of aborted activities is mainly a scheduling problem, and

is dealt with elsewhere [80]). Our main contributions are the following.

• Shape Analysis : We develop a novel shape analysis for programs with

set and graph data structures, which infers properties for optimizing

speculative parallel graph programs. We utilize the structure of stores

arising in our programs to design a hierarchy summarization abstraction,

which uses a finite set of reachability relations relative to a given property

(the “object-is-locked” property), to abstract stores into shape graphs .
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Our abstraction assigns unary predicates only to root objects, capturing

reachability facts from root objects to objects deeper in the heap. Thus,

the size of an abstracted store is linear in the number of variables, and

the number of abstracted stores at a program point depends on the

number of explored variable-alias sets, which tends to be constant in our

programs (≈6). Therefore the number of abstract states explored by our

analysis in practice is linear in the size of the program, circumventing

the state-space explosion that is the bane of existing shape analyses.

• Predicate Discovery : We develop a simple yet effective technique for dis-

covering predicates relevant for inferring the set objects that are always

locked, at each program location, from data structure specifications and

“footprints” of data structure method specifications.

• Evaluation of effectiveness : We implement our shape analysis in the

TVLA framework and use a Java-to-TVLA front-end to analyze sev-

eral benchmarks from the Lonestar Benchmark Suite [79], a collection

of real-world graph-based applications that exhibit irregular behavior.

Our analysis takes at most 16 seconds on each benchmark and infers all

available optimizations. These optimizations result in substantial im-

provements in running time, ranging from 2× to 12×.

• Bounded-model checking : We also describe a bounded-model checking

phase, which helps programmers to rewrite their program to enable more

optimizations.
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Several existing heap abstractions, including Canonical Abstraction [130],

Boolean heaps [117], indexed predicate abstraction [85], and generalized type-

states [86], abstract the heap by recording a set of unary predicates for every

object and summarizing the heap by collapsing equivalence classes of objects

with the same set of predicate values. Such abstractions achieve high preci-

sion, as they express every Boolean combination of intersection and union of

objects satisfying those predicates. However, the size of a summarized heap

can be exponential in the number of predicates, and the summarization of a

set of stores can be doubly-exponential. We call these bottom-up abstractions,

since they typically express reachability facts for objects in the depth of the

heap relative to heap roots. Our experience with bottom-up abstraction shows

that heaps are partitioned very finely, leading to state space explosion. As we

discuss in Section 6.4, our top-down abstraction runs several orders of mag-

nitude faster than an implementation of the bottom-up abstraction approach

when analyzing our benchmarks.

The rest of the chapter is organized as follows. Section 6.2 provides an

overview of our optimizations and shape analysis on Boruvka’s MST example.

Section 6.3 presents our shape analysis via hierarchy summarization and pred-

icate discovery. Section 6.4 describes the static analysis implementation and

gives experimental results that demonstrate the effectiveness of our approach.
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6.2 Solution Overview

This section introduces the programming model, the performance opti-

mizations, and our shape analysis informally, using Boruvka’s MST algorithm

as the running example.

6.2.1 Boruvka’s MST algorithm

Pseudocode for the algorithm is shown in Figure 6.2. The Galois iter-

ator on line 25 iterates over the graph nodes in some non-deterministic order,

performing edge contractions. In lines, 31-38 we examine the neighbors of the

active node a, and identify the neighbor lt, which is connected to a by a light-

est weight edge. In lines 44-59 we contract the two components by removing

lt from the graph, and updating all of lt’s neighbors to become neighbors of

a. This is done by the loop in lines 45-58. If a neighbor n of lt is already

connected to a, we update the data value of the edge connecting them (lines

49-54). Otherwise, we add an edge connecting the two nodes (lines 55-57).

In Boruvka’s algorithm, the neighborhood of an active node a consists

of the immediate neighbors of a and lt and their related edges and data. In

more complex examples like Delaunay mesh refinement, the neighborhood of

an activity can be an unbounded subgraph.
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1 class GaloisRuntime {
2 @rep static set<Object> locks; // abstract

locks
3 // Flag options
4 static int LOCK UNDO=0; // acquire locks +

log undo
5 static int UNDO =1; // log undo
6 static int LOCK =2; // acquire locks
7 static int NONE =3; // no locks and no

undo
8 }

10 class Weight {
11 static Weight MAX WEIGHT;
12 int v;
13 // We record the endpoints of the edge that
14 // holds the weight in the input graph.
15 final Node<Void> initSrc, initDst;
16 int compareTo(Weight other);
17 }
18 class Boruvka {
19 void main() {
20 Graph<Void,Weight> g = ...// read from file
21 GSet<Node> wl = new GSet<Node>();
22 wl.addAll(g.getNodes(NONE), NONE);
23 GBag<Weight> mst = new GBag<Weight

>();

25 // Galois iterator
26 foreach (Node a : wl) { // in any order
27 L1: Set<Node> aNghbrs = g.

getNeighbors(a, LOCK);
28 // Find neighbor incident to lightest edge
29 Weight minW = Weight.MAX WEIGHT;
30 Node lt = null;
31 L2: for (Node n : aNghbrs) { // Iterator nIter

32 Edge e = g.getEdge(a, n, NONE);
33 Weight w = g.getEdgeData(e, NONE);
34 if (w.compareTo(minW) < 0) {
35 minW = w;
36 lt = n;
37 }
38 }
39 if ( lt == null) // no neighbors
40 continue;
41 // Contract edge (a, lt )
42 L3: g.getNeighbors(lt, LOCK); // avoids

undo in L4
43 L4: g.removeEdge(a, lt, NONE);
44 L5: Set<Node> ltNghbrs = g.getNeighbors(lt,

NONE);
45 L6: for (Node n : ltNghbrs) { // Iterator nIter
46 Edge e = g.getEdge(lt, n, NONE);
47 Weight w = g.getEdgeData(e, NONE);
48 Edge an = g.getEdge(a, n, NONE);
49 if (an != null) { // merge edges
50 Weight wan = g.getEdgeData(an,

NONE);
51 if (wan.compareTo(w) < 0)
52 w = wan; // use minimal weight
53 L7: g.setEdgeData(an, w, NONE);
54 }
55 else { // new neighbor for a
56 L8: g.addEdge(a, n, w, NONE);
57 }
58 }
59 L9: g.removeNode(lt, NONE);
60 L10: mst.add(minW, NONE);
61 L11: wl.add(a, NONE); // put node back on

worklist
62 } } }

Figure 6.2: Simplified implementation of Boruvka’s algorithm.
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6.2.2 Speculative Execution in Galois

The graph data structure Graph<ND,ED> is parameterized by data ob-

jects referenced by nodes and edges, respectively. The work list of active nodes

is stored in a set GSet<Node>. The Weight objects, which record the weights

of the MST edges and their end-points (nodes) in the original graph, are stored

in another collection GBag<Weight>, which only allows addition operations in

a concurrent context. The last argument to a data structure method is a flag

that tells the runtime system whether the method should attempt to acquire

abstract locks and whether it should log an inverse method call. The default

value LOCK UNDO is always a safe choice, ensuring correctness of speculative

execution.

The Galois system protects user-defined data types, such as Weight,

using a read-write lock (allowing concurrent read operations but at most one

write operation) and maintaining backup copies of such objects.

Iterations of the Galois set iterator are executed speculatively in par-

allel, and this execution has transactional semantics: an iteration either com-

pletes and commits, or is rolled back and retried.

6.2.3 Data Structure Specifications

Figure 6.3 shows the syntax for a lightweight specification of abstract

data types (for all clients), defining their abstract state, abstract locks ac-

quired by each method, and operational semantics of each method in terms of

abstract fields. The set of variables, includes method parameters, the special
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Syntactic Categories
TName Types
OFld Pointer fields
SFld Set fields
Field All fields
PVar Pointer variables
BVar Boolean variables
SVar Set-valued variables
Var All variables

Data Types (EBNF)
TypeDecl ::= class TName{FieldDecl∗ MethodDef∗}
FieldDecl ::= [@rep] [static] TName OFld; |

@rep [static] set〈TName〉 SFld;
MethodDef ::= @locks(Path∗) @op(Stmt∗) Java-code

Stmt ::= Var = Expr | Var.Field = Expr
Expr ::= Path | Path + Path | Path− Path | choose(Path) |

Path in Path | Path notIn Path |
isEmpty(Path) | new TName((Field = Var)∗)

Path ::= Var.(Var + Field[:SVar] + rev(Field)[:SVar])+

Figure 6.3: EBNF grammar for specified data structures. The notation [x]
means that x is optional.
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ret parameter for returning values, static variables, and temporary variables

used to define the semantics of methods. The formal semantics of this lan-

guage can be found in Appendix A. Our analysis operates in terms of these

specifications, ignoring the internal details of library ADT’s. We assume the

correctness of the specifications; approaches such as [156] can be used for their

verification.

Figure 6.4 shows a graph type built from the Node and Edge types and

the parametric types ND and ED, used to store user-defined data on the graph

nodes and edges. In our example, nodes do not store any data objects and

thus their nd fields are null. Figure 6.5 shows a bag, a set, and an iterator

type.

Specifying Abstract Data Types. The @rep annotations in Figure 6.4

define the abstract state of a data structure in terms of set-fields [82], i.e.,

fields whose values are sets of objects.

For example, the abstract state of Graph is given by a pair of sets —

ns and es — representing the set of graph nodes and edges, respectively. 3

We represent an undirected edge by a single edge, directed arbitrarily.

GaloisRuntime contains a static (i.e., global) locks set, representing

the set of abstract locks acquired by an iteration. 4

3The full specification includes additional first-order constraints.
4Galois implements a lock coarsening scheme by maintaining a single set of abstract

locks, shared among all data structure instances.
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1 @rep set<Node> ns; // graph nodes
2 @rep set<Edge> es; // graph edges

4 @locks(n.rev(src).dst, n.rev(dst).src)
5 @op(nghbrs = n.rev(src).dst + n.rev(dst).src,
6 ret = new Set<Node<ND>>(cont=nghbrs))
7 Set<Node<ND>> getNeighbors(Node<ND> n, int opt);

9 @locks(f.rev(src).dst.t, t.rev(src).dst.f)
10 @op(f.rev(src):eft.dst.t, t.rev(src):etf.dst.f,
11 ret = choose(eft + etf))
12 Edge<ED> getEdge(Node<ND> f, Node<ND> t, int opt);

14 @locks(f, t, f.rev(src).dst.t, t.rev(src).dst.f)
15 @op(f.rev(src):eft.dst.t, t.rev(src):etf.dst.f,
16 ret = (eft+etf) in es,
17 ne = new Edge<ED>(src=f, dst=t, ed=d),
18 es += ne)
19 boolean addEdge(Node<ND> f, Node<ND> t, ED d,
20 int opt);

22 @locks(n.rev(src).dst, n.rev(dst).src)
23 @op(ret = n in ns, ns = n,
24 es = n.rev(src) + n.rev(dst))
25 boolean removeNode(Node<ND> n, int opt);

27 @locks(f.rev(src).dst.t, t.rev(src).dst.f)
28 @op(f.rev(src):eft.dst.t, t.rev(src):etf.dst.f,
29 ret = (etf + eft) in es, es = (etf + eft))
30 boolean removeEdge(Node<ND> f, Node<ND> t, int opt);

32 @locks(n)
33 @op(ret = n.nd)
34 ND getNodeData(Node<ND> n, int opt);

36 @locks(e, e.src, e.dst)
37 @op(ret = e.ed)
38 ED getEdgeData(Edge<ED> e, int opt);

40 @locks(e, e.src, e.dst)
41 @op(e.ed = d)
42 void setEdgeData(Edge<ED> e, ED d, int opt);

44 }

46 class Node<ND> {
47 ND nd; // data object
48 }

50 class Edge<ED> {
51 Node src; // edge origin
52 Node dst; // edge destination
53 ED ed; // data object
54 }

Figure 6.4: Graph specification samples.
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1 class GSet<E> { // boosted set
2 @rep set<E> gcont;// set contents
3 @locks(e)
4 @op(ret = e in gcont)
5 boolean contains(E e);
6 @locks(e)
7 @op(ret = e notIn gcont, gcont += e)
8 boolean add(E e);
9 }

11 class GBag<E> {//boosted bag for reduction operations
12 @rep set<E> bcont; // bag contents
13 @locks() // No locks required!
14 @op(bcont += e)
15 void add(E e);
16 @op(ret = new Set<E>(bcont))
17 Set<E> toSet(); // used only in sequential code
18 }

20 interface Set<E> { // sequential set from java.util
21 @rep set<E> cont; // set contents
22 }

24 interface Iterator<E> { // iterator from java.util
25 @rep Set<E> all; // underlying set
26 @rep set<E> past; // past iteration elements
27 @rep E at; // element at current iteration
28 @rep set<E> future; // future iteration elements
29 }

Figure 6.5: Set, bag and iterator specification samples.
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Example 3. Figure 6.6 shows an abstract store representing the input graph

of Figure 6.1 where a references the active node a and lt references c — the

node connected to a by the lightest edge, discovered on the second iteration

after iterating over b. The figure does not show objects used by the internal

(concrete) representation of specified data types. Instead, it uses the (@rep) set

fields to indicate that an object is contained in a set field of a data structure.

