
An Extensible Theorem Proving
Frontend

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Sebastian Andreas Ullrich

Tag der mündlichen Prüfung: 26.05.2023

1. Referent: Prof. Dr.-Ing. Gregor Snelting

2. Referent: Prof. Dr. rer. nat. Jasmin Blanchette

Contents

Abstract vii

Zusammenfassung ix

Acknowledgements xi

1 Introduction 1
1.1 Interactive Theorem Proving 1
1.2 Structure . 2
1.3 Lean . 4

1.3.1 Programming in Lean 4
1.3.2 Proving in Lean . 6
1.3.3 The Essence of Lean 8
1.3.4 A Short History of Lean 10

2 A Retrospective of Extensibility in Lean 3 13
2.1 Lean 3 as a Programming Language 14
2.2 Lean 3 as a Metaprogramming Language 17
2.3 Advanced Tactic Programming 22
2.4 Interactive Proving . 27
2.5 Related Work . 31

3 An Overview of Lean 4 33
3.1 Architecture . 34
3.2 The Kernel and Type Theory 35

3.2.1 Internalizations . 35
3.2.2 η-Conversion for Structure Types 38
3.2.3 Mutual Inductive Types 40

Contents

3.3 The (Future of the) Module System 45
3.4 The Parser . 49
3.5 The Elaborator . 52
3.6 The Code Generator . 54
3.7 The User Interface . 57

4 A Macro System for Theorem Provers 61
4.1 Lean 4 Macro System by Example 63
4.2 Hygiene Algorithm . 67

4.2.1 Expansion Algorithm 68
4.2.2 Examples . 70

4.3 Implementation . 72
4.3.1 Extended Quasiquotations 76

4.4 Typed Syntax . 79
4.5 Integrating Macros into Elaboration 82
4.6 Tactic Hygiene . 84
4.7 Best-Effort Eager Name Analysis in Macros 86
4.8 Related Work . 88

5 An Imperative Extension of do Notation 93
5.1 Local Mutation . 95
5.2 Early Return . 105
5.3 Iteration . 108
5.4 Implementation . 114

5.4.1 Reference Implementation 115
5.4.2 Full Implementation 117

5.5 Reasoning . 119
5.6 Formalization . 119
5.7 Evaluation . 127
5.8 Related Work . 130

6 An Efficient Reference Counting Scheme for Functional Pro-
gramming 133
6.1 IR Syntax . 135
6.2 IR by Example . 137
6.3 Semantics of the Reference-Counting IR 140
6.4 A Compiler from λpure to λRC 144

6.4.1 Inserting Destructive Update Operations 144

iv

Contents

6.4.2 Inferring Borrowing Signatures 147
6.4.3 Inserting Reference Counting Operations 149
6.4.4 Preserving Tail Calls 153

6.5 Optimizing Functional Data Structures for reset/reuse . . 153
6.6 Runtime Considerations . 155
6.7 Experimental Evaluation . 157
6.8 Related Work . 163

7 Conclusion 167
7.1 Future Work . 168

A Macro Implementation of do Notation 171
A.1 Basic do Notation . 171
A.2 Mutable Variables . 172
A.3 Early Return . 176
A.4 Iteration . 177

B Formal Correctness of do Translation 183
B.1 Contexts . 183
B.2 Intrinsically Typed Representation of do Statements 185
B.3 Dynamic Evaluation Function 187
B.4 Translation Functions . 188
B.5 Equivalence Proof . 193
B.6 Partial Evaluation . 199

C Formal Reference Counting Semantics & Proof of Correctness203
C.1 Pure Semantics . 203
C.2 Well-Formedness . 205
C.3 reset/reuse . 206
C.4 Borrow Inference . 207
C.5 A Type System for RC-Correct Programs 208
C.6 Proof of Semantics Preservation 212
C.7 Proof of Compilation Well-Typedness 218

Bibliography 225

Index 241

List of Publications 243

v

Abstract

Interactive theorem provers (ITPs) are tools that can formally verify as well
as help with writing computerized proofs, such as ones about mathematics
or the correctness of programs. In recent years, extensive formalization
projects have been completed using ITPs. The Lean theorem prover in
particular has not only been used to formalize established theorems in
mathematics but is now being utilized for formalizing novel mathematical
topics as well. The goal of the Lean project is nothing less than to
revolutionize how mathematicians work by making formalized proofs
a realistic alternative to pen-and-paper proofs, removing the need for
laborious step-wise refereeing and ensuring that all necessary proof steps
are recorded accurately instead of requiring interpretation and implicit
background knowledge from the reader. Making this goal a reality will
require further breakthroughs in formalization efficiency and usability in
order to close the convenience gap between pen and machine.

As one step towards this goal, this thesis discusses the design and
implementation of a theorem prover frontend fully extensible by users as
part of the latest version of Lean, Lean 4. The frontend is responsible for
a particular aspect of formalization usability: accepting the user’s input
in a syntactical form that should optimize for multiple, partially contra-
dictory goals: compactness, readability by humans, and unambiguous
interpretability by the prover system. As the set of mathematical notations
in use is extensive, growing every year, and often specific to a field, author,
or even single paper, the frontend must allow users to extend it ad hoc
with new, expressive notations with flexible interpretation rules. The
same desire for flexible input syntax and interpretation rules can also be
found at the level of individual proof steps (“tactics”) and higher levels of
organizing formalizations and programs.

Abstract

The core part of this extensibility is an expressive macro system I
have developed for Lean that covers both simple syntax transformations
(“sugars”) and complex, type-aware elaboration. The macro system is
based on a novel hygiene algorithm inspired by that of the Lisp-family
language Racket but custom-built for ITPs whose task is to ensure that
lexical scoping works as intuitively expected even for complex macros.
I have taken care in making the macro system approachable in general
by providing multiple abstraction levels of increasing expressivity but
based on the same fundamental principles. As one example use case of
the macro system, I present an imperative extension of do notation known
from Haskell and an implementation thereof as macros. The extended
syntax has been integrated into Lean 4 and fundamentally changed the
way both Lean developers as well as users write monadic and even pure
Lean programs. I describe the notation’s formal semantics and prove in
Lean that this semantics coincides with the meaning of the program after
macro expansion.

While the macro system is a central part of the extensible frontend, it
is tightly connected to and dependent on other components. I give a
description of the whole frontend and the greater Lean system, focusing on
parts I have made significant contributions to. As motivation for this work,
I review earlier attempts at extensibility of the frontend in Lean 3 and
discuss lessons learned from them. Finally, I describe an efficient reference
counting scheme for functional programming that has been instrumental
in making the extensibility work in practice by allowing us to rewrite Lean
in Lean itself. By transparently reusing allocations, the scheme, just like the
extended do notation, combines benefits of imperative and pure functional
programming into a new paradigm I call “pure imperative programming”.

viii

Zusammenfassung

Interaktive Theorembeweiser sind Softwarewerkzeuge zum computerge-
stützten Beweisen, d.h. sie können entsprechend kodierte Beweise von
logischen Aussagen sowohl verifizieren als auch beim Erstellen dieser
unterstützen. In den letzten Jahren wurden weitreichende Formalisie-
rungsprojekte über Mathematik sowie Programmverifikation mit solchen
Theorembeweisern bewältigt. Der Theorembeweiser Lean insbesondere
wurde nicht nur erfolgreich zum Verifizieren lange bekannter mathemati-
scher Theoreme verwendet, sondern auch zur Unterstützung von aktueller
mathematischer Forschung. Das Ziel des Lean-Projekts ist nichts weniger
als die Arbeitsweise von Mathematikern grundlegend zu verändern, in-
dem mit dem Computer formalisierte Beweise eine praktible Alternative
zu solchen mit Stift und Papier werden sollen. Aufwändige manuelle
Gutachten zur Korrektheit von Beweisen wären damit hinfällig und gleich-
zeitig wäre garantiert, dass alle nötigen Beweisschritte exakt erfasst sind,
statt der Interpretation und dem Hintergrundwissen des Lesers überlassen
zu sein. Um dieses Ziel zu erreichen, sind jedoch noch weitere Fortschritte
hinsichtlich Effizienz und Nutzbarkeit von Theorembeweisern nötig.

Als Schritt in Richtung dieses Ziels beschreibt diese Dissertation eine
neue, vollständig erweiterbare Theorembeweiser-Benutzerschnittstelle
(„frontend“) im Rahmen von Lean 4, der nächsten Version von Lean.
Aufgabe dieser Benutzerschnittstelle ist die textuelle Beschreibung und
Entgegennahme der Beweiseingabe in einer Syntax, die mehrere teils
widersprüchliche Ziele optimieren sollte: Kompaktheit, Lesbarkeit für
menschliche Benutzer und Eindeutigkeit in der Interpretation durch den
Theorembeweiser. Da in der geschriebenen Mathematik eine umfangreiche
Menge an verschiedenen Notationen existiert, die von Jahr zu Jahr weiter
wächst und sich gleichzeitig zwischen verschiedenen Feldern, Autoren

Zusammenfassung

oder sogar einzelnen Arbeiten unterscheiden kann, muss solch eine Schnitt-
stelle es Benutzern erlauben, sie jederzeit mit neuen, ausdrucksfähigen
Notationen zu erweitern und ihnen mit flexiblen Regeln Bedeutung zu-
zuschreiben. Dieser Wunsch nach Flexibilität der Eingabesprache lässt
sich weiterhin auch auf der Ebene der einzelnen Beweisschritte („Tak-
tiken“) sowie höheren Ebenen der Beweis- und Programmorganisation
wiederfinden.

Den Kernteil dieser gewünschten Erweiterbarkeit habe ich mit einem
ausdrucksstarken Makrosystem für Lean realisiert, mit dem sich sowohl ein-
fach Syntaxtransformationen („syntaktischer Zucker“) also auch komplexe,
typgesteuerte Übersetzung in die Kernsprache des Beweisers ausdrücken
lassen. Das Makrosystem basiert auf einem neuartigen Algorithmus für
Makrohygiene, basierend auf dem der Lisp-Sprache Racket und von mir
an die spezifischen Anforderungen von Theorembeweisern angepasst,
dessen Aufgabe es ist zu gewährleisten, dass lexikalische Geltungsberei-
che von Bezeichnern selbst für komplexe Makros wie intuitiv erwartet
funktionieren. Besonders habe ich beim Entwurf des Makrosystems darauf
geachtet, das System einfach zugänglich zu gestalten, indem mehrere
Abstraktionsebenen bereitgestellt werden, die sich in ihrer Ausdrucksstär-
ke unterscheiden, aber auf den gleichen fundamentalen Prinzipien wie
der erwähnten Makrohygiene beruhen. Als ein Anwendungsbeispiel des
Makrosystems beschreibe ich eine Erweiterung der aus Haskell bekann-
ten „do“-Notation um weitere imperative Sprachfeatures. Die erweiterte
Syntax ist in Lean 4 eingeflossen und hat grundsätzlich die Art und Weise
verändert, wie sowohl Entwickler als auch Benutzer monadischen, aber
auch puren Code schreiben.

Das Makrosystem stellt das „Herz“ des erweiterbaren Frontends dar, ist
gleichzeitig aber auch eng mit anderen Softwarekomponenten innerhalb
der Benutzerschnittstelle verknüpft oder von ihnen abhängig. Ich stelle
das gesamte Frontend und das umgebende Lean-System vor mit Fokus auf
Teilen, an denen ich maßgeblich mitgewirkt habe. Schließlich beschreibe
ich noch ein effizientes Referenzzählungsschema für funktionale Program-
mierung, welches eine Neuimplementierung von Lean in Lean selbst
und damit das erweiterbare Frontend erst ermöglicht hat. Spezifische
Optimierungen darin zur Wiederverwendung von Allokationen vereinen,
ähnlich wie die erweiterte do-Notation, die Vorteile von imperativer und
pur funktionaler Programmierung in einem neuen Paradigma, das ich
„pure imperative Programmierung“ nenne.

x

Acknowledgements

I wish to thank my advisor, Prof. Gregor Snelting, for his guidance and
support. His trust in me and willingness to support development of
another theorem prover wholly different from the one already established
at the group cannot be understated as contributions to the existence of
this thesis. I also thank Prof. Jasmin Blanchette for agreeing to review this
thesis and for his many helpful nitpicks.

I cannot thank enough my partner in crime and the creator of Lean,
Leonardo de Moura. I don’t think either of us quite realized the extent of
the journey we embarked on together some four years ago. Being afforded
the opportunity to take part in shaping a language enjoyed by many people
truly is a once-in-a-lifetime opportunity. The amount I benefited from
Leo’s immense knowledge and experience along the way cannot be repaid.
Likewise, I must thank Prof. Jeremy Avigad not only for graciously inviting
me to CMU and advising my master’s thesis there, but then to facilitate a
stay at Microsoft Research on top during which I met Leo in person for the
first time, kickstarting our collaboration in earnest.