Filled locks denote objects in GaloisRuntime.locks; hollow locks de-

note objects for which our analysis infers that lock protection is not required.

Path Language. We use a language of access path expressions (access paths

for short) to denote the set of objects that can be obtained by following vari-

ables and fields in a store: a variable (x) denotes the object it references; a

pointer field e.f denotes an object obtained by traversing the field f forward

from an object denoted by the prefix expression e; a set field denotes any ob-

ject stored in the set stored in a given object; a reverse field, written rev(f)

or
←−
f , denotes objects obtained by traversing field f backwards. We formalize

path expressions in Section 6.3.

We use the notation :x inside a path expression to denote a set of

intermediate objects during an access path traversal. We write + and - for set

union and difference respectively.

Example 4 (Legend). The following paths are derived from the abstract store

in Figure 6.6:

203



• a.rev(src) represents the outgoing edges of a: {2, 3}.

• a.rev(dst) represents the incoming edges of a: ∅.

• a.rev(src).dst + a.rev(dst).src represents all of the graph nodes

adjacent to a: {b, c}.

• a.rev(src):x.dst.lt sets the temporary variable x to the edge from a

to lt: x = {3} (2 is not on a path from a to lt).

Specifying Abstract Locks. A @locks annotation defines the set of ab-

stract locks a method should acquire by a set of path expressions. To keep spec-

ifications succinct, access paths expressions in @locks stand for all of their pre-

fixes (e.g., n.rev(src).dst stands for n, n.rev(src), and n.rev(src).dst).

We call a node referenced by n along with its incident edges and adja-

cent nodes the immediate neighborhood of n. We specify the set of locks for

such a neighborhood by @locks(n.rev(src).dst, n.rev(dst).src).

Example 5 (Commutativity via abstract locks). The removeNode method

specifies locks for the immediate neighborhood of the node being removed. A

call to removeNode( c,LOCK) attempts to lock the Node object c, the Edge

objects referencing c via the src field or the dst field (the edges incident to

c), and the Node objects that are neighbors of c. This ensures the concurrent

method calls removeNode( c,LOCK) and removeNode( e,LOCK) will not cause

their respective iterations to abort, since the immediate neighborhoods of c and

e do not overlap.

204



g

src dst

ed

ns

es

nd nd nd nd

src dst

ed

src dst

ed

src dst

ed

v=7 v=5 v=1 v=2

a nd

src dst

ed

v=6

b c da

12111098

e

1

2 3 4

nd nd

src dst

ed

v=4

13

f g

5 6 7

lt

cont aNghbrspastnIter at future

14 15

bcont mst

16

gcont

wl

17

all

null null null null null null null

Figure 6.6: An abstract store arising at L2, using as input the graph from
Figure 6.1. Object are shown by rectangles sub-divided by their fields; cir-
cles are used to name objects; locks show objects contained in the global
GaloisRuntime.locks set. We label Node objects by the same labels used in
Figure 6.1 and other objects by a running index.

Specifying Method Semantics. An @op annotation defines the semantics

of a method by a simple imperative language. The language allows a sequence

of statements, using set expressions over method parameters, static fields,

and temporary variables. Expressions of the form a in b, a notIn b, and

isEmpty(a), test whether a is contained in b, a is not contained in b, and

whether a is an empty set, respectively. (We overload these expressions to

treat reference variables as singleton sets.) Statements of the form a += exp

and a -= exp are shorthand for a = a + exp and a = a - exp, respectively.

choose(exp) non-deterministically chooses an object from a set denoted by

exp.
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Figure 6.7: A shape graph obtained by applying hierarchy summarization
abstraction to the store in Figure 6.6. Grey boxes represent sets of locked
objects. v=> indicates that the numeric value of v has been abstracted away.

6.2.4 Optimization Opportunities

Our static analysis enables the following optimizations.

Eliminating Usage of Concurrent Data Structures. The following con-

ditions allow replacing a concurrent implementation of a data structure by a

sequential implementation: the data structure is iteration private, or the data

structure is never modified. We use a purity analysis [131] to discover objects

that are never modified inside an iteration (such as Weight in the running

example).
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Reducing Rollback Logging. Logging inverse method calls for iterations

that commit represents wasted work, as the log is cleared when the iteration

commits and the logged method calls are never used.

Our static analysis finds a minimal set of failsafe points — program

locations in the client program such that an iteration reaching them cannot

abort. The analysis computes an under-approximation of the set of objects

that are always locked at a program location. If the set of locks computed

for a location L subsumes the set of locks computed for all locations reachable

from L, then L is a failsafe point. An iteration reaching a failsafe point will

never fail to acquire a lock and therefore cannot abort. We eliminate logging

inverse actions for method calls appearing after a failsafe point.

If no method call before a failsafe point modifies shared data structures,

rollback logging is not needed anywhere in the iteration. Algorithms with this

property are called cautious algorithms [102].

Eliminating Redundant Locking. Our analysis can also be used to find

method calls for which all locks have already been acquired by preceding

method calls. Lock acquisitions can be eliminated for these calls. Further-

more, our analysis finds user-defined objects “dominated” by other locked

objects, i.e., objects that can only be accessed after a unique abstract lock is

acquired. We eliminate lock operations for such objects as well.
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6.2.5 Optimizing the Running Example by Static Analysis

We develop a sound static analysis to automatically infer available op-

timizations of the kind discussed above. The input to our analysis is a Java

program with a single parallel loop, given by the foreach construct, operating

over a library of specified boosted data structures. The output of our anal-

ysis is an assignment of option flags to each ADT method call and a list of

(user-defined) types that do not need “transactional” protection.

The core component of our analysis is a shape analysis that under-

approximates the set of objects that are always locked at a program point.

Intuitively, our analysis abstracts stores into bounded-size shape graphs by

collapsing all objects not referenced by variables together and recording for

each root object a set of path expressions denoting the set of locked objects.

Figure 6.7 shows a shape graph obtained by applying our abstraction

to the store in Figure 6.6. The object labeled by a double-circle shows the

set of collapsed objects. The grey box pointing to a expresses the fact that

the immediate neighborhood of a is locked, along with the Weight objects

referenced by its incident edges. This shape graph represents an intermediate

invariant inferred by our analysis at L2. The full invariant is given by a set of

the shape graphs at that point, at the fixpoint.

Below, we provide sample invariants that our analysis infers for Fig-

ure 6.2 and the corresponding path expressions denoting sets of objects all of

which are locked:
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1. At L2, the immediate neighborhood of a is locked:

a + a.rev(dst).src + a.rev(src).dst.

2. At L4-L9, the immediate neighborhoods of a and lt are locked:

a + a.rev(dst).src + a.rev(src).dst +

lt + lt.rev(dst).src + lt.rev(src).dst.

3. At L2 and L6, all graph nodes accessible by the iterator nIter (past,

present, and future iterations) are locked: nIter.past + nIter.at +

nIter.future.

4. At 33, 47, 50, and 53, the edges referenced by e and an and the nodes

they reference are locked:

e + an + e.src + e.dst + an.src + an.dst.

Inv1 is part of the invariant needed to prove that L4 is a failsafe point

(before executing the statement). Inv1 needs to be maintained from L2 and

on. It is also used to eliminate locking in lines 32-33. Inv2 helps establish

L4 as a failsafe point, since all accesses to nodes and edges in the second loop

are to objects known to be locked. Also, it helps eliminate redundant locking

at L9. Inv3 helps establish the failsafe point at L4 by the fact that the node

referenced by n is locked at 46 and 48, and eliminate locking at 32. Finally,

Inv4 establishes that the calls to getEdgeData and setEdgeData in lines 33,

47, 50, and 53 do not lock new objects.

Additionally, our analysis infers that Weight objects are read-only,

which enables eliminating all lock operations and backup copy maintenance for
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them. Points L7, L8, L10, L11 are after the failsafe point and do not require

storing inverse actions. At L10, the calls to the add method of Bag do not

require acquiring locks, and trivially commute.

We apply these optimizations to the code of Figure 6.2 by setting the

LOCK option at L1 and L3, which eliminates rollback logging, and setting the

NONE option in all other calls, eliminating both abstract locking and rollback

logging.

This implementation of Boruvka’s algorithm is cautious: our analysis

infers that the failsafe point is L4 and that no modifications are made to the

graph between L1 and L4. If we remove the statement at L3, the failsafe point

is at L5, which requires logging an inverse method call for g.removeEdge(a,

lt).5

6.3 A Shape Analysis for Graph Programs

This section presents our static analysis for enabling the optimizations

described in previous sections. The core component of the analysis is a shape

analysis that under-approximates the set of objects that are always locked, at

each program location. This section is organized as follows: (1) we discuss the

class of programs and stores that our shape analysis addresses; (2) we define

Canonical Abstraction [130] and partial join [94] in our setting; (3) we define

5Swapping L4 and L5 makes the code cautious once again, but breaks sequential cor-
rectness, since in the Galois library it is illegal to remove an edge while iterating over the
neighbors of a node incident to it.
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Hierarchy Summarization Abstraction (HSA); (4) we present a technique for

discovering predicates relevant to our analysis; (5) we explain how the results

of the shape analysis are used; (6) we contrast our abstraction with Backward

Reachability Abstraction (BRA), a commonly used form of shape abstraction;

(7) we discuss how our analysis can aid the programmer by providing non-

cautiousness counterexamples; and finally (8) we discuss limitations of our

analysis.

6.3.1 A Class of Programs and Stores

We analyze Java programs (excluding recursive procedures) where the

implementation of specified data structures is replaced by the abstract fields

in the @rep annotations and the semantics of methods is given by the @op

annotations.

Figure 6.8 defines stores in terms of pointer fields and set-valued fields

defined by the @rep annotations. We define the meaning of path expressions

(recursively), which denote sets of objects reachable from a variable by fol-

lowing fields in specified directions and going through specified variables. The

last definition in Figure 6.8 provides the meaning of variables assigned to in-

termediate objects along path expressions, such as f.rev(src):eft.dst.t.

Bounded-depth Hierarchical Stores. We define the set of types reach-

able from an object o (by forward paths) to be the set of types of all objects

in [[o.p]] for all path expressions p.
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Stores

TO Objects
Stack : PVar→ TO ∪ Stacks

SVar→ 2TO ∪
BVar→ {T, F}

Heap : (TO ×OFld)→ TO ∪ Heaps
(TO × SFld)→ 2TO

Store : Stack× Heap Stores
σ = (Sσ, Hσ) Store notation

Semantics of Path Expressions
[[Path]] : Store→ 2TO

Base case. Variables:

[[x]](σ) =

{
{Sσ(x)}, x ∈ PVar;
Sσ(x), x ∈ SVar.

Inductive case. p ∈ Path, [[p]](σ) is known, and e is a field or variable:

[[p.e]](σ) =



[[p]](σ) ∩ [[e]](σ), e ∈ PVar ∪ SVar;

{Hσ(o, e) | o ∈ [[p]](σ)}, e ∈ OFld;⋃
o∈[[p]](σ)

Hσ(o, e), e ∈ SFld;

{o ∈ TO | Hσ(o, f) ∈ [[p]](σ)}, e = rev(f), f ∈ OFld;

{o ∈ TO | Hσ(o, f) ∩ [[p]](σ) 6= ∅}, e = rev(f), f ∈ SFld.
For an object o ∈ TO and path p ∈ Path, we define
[[o.p]](σ) = let y be fresh, σ′ = (Sσ|y 7→ o,Hσ) in [[y.p]](σ′)
Meaning of intermediate variables:
The expression x.p:v.q assigns to v the set of objects that are both on a path
from x to q and in x.p. For x ∈ Var, v ∈ SVar, p, q ∈ Path
[[v]](σ) = [[x.p]](σ) ∩ {o ∈ TO | [[o.q]](σ) 6= ∅}.

Figure 6.8: Stores and semantics of path expressions.
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Our work focuses on the class of bounded-depth hierarchical stores —

stores where the set of types reachable from [[o.f]] is a proper subset of the

set of types reachable from o, for every object o and field f . Such stores are

acyclic — the length of any unidirectional path, i.e., a path where all fields

are either forward or reverse, is linearly bounded by the number of program

types.

6.3.2 Canonical Abstraction and Partial Join

We implement our shape analysis using the TVLA system [89], which

allows defining stores by first-order predicates, program statements by first-

order transition formulae (formulae relating the values of predicates after a

statement to those before), and abstract states by first-order abstraction pred-

icates. The system automatically generates sound abstract operations and

transformers, yielding a sound abstract interpretation for a given program.

TVLA uses Canonical Abstraction [130], which abstracts stores into

3-valued logical structures. To focus our presentation on the important details

of our analysis, we simplify our description of TVLA’s abstraction and use

shape graphs for abstract states instead of 3-valued structures.

Definition 6.3.1 (Shape Graph). Let P = AP ∪ NAP be a set of predicates

consisting of two disjoint sets of unary predicates called abstraction predi-

cates (AP) and non-abstraction predicates (NAP). A shape graph G is a tuple

(NG, PG, EG) where NG is a set of abstract objects, PG : NG → 2P assigns

predicates to objects, and EG : OFld∪SFld→ NG×NG is a set of may-edges
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for each field. We denote the set of shape graphs over P by ShapeGraph[P].

We call the set of abstraction predicates assigned to an abstract node

v ∈ NG its canonical name: CName(v)
def
= PG(v) ∩ AP. A shape graph G is

bounded if no two abstract nodes have the same canonical name. This means

that the number of abstract nodes in a bounded shape graph is exponentially

bounded by the number of abstraction predicates.

We define the abstraction function β[P ] : Store → BGraph[P ], which

maps a store σ = (Sσ, Hσ) into a bounded shape graph G as follows. We use

the helper function P σ : TO → 2P, which evaluates the predicates in P for

each object, and µσ,G : TO → NG, which maps store objects having an equal

canonical name to an abstract node representing their equivalence class in G.

The predicate assignment function assigns to abstract nodes the predicates

common to all objects they represent, and a field edge exists between two

abstract nodes if there exist two objects represented by the abstract nodes

that are related by that field.

µσ,G(o1) = µσ,G(o2)⇐⇒ P σ(o1) ∩ AP = P σ(o2) ∩ AP

PG(n) =
⋂

o s.t. n=µσ,G(o)

P σ(o)

EG(f) = {(n1, n2) | ∃o1, o2 : n1 = µσ,G(o1), n2 = µσ,G(o2).{
o2 = Hσ(f)(o1), f ∈ OFld;
o2 ∈ Hσ(f)(o1), f ∈ SFld.

} .

We say that a shape graph G′ subsumes a shape graph G, written

G v G′, if there exists an onto function µG,G
′

: NG → NG′
, such that
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PG(n) ⊇ PG′
(µG,G

′
(n)) for all n ∈ NG, and (n1, n2) ∈ EG(f) implies that

(µG,G
′
(n1), µG,G

′
(n2)) ∈ EG′

(f) for all n1, n2 ∈ NG, f ∈ OFld ∪ SFld.

The meaning of a shape graph G is given by the function γ[P ] :

ShapeGraph[P ]→ 2Store defined as γ[P ](G) = {σ | β[P ](σ) v G}.

We say that two shape graphs G and G′ are congruent if there exists

a bijection between their sets of abstract nodes µG,G
′

: NG → NG′
, which

preserves the abstraction predicates: PG(n) ∩ AP = PG′
(µG,G

′
(n)) ∩ AP for

all n ∈ NG. Two congruent shape graphs G and G′ can be subsumed by a

congruent shape graph G′′ = G t G′, by intersecting corresponding predicate

values and taking the union of corresponding edges using the bijections µG
′′,G :

NG′′ → NG and µG
′′,G′

: NG′′ → NG′
:

NG′′
= NG

PG′′
(n) = PG(µG

′′,G(n)) ∩ PG′
(µG

′′,G′
(n))

(n1, n2) ∈ EG′′
(f) ⇔ (µG

′′,G(n1), µG
′′,G(n2)) ∈ EG(f) or

(µG
′′,G′

(n1), µG
′′,G′

(n2)) ∈ EG′
(f) .

We use TVLA’s partial join operator [94], which merges congruent

shape graphs into a single shape graph, and keeps non-congruent shape graphs

in a set:

{G} t {G′} def
=

{
{G tG′}, G and G′ are congruent;
{G,G′}, else.

The abstraction of a set of stores α[P ] : 2Store → 2BGraph[P ] is defined

as α[P ](Σ) =
⊔
σ∈Σ β[P ](σ).
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6.3.3 Hierarchy Summarization Abstraction

Our abstraction is defined relative to a set of abstraction paths, denoted

by AbsPaths, which represent possible paths from variables to locked objects.

The next subsection discusses a technique to discover a set of useful abstraction

paths for a set of data structures.

Let σ = (Sσ, Hσ) be a store. For a pointer variable x and an abstraction

path p, we define a unary predicate expressing the fact that v is a root object

referenced by x and all objects reachable from it by the path p are locked:

ForwardReach[x, p](v)
def
= [[x]]σ = {v} ∧ [[x.p]]σ ⊆ [[locks]]σ .

(Our implementation optimizes the use of predicates by removing the

program variables and having just one abstraction predicate for all variables

of a given type.)

We encode hierarchy summarization abstraction via shape graphs and

the set of predicates PHSA, shown in Table 6.1, and the abstraction paths in

Table 6.2. Since a pointer variable points to at most one node, the number

of abstract nodes in a bounded shape graph G ∈ BGraph[PHSA] is equal to at

most the number of heap roots + 1 (in the case where there exist non-root

objects). The canonical names in such a shape graph are the sets of aliased

pointer variables. We call such sets aliasing configurations. In practice, the

average number of different aliasing configurations discovered by our analysis

is a small constant (≈6), which means that the set of bounded shape graphs

our analysis explores is linear in the number of program locations.
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Predicates Meaning
Abstraction Predicates

{x(v) | x ∈ Var} x references v
Non-abstraction Predicates

{ForwardReach[x, p](v) | Hierarchy summarization
x ∈ Var, p ∈ AbsPaths} predicates

Table 6.1: PHSA predicates for hierarchy summarization abstraction.

Type Abstraction Paths

Graph

es, es.src, es.dst, ns, ns.←−src, ns.←−dst,
ns.
←−
dst.ed, ns.

←−
dst.ed, ns.←−src.dst, ns.←−dst.src,

ns.nd, ns.←−src.dst.nd, ns.←−dst.src.nd,
es.ed, es.src.nd, es.dst.nd

Node
a, lt, n, ←−src, ←−dst, ←−src.dst, ←−dst.src, nd
←−src.ed, ←−dst.ed, ←−src.dst.nd, ←−dst.src.nd

Edge e, an, src, dst, ed, src.nd, dst.nd

Weight
←−
ed,
←−
ed.src,

←−
ed.dst,

←−
ed.src.nd,

←−
ed.dst.nd

Set

cont, cont.←−src, cont.←−dst, cont.←−src.dst,
cont.

←−
dst.src, cont.←−src.ed, cont.←−dst.ed,

cont.←−src.dst.nd, cont.←−dst.src.nd, cont.nd
GSet gcont, gcont.nd
GBag bcont

Iterator
all, all.cont, all.cont.nd,
past, at, future, past.nd, at.nd, future.nd

Table 6.2: Abstraction paths for the running example. We omit Java Generics
parameters when no confusion is likely.
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Figure 6.7 shows the result of applying β[PHSA] to the store in Figure 6.6

and the predicates in Table 6.1. Heap roots are labeled with path expressions

that denote the sets of objects that are reachable from them and are definitely

locked. At L2, we would expect that node a, its neighbors, and the edges

connecting a are locked. This is specified by the path expressions labeling node

a. For example, a.rev(src).dst, a.rev(dst).src refer to all the neighbors

of a. Additionally, the current element that we are iterating over is node c,

which is the lightest neighbor of a; this node has its single incoming edge and

edge data locked. All other (non-root) nodes, edges, and Weight objects are

collapsed by our abstraction.

6.3.4 Predicate Discovery

We now describe heuristics for generating the set of abstraction paths

from the data structures in a program, and show how it finds paths expressing

the invariants described in Section 6.2. Our technique constructs paths in three

phases: (a) building the type dependence graph, (b) discovering variable-to-lock

paths in method specifications, and (c) combining variable-to-lock paths and

all forward paths in the type dependence graph.

Definition 6.3.2 (Type Dependence Graph). A type dependence graph for a

program, contains a type node NT for each program type T , labeled by the set

of program variables of that type; and a field edge from type node NT to type

node NT ′, labeled by a field of type T ′ or set〈T ′〉 declared in type T .

Figure 6.9 shows the type dependence graph for Figure 6.2. For the
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rest of this section, we fix the set of variables and fields, and define the set of

well-formed path expressions, WFPath.

Definition 6.3.3 (Well-formed Path Expressions). Define the type-node pair

of a path expression element as follows: TNPair(x) = (NT , NT ) for a variable

x of type T ; TNPair(f) = (NT , NT ′) for a field f of type T ′ or set〈T ′〉 declared

in a type T ; and TNPair(
←−
f ) = (NT ′ , NT ) for a reversed field expression

←−
f , if

TNPair(f) = (NT , NT ′).

Let p be a path expression e1.e2. . . . .ek and let the corresponding se-

quence of type-node pairs be (N1, N
′
1), . . . , (Nk, N

′
k). We say that p is well-

formed if the sequence of type-nodes

N1, N
′
1, . . . , Nk, N

′
k is an undirected path in the type dependence graph. We

define the type-node pair of p to be TNPair(p) = (N1, N
′
k).

Example 6. For example, nIter.at.
←−−−
gcont.wl is well-formed, whereas g.nd

and
←−
ed.es are not.

In the sequel, we consider only well-formed path expressions. We say

that a path expression p contains a cycle if the corresponding path in the type

dependence graph contains a cycle. A forward path is a (well formed) path

expression that contains no reversed field sub-expressions.

Definition 6.3.4 (Forward Closure). The forward closure of a path expression

p, written Forward(p), is the set of all path expressions of the form p.p′ where p′

is a forward path not containing program variables (p.p′ is well-formed) and p′
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does not introduce cycles other than ones already contained in p. The forward

closure of a type T is the set of all forward paths starting from type T , not

containing program variables.

Path closures of sets of path expressions and types are obtained by taking

the union of the closures of all set members.

Example 7. Forward(Edge) = {ed, src, dst, src.nd, dst.nd} and

Forward(an.src.
←−−
dst) = {an.src.←−−dst, an.src.←−−dst.ed}

.