I also thank my former and current colleagues in Karlsruhe for creating a
productive yet fun and relaxed working atmosphere with entirely too many
Sebastians: Johannes Bechberger, Simon Bischof, Sebastian Buchwald,
Andreas Fried, Sebastian Graf, Martin Hecker, Denis Lohner, Manuel
Mohr, Martin Mohr, Jakob von Raumer, Brigitte Sehan-Hill, Max Wagner,
and Andreas Zwinkau. Andreas, Jakob, Max, and Sebastian Graf in
particular were exposed to many of my more or less sane ideas and
provided valuable feedback. Denis together with Joachim Breitner sparked
the fascination with theorem provers in me, even if it was not quite the
right one. Johannes graciously extended his Temci project for my needs.
Martin Mohr provided valuable advice and templates for actually finishing

Acknowledgements

the PhD. Sebastian Graf, Jakob, and Max as well as Mario Carneiro, Leo,
and Yannick Forster proofread parts of this thesis and provided important
feedback.

Even more people gave helpful advice and feedback on papers this thesis
is based on: Thomas Ball, Christiano Braga, David Thrane Christiansen,
Gabriel Ebner, Matthew Flatt, Johannes Hölzl, Alexis King, Daan Leijen,
Gregory Malecha, Simon Peyton Jones, Tahina Ramananandro, Daniel
Selsam, and Nikhil Swamy, thank you!

During my PhD, I had the pleasure to supervise and work with bright
students that advanced the Lean ecosystem and showed us that becoming
fluent in Lean is possible in a short amount of time: Niklas Bülow, Markus
Himmel, Marc Huisinga, Lars König, and Joscha Mennicken, thank you
for your contributions and interest in Lean.

Finally, I wish to thank my parents for their love and support, as well
as my high school maths teacher Bernhard Gärttner for his central role
in sending me on this path. By teaching me love of both mathematics
and programming at the same time and encouraging, supporting, and
challenging me over many years, he could not have better prepared me
for the topic of theorem proving even if neither of us knew it existed at
that point.

No large language models were involved in the writing of this thesis.

xii

There is much work to do
– Conor McBride, Epigram: Practical Programming

with Dependent Types [McBride, 2005] 1
Introduction

1.1 Interactive Theorem Proving

The idea of using a computer to not only compute mathematical terms but
also prove mathematical and other theorems is by now long established,
beginning in the 1970s with Robin Milner et al.’s LCF system described in
the adequately titled LCF: a way of doing proofs with a machine [Milner, 1979]
and Nicolaas Govert de Bruijn et al.’s Automath system [de Bruijn, 1970]
developed around the same time. While the two systems follow different
fundamental approaches that both can be found in derived systems to this
day, what they have in common is interactivity. Back then as now it was
infeasible to have theorems of high complexity proved automatically by a
computer due to the gigantic search space, and so human and machine
must join forces to develop such proofs together. This back-and-forth
conversation consists of the human stating the proposition to be proved
in some way the computer can understand and then proposing how to
break it apart in successive proof steps (some of which may be found by
the machine automatically when the step size is small enough) to which
the computer will respond with the remaining proof goals if it believes the
steps are sound or an appropriate error if it does not.

Thus, despite recent advances in having at least competition-level math-
ematical problems solved automatically by a machine [Polu et al., 2022,
Lample et al., 2022]1, this style of interactive theorem proving still appears to
be the most promising approach to a formalized and computer-verified
representation of our collective mathematical knowledge as well as other

1 Which is still work done in the context of, and verified by, an interactive theorem prover.

1 Introduction

topics full of high-complexity proofs such as program verification. One
particular system that has recently come into prominence from tackling
this challenge is the Lean programming language and theorem prover,
which is the focus of this thesis. Through a combination of desirable
features as well as some fortuitous circumstances, Lean has managed to
capture an expansive community of mathematicians contributing to a
unified mathematics library, mathlib [The mathlib Community, 2020]. At
the time of writing, mathlib has, after just five years of development,
reached the milestone of more than one million lines of code (a term that,
as we will soon learn, is readily applicable to proofs as well) and 100,000
theorems contributed by 280 authors [The mathlib Community, 2022b]
that neither Lean developers nor users would have believed possible just
a few years before, and does not show any signs of slowing down. In
just the last year (2022), we have witnessed the completion of the Liquid
Tensor Experiment [The mathlib Community, 2022a] addressing a formal-
ization challenge posed by Fields medalist Peter Scholze, the completion
of the sphere eversion project [van Doorn et al., 2023], and the completion
of a formalization [Bloom and Mehta, 2022] of a new result in number
theory [Bloom, 2021] preceding the completion of the informal refereeing.

The topic of this thesis is my work on supporting this development into
the future as part of the latest version of Lean, Lean 4. In particular, my
PhD has been focused on making it easier for users to express themselves
and encode their concepts in Lean and similar systems in a natural way. I
have done so by introducing an unparalleled degree of extensibility into
the theorem prover’s frontend, the part that implements the interaction with
users. The macro system that resulted from this work is now a central part of
Lean and likewise the central chapters of this thesis discuss implementation
and use of this system.

1.2 Structure

The main contents of this thesis are divided into five chapters that partially
build on top of each other (Fig. 1.1). After the introduction, each chapter lists
the main contributions as well as acknowledges parts and prior published
work it is based on that were done in cooperation with other authors.
Chapter 2 reviews initial extensibility efforts in Lean 3 and discusses its
shortcomings. While it motivates and sets up the challenges addressed by

2

1.2 Structure

Ch. 2: A Retrospective of Extensibility in Lean 3
[ITP’17]

Ch. 3: An
Overview
of Lean 4

[CADE’21]

Ch. 4: A Macro System for
Theorem Provers

[IJCAR’20]
[LMCS’22]

Ch. 5: An Imperative Extension of
do Notation

[ICFP’22]

Ch. 6: An
Efficient

Reference
Counting Scheme

for Functional
Programming

[IFL’19]

Figure 1.1: Visualization of content chapters of this thesis, with chapters placed
on top of chapters they build on. Box sizes are roughly proportional to chapter
lengths.

the following chapters, it is not required reading for them. Chapter 3 gives
an overview of Lean 4 and summarizes significant changes not addressed
by later chapters. Chapter 4 describes the novel macro system I designed
for Lean 4, the core ingredient of the extensible frontend. As one significant
application of the macro system, I discuss an extension of functional do
notation with additional imperative elements in Chapter 5, implemented
purely as macros in Appendix A, and formally prove correctness of the
translation in respect to a natural semantics (Appendix B). Chapter 6 follows
the same idea of combining imperative and functional properties, but on
the runtime instead of the language level: by transparently introducing
opportunities for reusing allocations, I show how we can optimize pure
functional code and utilize imperative data structures such as arrays in it. I
prove soundness of the compilation steps in Appendix C. Chapter 7 finally
concludes the thesis and points out possible future research directions.

In the rest of the chapter, I will give a short introduction to Lean.

3

1 Introduction

1.3 Lean

1.3.1 Programming in Lean

Lean is, as mentioned, both a programming language and a theorem
prover, both aspects of which we will take a detailed look at in this thesis
in separation as well as in combination in the form of metaprogramming.
For readers familiar with functional programming, the basics of the purely
functional language Lean should be relatively easy to grasp: the syntax is
reminiscent of the ML family of languages, with some additional influences,
including limited whitespace sensitivity, from Haskell.

-- a function definition using lambda notation and type inference
def f := fun x => x + 1
-- the same function, using explicit parameters and types
def f (x : Nat) : Nat := x + 1

-- a named product type with named constructor and fields
structure Point where mk ::

x : Nat
y : Nat

-- pattern matching on the structure's constructor
def getX (p : Point) := match p with

| Point.mk x _ => x
-- `match` is terminated by deindentation

-- an equivalent function, using a top-level pattern matching
shorthand

def getX (p : Point)
| Point.mk x _ => x

-- an equivalent function, using convenient "projection notation"
def getX (p : Point) := p.x

Lean makes heavy use of typeclasses [Wadler and Blott, 1989] to automati-
cally infer certain properties about types and other terms.

4

1.3 Lean

-- a parametric typeclass
class ToString (α : Type) where
toString : α → String

-- make `toString` available outside of the `ToString` namespace
export ToString (toString)

instance : ToString Point where
-- implicitly infer `ToString` instance of `Nat`, not shown here
toString p := toString p.x ++ "," ++ toString p.y

#eval toString (Point.mk 1 2) -- 1,2

Lean programs can be compiled or executed right in the editor using the
#eval command shown above. When used as a programming language,
Lean has eager evaluation semantics.

An important advanced ingredient of Lean is inductive types, which are
a generalization of algebraic data types. For example, the type Nat of
natural numbers used above is defined as the standard inductive Peano
representation.

inductive Nat where
| zero : Nat
| succ : Nat → Nat

Note though that Lean uses a more optimized representation internally
and at run time, as discussed for the special case of the kernel in Section 3.2.

Inductive types in fact are, together with function types and universes
(see below), the only kind of type available in Lean’s type theory. A
structure fundamentally is simply an inductive type with one constructor,
and a typeclass is a special kind of structure.

What makes inductive types more general than standard algebraic data
types is their ability to form type families using dependent types, that is,
the result types of constructors do not have to be uniform and they may
depend on values, not just other types. The prime example is the type of
lists of a given length.

inductive Vector (α : Type) : Nat → Type where
| nil : Vector α 0
| cons : α → (n : Nat) → Vector α n → Vector α (n + 1)

This declaration defines a dependent type former Vector : Type → Nat →

Type that maps a given element type and a natural number, which is not a

5

1 Introduction

type, to our new type. The type family Vector α2 then can be constructed
in two ways: the constructor nil creates an empty list of length zero, and
the constructor cons, given an element of type α and a list of length n,
creates a list of length n + 1. The second constructor thus is a dependent
function, using the notation (a : α) → β a for the dependent function type
with domain α and range β a that may vary for each a : α.

A more thorough introduction to programming in Lean can be found in
[Christiansen, 2022]. For the implementation parts comprising the majority
of this thesis, the above basics on Lean programming without details on
inductive types, dependent types, or universes should be sufficient for
comprehending the text. In fact, there are exactly two, closely related uses
of a dependent type in the discussed implementation (can you spot them?).
The main and original motivation for all these advanced features is, of
course, Lean’s other aspect, theorem proving.

1.3.2 Proving in Lean

Getting more formal as is appropriate for this second aspect, Lean’s type the-
ory is based on a variant of the type theory of Coq [The Coq Team, 2017], the
Calculus of Inductive Constructions [Paulin-Mohring, 2015], which adds
the aforementioned inductive types to the previously developed Calculus
of Constructions [Coquand and Huet, 1988]. Other dependently typed
proof assistants and programming languages such as Agda [Norell, 2009]
and Idris [Brady, 2013], which all have influenced the design of Lean, have
similar foundations. The Calculus of Constructions is the most expressive
corner of the λ-cube [Barendregt, 1991], i.e. a λ-calculus where terms and
types may freely depend on other terms and types — indeed, there is
no more syntactic distinction between terms and types. Following in
Automath’s tradition, the main interest of such strong type systems to theo-
rem provers is the renowned Curry-Howard correspondence [Howard, 1980]:
proofs are programs, propositions are types!

More specifically, it turns out that the simply typed λ-calculus corre-
sponds to intuitionistic propositional logic: function types correspond to

2 Unlike the list length, α is constant in all uses of Vector in its constructors, i.e. Vector is
parametric over it. We thus call α a (uniform) parameter and use Lean’s parameter syntax
to the left of the colon for it, while varying parameters like n are called indices and must
be specified to the right of the colon.

6

1.3 Lean

implications, variables to hypotheses, lambda abstraction to implication
introduction, function application to modus ponens.

-- trivial implication, also the identity function
-- an `example` is a temporary declaration without a name
-- `p` is automatically quantified as a type variable
example : p → p := fun h => h

-- the "principle of simplification" [Whitehead and Russell, 1910],
-- also the K combinator
example : p → q → p := fun hp hq => hp

-- the "principle of the syllogism" [Whitehead and Russell, 1910],
-- also function composition
example (hpq : p → q) (hqr : q → r) : p → r :=
fun hp => hqr (hpq hp)

If we want more than propositional logic, however, the question is: what is
the type theoretic equivalent of universal quantification? The answer is the
dependent function type, with the Calculus of Constructions corresponding
to higher order intuitionistic logic.

-- introduction of universal quantification is lambda abstraction
example (p : α → Prop) : ∀ x : α, (p x → p x) := fun x px => px

-- elimination of universal quantification is function application
example (p : α → Prop) (h : ∀ x : α, p x) (y : α) : p y := h y

Here ∀ x : α, e is simply another way to write the dependent function
type (x : α) → e. We usually reserve it for specifying types in Prop, the
universe of propositions. Universes are mostly a technical means to avoid
Girard’s paradox [Girard, 1972]: we want every term, including types, to
have a type, but the type of (simple) types Type may not be its own type
without inviting inconsistency. Thus Lean features an infinite hierarchy
of type universes Type : Type 1 : Type 2 : . . . : Type u : . . . where u is a
universe variable. Prop is an important outlier: it sits at the base of the
hierarchy, Prop : Type, but has two distinct properties: it is impredicative,
which in this context means that function types into a proposition are
themselves propositions,

example (p : α → Prop) : Prop := ∀ x, p x

7

1 Introduction

and is irrelevant, meaning that any two proofs of the same proposition are
the same and interchangeable (definitionally equal).

-- proof by reflexivity, `rfl : x = x`
example (p : Prop) (h1 h2 : p) : h1 = h2 := rfl

For more details on Lean’s type theory, see [Carneiro, 2019] for a description
of the theory of Lean 3, which we will extend to that of Lean 4 in Section 3.2.

While having a single language for terms, types, proofs, and propositions
greatly reduces the number of concepts and syntax one has to keep in
mind, the term language is not in fact the primary language in which Lean
proofs are written. Instead, proofs are usually (such as in Appendix B)
structured as a sequence of proof steps called tactics, which may implement
arbitrarily powerful automation, preceded by the keyword by usable in
any term context. Thus while input terms roughly reflect the structure
of the produced internal lambda expression, tactics abstract even further
from that, more following the mostly linear flow of an informal proof text
than a highly nested expression tree.

example (hpq : p → q) (hqr : q → r) : p → r := by
intro hp -- remaining goal: . . ., hp : p ⊢ r
apply hqr -- remaining goal: . . . ⊢ q
apply hpq -- remaining goal: . . . ⊢ p
exact hp -- goals accomplished

-- the same theorem, using [Limperg and From, 2023]'s proof search
tactic

example (hpq : p → q) (hqr : q → r) : p → r := by aesop

1.3.3 The Essence of Lean

The basic language and type theory summarized above for the most part
are not significant departures from other type theory-based systems that
precede Lean, such as Coq and Agda. This begs the question: why go
through the effort of inventing a new system in the first place?

The main motivation that led Leonardo de Moura3 to start the Lean
project at Microsoft Research in 2013 was twofold:

3 whom I will take the liberty to also abbreviate as “Leo” in the subsequent many mentions

8

1.3 Lean

• Creating a platform for developing white-box automation. As the main
architect of the Z3 SMT solver [de Moura and Bjørner, 2008], Leo was
acutely aware of the strengths but also limitations of standard SMT
implementations, in particular their non-configurability and one-size-
fits-all design [de Moura and Passmore, 2013], which might thus be
described as black-box automation. A white-box approach then would
mean to expose the components making up an SMT solver to users in
such a way that they can recombine and reconfigure them according to
their specific needs. An interactive theorem prover’s tactic language
would be a natural vehicle for such a system, allowing for rapid,
incremental development of tailor-made automation, and would
help close the gap between these two theorem proving approaches.

• Quite in contrast to the above point of extensive automation, con-
densing standard dependent type theory down to a minimal theory,
which ultimately gave rise to the name Lean. While the sophistication
of tactics should be essentially limitless, implementing a verifier for
their output should be as simple, and thus usually as error-free, as
possible. At the same time, the base language should be sufficiently
expressive for the formalization of advanced mathematics and for
program verification, for which dependent type theory seemed like
the most promising foundation. Thus the lean-ness of Lean should be
understood in comparison to other implementations of dependent
type theory, which does come with a certain degree of fundamen-
tal complexity compared to simpler logic systems. Compared to
Coq, whose type theory Lean’s is inspired by and still closest to,
this in particular relates to replacing the primitive concepts of ter-
mination checking, fixpoint operators, and pattern matching with
primitive recursor functions [Dybjer, 1994], as well as forgoing the
type system-embedded module system.

While the second goal of a small type theory and kernel has been achieved
with the very first version of Lean, leading to a proliferation of independent
type checkers for Lean 3, and has seen only minor corrections since (Sec-
tion 3.2), work on the first goal at the time of writing is still mostly focused
on the fundamental creating the platform part — as it turns out, developing
an interactive theorem prover is no small feat even before considering
advanced automation. Having said that, after initial experiments with SMT
primitives in Lean 3 [Ebner et al., 2017] from our side, we are happy to see

9

1 Introduction

that with Lean 4, the platform has progressed enough to support other
peoples’ work on novel white-box automation [Limperg and From, 2023],
even if not based on SMT.

What shapes the perception of Lean in the eyes of end-users at the current
time, however, is perhaps relatively independent of the above achieved and
outstanding goals. The current direction of the Lean project and ecosystem
can be attributed instead primarily to the collaboration with the group of
Jeremy Avigad that led to the development of mathlib, as detailed in the
next subsection, and with it a clear focus on classical, non-constructive
mathematics. This focus is partly a technical decision expressed in Lean’s
theory as in the unconditional assumption of definitional proof irrelevance
mentioned above, but to a greater degree is a social convention by the
mathlib authors who readily embraced classical axioms like the excluded
middle and the axiom of choice, owing to their backgrounds in informal
classical mathematics. The perception of Lean as a system suitable for
classical mathematicians to learn and to formalize their own topics in
ultimately is what led to the unprecedented influx from this crowd into
the community and the resulting development of mathlib and of the
impressive works built on top of it. At the same time, the Lean system
itself remain sufficiently agnostic to allow for other applications such as
program verification as well.

1.3.4 A Short History of Lean

As a majority of the work described in this thesis is built on lessons we
have learned from previous versions of Lean, I close this chapter with a
short description of Lean’s development history over its various major
versions before taking a closer look at Lean 3’s extensibility features and
their limitations in the next chapter. Because of the explorative nature
of the Lean project, each version came with significant changes in the
system and an effectively rewritten standard library such that no backward
compatibility could be provided.

Lean 0.1 (2014) was the first published prototype of Lean, initiated by
Leonardo de Moura (Microsoft Research) and later joined by Soonho
Kong (then Carnegie Mellon University). While Lean 0.1 introduced
the ML-like syntax that in many parts has persisted throughout all
Lean versions as well as a simple simp tactic, it notably did not yet

10

1.3 Lean

feature support for inductive types, with types being introduced via
ad hoc axioms instead. Lean 0.1 also featured prototypical support
for syntax and tactic extensibility via Lua scripts, but this part was
never further developed or put to use before being dropped in Lean
3 in favor of extensions written in Lean itself.

Lean 2 (2015) [de Moura et al., 2015b], initially called Lean 0.2, was the
first official release of Lean. It was also the first release I personally
have used and started contributing to. Apart from adding crucial
missing features such as proper support for inductive types and ex-
tending the set of built-in tactics, Lean 2 added support for Homotopy
Type Theory (HoTT) [The Univalent Foundations Program, 2013] as
a major feature, with univalence as a noncomputable axiom and
proof irrelevance disabled. Lean 2 came with a nontrivial standard
and math library developed in collaboration with Jeremy Avigad’s
group, with a separate version for HoTT.

Lean 3 (2017) replaced the unused support for extensibility via Lua with a
radically different approach: making Lean a programming language
that can be used to define tactics and other metaprograms in Lean
itself [Ebner et al., 2017], as described in the next chapter. Another
major change from Lean 2 was the removal of support for HoTT,
which was done because of concerns over how to implement efficient
tactics in the absence of proof irrelevance and the code duplication
resulting from this as well as uncertainty at that time over whether
“book HoTT” or the recent computational version of Cubical Type
Theory [Cohen et al., 2015] was preferable. The mathlib library was
eventually spun off as an independent, community-managed project
so as to focus the Lean 3 standard library to a core set of libraries
essential to both formalization of mathematics and formal verification
of programs.

Lean 4 (2023) [de Moura and Ullrich, 2021] finally is the most recent re-
lease of Lean at the time of writing and the version most of this thesis
is dedicated to. If making Lean a metaprogramming language in
Lean 3 was a radical idea at the time, Lean 4 dwarfed this effort by
making Lean a general-purpose programming language sufficiently
expressive and efficient for reimplementing most parts of Lean in
Lean itself. We will see in the following chapters how this significant

11

1 Introduction

rewrite and the system and language changes introduced by it are a
direct continuation of the extensibility work in Lean 3 and a desire
to lift its fundamental limitations. Leo and I started development
of Lean 4 in 2018, with most of the fundamental design we were
busy implementing the following four years established during an
internship of mine at Microsoft Research later that year. While Lean
4 is not directly compatible with earlier versions, a mixed automat-
ed/manual port of all of Lean 3 mathlib has just been finished at the
time of writing, with resources being updated to designate Lean 4 as
the official and recommended version of Lean.

Given the frequency of major Lean releases with almost no backward
compatibility, inevitably the question arises: when will we switch to Lean
5 and start from scratch again? While the need for a subsequent major
version is impossible to project so early into the life cycle of a new release,
we can at least take the escalating time between releases as a hint towards
stability, especially considering that the implementation of Lean 4 took
roughly as long as that of all three versions before it combined. I think I
can speak for all core developers that at this point, we do not even want
to think about any effort that comes close to the Lean 4 rewrite. In many
ways, the foundations of Lean 4, particularly the extensible frontend, are
as generic as we can make them and there are no plans to revolutionize
them yet again.

12

I felt that pressure of time that is perhaps the
surest indication we have left childhood behind

– Gene Wolfe, The Book of the New Sun 2
A Retrospective of Extensibility

in Lean 3

A central characteristic of dependent type theory is its computational
nature: type checking needs to reduce definitions to successfully decide
equivalence of terms, which gives rise to a general way to reduce terms
to a normal form or, in other words, to compute their values. Given that
an effective dependently typed language must provide expressive ways
to specify such definitions, it is not too surprising that this same proving
language would be adapted not only for programming, but metaprogram-
ming, that is, for developing programs that help in constructing other
terms, proofs, and programs. Metaprogramming has a long history in
interactive theorem proving, with the programming language ML literally
designed as the Meta Language of the LCF proof assistant for writing
automation [Gordon et al., 1978]. A more recent development is the idea
of using the same language as both the metalanguage and its target lan-
guage [van der Walt and Swierstra, 2012, Brady, 2013, Ziliani et al., 2015,
Christiansen and Brady, 2016], which Lean adopted starting with Lean 3.
In other words, Lean 3+ enables users to write proof automation (“tactics”)
in the same language used for specifying the propositions to be proved:
the Lean language.

Contributions. In this chapter, I present and review the extensible tactic
system of Lean 3 and related parts. While not the first metaprogramming
system for theorem proving of its kind, it has become a well-adopted, main
feature of Lean 3 and continues in extended form in Lean 4. I discuss many
restrictions that were lifted in Lean 4, and why they could not be solved in
Lean 3. Just like these restrictions laid the foundation for the development

2 A Retrospective of Extensibility in Lean 3

meta def collatz : nat → nat :=
λ n,
if n % 2 = 0 then
collatz (n / 2)

else
collatz (2 * n + 1)

0: scnstr #0
1: scnstr #2
2: push 0
3: cfun nat.mod
4: cfun

nat.dec_eq
5: cases2 13
6: scnstr #1
7: push 0
8: scnstr #2
9: cfun nat.mul

10: cfun nat.add
11: ginvoke

collatz
12: goto 17
13: scnstr #2
14: push 0
15: cfun nat.div
16: ginvoke

collatz
17: ret

Figure 2.1: A simple, possibly non-terminating Lean 3 program implementing the
Collatz sequence, and its bytecode in text representation.

of Lean 4, this chapter will lay the foundation for the later chapters of this
thesis that discuss the solutions we have found for lifting these restrictions.

Acknowledgements. Lean 3’s tactic system described in this chapter is
joint work with Gabriel Ebner, Jared Roesch, Jeremy Avigad, and Leonardo
de Moura [Ebner et al., 2017]. My main contributions are Section 2.4
on interactive use and parsing of tactics, and the parts on user-defined
attributes and expression reflection in Section 2.3. The parts marked
with Discussion are novel work written for this thesis in hindsight of our
experience with Lean 3 after publication and the development of Lean 4.

2.1 Lean 3 as a Programming Language

Lean 3 became a programming language by means of a relatively simple
translation to an untyped, stack-based bytecode format that can be run in
a built-in interpreter (Fig. 2.1). In order to function as a metaprogramming
language, such code can make use of a selective set of functions that have
been exported from the underlying C++ code base. These functions are
marked with a new meta modifier on the Lean side that restricts their use
to functions that in turn are marked meta, effectively functioning as a new
lexical namespace; in particular, they cannot be used in theorems, for which
the meta modifier is not accepted. The reason for this restriction was to

14

2.1 Lean 3 as a Programming Language

make sure we could not affect Lean 3’s soundness by accidentally exporting
a C++ function with a Lean type that was provably uninhabited, perhaps
because of a minor oversight in the translation of the C++ type to Lean.
Since the function does not have a definition on the Lean side, the type
checker would not be able to catch this case like it usually could, and we
could prove arbitrary theorems from it if it were not for the meta namespace.
Essentially each exported function acts as a new axiom, and the meta

modifier immediately restricts uses of this axiom to metaprogramming
applications. Because metaprograms are not part of Lean’s Trusted Code
Base — after execution, their output is checked by the kernel just as if
we had written down the output manually — soundness is therefore
unaffected by the introduction of such functions.