The forward closure of the types in the type dependence graph represent

data access patterns where a sequence of method calls is used to obtain an

object of type T from an object of a type T ′ higher in the hierarchy. For

example, in lines 32-33 of Figure 6.2, a sequence of method calls is used to

obtain an edge from the graph and a Weight from an edge. In particular, the

forward closure gives us the paths needed to express Inv3 and Inv4.

However, these paths ignore the effect of methods, which create more

intricate paths, such as the ones needed for Inv1 and Inv2. Those are discov-

ered by “summarizing” method specifications, as explained next.

6.3.4.1 Discovering Paths in Method Footprints

We now explain how to find variable-to-lock paths, which represent

possible paths between objects referenced by the method parameters (and
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<Node>
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Node

Edge

Iterator
<Node>
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src,
dst
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minW
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<Node>

gcont

wl

GBag
<Weight>

mst

bcont

Void

Figure 6.9: Type dependence graph for Figure 6.2.

returned value) and objects accessed by the @locks specification, after the

@op specification “executes”.

To find these paths, we construct a footprint graph for each method.

Intuitively, this graph represents the set of objects accessed by the method,

sometimes referred to as the “footprint” of the method. The idea of “footprint

analysis” was defined by Calcagno et al. [26] to infer method preconditions and

postconditions. We put this idea to use for a different purpose.

We create a footprint graph by the following steps:

Handling statements We interpret the statements in @op in the order they

appear. For each statement, we create a graph representing every path

expression on the right-hand side of an assignment. This is done by

creating a new node for each position in the expression, connecting them

221



Node	  n 

Edge	  

Node	  

Edge	  
dst 

dst 

src 
nghbrs 

Set	  
<Node>	  
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cont 
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Figure 6.10: Footprint graph for Graph.getNeighbors. A lock is shown next
to each node labeled by locks.

by the respective fields, and labeling nodes by the variables along the

expression. If the left-hand side of the assignment is a pointer or set

variable (locks), we use it to label the last node of each path graph. If

it is a field of the type containing the method, we create a node of that

type labeled by this and connect an edge field from that node to the

last node of every path graph created for the right-hand side expression.

Creating @locks paths We create path graphs for all path expressions in

@locks that do not already appear in @op.

Merging We merge nodes labeled by a common (pointer or set) variable.

Setting locks We label every node matching a path expression in @locks by

locks.

Example 6.3.5. Figure 6.10 shows the footprint graph for the

getNeighbors method of Graph. The top node represents the outgoing edges

of n, the lower node represents the incoming edges of n. Both are connected

to some neighbor of n. The node on the right represents the returned set
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Type Variable-to-Lock Paths

Graph
es, es.src, es.dst, ns, ns.←−src,
ns.
←−
dst, ns.←−src.dst, ns.←−dst.src

Node Var(Node), ←−src, ←−dst, ←−src.dst, ←−dst.src
Edge Var(Edge), src, dst

Weight
←−
ed,
←−
ed.src,

←−
ed.dst

Set<Node>
cont, cont.←−src, cont.←−dst,
cont.←−src.dst, cont.←−dst.src

GSet gcont

GBag<E> ∅

Table 6.3: Variable-to-Lock paths for the running example. Var(T) denotes an
arbitrary variable to an object of type T.

containing the neighbors of n. We use this graph to obtain paths expressing

that getNeighbors has the effect of locking the immediate neighborhood of n.

We define the function VarToLock : TName → 2WFPath associating a

set of variable-to-lock paths with each program type.

We create a set of variable-to-lock paths for every type node from all

footprint graphs as follows. For each footprint graph, we take all the acyclic

non-empty paths from a node labeled by a method parameter (including this

and the return parameter ret) to any node labeled by locks. We associate

these paths with the type node corresponding to the type of the parameter.

We denote the set of variable-to-lock paths of type T by VarToLock(T ).

Table 6.3 shows the variable-to-lock paths that we get for the running

example. These paths enable us to express Inv1 and Inv2.

We combine the sets of paths defined earlier to obtain the set of ab-
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straction paths:

AbsPaths
def
=

⋃
t∈TName

Forward(t) ∪ Forward(VarToLock(t)) .

Here, expressions of the form Var(T) appearing in VarToLock(t) are substi-

tuted by the set of paths {x ∈ Var | x is of type T}.

6.3.5 Putting it All Together

Our overall static analysis consists of the following stages:

Preprocessing We use a lightweight purity analysis [131] to detect objects

that do not require concurrency control and fields that are never used

inside the parallel loop, e.g., the initSrc and initDst fields of Weight.

The remainder of the analysis does not consider path expressions in

@locks containing unused fields and sets the opt flags of read-only ob-

jects to NONE.

Shape Analysis We execute a forward shape analysis using hierarchy sum-

marization abstraction and TVLA-generated abstract transformers. The

fixpoint is a set of bounded shape graphs at every program location.

Finding Redundant Locks We use abstract operations in TVLA to con-

servatively check whether every shape graph at a program location rep-

resents stores that lock all objects defined by a @locks specification of

a method executing at that location. If so, we set the opt argument of

that method call to UNDO (if it was not already set to NONE).
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Finding Failsafe Points We perform a backward BFS traversal over the

CFG (control flow graph) to find earliest program locations where all

following method calls are labeled by NONE or UNDO (meaning they do

not acquire locks). These program locations are the program failsafe

points, We set the optimization argument of all method calls dominated

by failsafe points to NONE.

6.3.6 Backward Reachability Abstraction

A common abstraction idiom for shape abstraction uses coloring, which

records a set of unary (object-)predicates with every object in the store.

These predicates are used to partition the set of objects into equivalence

classes. Examples are Canonical Abstraction [130], Boolean heaps [117], In-

dexed predicate abstraction [85], and generalized typestates [86].

These abstractions typically employ backward reachability predicates

that use paths in the heap to relate objects to variables. For example, most

TVLA-based analyses and analyses using Boolean heaps distinguish between

disjoint data structure regions (e.g., list segments and sub-trees) by using tran-

sitive reachability from pointer variables. Indexed predicate abstraction [85]

uses predicates that assert that cache clients are contained in one of two lists

(sharer list and invalidate list). Lam et al. [86] use set containment

predicates as the generalized typestate of an object.

We call such abstractions bottom-up, since they record properties of

objects deep in the heap with respect to (shallow) root objects. These ab-
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stractions achieve high precision as they express every Boolean combination

of intersection and union of objects satisfying the unary predicates. However,

the size of an abstracted store can be exponential in the number of predicates,

which might lead to state space explosion in cases where objects satisfy many

different subsets of predicates.

We define backward reachability abstraction by using the set of ab-

straction paths presented earlier to define backward reachability predicates.

For a pointer variable x and an abstraction path p, we define a unary predi-

cate expressing the fact that v is a locked object reachable from x by the path

p:

BackwardReach[x, p](v)
def
= v ∈ [[locks]]σ ∩ [[x.p]]σ .

We obtain a backward reachability abstraction β[PBRA] from the pred-

icates shown in Table 6.4. BRA is strictly more precise than HSA. How-

ever, it can be very expensive — the number of abstract nodes in a shape

graph obtained by β[PBRA] can be exponential in the number of backward-

reachability predicates. State space explosion manifests when stores create

overlaps between different interacting sets (set fields), which is often the case

in our programs. Applying β[PBRA] to the store in Figure 6.6, will conflate

all objects not locked and not referenced by a program variable. Compared to

Figure 6.7, Edge objects 2 and 3, for example, will remain needlessly distin-

guished. Situations such as iterating over the neighbors of a node, exploring

multiple neighborhoods simultaneously or sharing objects between multiple

collections, cause the number of useless distinctions to increase.
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Predicates Meaning
Abstraction Predicates

{x(v) | x ∈ Var} x references v
{BackwardReach[x, p](v) | Backward-reachability
x ∈ Var, p ∈ AbsPaths} predicates

Table 6.4: Predicates for backward-reachability abstraction.
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Figure 6.11: A counterexample at location L5 for the non-cautious implemen-
tation of BVK.

6.3.7 Producing Non-Cautiousness Counterexamples

When the code of a parallel loop body is not cautious, our analysis can

sometimes provide a counterexample to demonstrate the violation of the cau-

tious property at appropriate program points. To find such counterexamples,

we assume the small scope conjecture [68], which says that counterexamples

usually manifest in small graphs.

A graph with three nodes and two edges is sufficient to provide us with

a counterexample for the case of BVK, as shown in Figure 6.11. The region

of the graph where the violation happens is highlighted. This is the smallest

counterexample found by our analysis, taking about 300 seconds to produce.
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6.3.8 Limitations

We recognize the following limitations of our analysis.

Bounded-depth hierarchy. As discussed at the beginning of this section,

we assume a class of stores where a finite-depth hierarchy property exists. This

allows us to ensure a bound on the number of hierarchy summarization paths

used to define our abstraction. This precludes us from handling benchmarks

where data structures such as lists and trees are explicitly manipulated (and

cannot be abstracted away by a @rep specification). Generalizing our analysis

to handle recursive data structures may be done by considering abstraction

paths with regular expressions over the pointer fields of the data structure.

Temporary violation of invariants. Our abstraction is geared to infer

invariants of the form ∀o.R(o) =⇒ p(o) where R(o) expresses a heap region

(by abstraction paths) and p(o) is a property we wish to summarize for the

objects in the region R(o) (the is-locked property in our analysis). When the

property p is temporarily violated for the objects in R(o) and then restored, our

analysis is not able to restore the invariant. For example, assume an invariant

∀o.R(o) =⇒ p(o) holds at program point 1. Then a point 2 a single object in

R(o), referenced by a pointer variable x, is made to have ¬p(o) and at point 3

it is removed from R(o). In order to regain the invariant ∀o.R(o) =⇒ p(o) at

point 3, we may need to refine our abstraction in order to express an invariant

such as ∀o.(R(o) ∧ ¬x(o)) =⇒ p(o).

228



6.4 Experimental Evaluation

The shape analysis described in Section 6.3 was implemented in TVLA,

and used to optimize four benchmarks from the Java Lonestar suite [79]. These

benchmarks were chosen because they exhibit very diverse behavior. We de-

scribe them below.

• BVK: Boruvka’s MST algorithm. This benchmark adds and removes

nodes and edges from a graph.

• DMR: Delaunay mesh refinement. This benchmark uses iterative refine-

ment to produce a quality mesh. In each iteration, a neighborhood of

a bad triangle, called the cavity of that triangle, is removed from the

mesh and replaced with new triangles. DMR uses a large number of

collections with intricate patterns of data sharing, so it is a “stress test”

for the analysis.

• SP: Survey propagation, a heuristic SAT solver. Most iterations only

update node labels, but once in a while, an iteration removes a node

(corresponding to a “frozen variable” [22]) and its incident edges.

• PFP: Preflow-push maxflow algorithm [34]. This algorithm only updates

labels of nodes and edges, and does not modify the graph structure.
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Prog.
IR Graph Set Field

Optimal
Size Calls Calls Acc.

BVK 340 17/20 4/4 23/23 X
DMR 1,168 26/30 30/30 164/164 X
SP 925 32/34 16/16 123/123 X
PFP 479 6/8 3/3 28/28 X

Table 6.5: Program characteristics and static analysis results. x/y measures Opti-
mized/Total.

Program
Graph Set Field

Optimal
Calls Calls Acc.

BVK 20/3 4/0 23/0 3 X
DMR 30/4 30/0 164/0 4 X
SP 34/2 16/0 123/0 2 X
PFP 8/2 3/0 28/0 2 X

Table 6.6: Static analysis results.