While the syntax of a meta function is identical to that of a regular one,
the soundness-ensuring namespace restriction explained above in turn
allow us to lift a different restriction of regular functions for meta functions,
making them more convenient for programming: they can make use of
arbitrary recursion, i.e. do not have to prove that they terminate and may
in fact not do so as seen in Fig. 2.1. The Lean kernel does not accept any
kind of recursion in regular definitions; recursion is instead transformed
by the frontend into applications of recursors that encode the recursion
principle of a type, for which the recursion must be provably structural
or, more generally, well-founded.1 meta functions on the other hand are
passed to the Lean 3 kernel with a specific flag that enforces the namespace
restriction but accepts recursive uses as is without further checks.

Discussion. The programming capabilities of Lean 3 are clearly trimmed
to the use case of metaprogramming: the bytecode interpreter is a simple
extension that provides acceptable performance for stringing together
invocations of the much faster C++ primitives. However, while the
system is expressive enough to implement more ambitious tactics such as
the superposition prover described in Section 5.2 of [Ebner et al., 2017],
it turned out not to be performant enough to enable use of the tactic in
practice. A companion native backend was under development at the time
as mentioned in [Ebner et al., 2017], but did not appear until Lean 4 with a

1 Well-founded recursion is in fact a special case of structural recursion over a well-
foundedness inductive predicate.

15

2 A Retrospective of Extensibility in Lean 3

from-scratch implementation. For the simplicity of implementation, and
because the eager, immutable representation of runtime values guaranteed
the absence of cycles, Leo used reference counting for garbage-collecting
Lean objects, based on the same intrusive smart pointers also used by
existing persistent data structures in the C++ implementation such as kernel
terms. Reference counting operations are implied by the interpreter’s
and primitives’ use of these smart pointers to Lean objects, with the only
special optimization being a destructive update of arrays with reference
count 1. The Lean 3 runtime has basic support for multi-threading, but
the implementation is relatively simplistic: in order to avoid the overhead
of atomic reference counting, object graphs are simply copied wholesale
when contained in the initial closure of a newly started thread. We kept
reference counting in Lean 4 because of its comparable simplicity and ease
of interfacing with other languages, but greatly improved its performance
and associated optimizations (Chapter 6): reference counting instructions
are explicit in a dedicated intermediate representation and thus open to
compile-time optimization, destructive updates of unique values have
been extended to arbitrary Lean types, and Lean objects can be referenced
from multiple threads without penalizing performance of single-threaded
code.

The meta modifier too was clearly developed for the sake of metaprogram-
ming. While its properties could be convenient for regular programming as
well, the choice of keyword name as well as its transitive nature made this
slightly awkward. Lean 4, as a general-purpose programming language,
improved in this regard by removing meta and splitting its responsibilities
into two separate concerns:

• The safe definition of external functions is delegated to the opaque

command, which, in contrast to that of Lean 3, postulates the existence
of a function given that its type is known to be inhabited. This can
be done by providing an instance of the Inhabited typeclass or an
explicit term of the specified type, which do not affect the runtime
behavior of the function but merely guarantee the soundness of its
existence.

• The use of unbounded recursion is covered by the partial modifier,
which does not enforce a namespacing restriction like meta did.
Instead, it uses opaque for its external interface: the user must show
that the function type is inhabited and, like with external functions,

16

2.2 Lean 3 as a Metaprogramming Language

the function’s implementation is completely opaque to Lean’s logic.
This is sufficient to ensure soundness: in a non-terminating function
such as

partial def f (x : Nat) : Nat := 1 + f x

the mere existence of a constant f : Nat → Nat is not an issue since we
know we could substitute any use of it with e.g. the identity function.
However, we must not allow external definitions or theorems to
extract the contradictory equation f x = 1 + f x.

2.2 Lean 3 as a Metaprogramming Language

In contrast to dedicated tactic languages such as Ltac [Delahaye, 2000]
that are based on high-level primitives such as locating hypotheses by
unification with a pattern term, Lean 3 metaprogramming is based on a
comparatively low-level monadic API exposing the same data structures
the base system is built on. This part is relatively unchanged in Lean 4
apart from the data structures being reimplemented in Lean and thus being
even more accessible to metaprograms, so I will list the most important
ones here:

• The global context or environment holds the top-level declarations
defined so far as well as further metadata. The environment is
implemented in what is commonly called the LCF approach2: it is
an abstract data type to metaprogramming code that can only be
extended with new declarations by an exported kernel function that
rejects any input that is not well-typed in the environment before
the extension, guaranteeing that the environment is consistent at all
times even in the presence of arbitrary metaprograms.3 The LCF

2 Note, however, that like other dependently-typed provers, Lean does not use the LCF
approach on the proof level: proofs are lambda terms according to the Curry-Howard
correspondence, not abstract data types that can only be constructed by kernel inference
rules.

3 As long as the executed metaprograms are memory-safe, that is. In the extreme case,
write access to the /proc/self/mem file is sufficient for breaking memory safety on Linux.
Numerous external proof checkers for Lean 3 can be used to guard against such soundness

17

2 A Retrospective of Extensibility in Lean 3

design of the environment directly shapes the design of Lean and
similar proof assistants up to their surface syntax and even interaction
on the user level. As the environment can only be extended one
step at a time by new declarations that may only reference existing
declarations, a Lean file is an ordered list of declarations where a
declaration may only reference declarations lexically before it, and
the file is processed in this order both in batch mode and interactively
in the user’s editor. The kernel and type theory allow a restricted
set of mutually recursive declarations, but these are handled as
an atomic declaration block both in the surface syntax and during
processing. One distinctive advantage of this processing model
is that incremental processing in the editor is relatively simple to
implement: after a textual change, it is sufficient to restore the state
of the environment at the point of the last declaration strictly before
the change and continue processing from there on. As long as the
environment is implemented as a persistent data structure and all
involved operations are pure, it is guaranteed that this incremental
approach is equivalent to reprocessing the file from the beginning.

The ability to access and extend the environment is what made Lean
3 a metaprogramming language. The remaining contexts described
in the following are of great help when building metaprograms,
especially tactics, but are not strictly necessary for synthesizing new
declarations.

• The local context is the collection of currently free variables. As
(well-typed) Lean terms directly occurring in top-level declarations
are always closed terms, the only way to observe free variables in
metaprograms is by introducing them yourself or “entering” an
existing variable binding.

More specifically, Lean uses a locally nameless term representa-
tion [McBride and McKinna, 2004]. Bound variables are represented
as de Bruijn indices. While it is technically possible for a metapro-
gram to observe and manipulate the de Bruijn indices of bound
variables directly, e.g. during structural recursion over a term, the
preferred approach is to immediately convert such unbound vari-

issues resulting from implementation details instead of the core type theory.

18

2.2 Lean 3 as a Metaprogramming Language

ables (de Bruijn indices not contained within a corresponding lambda
abstraction) into free variables that are references (via names) into
the local context. For each binder type, there are monadic library
functions that do this by choosing a fresh name for the free variable,
then substituting it for the unbound index throughout the term. Thus
brittle indexing arithmetics are hidden from the metaprogramming
developer and replaced with simple unique named references. Free
variables are furthermore distinguished from bound variables by
storing additional data in the local context: a user-facing name and a
type (the binding’s domain). The former ensures we can pretty-print
open terms correctly given the local context, while the latter does the
same for type inference.

• The metavariable context similarly is the set of current metavariables,
also called unification variables, existential variables, or simply holes.
I will note that the name unification variable can be confusing in the
context of Lean since they can be solved not only by unification but
also other processes such as typeclass inference or tactic execution
(see next item), whereas the latter two names accurately suggest
that all metavariables are eventually substituted by concrete terms
if elaboration succeeds. The kernel type checker does not use a
metavariable context and will reject remaining metavariables just
like free and unbound variables. A metavariable term itself is
again a simple reference by unique name into the corresponding
context. In addition to a user-facing name and a type, an entry in the
metavariable context also contains a reference to the local context in
which the metavariable was created, as assigning a term containing
a free variable to a metavariable whose original context did not
include it would lead to an unbound binding and should be rejected
immediately.

• Finally, in the special case of tactic metaprogramming, we have
an additional tactic context that keeps track of the list of goals. A
goal is a metavariable that stands for the eventual proof of the
statement expressed by the metavariable’s type. The initial tactic
context when executing a tactic block is a single fresh metavariable
of the type expected at the point of the tactic block. Tactics may
generate additional goals by assigning a term containing multiple
new metavariables to the current goal(s). It is ultimately up to the

19

2 A Retrospective of Extensibility in Lean 3

tactic’s implementation whether it registers additional metavariables
in the tactic context as new goals or not (in which case they are
usually filled by unification while proving other goals), as there are
sensible use cases for both behaviors.

With these ingredients, we can implement higher-level functions such
as the assumption tactic from [Ebner et al., 2017] that solves a goal if there
is a hypothesis that matches the goal’s conclusion:

meta def find : expr → list expr
→ tactic expr

| e [] := failed
| e (h :: hs) :=
do t ← infer_type h,

(unify e t >> return h) <|>
find e hs

meta def assumption : tactic unit
:=

do { ctx ← local_context,
t ← target,
h ← find t ctx,
exact h }

<|> fail "assumption tactic
failed"

The tactic monad (introduced as a meta constant) gives us access to all
described contexts, as well as error handling. We start by retrieving the
local context as a list of free variables as well as the target type, that is,
the conclusion of the first goal in the tactic context. A simple recursive
function find then locates the first hypothesis in the local context whose
type is unifiable with the target type, or else fails. If it found a hypothesis h,
we close the goal via the exact tactic function that assigns the given term to
the goal’s metavariable and removes it from the list of goals. Throughout,
we use standard monadic notation such as >> for sequencing, <|> of the
alternative typeclass for backtracking on errors, and a Haskell-like do

notation, which we will look at in much more detail in the context of Lean
4 in Chapter 5.

The last missing ingredient is a way to bridge between the standard
object level and the meta-level in order to actually use tactics in practice.
The by keyword does so by accepting a tactic block, i.e. a list of tactic
invocations, in term position. It elaborates to the term assigned to the
initial goal by after running the tactic block. The tactic block is translated
to a monadic sequence of the involved tactics, compiled to bytecode, and
finally interpreted as described in the previous section.

lemma simple (p q : Prop) (h1 : p) (h2 : q) : q :=
by assumption

20

2.2 Lean 3 as a Metaprogramming Language

Discussion. Lean 3’s low-level tactic metaprogramming framework set
the foundation for a healthy ecosystem of user-defined tactics: at the
time of writing, the mathlib documentation [Mathlib, 2022] lists 117 tactics
contributed by various authors compared to 89 tactics implemented in Lean
itself. We were positively surprised to see that authors of these included
not only seasoned functional programmers but also some mathematicians
with no prior exposure to monadic programming. While one might
imagine a higher-level tactic language in the style of Ltac or others built
on top of this foundation that would not require knowledge of monads for
writing simple automation, this need did not seem to manifest itself in the
Lean community so far, though it might also have proved difficult with
Lean 3’s limited syntactic extension capabilities compared to Lean 4. For
comparison, a succinct implementation of assumption in Ltac might look
like

match goal with
| H : ?A |- ?A => apply H
end.

I have already mentioned in the previous section that the performance
of the Lean 3 interpreter prevented the implementation of more ambitious
automation as Lean 3 user tactics. Ironically, in one case Lean 3 turned
out to do more compilation than was advisable: the translation of a by

block to a term of type tactic unit, which then went on to be compiled
and interpreted, was simple to implement, but introduced unnecessary
compilation overhead for a monadic program that is usually run exactly
once.4 We fixed this in Lean 4 by essentially introducing a dedicated tactic
block interpreter via the Lean 4 macro system that directly consumes the
surface syntax without further translation steps, as we shall see later in
Section 4.6.

While the section title references “Metaprogramming”, we focused on
the special case of tactic metaprogramming so far, as that was the clear
focus in Lean 3. In fact, other entry points for metaprograms I added
to Lean 3, user-defined notations and commands, heavily suffered from
limited access to the parser and elaborator compared to their built-in C++

4 with the exception of tactic blocks inside of combinators such as repeat that may be run
more than once, but even then the run time of the tactic block itself should be negligible
compared to that spent inside the invoked tactics.

21

2 A Retrospective of Extensibility in Lean 3

counterparts. Only with the completely reworked system described in
Chapter 4 did we achieve a satisfactory level of expressiveness for these
kinds of extensions, indeed a level of expressiveness that is equal to that of
builtins by erasing the distinction between builtins and user extensions.