6.4.1 Static Analysis Evaluation

Table 6.5 reports the results of static analysis of our benchmarks. We

measure the size of benchmarks by the number of intermediate language (Jim-

ple) instructions in the client program, excluding the code implementing the

data structures accompanied by a specification. Columns 3 to 5 show the

number of static optimization opportunities that our analysis enables. Galois

protects application-specific objects (e.g., the cavity in DMR) using a variant

of object-based STM, which can also benefit from our optimizations. Column

5 refers to those objects. In all cases, our analysis was precise enough to iden-

tify the maximum number of sites that were eligible for optimization, and it

discovered the minimal set of latest failsafe points. The optimal result that

we compare against was determined manually. Since our analysis is sound,
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Analysis
Total Avg. # Abs. Avg. # SGs Time
SGs Nodes CFG Location (sec)

BVK
HSA 13,594 9 6.25 6
BRA 412,862 15 250 3,406

DMR
HSA 35,763 13 6.46 16
BRA 1,043,116 20 268 14,909

SP
HSA 25,421 13 6.26 12
BRA 394,765 21 158 12,446

PFP
HSA 17,692 10 6.96 7
BRA 71,800 17 45 972

Table 6.7: HSA, BRA performance statistics.(SG: Shape Graph)

we need to consider only the relatively few calls where the analysis does not

suggest conflict detection or rollback logging optimizations.

6.4.1.1 Comparing Analyses: HSA vs. BRA

In Table 6.7, we compare our analysis using hierarchy summarization

abstraction (HSA), with an analysis using backward reachability abstraction

(BRA). The first column reports the total number of shape graphs (SG) ex-

plored by the analysis, which is a measure for the amount of work performed.

We also report the average size of a shape graph, the average number of SG’s

per CFG location (our analysis uses roughly 1.43 CFG locations for a Jimple

instruction) at the fixed point, and the running time of the analysis.

As expected, HSA generates a constant number of SG’s at each program
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location, whereas in BRA the number of SG’s increases as the benchmarks

become more complex (from 45 SG’s for PFP to 268 for DMR). The benefits

of HSA are more striking as the complexity of the benchmark increases. For

PFP, BRA generates roughly 6 times more SG’s than HSA, per CFG location.

For DMR, in which the number of collections increases, BRA produces 41

times more structures. Additionally, we observe that in BRA we have more

refined and, consequently, larger SG’s. For all benchmarks the average SG

size in BRA is roughly 1.6 times larger than in HSA. These facts lead to a

significant state space explosion, which translates to increased work performed

by BRA (for DMR we see a 29-fold increase in the number of generated SG’s),

and to increased running times. Thus, HSA is as precise as BRA but more

efficient.

6.4.2 Experimental Evaluation of Optimizations

This section provides detailed performance results for each benchmark.

To evaluate the performance gains obtained by different levels of sophistication

of the analysis, we considered the following variants for each benchmark.

• O1: Baseline version: accesses within parallel loops to all objects are

protected.

• O2: Iteration-private objects are not protected.

• O3: O2+ dominated shared objects are not protected.
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• O4: O3+ duplicate lock acquisitions and unnecessary undo operations

are eliminated.

Even in the baseline version, we do not protect object accesses made

outside of parallel loops since the analysis required to enable this is trivial. At

level O2, iteration-private objects are identified and accesses to them are not

protected; this optimization by itself can be accomplished by a combination

of flow-insensitive points-to and escape analysis. Optimization levels O3 and

O4 target shared data; for these levels, a shape analysis similar to ours is

necessary.

We performed our experiments using the Galois runtime system and

a Sun Fire X2270 Nehalem server running Ubuntu Linux version 8.04. The

system contains two quad-core 2.93 GHz Intel Xeon processors, which share

24 GB of main memory. Each core has two 32 KB L1 caches and a unified

256 KB L2 cache. Each processor has an 8 MB L3 cache that is shared among

the cores. We used the Sun HotSpot 64-bit server JVM, version 1.6.0. Each

variant was executed nine times in the same instance of the JVM. We drop

the first two iterations to account for the overheads of JIT compilation, and

report results for the run with the median running time. To reduce the non-

determinism caused by garbage collection, we executed each application with

the maximum possible heap size available (22 GB).

Because of the don’t-care non-determinism of unordered-set iterators,

different executions of the same benchmark/input combination may perform
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different numbers of iterations. Since our optimizations focus on reducing

the overhead of each iteration and not on controlling the total number of

iterations, we focus on a performance metric called throughput, which is the

number of committed iterations per millisecond. For completeness, we also

present other measurements such as the total running time, the number of

committed iterations, the abort ratio, etc. Table 6.8 shows detailed results

for all benchmarks. Figure 6.12 shows how the throughput changes across

different thread counts.

6.4.2.1 Boruvka’s Algorithm

We do not provide results for level O2, since the number of iteration

private objects is insignificant. The number of committed iterations is exactly

the same across all thread counts (this is a natural property of the algorithm

since each committed iteration adds one edge to the MST). The analysis is

successful in reducing the number of locks per iteration, and it correctly infers

that the operator implementation is cautious.

The Boruvka algorithm takes roughly 141 seconds to run if we use 1

thread and optimization level O1, and 75 seconds if we use 8 threads and

optimization level O4. At optimization level O4, no undo’s are logged and the

number of acquired locks in each iteration is substantially reduced. However,

overall speedup is limited by the high abort ratio (for example, for 8 threads,

the abort ratio is between 68% and 75% for all levels of optimization). The

abort ratio decreases as the optimization level increases because if the time
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to execute an iteration is reduced, the iteration holds its locks for a smaller

amount of time, reducing the likelihood of conflicts. This high abort ratio is

intrinsic to the algorithm. The MST is built bottom-up, so towards the end of

the execution, only the top few levels of the tree remain to be built and there

is not much parallel work.

A Non-Cautious Boruvka Implementation. As we discussed in Sec-

tion 6.2, removing the call to getNeighbors at L3 results in non-cautious itera-

tions. Our analysis successfully infers that the failsafe point along this program

path moves from L3 to L5. The only difference in the inferred method flags is in

L4, where the call to removeEdge requires the UNDO flag instead of NONE. This

example shows the utility of our analysis for optimizing programs in which the

operator implementation is not cautious.

6.4.2.2 Delaunay Mesh Refinement

The number of committed iterations for this application is fairly stable

across thread counts and optimization levels. Lock acquisitions drop dramati-

cally in going from O2 to O3. The analysis deduces correctly that the operator

implementation is cautious, which is why the number of undo’s per iteration

drops to zero at optimization level O4 (the number of undo’s per iteration is

stable in going from O2 to O3 because the re-triangulated cavity is constructed

in private storage and then stored into the shared graph). The abort ratio is

very small even for 8 threads.
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The reductions in the average number of acquired locks and logged

undo’s per iteration are reflected directly in the running time. DMR takes

171 sec. to run if we use 1 thread and optimization level O1, and only 5 sec.

if we use 8 threads and optimization level O4. This is roughly a factor of

34 improvement in the running time, of which a factor of roughly 8 comes

from optimizations and a scaling factor of roughly 4 comes from increasing the

number of threads. Since the number of committed iterations is fairly stable

across all optimization levels and thread counts, the same improvement factors

can also be seen in throughput.

6.4.2.3 Survey Propagation

The number of committed iterations is fairly stable for this benchmark.

The analysis is successful in reducing the number of locks per iteration. The

number of undo’s per iteration is fairly small even at optimization level O1

because the graph is mutated only when a variable is frozen, which happens

in very few iterations. The analysis correctly infers that the operator imple-

mentation is cautious.

The SP algorithm takes roughly 180 seconds to run if we use 1 thread

and optimization level O1, and 9 seconds if we use 8 threads and optimization

level O4. Most of this benefit comes from the optimizations; at optimization

level O4, we observe a speedup of roughly 1.6 on 8 threads. We see a 5.5×

improvement in throughput for 8 threads when the optimization level goes

from O1 to O4, and by 19% from O3 to O4.
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Figure 6.12: Benchmark throughputs.
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6.4.2.4 Preflow-push Maximal Flow

A distinctive characteristic of PFP is its schedule sensitivity - because

of don’t-care non-determinism, different schedules can perform very different

amounts of work. This can be seen in the 8-thread numbers: at optimization

level O4, the program executes twice as many iterations on 8 threads as it

does on a single thread. The number of undos per iteration is 0 for O3, since

the graph structure is not mutated by the algorithm.

The preflow-push algorithm takes roughly 104 seconds to run if we use

1 thread and optimization level O1, and the best parallel time is 6.6 seconds

if we use 4 threads and optimization level O4. This is a 16-fold improvement,

of which roughly 6-fold improvement comes from the optimizations, and an

improvement of roughly 3-fold comes from exploiting parallelism.

6.4.2.5 Summary of Results

Our analysis eliminates all costs related to rollback logging for our

benchmarks, and reduces the number of lock acquisitions by a factor ranging

from 10× to 50×, depending on the application and the number of threads.

These improvements translate to a noticeable improvement (ranging from 2×

up to 12×) in the running time, which is consistent across different thread

counts, and robust against pathologies of speculation (e.g. high abort ratio).
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Chapter 7

Related Work

In this chapter we discuss work that is related to the synthesis and

static analysis techniques that we presented in previous chapters.

7.1 Elixir and Program Synthesis

In this section we discuss work that is related to the techniques we

present in Chapter 2 and Chapter 3.

7.1.1 Program Synthesis Systems

Program synthesis is a well studied problem [98, 5, 51]. We give a

brief description of some notable contributions. In deductive synthesis sys-

tems a program is generated through an iterative refinement of a high-level

specification. On each step a set of well-defined proof rules are used, each

of which corresponds to some programming construct. This approach was

pioneered by Manna, Waldinger and others in the 1970’s [98, 97, 96]. Some

notable systems following this approach are KIDS [143] and Specware [142].

These systems start from a high-level, possibly non-algorithmic specification,

design strategies and subsequent optimization techniques, which are guided by
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an experienced user. Examples of applications synthesized by this approach

include constraint solvers, garbage collectors [113], and more recently graph

algorithms [107, 106]. More recently, approaches such as template-based syn-

thesis [146] have been used to develop a variety of interesting algorithms, such

as Bresenhams line drawing algorithm. In this approach, a user supplies a

template or outline of the intended program structure, and the tool fills in the

details.

A different way of specifying user intent is followed by inductive synthe-

sis systems. In such systems one starts from instances/examples and general-

izes to produce a program that explains all instances that meet a specification.

This generic paradigm of “programming by examples” has been successfully

applied to many different problem domains [52]. One other notable example of

this approach is the Sketch system [145]. Sketch starts from a partial program

with unspecified integer holes, whose values are difficult for the programmer

to identify. The synthesizer infers the content of holes using a SAT-based

combinatorial search over the space of possible sketch completions. Sketching

is applicable to the class of finite programs i.e., functions that take inputs of

bounded size and perform a finite computation. Alternatively, a model checker

can be used to eliminate invalid candidate programs, by attempting to verify

a candidate programs. Another line of work focuses on synthesis from logic

specifications [67]. The user writes a logical formula and a system synthe-

sizes a program from that. Both of the above works are also instances of the

counterexample guided iterative synthesis (CEGIS) paradigm [49, 136], which
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provides a very effective way of solving a synthesis constraint.

7.1.2 Synthesis for Concurrency and Parallelism

[105] generates parallel tree traversals for attribute grammar evaluation.

Our work could be used synergistically to parallelize individual traversals. [11]

explores SIMD loop synthesis by extracting the equivalence relation from the

loop body and using it as specification to synthesize the parallel loop. Our

technique can synthesize code with loops but is less ambitious in the sense

that it lowers from a high to a low-level program rather than synthesizing from

a pre-post specification. Another line of work that focuses on concurrency is

Sketching [144] and Paraglide [151]. There, the goal is to start from a (possibly

partial) sequential implementation of an algorithm and infer synchronization to

create a correct concurrent implementation. Automation is used to prune out

a large part of the state space of possible solutions or to verify the correctness

of each solution [152]. Our plans encode correct programs by construction.

Not all plans encode the tightest synchronization to optimize different aspects

of the computation. [60] synthesize concurrent data-structures from relational

specifications by generating a set of plans and choosing the most profitable

ones.