2.3 Advanced Tactic Programming

On top of the primitives discussed in the previous section, Lean 3 provides
quotations to construct kernel terms: `(t) is syntax for the reflected repre-
sentation of a term t in the inductive type expr of kernel terms reflected
into the Lean language. This makes it easy to pass compound terms to
tactics, as in the following example where the goal is closed by passing a
term of the appropriate type to the apply tactic.

example : true ∧ true :=
by do exact `(and.intro trivial trivial)

As expr values are fully elaborated kernel terms, elaboration of t must
occur when the quotation is elaborated, strictly before the tactic is exe-
cuted. This can be limiting if successful elaboration of the quoted term is
dependent on further context supplied by the tactic, e.g. unification with
the goal type by exact or access to (tactic-)local variables. Note that as a
quotation is a pure term of type expr, it does not have access to e.g. the
current metavariable context in order to register new metavariables to be
solved by later unification.

In order to provide tactics with this extra flexibility, Lean 3 exposes
the Lean type of unelaborated pre-terms pexpr, a reflection of the internal
type (identical to that of expr on the C++ side) passed from the parser
to the elaborator, together with its own quotation syntax ``(t). Pre-
terms can be turned into full terms by the reflected elaboration function
to_expr : pexpr → tactic expr.

example (p : Prop) : p → p :=
by do to_expr ``(id) >>= exact

As to_expr lives in the tactic monad, it can extend the metavariable context
with a new hole for id’s type parameter, which is subsequently solved to p

when the to_expr output is unified with the current goal by exact.

22

2.3 Advanced Tactic Programming

While pexpr originally was a completely opaque type to Lean code as
described in [Ebner et al., 2017], I later unified it with expr into a new expr

type parameterized over a (elaborated : bool) flag5.

meta inductive expr (elaborated : bool := tt)
| . . .
meta def pexpr := expr ff

Not only does this redefinition of pexpr make it inspectable by Lean code,
it also allows sharing of common operations on both pre-terms and terms
as in the following, while avoiding the C++-side issue of type confusion
between terms and pre-terms via the distinguishing new type parameter.

meta def get_app_fn : expr elab → expr elab
| (app f a) := get_app_fn f
| a := a

While elaboration of pre-term quotations is delayed to the point where
they are converted to full terms, name analysis is still done early. Thus
Lean 3 would have found a typo of id above even before the tactic was
run, which is especially useful when used in a reusable tactic that is not
immediately run. On the other hand, we just as often want to reference
bindings such as local hypotheses in a quotation, in which case name
resolution cannot be done by the parser but must be part of elaboration of
the pre-term. The original ``(t) did just that, but to support the more eager
parser name resolution when possible, I moved delayed name resolution
to a new ```(t) syntax (such that increasing number of backticks signifies
decreasing number of compile-time checks).

example (p : Prop) : p → p ∨ false :=
by do intro `h, to_expr ```(or.inl h) >>= exact

Here `h is a literal for Lean 3’s name type of reflected names for declarations,
free variables, etc., which is passed to the intro tactic to introduce a
hypothesis h : p, which is then referenced by the quoted term to eventually
solve the remaining goal.

Finally, I will discuss creating user-defined attributes as another example
of advanced metaprogramming that I implemented, as well as further

5 tt and ff are Lean 3’s Boolean true and false values, renamed to the more prevalent true
and false in Lean 4.

23

2 A Retrospective of Extensibility in Lean 3

meta def mk_name_set_attr (attr_name : name) : tactic unit :=
do let t := `(caching_user_attribute name_set),

let v := `({name := attr_name,
descr := "name_set attribute",
mk_cache := λ ns, pure (name_set.of_list ns),
dependencies := [] }
: caching_user_attribute name_set),

add_meta_definition attr_name [] t v,
register_attribute attr_name

meta def get_name_set_for_attr (attr_name : name) : tactic name_set :=
do let cnst := expr.const attr_name [],

attr ← eval_expr (caching_user_attribute name_set) cnst,
caching_user_attribute.get_cache attr

Figure 2.2: Generating new attributes using metaprogramming.

forms of reflection necessary for their effective use. The code in Fig. 2.2
declares a new attribute of a given name that caches a set of declarations
the attribute has been applied to. Metaprograms like mk_name_set_attr that
manipulate the current environment can be run via run_cmd.

run_cmd mk_name_set_attr `no_rsimp
attribute [no_rsimp] or.comm
run_cmd get_name_set_for_attr `no_rsimp >>= trace -- {or.comm}

This attribute is used in the implementation of rsimp in [Ebner et al., 2017]
for blacklisting simplification lemmas, for which it relies on the fast
membership checking of the native-backed name_set type. The name_set

will be cached as long as the set of declarations the attribute or one of the
dependencies attributes (of which there are none in this case) have been
applied to remains unchanged.

The implementation of mk_name_set_attrworks by dynamically construct-
ing a term of type caching_user_attribute name_set, adding it to the environ-
ment as a new declaration, and registering that declaration in the attribute
manager. When implementing the retrieval function get_name_set_for_attr,
we encounter a new problem: Given a reflected term that describes a value
of type caching_user_attribute name_set, we would like to evaluate it at
run time so that we can pass it to the following function.

24

2.3 Advanced Tactic Programming

meta constant caching_user_attribute.get_cache {α : Type} :
caching_user_attribute α → tactic α

As can be seen in Fig. 2.2, we can solve this issue by calling the primitive
eval_expr:

eval_expr (α : Type) [reflected α] (e : expr) : tactic α

The type class parameter [reflected α] is necessary to provide a safe
implementation (but see discussion below): in order for eval_expr to check
that e does indeed describe a term of type α, it also needs a reflected
description of the latter. (Indeed, a value of type Type, like α, does not even
have a run-time representation.) The reflected type class is an opaque
container for a term reflecting a known value. It is special in that the
elaborator will synthesize the value of a parameter [reflected α] from
the term passed for α, as long as this term is either closed (as in Fig. 2.2)
or its free variables have reflected instances themselves. We actually
have made implicit use of the latter feature in mk_name_set_attr — we
were able to use the local variable attr_name in the quotation because the
elaborator was able to find an instance of reflected attr_name. We did
not need to demand such an instance by parameter because for simple
types such as name we can construct a universal instance via dependent
pattern matching and the primitive reflected.subst . . . : reflected f →

reflected a → reflected (f a).

meta def reflect {α : Type} (a : α) [h : reflected a] : reflected a
:= h

meta instance name.reflect : Π (n : name), reflected n
| anonymous := reflect anonymous
| (mk_string s n) := (reflect (λ n, mk_string s n)).subst

(name.reflect n)
| (mk_numeral i n) := (reflect (λ n, mk_numeral i n)).subst

(name.reflect n)

Only for reflections of non-computational types such as sorts, propositions,
and types containing these do we need to pass along an instance as with
eval_expr.

Discussion. Out of all the Lean 3 features described in this chapter,
the ones from this section have seen the most user-visible changes in

25

2 A Retrospective of Extensibility in Lean 3

Lean 4. Quotations had to change fundamentally since we removed
abstract syntax tree/kernel-like pre-terms in Lean 4 in favor of concrete
syntax trees faithfully representing the surface language as a foundation
of Lean 4’s macro system that I will discuss in much more detail in
Chapter 4. The most significant restriction of Lean 3’s pre-terms compared
to Lean 4’s syntax trees is already apparent in the name — while allowing
convenient quoting of surface-level syntax and some introspection for
unelaborated terms, there is no corresponding representation of other
syntactic “categories” such as top-level commands, tactics, universe levels,
and so on. In fact, Lean 3 does provide a special-purpose syntax `[t, . . .]
for quoting a sequence of tactics such that repeated parts of a tactic script
can be factored out into a new tactic, but because of the lack of internal
abstract representation, the sequence is translated immediately to a term
of type tactic unit, preventing any introspection of the original sequence.
This is in great contrast to Lean 4’s tactic interpreter I have mentioned
above consuming surface-level tactic syntax as is; we will come back to
other issues with Lean 3 tactic quotations in Section 4.6.

For top-level commands in particular, Lean 3 does not provide any
quotation mechanism at all, preventing users from reusing surface-level
command syntax unless it is specifically exposed as a metaprogramming
function. The reason for this design in Lean 3 is that it must mirror
the internal implementation, in which pre-terms are used as a common
interface between the parser and the term elaborator, but commands are
implemented as direct function calls from the parser into a respective
subsystem such as the inductive elaborator, with no common syntactic
representation of commands present. Only a complete redesign of the
elaborator and these interfaces in terms of always consuming a common
syntax tree type at any elaboration level, which we have done in Lean 4 as
part of its reimplementation in the Lean language, was able to lift these
restrictions and guarantee convenient metaprogramming in any syntactic
category.

Notably, there is no quotation syntax for elaborated terms in Lean 4 either,
mostly because the need for it did not come up when implementing the
generic tactics and other metaprograms included with Lean. However, it
may still be useful for more domain-specific tactics developed by users, and

26

2.4 Interactive Proving

so I am excited about the quote4 library6 by Gabriel Ebner (the first author
of [Ebner et al., 2017]), which advances the state of the art compared to
Lean 3 by implementing type-safe expression quotations, making great use
of Lean 4’s extended metaprogramming capabilities as in the following
example taken from the library.

def mkPairwiseEquality {α : Q(Sort u)} : List Q($α) → Q(Prop)
| [a, b] => q($a = $b)
| a :: b :: cs => q($a = $b ∧ $(mkPairwiseEquality (b :: cs)))
| _ => q(True)

Given a list of quoted terms of the same type α (spliced into the type-
level quote Q via the $ operator), mkPairwiseEquality produces a quoted
proposition representing the pairwise equality of the terms (using the term-
level quote q such that, slightly simplified, we have q(t) : Q(α) whenever
t : α). These expression quotations can thus be seen as incorporating
Lean 3’s reflected typeclass, which does not exist as a built-in in Lean
4, and whose ad hoc extension of the typeclass system we regretted in
hindsight. While the quote4 library does not guarantee to the same degree
as reflected that the carried term indeed was quoted and not constructed
manually, this is not as useful in practice as it may first seem. In particular,
there is no guarantee that in a call eval_expr bool e, the type bool from the
compile-time environment in which the metaprogram is elaborated and
compiled is identical to bool in the run-time environment carried by the
tactic monad, so type confusion is still a possibility.

User-defined attributes finally do exist in Lean 4 as well, though in a
variety of shapes optimized for various use cases that came up during the
implementation of Lean 4 itself, as built-in attributes now use the same
API. Attribute parameters are stored as syntax trees as usual in favor of
the previous reflected-based design.

2.4 Interactive Proving

As we have seen, Lean 3 lets us execute arbitrary terms of the tactic
monad using the by keyword. To help construct such tactic terms, we have
provided common syntactic sugar such as the do notation and quotation

6 https://github.com/gebner/quote4

27

https://github.com/gebner/quote4

2 A Retrospective of Extensibility in Lean 3

literals. While this programmatic view is adequate for defining new tactics,
end users are accustomed to more declarative representations, such as
a sequence of tactics, each with its own convenient syntax, that can be
stepped through and inspected interactively.

In order to gain this level of convenience, I introduced a special variant
of by that takes a single tactic name and parses its arguments according to
syntax rules encoded in the tactic’s signature.

by super with mul_assoc mul_one

This is desugared to the following regular term, in which the extra paren-
theses deactivate the special handling:

by (super [] [`mul_assoc, `mul_one])

For executing a sequence of tactics, we may use begin . . . end blocks.

begin intro h, refine or.inl h end

This proof is equivalent to the following expanded form:

by do intro `h, refine ```(or.inl h)

Using begin . . . end has the added benefit that Lean will record the proof
state at the beginning of each tactic so that it can be inspected by editors.

Let us now take a look at the detailed signature of super:

meta def tactic.interactive.super (extra_clause_names : parse
ident*) (extra_lemma_names : parse with_ident_list) : tactic
unit

By default, when parsing a by or a begin . . . end block, the parser will
look for interactive tactics in the namespace tactic.interactive. Users can
switch to a different namespaces by using e.g. begin[smt] . . . end, which
will instead search the namespace smt_tactic.interactive.

When parsing the arguments of an interactive tactic, we handle param-
eters of type parse p specially by giving over control to the user-defined
parser p. In this case, we parse a sequence of identifiers, optionally followed
by the keyword with and another sequence of identifiers. Parsers can be
built from a few exported primitives, which are described in Figure 2.3,
using the standard applicative and monadic combinators. I later reused the
same parser monad to implement the previously mentioned user-defined
syntax at the expression level and commands at the top level:

28

2.4 Interactive Proving

/-- An opaque type representing Lean's native parser. -/
meta constant parser : Type → Type
meta constant parser.monad : monad parser
meta constant parser.alternative : alternative parser
/-- Parse an identifier and produce it as a quoted name. -/
meta constant ident : parser name
/-- Parse the given token. `tk` must be a registered token. -/
meta constant tk (tk : string) : parser unit
/-- Parse an unelaborated expression using the given right-binding

power. -/
meta constant qexpr (rbp := std.prec.max) : parser pexpr
/-- Parse `with` followed by a list of identifiers. -/
meta def with_ident_list := (tk "with" *> ident*) <|> return []
meta def parse {α : Type} [has_reflect α] (p : parser α) : Type := α

Figure 2.3: Exposing Lean’s native parser as a monadic parser combinator. *> and
* are notations for the applicative combinators seq_right and many, respectively.
Note that e.g. parse with_ident_list is definitionally equal to list name, so that
as far as the definition of super is concerned, the argument is just a list of names.