7.1.3 Data-Structure Synthesis

Work on data-structure synthesis [141, 12, 59, 95, 60] is complemen-

tary to Elixir. Currently, Elixir compiles against a generic graph API and
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uses hand-implemented graphs from the Galois library. Combining the two

approaches would provide even more complete solution to the synthesis of

irregular algorithms.

7.1.4 DSLs and Synthesis for High-Performance

The SPIRAL system uses recursive mathematical formulas to generate

divide-and-conquer implementations of linear transforms [124]. Divide-and-

conquer is used in the Pochoir compiler [149], which generates code for finite-

difference computations, given a finite-difference stencil, and in the synthesis

of dynamic programming algorithms [123]. This approach cannot be used

for synthesizing high-performance implementations of graph algorithms since

most graph algorithms cannot be expressed using mathematical identities;

furthermore, the divide-and-conquer pattern is not useful because the divide

step requires graph partitioning, which usually takes longer than solving the

problem itself. The Tensor Contraction Engine [13] takes integrals used in

quantum chemistry applications as input, and uses loop transformations like

loop fusion and fission to generate parallel code.

Green-Marl [66] is an orchestration language for graph analysis. Basic

routines like BFS and DFS are assumed to be primitives written by expert

programmers, and the language permits the composition of such traversals.

Elixir gives programmers a finer level of control and provides a richer set of

scheduling policies; in fact, BFS is one of the applications presented in Chap-

ter 4 for which Elixir can automatically generate multiple parallel variants,
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competitive with handwritten third-party code. There is also a greater degree

of automation in Elixir since the system can explore large numbers of schedul-

ing policies and synchronization methods automatically. Green-Marl provides

support for nested parallelism, which Elixir currently does not support.

In [108] Nguyen et al. describes a synthesis procedure for building

high performance worklists. Elixir uses their worklists for dynamic scheduling,

and adds static scheduling and synthesis from a high-level specification of

operators.

7.1.5 Compiler Techniques

Several papers propose approaches to tackle the phase-ordering prob-

lem by using Lightweight Modular Staging and rewrite rules to optimize pro-

grams [128, 150]. Equality preserving rewrite rules used by Tate et al. cannot

support synchronization synthesis with global constraints (e.g. cautiousness).

ILP-based techniques have been used to generate embedded processor code

for basic blocks and for software pipelining [42], and for scheduling for spatial

architectures [110].

7.1.6 Superoptimization

Superoptimizers find optimal straight-line machine code sequences. [100]

exhaustively enumerates programs of increasing length or cost, which limits

applicability to small sequences. [134] use MCMC sampling as a search tech-

nique and achieves better scaling. Denali [73, 74] uses SAT-based constraints
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and equality-preserving rewritings to find an optimal loop-free sequence for

a guarded multi-assignment input program. Compared to our solution, none

of these approaches handle more general programs involving conditionals and

loops. Denali does not handle dependences and does not consider instrumenta-

tion transformations. [54] synthesize loop-free programs of component compo-

sitions using SMT-based reasoning. [72] use planning to generate straight-line

code of library API calls, and uses programmer-compiler interaction to prune

undesirable compositions. Our work handles more general programs and in-

strumentation transformations, but this work also focuses on information flow

between planner generated and host application code.

7.1.7 Term and Graph Rewriting.

Term and graph rewriting [129] are well-established research areas. Sys-

tems such as GrGen [46], PROGRES [135] and Graph Programming (GP) [116]

are using graph rewriting techniques for problem solving. The goals however

are different than ours, since in that setting the goal is to find a schedule of

actions that leads to a correct solution. If a schedule does not lead to a so-

lution, it fails and techniques such as backtracking are employed to continue

the search. In our case, every schedule is a solution and we are interested in

schedules that generate efficient solutions. Additionally, none of these systems

is focused on concurrency and the optimization of concurrency overheads.

Graph rewriting systems try to perform efficient incremental graph pat-

tern matching using techniques such as Rete networks [24, 47]. In a simi-
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lar spirit, systems that are based on dataflow constraints are trying to effi-

ciently perform incremental computations using runtime techniques [37]. Un-

like Elixir, none of these approaches focuses on parallel execution. In addition,

Elixir tries to synthesize efficient incremental computations using compile-time

techniques to infer high quality deltas.

7.1.8 Finite-differencing.

Finite differencing [111] has been used to automatically derive efficient

data structures and algorithms from high level specifications [25, 91]. This

work is not focused on parallelism. Differencing can be used to come up

with incremental versions of fixpoint computations [25]. Techniques based on

differencing rely on a set of rules, which are most often supplied manually, to

incrementally compute complicated expressions. Elixir automatically infers a

sound set of rules for our problem domain, tailored for a given program, using

an SMT solver.

7.2 Static Analysis and Speculation Optimization

In this section we discuss related work to the static analysis material

presented in Chapter 6.

7.2.1 Shape Analysis of Complex Heaps.

Shape analysis is a well-established field with many important con-

tributions [130, 89, 127, 117, 14]. Prior work on shape analysis has focused
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mostly on analyzing data structure implementations to infer heap structure. In

contrast, we use data structure specifications to abstract away data structure

representations, and we focus on unstructured graphs.

The Jahob system [83] verifies that a data structure implementation

meets its specification, and it uses the abstract state to simplify the verifica-

tion of data structure clients. Our analysis assumes that a given specification

is correct. Checking that the implementation and specification of the method

semantics match and that the @locks specification ensures that only commu-

tating methods can execute concurrently is an interesting challenge.

Maron et al. [99] use specialized predicates to model sharing patterns

between objects stored in data structures, and use this information to statically

parallelize benchmarks from the JOlden suite and SPECjvm98 benchmarks.

Our benchmarks operate on unstructured graphs and are not amenable to

static parallelization. We exploit the fact that our execution model is specu-

lative to avoid tracking correlations between different data structures, which

increases the cost of the analysis considerably.

7.2.2 Optimizing Speculative Parallelism.

In the Galois system, the optimizations described here are performed

manually [102]. Our shape analysis automates these optimizations, reducing

the burden on the programmer and ensuring correctness of optimized code.

Failsafe points extend the notion of cautious operators. Our running example

shows that non-cautious code too can be optimized by turning conflict detec-
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tion and rollback logging off for a subset of the calls, obtaining performance

improvement similar to the cautious version. Additionally, in [102] the system

optimizes locking only after the failsafe point in contrast to our analysis, which

optimizes locking regardless of whether an operator is cautious.

Prabhu et al. [118] use value speculation to probabilistically reduce

the critical path length in ordered algorithms. Their static analysis focuses

mainly on array programs. Value speculation is orthogonal to our approach,

and the benchmarks examined in our case-studies do not benefit from value

speculation. Furthermore, our heap abstractions are very different because we

need to handle complex ADTs such as unstructured graphs.

7.2.3 Compiler Optimizations for Transactional Memories.

Harris et al. [56], Adl-Tabatabai et al. [3], and Dragojevic et al. [38]

use compiler optimizations to reduce the overheads of transactional memory.

They also handle immutable, and transaction local objects. Additionally, they

describe extending traditional compiler optimizations such as common subex-

pression elimination (CSE) to reduce the overheads of logging. Although CSE

helps to reduce repeated logging for a single object, its effectiveness for our

benchmarks is limited by the extensive use of collections. Their approaches

cannot capture global properties such as failsafe points. Other optimizations

they propose are complementary to ours.
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7.2.4 Lock Inference For Atomic Sections

McCloskey et al. [101], Hicks et al. [64], and Cherem et al. [29] describe

analyses that infer locks for atomic sections. These techniques are overly

conservative for our benchmarks since they would always infer that an iteration

might touch the whole graph.
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Chapter 8

Conclusions and Future Work

8.1 Concluding Remarks

Parallelism is ubiquitous today. Limitations in improving single-core

processor performance have led to the emergence of a host of multicore and

heterogeneous parallel architectures. At the same time, the emergence of new

problem domains where algorithms work on irregular sparse graphs forces a

much wider audience of programmers to deal with parallelism. Since the best

solution for such irregular algorithms is usually input dependent, programmers

must consider multiple candidates in order to find the one that works best for

their setting. It is therefore imperative to provide programming abstractions

and tools that (a) enable non-experts to deal effectively with the intricacies of

parallelism, such as data-races and deadlocks, and (b) allow programmers to

easily experiment with many algorithm variants.

This dissertation has presented the design of the Elixir system, the first

solution that addresses both of the above-mentioned issues for the very com-

plex domain of irregular problems. Elixir enables high productivity by allowing

programmers to express parallelism implicitly and to generate automatically

many parallel program variants to find the best performing one. Elixir also
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achieves competitive performance by using sophisticated compiler analyses to

transform the input program to an efficient parallel implementation. The key

novelties of Elixir include:

• A novel specification language that separates the algorithm logic (op-

erators) from the specification of how to schedule this logic to achieve

efficient implementations. Elixir is based on a very refined view of the

schedule that for the first time allows to express very interesting algo-

rithm variants as different operator schedules. This specification lan-

guage can also act as a conceptual tool to understand parallelism in

existing algorithm implementations and design new parallel solutions by

adapting either the operators or the schedule.

• Automated reasoning for synthesizing efficient parallel incremental com-

putations. Elixir utilizes theorem proving techniques to infer what the

effects of each operator are, and uses this information to knit together

the operators and schedule in order to produce work-efficient parallel

algorithms.

• Integrated compilation via automated planning. Elixir casts the problem

of synthesizing parallel code as an automated planning task. It encodes

different transformations required to generate efficient code as different

planning problems and then composes them into a single planning prob-

lem. Solving this resulting problem corresponds, effectively, to simulta-

neously performing the individual transformations. This methodology

251



constitutes the first integrated compilation approach for the domain of

irregular graph problems. Additionally, since this approach is paramet-

ric on the description of the problem domains and transformations, it

can be applied to different problem domains.

In the spirit of increasing programmer productivity, this dissertation

has also introduced static analysis techniques that improve the performance

of irregular codes expressed in contemporary programming abstraction such as

transactional memories and the Galois system. We have presented interesting

optimizations for reducing the overheads of speculative parallelization and

show how to employ shape analysis to reason about the behavior of irregular

programs at compile time and optimize their runtime execution in a manner

completely transparent to the user.

8.2 Future Directions

The Elixir system, as presented in this dissertation, is a firm, first step

towards simplifying parallel programming for multicore processors, particu-

larly for domains like big data machine learning. However, parallel platforms

continue to grow in complexity; in particular, we now have cloud comput-

ing and heterogeneous platforms that include multicores, GPU’s and FPGA’s.

The current work on Elixir opens up several promising avenues for future work.

Support for machine-learning algorithms on big data. Machine-learning

is an important emerging problem domain. Given the enormous size of data
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processed by machine-learning algorithms, we need parallel processing to achieve

efficiency. One major obstacle for the adoption of parallelism for such problems

comes from the fact that data-scientists usually do not have any experience

with parallel programming. In our opinion, the most promising way to help

this group of programmers is to develop domain-specific languages (DSLs) that

allow programmers to implicitly express parallelism. Many machine-learning

problems admit a dual interpretation as graph problems and as sparse ma-

trix problems. Therefore, one interesting avenue for future work is to design

a DSL that includes the graph abstractions of Elixir and new matrix-related

abstractions in order to express such problems naturally.

Another issue is the variety of runtime frameworks these algorithms

can be parallelized in. The choices include shared-memory frameworks such as

Galois, traditional MPI-based distributed systems, NoSQL systems and graph-

databases, among others. It is therefore important to develop compilation

techniques from the above DSLs to multiple runtimes so that users can write

a single program that runs over multiple platforms transparently.

Synthesis for heterogeneous architectures. A complementary approach

to traditional multi-core parallelism for achieving performance is through the

use of heterogeneous architectures. Currently, Elixir targets multicore pro-

cessors. A future direction is to investigate synthesis techniques for more

exotic architectures, such as GPUs and the Intel MIC. Such architectures fa-

vor a SIMD type of parallelism and may require different scheduling policies
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than the more asynchronous multicores. An interesting challenge would be to

identify the kinds of algorithmic schedules that perform well on such archi-

tectures and appropriately enrich the Elixir language and system to support

them. Another opportunity is to exploit the synthesis techniques of Elixir to

build programs that take advantage of the more exotic ISA of these archi-

tectures. One could also use the Elixir methodology as a starting point for

exploring synthesis techniques for hardware software co-design. Architectures

like FPGAs are becoming more prevalent in their use to accelerate irregular

workloads in the cloud [125]. We believe that the right combination of DSLs

and compilation/synthesis techniques will increase the applicability of these

technologies.

Auto-tuning. Elixir enables the automatic exploration of an enormous and

interesting program space for irregular problems. However, given the size of

this space, the input sensitivity of irregular problems and the complexity of

modern architectures, neither analytical modeling nor exhaustive search are

effective solutions for enabling users to quickly identify the best performing

programs. To address this issue, one could explore the use of smart search

strategies to reduce the auto-tuning time and make the system usable at a

larger scale. The research challenge is to identify what kind of algorithmic

insights can be used to create an effective auto-tuning process for irregular

problems. We believe that a plausible approach that combine high-level fea-

tures such as characteristics of the of input graph (diameter, node degrees etc.)
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and Elixir algorithm schedules, with low-level features such as efficient imple-

mentation patterns and synchronization policies used by the planning-based

synthesizer.

Synthesis of incremental algorithms. Elixir can also serve as the basis for

a framework that synthesizes incremental algorithms for irregular graph prob-

lems. Incremental algorithms compute an initial result for a specific input and

then update the result smartly based on input changes, without recomputing

the answer from scratch. Such a system would be particularly useful in today’s

big-data world, since one can think of many scenarios where the input to an

irregular graph problem dynamically keeps changing – think of the constant

stream of updates in the structure of social network graphs, for example. The

current automated reasoning in Elixir for computing the operator deltas can

serve as a starting point for such a system.

Synthesis of lock-free algorithms. The baseline parallel execution mode

for irregular algorithms requires that operators execute atomically. Elixir and

other frameworks achieve this by acquiring locks and implementing some vari-

ation of speculative execution. However, we can often improve performance by

relaxing the atomic execution requirement and using lock-free synchronization.

For example, the hand-written breadth-first-search algorithms that we com-

pared Elixir solutions against in Chapter 4 can deliver improved performance

by employing such intricate synchronization schemes. These implementations
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require expert knowledge and are currently outside the reach of parallel pro-

cessing frameworks. Automating their construction is an interesting research

problem. A solution would require the interaction of programmers with a

synthesis system. The programmer states properties that ensure algorithm

correctness and the system tries to prove that these properties are preserved

under the relaxed synchronization scheme.

Synthesis for education scenarios. Elixir provides a high-level language

for expressing different algorithm variants for an irregular problem. It would be

interesting to explore the design of synthesis techniques for education scenar-

ios [53] based on the Elixir language. For example, an interesting experiment

would be to design a system where students express solutions in Elixir and au-

tomatically receive feedback both about correctness and performance of their

algorithms.
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Appendix A

Shape Analysis Data-Structure Specifications

Semantics

We now define the sequential semantics of method calls.

A.1 Semantics of Expressions and Statements

Let σ = (Sσ, Hσ). We define the meaning of expressions relative to σ.

Let rangef denote the range of a function f . The notation f [x 7→ y] stands

for the function f ′ = λv .

{
y, v = x;
f(v), else.

The meaning of path expressions is already defined in Section 6.3.

[[exp1 + exp2]]
def
= [[exp1]] ∪ [[exp2]]

[[exp1− exp2]]
def
= [[exp1]] \ [[exp2]]

[[choose(exp)]]
def
= o s.t. o ∈ [[exp]]

[[exp1 in exp2]]
def
=

{
True, [[exp1]] ⊆ [[exp2]];
False, else.

[[exp1 notIn exp2]]
def
=

{
True, [[exp1]] 6⊆ [[exp2]];
False, else.

[[isEmpty(exp)]]
def
=

{
True, [[exp]] = ∅;
False, else.

[[new T(f1 = v1, . . . , fk = vk)]]
def
=

o s.t. o 6∈ rangeS ∪ rangeH(f)(v)
for every field f and v ∈ To, v 6= o
and H(fi)(o) = S(vi) for every i = 1, . . . , k .

The semantics of statements of the form x = exp and x.f = exp is

258



given, respectively, by

[[x = exp]] = (Sσ[x 7→ [[exp]]], Hσ)

and

[[x.f = exp]] = (Sσ, Hσ(f)[Sσ(x) 7→ [[exp]]]) .

The semantics of a sequence of statements st1; . . . ; stk is given by com-

position:

[[st1; . . . ; stk]]
def
= [[stk]] ◦ . . . ◦ [[st1]] .

A.2 Semantics of @op and @locks Specifications

Let a method specification m be @locksL1, . . . , Lk @op O1, . . . , On. The

meaning of m is the meaning of the sequence of statements

GaloisRuntime.locks += L1;
. . .
GaloisRuntime.locks += LK ;
O1; . . . ;On .
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Appendix B

Betweenness Centrality Proofs of Correctness

In this section we give proofs of correctness of the operators for the

first phase, presented in Figure 5.3, and of the operator for the second phase,

presented in Figure 5.5a.

B.1 Correctness of Forward Phase

We prove that the first phase terminates, and that upon termination

all node attributes have correct values. Correctness follows from the following

two theorems.

Theorem 2. (Termination) Any well-formed history H of events op(uv), op ∈

{SP ,FU,US,CN} of the operators in Figure 5.3 to a graph G = (V,E) has

finite length.

Theorem 3. At the fixpoint, the following facts hold for an arbitrary node v:

(a) l(v) is equal to the length of the shortest path to v from Root. (b)

u is the predecessor of v in a shortest path to v from Root ⇐⇒ u ∈ preds(v)

and v ∈ succs(u). (c) σ(v) is the number of shortest paths from Root to v.

We consider the most general setting where operators are allowed to
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execute in any order. The only requirement is each time an operator is enabled

on an edge, its execution cannot be postponed indefinitely. The computation

is modeled by a history, which is a sequence of operator applications, each of

which is considered to be an instantaneous event that changes the state of the

graph. We denote an operator application on an edge (u, v) by op(uv), op ∈

{SP ,FU,US,CN}. To capture meaningful computations, we restrict attention

to well-formed histories which are histories that satisfy the following condition.

Definition 1. A sequence of operator applications is said to be a well-formed

history if every op(uv), op ∈ {FU,US,CN} where l(u) = l, is preceded by an

SP (wu) that sets l(u) = l and there is no other SP ′(nu) between SP (wu) and

op(uv) that sets l(u) = l′, where l′ 6= l.

B.1.1 Termination

The proof of termination relies on the following lemma, which asserts

that the level of Root is always 0, and the levels of all other nodes are positive

integers. It can proven by induction on the length of the sequence of operator

applications.

Lemma 3. l(Root) = 0 ∧ ∀u ∈ (nodes(\, {)Root}) : l(u) > 0

We are now ready to prove Theorem 2.

Proof. To prove that the computation terminates, we argue that each individ-

ual operator can appear only a finite number of times in a history. We first
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argue that there can only be a finite number of SP applications in a history.

This is because (i) node levels are modified only by the SP operator, (ii) each

application of this operator strictly lowers the level of some node, and (iii)

node levels must be non-negative (from Lemma 3). Therefore, there can only

be a finite number of applications of the SP operator in a history, as in the

example of Figure 5.4.

· · · , SP (uv),

h︷ ︸︸ ︷
· · · ,FU(vm), · · · ,US(uv), · · ·︸ ︷︷ ︸

h”

,CN(vq), · · · , SP (vw), · · ·

Figure B.1: SP applications partition the execution history in windows.

We now argue that in the subsequence of the history between two suc-

cessive applications of the SP operator, such as the subsequence h in Fig-

ure B.1, there can only be a finite number of FU,US, and CN applications (for

completeness, we should also consider the subsequence of the history before

the first and after the last application of SP , but the analysis is similar). Let

us call such a subsequence a window; the operator applications in a window

do not change the levels of nodes. In such a window, there can be at most one

application of the CN operator on an edge. This is because (i) the CN operator

can be applied only to edges (u, v) for which l(u) ≥ l(v), and (ii) once this

operator has been applied to an edge (u, v) and l(uv) is set to ∞, neither this

operator nor any other operator is applicable to this edge. A similar argument

shows that there can be at most one application of the FU operator on a given

edge, within a window. Therefore, there can only be a finite number of FU
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and CN applications in a history.

To complete the proof, we must show that there can be only a finite

number of applications of the US operator between two successive applications

of op(uv), op ∈ {SP ,FU,CN}, such as the subsequence h′′ in Figure B.1. We

observe that a US operator can be applied only to an edge (u, v) for which

l(v) = l(u)+1 . If we consider the sub-graph consisting only of these edges, we

see that this sub-graph must be a DAG; each application of the US operator

propagates information up one edge of this DAG. Each path starting at the

Root of the DAG has finite length; assume that L is the length of the longest

path. Then, a safe upper bound on the number of US applications between any

two applications of the other operators is O(E
|L|+1
D ), where ED is the number

of edges of the DAG.

B.1.2 Correctness at the Fixpoint

We now prove Theorem 3, which states that at the fixpoint we compute

the correct values of node attributes.

B.1.2.1 Correctness of Node Levels

We now prove Th. 3(a), which asserts that at the fixpoint, the level of

a node is equal to the shortest distance from Root to that node.

Proof. Consider the following partitioning P of the graph nodes. Partition
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Pk-1

≅

...

Pk Pk+j
u v

PFPk-1

...u v

PFPk

Figure B.2: v cannot belong to Pk+j, this implies existence of the dotted edge,
which is impossible.

P0 contains just the Root node. Partition P1 contains all the nodes directly

connected to the Root. Similarly, partition Pi contains all the nodes directly

connected to nodes in Pi−1; nodes in Pi are directly connected to nodes in Pi−1

but not to nodes in P0, . . . , Pi−2. Finally, partition P∞ contains all nodes that

are not reachable from the Root. Hence, partitioning P places all nodes u with

minimum distance from the Root , lmin(u) = i in partition Pi:

P = {Pi : ∀u ∈ Pi . lmin(u) = i}

At the fixpoint, let the distances of nodes be {lFP (v1), . . . , lFP (v|V |)}.

This final solution induces another partitioning P FP on the nodes, such that:

P FP = {P FP
i : ∀u, v ∈ P FP

i . lFP (u) = lFP (v)}

Assume that P and P FP are different. Then, there must be at least

one node that belongs to different partitions in P and P FP . By Lem. 3,

lFP (Root) = 0, hence P0 and P FP
0 are similar. Therefore, assume that P0 =

P FP
0 , . . . , Pk−1 = P FP

k−1 and Pk and P FP
k are the first partitions that differ by,

at least, node v. We consider two cases:
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v ∈ Pk ∧ v 6∈ P FP
k : Then, v ∈ P FP

k+j, j ≥ 1. Since v ∈ Pk, there is at least

one node u ∈ Pk−1 (also in P FP
k−1) that is directly connected to v, such

that lFP (v)− lFP (u) ≥ 2. Hence, the SP operator can fire once more, a

contradiction since we are at the fixpoint.

vk 6∈ Pk ∧ vk ∈ P FP
k : Then, v ∈ Pk+j, j ≥ 1. v ∈ P FP

k implies that during

the algorithm execution, an SP (uv) was applied to an edge (u, v) be-

tween some node u ∈ P FP
k−1 and v, which added v to P FP

k . Therefore,

(u, v) directly connects node u ∈ Pk−1 (since Pk−1 = P FP
k−1) and node

v ∈ Pk+j, j ≥ 1, a contradiction since nodes in Pk+j are only directly

connected to nodes in Pk+j−1. This case is depicted in Figure B.2.