@[user_notation] meta def format_macro (_ : parse $ tk "format!") (s
: parse expr_p) : parser expr := . . .

#eval format!"1 + 1 = {1 + 1}" -- "1 + 1 = 2"

@[user_command] meta def coinductive_cmd (meta_info :
decl_meta_info) (_ : parse $ tk "coinductive") : parser unit :=
. . .

coinductive all_stream {α : Type u} (s : set α) : stream α → Prop
| step : ∀{a : α} {ω : stream α}, a ∈ s → all_stream ω →

all_stream (a :: ω)

Discussion. The introduction of the user-extensible parsing interface
described in this section greatly enhanced the expressivity of user-defined
tactics. Out of the 117 mathlib tactics mentioned previously, many make
creative use of this interface, such as

29

2 A Retrospective of Extensibility in Lean 3

meta def opt_dir_with : parser (option (bool × name)) :=
(tk "with" *> ((λ arrow h, (option.is_some arrow, h)) <$> (tk

"←")? <*> ident))?

meta def set (h_simp : parse (tk "!")?) (a : parse ident) (tp :
parse ((tk ":") *> texpr)?) (_ : parse (tk ":=")) (pv :
parse texpr) (rev_name : parse opt_dir_with) : tactic unit
:= . . .

User-defined commands were also embraced by the community with 32
uses in mathlib at the time of writing, whereas user-defined notations were
only used three times for variations of the above formatting macro. Much
as with metaprogramming functions, the main limitation was that only a
select few parsing functions were exposed from the C++ implementation,
whereas in Lean 4 users have access to all intermediate parsers used for
implementing the syntax of Lean in itself. Thus, while Lean 3 allowed
extensions such as the coinductive parser above by specifically exposing
a parser that parses the standard inductive syntax without the leading
keyword, more invasive variations of built-in syntax were not realistic
because of the implementation language barrier.

While the parse type offered a simple-to-use, strongly-typed interface
for extending Lean 3’s surface syntax, it did so in a very roundabout way,
necessitated by integration into the existing design and code: whenever a
tactic was parsed, for each of its parse p parameters p would be compiled
to bytecode and interpreted to a parser runtime value, which would then
be called to parse the corresponding tactic argument, yielding a value
that would be reflected into a kernel term (via the has_reflected typeclass
instance embedded in the parse application, itself compiled and interpreted
on the fly) that could be embedded into the pre-term representation of
the tactic block, eventually to be evaluated back into its runtime value
when the tactic was actually run. But even with all these back-and-forth
transformations and the overhead they introduced, the parse design still
conflated parsing and evaluation, providing no concrete or abstract syntax
tree at any of these stages that could be used by tooling such as refactoring
of tactic scripts. This is in great contrast to how parsing and interpretation
is strictly separated in our clean-slate design of Lean 4 including, as we
will see in Section 4.6, in the case of tactic scripts. Lean 4 reduces the

30

2.5 Related Work

transformations to a minimum by parsing tactic invocations once into a
concrete syntax tree by the tactic’s parser, which has been precompiled
into an intermediate representation or native code (Section 3.6). At tactic
execution time, the syntax tree is then consumed by the tactic interpreter
mentioned in the previous section and tactic arguments are passed by it
as is without further transformation to the specific tactic macro. In place
of the strongly-typed values returned by parse, Lean 4 users can utilize
extensive syntax patterns (Section 4.3.1) to analyze tactic arguments in a
structured way.

2.5 Related Work

Metaprogramming in the form of tactic programming is present in many
different theorem provers, using a variety of designs, languages, and im-
plementations. I have mentioned the Ltac tactic language [Delahaye, 2000,
Delahaye, 2002] of Coq before as an example of a quite different approach
from the Lean 3 & 4 tactic languages. Ltac is a domain-specific language,
i.e. in fact not identical to either Coq’s implementation language or its
language of terms and propositions. Apart from the syntax, the semantics
as well are quite different from a generic functional programming language:
the unification-based pattern matching is more akin to that of Prolog, and
built-in backtracking support provides flexible control flow tailor-made for
automation. Eisbach [Matichuk et al., 2016], a more recent tactic language
for Isabelle, follows the same principles. As mentioned above, should
the need for tactic programming at this abstraction level arise in the Lean
community, I believe that Lean 4 gives us all the tools we need to emulate
the desired primitives, ideally lightly embedded in the existing monadic
tactic framework and notations instead of as a separate language.

A design aspect shared by both Ltac and Lean’s tactic framework is the
lack of compile-time type information on the proposition to be proved —
the tactic type does not statically tell us anything about what goals it is
applicable to, or even whether it solves any goals at all or introduces new
ones or otherwise manipulates the list of goals. While this limitation is not
all that relevant when writing tactic scripts that are executed immediately
anyway, a more statically typed approach can be beneficial when imple-
menting reusable automation, similarly to how statically typed languages
can ease (but also complicate) development compared to dynamically

31

2 A Retrospective of Extensibility in Lean 3

typed languages.7 Mtac [Ziliani et al., 2015] and Mtac2 [Kaiser et al., 2018]
follow this approach by use of a metaprogramming monad M such that
running a metaprogram of type M A, if successful, is guaranteed to return
a Coq term of type A. As with Ltac, this approach requires a special
interpreter for metaprograms since a type A is usually inhabited not by
terms but a more restricted class of values at run time. In fact, the related
MetaCoq project [Sozeau et al., 2020] defines a similar interpreted monad
for well-typed metaprogramming, but then falls back to an untyped monad
similar to Lean’s for the purpose of native code generation.

The metaprogramming approach taken by Lean 3 is quite similar to that
of elaborator reflection 8 in Idris [Christiansen and Brady, 2016] published
shortly before. There are some technical and performance differences
discussed in [Ebner et al., 2017], but the primary difference, I would argue,
is in presentation. Lean 3, as discussed, was focused primarily on tactic
metaprogramming and provided rich syntax sugar for tactic scripts so that
it did not actually feel like monadic metaprogramming. Lean 4 inherits
and extends this tactic domain-specific language while greatly improving
support for other forms of metaprogramming, in particular in the form of
macros. Elaborator reflection in Idris on the other hand is strictly focused
on the generic metaprogramming use case, with no additional syntax sugar
hiding the monadic details other than do notation. This difference in focus
is not surprising given that Idris is described primarily as a (dependently
typed) programming language, not an interactive theorem prover.

7 In particular, for implementing general-purpose automation such as a simplifier or
generic proof search tactic, an untyped goal representation appears to be a better fit.

8 Note that while the term “elaborator reflection” can reasonably be applied to Lean 3’s
implementation of metaprogramming as well, though perhaps misleadingly so because
of its primary focus on tactic metaprogramming in favor of more generic elaboration
interfacing, this does not seem appropriate for describing Lean 4’s implementation as
there is no primitive monad exporting functions from an underlying implementation
language in Lean 4; elaboration instead is a regular function completely defined in the
same Lean language and phase that tactics and metaprograms are written in.

32

What’s new?
– Conor McBride, Epigram: Practical Programming

with Dependent Types [McBride, 2005] 3
An Overview of Lean 4

Lean 4 is a reimplementation of the Lean interactive theorem prover in
Lean itself, addressing many shortcomings I described in the previous
chapter. It is the first version of Lean that can be described as both a
theorem prover and a general-purpose programming language, opening
up many new avenues for metaprograms as well as regular programs
written in it. Its development is the main output of my Ph.D. as joint
work with Leonardo de Moura, spanning from my internship at Microsoft
Research in my second year during which we set the plan for many parts
of the architecture described below to the first stable release of Lean 4 that
will likely happen not too long after the completion of this thesis.

Contributions. In this chapter, I document the design and implementa-
tion of the central components of Lean 4 that I made significant contribu-
tions to: the module system, parser, elaborator, code generator, and user
interface. I also give the first formal description of the type theory of Lean
4, building on top of previous work for Lean 3 [Carneiro, 2019].

Acknowledgements. This chapter is loosely based on the Lean 4 system
description by Leonardo de Moura and me [de Moura and Ullrich, 2021],
though it can more accurately be seen as complementary: I focus on topics
that are not described in detail in that work nor in the remainder of this
thesis. The implementation of the kernel changes and most parts of the
elaborator and code generator are due to Leo, while a significant amount of
the initial language server were developed by Marc Huisinga and Wojciech
Nawrocki.

3 An Overview of Lean 4

3.1 Architecture

parser macro expansion elaborator

kernel code generator

pretty printer

language servereditor

Figure 3.1: Schematic overview of the components of the Lean 4 implementation
and control flow of a single processing step

The implementation of Lean 4 is made up of different components that
the following sections will take a closer look at and whose interaction
is sketched in Fig. 3.1: in interactive use of Lean inside an editor, the
language server (Section 3.7) is the component that interfaces with the
user’s editor. In command-line (“batch”) mode, it is replaced with a simple
text interface that reads in a given file. In either case, we accept input
as a string, which is processed into a concrete syntax tree by the parser
(Section 3.4). Not pictured here is additional input that is loaded from
other (already compiled) Lean files specified as imports, which is the task
of the module system (Section 3.3). The concrete syntax tree describes
a program in the surface language of Lean, i.e. the language exposed to
users. It may contain syntax sugar and more complex macros that must be
unfolded, which we will talk about in much more detail in Chapter 4, and
ultimately has to be translated to the core language of Lean by the elaborator
(Section 3.5), filling in many details left implicit by the user. If successful,
the core language output is then checked by the kernel (Section 3.2), which
is an independent component in order to minimize the Trusted Code Base.
Any errors returned by the elaborator or kernel are reported to the user
via the pretty printer, which is responsible for translating the core language
of the erroneous parts back to readable surface language. If there are no
errors and the elaborated command is a definition, it is also passed to
the code generator (Section 3.6) in order to create executable code, both for
extracting stand-alone programs and for extracting metaprograms that are
then run as part of the respective component for subsequent input. Except
for the kernel and code generator, these are the user-facing and -interacting
components considered the frontend.

34

3.2 The Kernel and Type Theory

3.2 The Kernel and Type Theory

The desire for a small core theory and kernel, particularly when compared
to other implementations of dependent type theory, that is simple to
reimplement in external checkers remains an important aspect of Lean 4.
Nevertheless, we took the Lean 4 rewrite as a chance to reevaluate and
enrich some details of the type system.

A simple addition is opaque declarations already mentioned in Section 2.1.
A declaration opaque cū : α := e is type-checked just like a definition, but
afterwards is irreducible like an axiom — the body e exists merely as
a witness of α being inhabited. Building on top of the framework and
notations of [Carneiro, 2019] who formalized the type theory of Lean 3, we
can formally state this by introducing the exact same typing and conversion
rules Carneiro gives for axioms (called constants in Lean 3) for any such cū
that fulfills ⊢ e : α where the universe variables of e and α are contained in
ū.

⊢ cℓ̄ : α[ℓ̄/ū]

ℓ1 ≡ ℓ′1 . . . ℓn ≡ ℓ
′
n

⊢ cℓ̄ ≡ cℓ̄′
ℓ1 ≡ ℓ′1 . . . ℓn ≡ ℓ

′
n

⊢ cℓ̄ ⇔ cℓ̄′

The same argument Carneiro gives for definitions being a conservative
extension applies to opaque declarations as well: we can always replace
them by their body in a correct typing derivation.

3.2.1 Internalizations

Various previously derivable expressions have been added as primitives for
optimizing the implementation without changing expressivity of the theory
or observable semantics of the implementation: structure projections and
literals for strings and natural numbers. Literals are straightforward
extensions where terms previously expressed using nested applications
are now represented by a single, optimized runtime value. For example, a
syntactic literal of type Nat is now represented in the core term language
by an arbitrary-precision numerical data structure instead of a series
of applications representing a binary encoding of the number. We can
formalize this by introducing a new kind of expression ln for any (meta-
level) natural number n ∈N.

e ::= . . . | ln Γ ⊢ ln : Nat

35

3 An Overview of Lean 4

Here Nat is an inductive type with zero and successor constructors zNat : Nat
and sNat : Nat → Nat like in [Carneiro, 2019], except that I use the name
Nat to avoid confusion with the meta-level set N. The implementation
must ensure that the type Nat in the current environment indeed has this
shape. In particular, it must not be an empty type for the above typing
rule to be consistent.

In order to ensure that there is no observable change, we add conversion
rules translating between the literal and constructor representation.