We have shown that P FP = P , hence at the fixpoint the algorithm induced

partitioning P FP places each graph node at its minimum distance from the

Root.

B.1.2.2 Correctness of succs and preds Lists

We now prove Th. 3(b), which asserts that at the fixpoint, u is the

predecessor of v in a shortest path to v from Root iff u ∈ preds(v) and v ∈

succs(u). We initially state the following lemma.

Lemma 4. Let (u, v) be an edge of the graph. Once l(u), l(v) settle on the

shortest path distances, FU(uv) is guaranteed to execute before the fixpoint.

Proof. Consider a history h that describes the execution of the algorithm up to

the fixpoint. We examine h and identify the actions α : SP (w1u), β : SP (w2, v)
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that set u, v to their shortest path distances l(u) = k, l(v) = k + 1, where

k < ∞. Without loss of generality, assume that α precedes β. Consider an

action γ : FU(uv), in which l(u) = k and l(v) = k + 1. We want to argue

that γ executes after β, before we reach the fixpoint. Assume it does not.

After β the relation l(v) = l(u) + 1 holds until the fixpoint. Then, gFU(uv)

is not enabled because l(uv) = k = l(u), after the execution of β. Only the

CN,FU operators change l(uv). A CN(uv) would set l(uv) =∞ > k. Hence,

l(uv) = k because of some δ : FU(uv) that was executed before β. But this

is impossible, because for δ to be enabled we should have l(v) = k + 1 which

does not hold before β. Therefore, γ is enabled after β and will be executed

in order to reach the fixpoint.

Proof of Th. 3(b). The proof is based on an examination of the history h.

(⇒) Assume that there is a shortest path P from Root to v and that

l(v) = l. Only SP changes the level of a node, hence in h there will be an

α : SP (wv) that sets l(v) = l (depicted in Figure B.3). Only the SP ,FU,CN

operators change the predecessor and successor attributes, so we consider only

applications of these operators after α. We consider an arbitrary ui that is a

predecessor of v on a shortest path from Root. After α, by Lem. 4, gFU(uiv) is

enabled and a β : FU(uiv) will be executed. β establishes that ui ∈ preds(v)

and v ∈ succs(ui). In the application of β, l(v) = l and l(ui) = l − 1, that is,

ui and v are at their minimum distance from the Root. Therefore, after β no

SP (wui), SP (wv),CN(uiv) is applied since their guards are disabled. Hence,

both ui ∈ preds(v) and v ∈ succs(ui) are preserved until we reach the fixpoint.
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(⇐) Assume that at the fixpoint u ∈ preds(v) and v ∈ succs(u). Then,

there must be an action FU(uv) that establishes this relationship between u

and v. We examine h backwards and identify the last application α : FU(uv)

that does this; when this operator executes, let l(u) = k and l(v) = k + 1.

After α, there can be no other β : SP (uv), since that would enable gFU(uv)

again and lead to one more application α′ : FU(uv), which contradicts that

assumption α is the last such action. Therefore, at the fixpoint the nodes u, v

connected through the edge (u, v) have l(u) = k, l(v) = k + 1.

An induction on k establishes that there must be a shortest path from

Root to v on which (u, v) is the last edge.

• If k = 0, then, by Lem. 3, u ≡ Root. Hence, the edge (u, v) is a path of

length one from the Root to v.

• Otherwise, by the inductive hypothesis, there is a shortest path from the

Root to every node up to distance k. Hence, there is a path P1 from Root

to u. Then, there is a path P2 = P1 · (u, v) from the Root to v through

u of length k + 1, with minimum length.

· · · , SP (wv)︸ ︷︷ ︸
α

, · · · ,FU(uiv)︸ ︷︷ ︸
β

, · · ·

Figure B.3: A possible action sequence during the execution of history h.
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B.1.2.3 Correctness of the Path-Count σ

Finally, we prove Th. 3(c), which asserts that at the fixpoint σ(v) is the

number of shortest paths from Root to v. We first prove the following lemma:

Lemma 5. At the fixpoint, σ(Root) = 1 and for all v 6= Root, σ(v) is the sum

of all σ(u), where u ∈ preds(v).

Proof. Consider a history h that describes the execution of the algorithm up to

the fixpoint. We first consider the Root node. By Lem. 3, l(Root) = 0 and ∀v 6=

Root : l(v) > 0. Hence, no operator op(uv), v ≡ Root, op ∈ {SP ,FU,US,CN}

is enabled and σ(Root) = 1, its initial value.

We now consider an arbitrary node v 6= Root that has l(v) = k > 0

at the fixpoint. We examine h and identify the action α : SP (uv) that sets

l(v) = k. In general, a node v at level k will have a number of incoming

neighbors at level k− 1. Assume, without loss of generality, that v has n such

neighbors u1, u2, . . . , un and that α : SP (u1v) set l(v) = k.

Action α sets σ(v) = 0. The only operators that update the value

of σ(v) after this are FU(uiv),US(uiv). After α no other α′ : SP (uiv) exists.

Hence, by Th. 3(a), at the fixpoint we will have a number of shortest paths Pv

from Root to v, each through some ui. By Th. 3(b), ui ∈ preds(v), i ∈ [1, n] at

the fixpoint.

After α, by Lem. 4, gFU(uiv) will be enabled for all i ∈ [i, n] and σ(v)

will be updated from each σ(ui) once through a βi : FU(uiv). The path-count
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of each ui may be updated incrementally though, so σ(v) will require more

updates. If a US(wui) is executed before βi then βi propagates this update

to σ(v). Now, we argue that each US(wui) that happens after βi is followed

by an US(uiv). Assume it does not. Then, after US(wui) we have σ(ui) = µ

and σ(uiv) = λ, where λ < µ. This means that we can extend history h to

h′ = h ·US(uiv), where the state at the end of h′ is different than the state at

the end of h. This is because US(uiv) will set σ′(v) = σ(v) + µ − λ > σ(v).

Hence, at the end of h we have not reached the fixpoint, a contradiction.

Hence, we have shown that for every ui ∈ preds(v), all updates to σ(ui) are

propagated to σ(v), which guarantees that at the fixpoint σ(v) is the sum of

all σ(ui).

Proof of Th. 3(c). We now argue by induction on the length of the shortest

path from the Root to v that for all v, σ(v) is the number of shortest paths

from Root to v.

Induction Basis: v ≡ Root. Then, by Lem. 5, σ(v) = 1, which is the correct

number of paths from Root to itself.

Inductive Step: At the fixpoint, consider a node v with shortest path dis-

tance from the Root equal to k. By Lem. 5, σ(v) is equal to the sum of

σ(u) where u ∈ preds(v). By Th. 3(b) each such u is a predecessor of v

along a shortest path, hence its shortest path distance is k − 1. Then,

by the inductive hypothesis, σ(u) equals to the number of shortest paths
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from Root to u. Hence, σ(v) is indeed equal to the number of shortest

paths from the Root to v.

B.2 Correctness of the Backward Pass

We now present proofs for the correctness of the second phase. We

consider the simple version of the operator presented in Figure 5.5a.

This operator, as part of its execution on an edge (u, v), modifies

preds(v) and succs(u) by removing u and v from the respective collection.

For the purpose of the proof we consider predsex (v) and succsex (v) for each

node v, which contain the elements removed from preds(v) and succs(v), re-

spectively, by operator applications involving v. We will also use the suffix

init to denote the values of node attributes at the beginning of the backward

pass. For example, preds init(v) is the initial value of preds(v).

B.2.1 Termination

Proving termination is straightforward. Initially there is a fixed number

of predecessor edges between the nodes comprising the shortest-path DAG.

Each operator application depends on finding one such predecessor edge (u, v)

and removes it from the graph. Therefore, the number of predecessor edges

decreases monotonically and eventually becomes zero. At that point no more

applications are enabled and the algorithm terminates.
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B.2.2 Correctness at the Fixpoint

We consider the following facts that hold at the fixpoint of the for-

ward pass and are invariants of the second phase. They are easy to prove by

induction on the length of the operator application sequence.

Lemma 6. Let (u, v) be an edge of the graph. u ∈ preds(v) ⇐⇒ v ∈

succs(u).

Lemma 7. For an arbitrary node u, if preds(u) 6= ∅, then the contents

of preds(u), predsex (u) are mutually exclusive and preds init(u) = preds(u) ∪

predsex (u).

We now prove the following two lemmas for the fixpoint of the second

phase.

Lemma 8. At the fixpoint of the second phase, for an arbitrary node v we

have that succs(v) = ∅.

Proof. Assume this is not the case. Then, there exist nodes x, y such that

(x, y) is an edge and y ∈ succs(x ). By Lem. 6, x ∈ preds(y). We consider

cases for the contents of succs(y).

succs(y) = ∅: Then we can apply the operator on (x, y), a contradiction since

we are at the fixpoint.

succs(y) 6= ∅: Then, there exists z 6= x : z ∈ succs(y). By this reasoning we

can form a chain C of successors. C has to be finite because the shortest
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path DAG is finite. Assume C = {y, . . . , pw, w}, where succs(w) = ∅

and w ∈ succs(pw) (note that it may be that pw = y). Then, by Lem. 6,

pw ∈ preds(w). Hence, there exists an edge (pw,w) such that an operator

is applicable, a contradiction since we are at the fixpoint.

Lemma 9. At the fixpoint of the second phase, for an arbitrary node v we

have predsex (v) = preds init(v).

Proof. Assume that there exists v such that at the fixpoint predsex (v) 6=

preds init(v). Then, we consider two cases for an edge (w, v):

w ∈ predsex (v) ∧ w 6∈ preds init(v): Then by observing the execution history,

there exists an operator application a during which w was added to

predsex (v) and was removed from preds(v). But preds(v) ⊆ preds init(v),

a contradiction.

w 6∈ predsex (v) ∧ w ∈ preds init(v): Then, by Lem. 8 and Lem. 7, at the fixpoint

w ∈ preds(v) and succs(v) = ∅. Hence, an operator is applicable on

(w, v), a contradiction since we are at the fixpoint.

We now prove the following invariant about the value of δ(v).
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Lemma 10. For an arbitrary node v, δ(v) is given by:

δ(v) =
∑

w : v∈predsex (w)∧succs(w)=∅

t(v, w) (B.1)

, where t(v, w) = σsv
σsw

(1 + δs(w))

Proof. By induction on the length of the operator application sequence.

Induction Basis: Consider an arbitrary node v. Initially, we have δ(v) = 0

and predsex (v) = ∅, hence B.1 holds.

Inductive Step: Consider an arbitrary edge (u, v) where an operator is ap-

plied. We have u ∈ preds(v) ∧ succs(v) = ∅. By the inductive hy-

pothesis and Lem. 7, δ(u) = k, which does not include a contribu-

tion t(u, v) from v. After the operator application we have that u ∈

predsex (v) ∧ succs(v) = ∅ and δ′(u) = k + t(u, v), hence B.1 holds.

We are now ready to prove the main correctness theorem for the back-

ward phase.

Theorem 4. Let preds init(v), BCinit(v) denote the values of the respective node

attributes at the beginning of the backward pass. At the fixpoint, the following

facts hold for an arbitrary node v: (a) δ(v) =
∑

w : v∈predsinit (w)
σsv
σsw

(1 + δs(w))

(b) if v 6= Root then BC(v) = BCinit(v) + δ(v), else BC(v) = BCinit(v).
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Proof. At the fixpoint for all nodes w we have, by Lem. 8, that succs(w) = ∅.

Hence, for an arbitrary node v we have, by Lem. 9 and Lem. 10, that δ(v) =∑
w : v∈predsinit (w) t(v, w). Regarding BC(v), the operator updates it by adding

to it δ(v) while processing the edge (w, v) between v and the last w ∈ preds(v).

At that point δ(v) has stabilized at its final, correct value. Since Root has no

predecessors, no update to its BC occurs.
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