Γ ⊢ l0 ≡ zNat Γ ⊢ ln+1 ≡ sNat ln

We can use the same rules for the algorithmic version of conversion
checking described by Carneiro, which notably lacks the transitivity
rule of the formal conversion rules, though the great advantage of the
new representation is that we can additionally provide more optimized
reduction rules such as

mul ln lm⇝ lnm

for the standard definition of mul (which again the implementation must
verify), replacing its recursive reduction with optimized computation in
the arbitrary-precision library (which therefore becomes part of the Trusted
Code Base). String literals similarly are represented by a single, contiguous
byte array (a UTF-8 encoding) and come with rules for translating from and
to the constructor form. A compact representation of strings is especially
important for writing programs in Lean, which are still elaborated to the
core term language and checked by the kernel.

Finally, the third expression shape that has been internalized as a
primitive is structure projections. For a non-mutual inductive type P with
non-fixed parameters (indices) a and a single constructor c with parameters
or fields b and type τ, written

P = µt : (∀a :: α. Uℓ). (c : ∀b :: β. τ)

in Carneiro’s framework where :: represents a telescope of dependent
binders, we can define the projection function πP

i extracting the i-th field as

πP
i := recP C (λb :: β. bi)

where C = λa :: α. λz : P a. βi[(πP
j a z)/b j] j<i

36

3.2 The Kernel and Type Theory

In the recursor motive C, which describes the result type, we recursively
need to substitute preceding fields b j for their projections in case βi is
dependent on them. Note however that πP

i is not type correct if we try to
project a (non-index) field whose type lives in a data-relevant universe
Uℓ′+1 out of a structure in the proof-irrelevant universe P: indeed if we
have ℓ = 0, Carneiro’s recursor typing rule tells us that C must map into
U0 = P as large elimination is not applicable in this case.

As an example, for the dependent pair type

structure Sigma (α : Type u) (β : α → Type u) where
a : α

b : β a

or, formally,

Σ := λα : Uℓ+1. λβ : α→ Uℓ+1. µS : Uℓ+1. (mk : ∀a : α. β a→ S)

we have

π
Σ α β
1 ≡ recΣ α β (λz : Σ α β. α) (λa : α. λb : β a. a)

π
Σ α β
2 ≡ recΣ α β (λz : Σ α β. β (πΣ α β1 z)) (λa : α. λb : β a. b)

Lean 3 autogenerates projection definitions Sigma.a and Sigma.b from the
above terms.

def Sigma.a (z : Sigma α β) : α := . . .
def Sigma.b (z : Sigma α β) : β (Sigma.a z) := . . .

However, as the term size of every πP
i is linear in the number of fields and

there are as many projections as fields, this in sum makes the time and
space overhead of declaring a structure type quadratic in the number of
fields, leading to performance issues with big structures in practice. Thus
Lean 4 introduces projections as primitive terms of constant size.

e := . . . | πP
i e

The proper typing rule can be derived by substituting the above definition
of πP

i into the rules of [Carneiro, 2019]. Note however that the primitive
πP

i does not take the index values a as explicit parameters anymore as they
can be inferred from the only argument.

Γ ⊢ z : P a ℓ ≥ 1 ∨ Γ ⊢ βi[(πP
j z)/b j] j<i : P

Γ ⊢ πP
i z : βi[(πP

j z)/b j] j<i

37

3 An Overview of Lean 4

where P = µt : (∀a :: α. Uℓ). (c : ∀b :: β. τ)

We finally add formal and algorithmic reduction and congruence rules.

Γ ⊢ πP
i (cP b) : ξ

Γ ⊢ πP
i (cP b) ≡ bi

Γ ⊢ e ≡ e′

Γ ⊢ πP
i e ≡ πP

i e′

Γ ⊢ πP
i (cP b)⇝ bi

Γ ⊢ e⇔ e′

Γ ⊢ πP
i e⇔ πP

i e′

One might also expect rules for compatibility with the recursor representa-
tion of a projection, but fortunately the conversion rule introduced in the
next subsection will make these unnecessary.

User-facing projection functions in the structure’s namespace are still
generated on top of these primitive projections, but the total overhead is
linear as long as the sum of term sizes of the projections’ types is linear,
i.e. there are not too many type dependencies between them, which is not
usually a concern in practice.

Primitive projections are also supported in Coq using the flag Primitive

Projections, which is documented with the note “the design of primitive
projections is still evolving” [Inria, CNRS and contributors, 2021]. The
flag disables the pattern matching primitive for affected types, while in
Lean 4 the recursor is unaffected.

3.2.2 η-Conversion for Structure Types

Perhaps the most noticeable change for users is the addition of η-conver-
sion for structures. This feature addresses various issues encountered
by mathematicians in Lean 3 that can be summarized as “unpacking
and re-packing something should yield an identical (definitionally equal)
object”. More precisely, applying the constructor of a structure type to
the projections of a value of that structure in the right order should be
definitionally equal to the original value, as with the product type in the
following trivial example.

example (p : α × β) : (p.fst, p.snd) = p := rfl

Note that the reverse direction of “packing and unpacking” as in
(x, y).fst = x has always been definitionally true in Lean as it does
not require eta but simple projection reduction.

38

3.2 The Kernel and Type Theory

The lack of eta conversion for the product type in Lean 3 led to people
avoiding eagerly destructuring pairs as in fun (a, b) => . . . a . . . b . . . in
favor of applying projections as late as possible as in fun p => . . . p.fst . . .
p.snd . . . in order to not block reduction unnecessarily, even though the

former style usually allows for more meaningful variable names. In Lean
4, both styles are now definitionally equal and thus the more readable
variant can be preferred without drawbacks.

example (p : α × β) :
(match p with | (a, b) => (b, a)) = (p.snd, p.fst) := by rfl

Perhaps surprisingly, though, structure eta is even more useful for the trivial
case of a structure with exactly one field, which is a common pattern in Lean
similar to Haskell’s newtypes that can be used to give a new interpretation
to an existing type such as in the construction of the opposite category Cop:

structure Opposite (C : Type u) where op ::
unop : C

instance [Category C] : Category (Opposite C) where . . .

Here Opposite is a structure with constructor op and a single field unop

that form a bijection between objects of a category C and its opposite
category. The structure wrapper ensures we cannot confuse elements of C
and Opposite C, while the addition of eta conversion ensures composing
op and unop in either order is a definitional identity. In particular, every
element y : Opposite C is known to be of the form op x for some x : C,
again ensuring we do not unnecessarily unblock reduction. Note though
that x and op (op x) are still distinct elements in distinct categories.

We can give a formal conversion rule for structure eta as follows.

t not free in β Γ ⊢ z : P
Γ ⊢ cP (πP

1 z) . . . (πP
|β|

z) ≡ z

where P = µt : Uℓ+1. (c : ∀b :: β. τ)

To avoid termination issues, we restrict ourselves to non-recursive structures,
i.e. t may not be used in the field types. This also means that indices are not
very useful as they cannot actually vary, so type families are not considered
for structure eta. Similarly, eta conversion for propositional structures is

39

3 An Overview of Lean 4

not very interesting for us as it is subsumed by proof irrelevance. The
formal conversion rule can be used as a rule for algorithmic conversion
as well, except that we have to consider that the arguments of cP may
merely be definitionally equal to the respective projection due to lack of a
transitivity rule, and similarly we need to ensure symmetry manually.

t not free in β Γ ⊢ z : P Γ ⊢ bi ⇔ πP
i z ∀i

Γ ⊢ cP b⇔ z
. . .

Γ ⊢ z⇔ cP b

Finally, we need one more rule to cover transitivity in the case of field-less
structure types such as Unit := µU : U1. (⋆ : U) where for any u, v : Unit we
can formally derive u ≡ ⋆Unit ≡ v:

Γ ⊢ u, v : µt : Uℓ+1. (c : t)
Γ ⊢ u⇔ v

η-conversion for structure types is not especially novel; it also exists in
Agda as well as in Coq when using the Primitive Projections flag men-
tioned above. While Lean 3 does not have structure eta, [Carneiro, 2019]
in fact introduces primitive projections π1 and π2 on a primitive sigma
type with the expected eta rule (π1 x, π2 x) ≡ x and similar for a primitive
universe lifting type purely to simplify the reduction to W-types as part
of the soundness proof. Carneiro’s argument that strengthening these
provable equalities into definitional ones does not affect soundness applies
to our extension of Lean’s type system just as well.

3.2.3 Mutual Inductive Types

Lean 2 had built-in support for mutually dependent inductive types in the
kernel, which was removed in Lean 3 in favor of compiling them down to
single inductive types in order to further simplify the kernel. However,
this encoding is quite complex in practice and turned out to be hard to
maintain in the face of many edge cases. Thus we reintroduced mutual
inductive types into the kernel in Lean 4.

A formal model of mutual inductive types via indexed W-types, anal-
ogously to Carneiro’s model of single inductive types as W-types, is
described in [Kaposi and von Raumer, 2020]. Thus I will focus on present-
ing Lean’s kernel rules for them in Carneiro’s framework in the following,
replacing the original rules for single inductive types.

40

3.2 The Kernel and Type Theory

We define a mutual inductive specification M = t : F. K, also called a
bundle in the following, as a sequence of type variables t : F with signatures
F = ∀a :: α. Uℓ and sums K of constructors (c : e).

Γ ⊢M spec
Γ ⊢ ai :: αi Γ; ti : ∀ai :: αi. Uℓ

i
⊢i ei j ctor

Γ ⊢ ti : ∀ai :: αi. Uℓ.
∑

j(ci j : ei j)
i
spec

While the indices ai of each ti may be different, the resulting universe level
ℓ must the same as inductive types may not depend on types in higher
universes.

The specification of constructors is essentially unchanged from the single
inductive case except that eventually the expected ti must be returned,
while recursive arguments can be of any simultaneously defined type t j.

Γ; t : F ⊢i τ ctor
Γ ⊢ e :: αi

Γ; t : F ⊢i ti e ctor

Γ ⊢ β : Uℓ′ imax(ℓ′, ℓ) ≤ ℓ Γ, y : β; t : F ⊢i τ ctor

Γ; t : F ⊢i ∀y : β. τ ctor

Γ ⊢ γ :: Uℓ′ Γ, z :: γ ⊢ e :: α j imax(ℓ′, ℓ) ≤ ℓ Γ; t : F ⊢i τ ctor

Γ; t : F ⊢i (∀z :: γ. t j e)→ τ ctor

where F = ∀a :: α. Uℓ

Note that any well-formed single inductive Γ; t : F ⊢ K spec by the old
rules is still well-formed as in Γ ⊢ t : F. K spec.

Type formers, constructors, and recursors must now reference the index
i of the inductive type of the bundle they want to perform on, though we
will allow omitting the index for bundles of size one in order to preserve
the old syntax.

e ::= · · · | µiM | cµiM | recµiM

Γ ⊢M spec
Γ ⊢ µiM : Fi

Γ ⊢M spec (c : α) ∈ Ki

Γ ⊢ cµiM : α[µ jM/t j] j

where M = t : F. K

The large elimination predicate LE, which controls which inductive types
can be eliminated into an arbitrary universe, is essentially unchanged

41

3 An Overview of Lean 4

since all types of the bundle live in the same universe. The special case of
subsingleton elimination of certain inductive predicates in particular remains
applicable to single inductive types only, with an unchanged predicate
LE ctor.

Γ ⊢M LE

1 ≤ ℓ

Γ ⊢ t : ∀a :: α. Uℓ. K LE Γ ⊢ t : F. 0 LE
Γ; t : F ⊢ α LE ctor
Γ ⊢ t : F. (c : α) LE

Finally, given a bundle

M = ti : ∀ai :: αi. Uℓ.
∑

j(ci j : ∀bi j :: βi j. ti pi j)
i

we can state a typing rule for the recursor as follows.

Γ ⊢M spec
Γ ⊢ recµi0 M : ∀C :: κ. ∀e :: ε. ∀ai0 :: αi0 . ∀z : ti0 ai0 . Ci0 ai0 z

where as parameters we have

• one motive Ci of type κi = ∀ai :: αi. µiM ai → Uu for each type ti where
u is a fresh universe variable if Γ ⊢ M LE, or otherwise u = 0. The
motive represents the recursion/induction result type, which may be
dependent on the input value and can vary for each inductive type
in the bundle.

• one minor premise ei j of type εi j = ∀b :: βi j. ∀v :: δ. Ci pi j (ci j b) for each
constructor ci j. The minor premise describes a recursion/induction
case, that is, how to compute the corresponding motive from the
constructor’s arguments b as well as inductive hypotheses v, whose
types are constructed for each ci j as follows: let g :: γ ⊆ bi j :: βi j
be the subsequence of recursive arguments of constructor ci j, i.e.
γk = ∀x :: ξ. µlM a′ is an argument type resulting in some type µlM
of the bundle. Then for each γk we obtain an inductive hypothesis
δk = ∀x :: ξ. Cl a′ (gi x) that given the same parameters produces a
value of the corresponding motive for the given indices a′ and the
recursive argument’s value gi x at these parameters.

• a single major premise z : ti0 ai0 , which is the starting value of the
recursion/induction.

42

3.2 The Kernel and Type Theory

The recursor returns a value of the corresponding motive for the major
premise.

As an example, for the mutual inductive predicates

mutual
inductive Even : Nat → Prop where

| z : Even 0
| s : Odd n → Even (n + 1)

inductive Odd : Nat → Prop where
| s : Even n → Odd (n + 1)

end

we formally have

M = Even : Nat→ P. (z : Even zNat) +
(s : ∀n : Nat. Odd n→ Even (sNat n)),

Odd : Nat→ P. (s : ∀n : Nat. Even n→ Odd (sNat n))

and, using Even := µ1M,Odd := µ2M, can derive the recursors

Γ ⊢ recEven : ∀C :: κ. ∀e :: ε. ∀n : Nat. ∀z : Even n. C1 n z
Γ ⊢ recOdd : ∀C :: κ. ∀e :: ε. ∀n : Nat. ∀z : Odd n. C2 n z

where

C :: κ = CEven : ∀n : Nat. Even n→ P,COdd : ∀n : Nat. Odd n→ P
e :: ε =

ezEven : CEven zNat zEven,

esEven : ∀n : Nat. ∀o : Odd n. COdd n o→ CEven (sNat n) (sEven o),
esOdd : ∀n : Nat. ∀e : Even n. CEven n o→ COdd (sNat n) (sOdd e)

The computation rules then follow as in [Carneiro, 2019]. In particular,
K-like reduction applies only to single inductive types and thus can be
represented by the same rule.

Nested inductive types

In the specification of mutual inductive types we still demand recursive
arguments of constructors to be of the form ∀− :: −. ti −, which excludes
recursive occurrences of the types to be defined nested inside other inductive
types such as in the common definition of arbitrarily-branching rose trees.

43

3 An Overview of Lean 4

inductive Tree (α : Type) where
| node : α → List (Tree α) → Tree α

However, it is possible to “flatten” an occurrence of a constructor ti
nested inside another bundle M′ as in µ jM′[ti e] (which can happen from
substitution of a parameter, as above) into a direct type application t′ e
by extending the current bundle M with the instantiation M′[ti e] where
occurrences t′j of types defined by M′ have been appropriately adjusted.
As the transformation is technically laborious, I will merely demonstrate it
on the above example here.

mutual
inductive Tree' (α : Type) where
| node : α → ListTree α → Tree' α

inductive ListTree (α : Type) where
| nil : ListTree α

| cons : Tree' α → ListTree α → ListTree α

end

For the new bundle to be well-formed, the arguments e of the nested
occurrence must not depend on constructor parameters, i.e. Γ ⊢ e :: −, and
ti e must occur strictly positively in µ jM′ as demanded by the ctor rules.

This transformation can be done outside of the kernel and type system,
which was the case in previous versions of Lean. Lean 4 relies on it as
well, but incorporates it into the kernel to solve one particular issue: some
definitional reductions are lost during the transformation. As users should
not be exposed to the instantiation M′[ti e], all constructors and recursors
are ultimately redefined in terms of the original M′ such that the interface
to the user is that of the original nested inductive type.

def Tree := Tree'
def ListTree.ofList : List (Tree α) → ListTree α := . . .
def ListTree.toList : ListTree α → List (Tree α) := . . .
def Tree.node (a : α) (ts : List (Tree α)) : Tree α :=

Tree'.node a (ListTree.ofList ts)
def Tree.rec {C1 : Tree α → Sort u} {C2 : List (Tree α) → Sort u}

(eNode : (a : α) → (ts : List (Tree α)) → C2 ts → C1
(Tree.node a ts))

(eNil : C2 [])
(eCons : (head : Tree α) → (tail : List (Tree α)) → C1 head →

C2 tail → C2 (head :: tail))
(t : Tree α) → C1 t := . . .

44

3.3 The (Future of the) Module System

However, as the copy ListTree is not definitionally equal to the original
List (Tree α) (neither in Lean’s nominal inductive declarations nor in the
structural µ encoding used above), we need to define and employ conver-
sion functions such as ListTree.ofList used in Tree.node. In particular, in
order to define the recursor Tree.rec, we have to transport terms such as
values of the motives that are dependent on List (Tree α) values across the
non-definitional equality ListTree.ofList (ListTree.toList ts) = ts and
its reverse. Finally, when we try to reduce an open term like Tree.rec

C1 C2 eNode . . . (Tree.node a ts), it turns out that it cannot be reduced to
eNode a ts . . . as we would hope, but before that gets stuck on the trans-
port, which is reduced away only when the list structure of ts is fully
known. By moving the transformation into the kernel but still checking
the well-formedness of the result as a mutual inductive type, Lean 4 can
postulate these expected conversion rules in exchange for only a modest
increase in the Trusted Code Base.

3.3 The (Future of the) Module System

Lean 4’s module system, as in a system for organizing and reusing code,
has not fundamentally changed from the simplistic design of prior versions:
a module is a single Lean file, and importing modules makes the union
of their declarations available, transitively. Name clashes are avoided by
use of the orthogonal namespace system producing hierarchical names
such as Std.RBMap.empty, which requires a certain degree of rigor of and/or
cooperation between authors to make sure their independently developed
modules can be imported together. Typeclasses remain the preferred
solution for abstracting code over a concept in favor of parameterized
modules as found in say Standard ML [MacQueen, 1984].

And yet there are on-going discussions about changing this in the future.
The primary motivation is to ensure that Lean remains scalable for the
foreseeable future. At the time of writing, the mathlib repository has
reached a size of more than one million lines of Lean code, requiring
multiple hours for a full build, and no-one expects this growth to stop any
time soon unless Lean itself stops being a viable tool for such a project size.
In particular, I believe we will need to address the following two aspects
in the future with an improved module system for recompilation avoidance:

45

3 An Overview of Lean 4

• Export less. There are many kinds of changes to a module that should
not be observable by, and thus cause recompilation of, downstream
modules. These include superficial changes such as to whitespace or
comments (though docstrings and declaration positions still need to be
accessible to at least the language server) as well as module-internal
changes such as changing the proof but not proposition of a theorem,
as imported theorems are not rechecked at the default trust level.
Ideally, changing the body of a definition or adding, changing, or
removing private declarations should not trigger recompilation either,
but two aspects of the Lean language complicate restricting the public
signature of a module in this way: first, the type theory assumes
that δ-reduction, or unfolding of definitions, is always possible,
which makes dependent type theory inherently anti-modular. In
practice though, it is common and good style to prove abstract
properties about a concrete definition in the same module and then
to rely only on these properties in dependent modules. For example,
the particular chosen construction of the real numbers is usually
inconsequential for users that instead rely on their abstract algebraic
properties. Thus restricting definitional unfolding, at least outside the
originating module, might be a reasonable limitation in exchange for
improved recompilation avoidance. While not focused on separate
compilation, [Gratzer et al., 2022] have recently made interesting
advances in this direction by developing and implementing a type
theory where definitional unfolding is not available by default but
must be opted in per definition and scope.

The second complication is metaprogramming, as compile-time exe-
cution of an imported definition is equivalent to unfolding it. Here a
limitation to the current module is not practical; instead, we have
to accept that changing metaprograms leads to downstream recom-
pilation but should not accept that the same is true for definitions
never used as or by metaprograms. Thus a phase separation system
would be necessary to cleanly separate these worlds as for example
implemented in Racket [Flatt, 2002] and more recently explored by
[Sterling and Harper, 2021] in the context of an ML-style module
system based on Martin-Löf type theory. In fact, Lean 4 already
features a very limited form of phase separation in the form of the
initialize and builtin_initialize commands which both take an IO

46

3.3 The (Future of the) Module System

action to be executed on module load, but in the latter case restricted
to the run time phase of the generated executable where it is used
to e.g. register built-in syntax that should become active only in the
next stage of the compiler. However, the name resolution algorithm
is not aware of these phases yet as it should be in a proper phase
separation system.

• Import less, by which I primarily refer to limiting the prevalence of
transitive imports. Viewing the set of additionally needed modules
necessary for loading a certain module as part of its module signature,
this point can be seen as a special case of the previous aspect. While
limiting the amount of exported data from a module may be less
interesting to mathematicians than to programmers as purely internal
changes to a theorem or definitions used for modeling mathematics
are much rarer than to programs, I strongly believe that avoiding
transitive imports would be to the immediate benefit of any user of a
system like Lean. Taking the previous example of the real numbers,
there is a good amount of modules involved in constructing the model,
but once that is done, there is no reason that users of the type of real
numbers should load these modules, or be recompiled when they
change without affecting the abstract interface of the type. Making
an import non-transitive can be seen as turning all of its exports
private to any external users of the current module, and so similar
checks to references to private declarations not escaping into the
module signature would be necessary for a sound implementation.

For now though, we have focused on optimizing the implementation of
the existing simplistic module system, yielding some significant perfor-
mance gains that would be preserved by any of the changes sketched above.
As a first step, Leo replaced the previous hand-written module serializer
with a generic Lean object graph serializer. The serializer can persist a
Lean object of any type and the objects referred to by it, transitively, as
long as there is no closure object in the graph. As the module data is now
a pure-data Lean type, module serialization can be done with this generic
system, significantly simplifying the implementation and maintenance
of it. The generic serializer also implements maximum sharing or hash
consing [Ershov, 1958], i.e. structurally equal Lean objects are deduplicated.
Finally, the serializer in fact preserves the in-memory layout of Lean objects,
merely copying them and rewriting pointers for maximum sharing as

47

3 An Overview of Lean 4

well as to make them relative to the start address of the serialized block.
On deserialization, the relative pointers are rewritten back to absolute
addresses according to the new start address of the loaded block. While
a more compact representation that e.g. elides padding and uses smaller
pointer representations would be possible, this aspect is crucial for the next
step inspired by [Yang et al., 2015]: after the new module serializer was in
place, I adjusted it to store pointers not relative to the start of the block, but
absolute according to a virtual base address derived from the hash of the
module name. Thus if we can load the block into memory at this address
in downstream compilations, no pointers need to be adjusted.1 In fact,
there is no need to change the loaded block from its on-disk representation
at all, which means that we can memory map it directly from disk into
the memory of the Lean process, which is an operating system function
available on all platforms supported by Lean. The advantage of using a
read-only memory mapping instead of standard allocated memory is that
imported modules effectively no longer contribute to Lean’s working set
size: they can be loaded partially, on-demand by the operating system,
can be shared among different Lean processes loading the same module,
and can be discarded in low-memory situations without having to write
them to swap space. Indeed, when activating this extension we have seen
great savings on mathport2, a version of Lean 3 mathlib binary-translated to
the Lean 4 module format: the time for importing these, at the time, 1871
modules fell from 2.3 to 1.5 seconds3, and more importantly the total heap
size of all allocations fell from 1.2GB to 55MB. Thus I feel safe to say that
this part of the module system at least is future-proof even in the face of
drastically increased import closure sizes, which nevertheless we should
aim to keep limited by the import less mission statement.

The performance of this new scheme depends on the ability to map
modules at the requested addresses without conflict. If there is a conflict

1 This approach is comparable to the use of preferred base addresses in shared library loading
such as in Windows [Richter and Nasarre, 2008], though the advent of Address Space
Layout Randomization (ASLR) has largely rendered this scheme obsolete; as we only
map non-executable data, ASLR is not a concern for our purposes.

2 https://github.com/leanprover-community/mathport
3 Lean still gathers information such as a map of all declaration from the imports, so

it cannot be 0; Leo later optimized the import time further independently of memory
mapping.

48

https://github.com/leanprover-community/mathport

3.4 The Parser

with another memory mapping, be it a another Lean module or a loaded
native library or some other kind of memory region, we have to fall back
to adjusting all pointers according to the new base address, in which case
this region cannot be shared with other processes anymore. However,
as objects in other modules are referenced not by direct pointers but e.g.
by declaration name, relocating an imported module does not affect the
ability to memory map dependent modules. In practice, collisions are
unlikely given the immense size of modern address spaces. We can make
this more precise by applying the birthday problem: on modern 64-bit
architectures, user-space addresses are usually limited to the lower 47
bits. At the time of writing, mathport and Lean itself consist of 2995 and
617 Lean modules, respectively, with an average file size of 320 and 892
KB, and a 99th percentile of 2.24 and 6.46 MB. If we semi-conservatively
approximate this by saying we want to uniformly place n modules of size 2
MB (221 bytes) at addresses aligned to 2 MB, then there are d = 247/221 = 226

possible slots and we can conclude by a folklore formula for the birthday
paradox (which can e.g. be derived from equation (3.4) of [Feller, 1950])
that we would need to load

n ≈

√
2d ln

1
1 − p

≈ 9645

modules to reach a probability of p = 50% of even one collision. This
ball-park calculation greatly overestimates the average module size while
at the same time ignoring collisions from overlaps because of the smaller
in-practice alignment, non-uniformity of the chosen hash function, and a
negligible amount of other mappings in the address space. Thus while the
possibility of collisions cannot be excluded and must be addressed using
a fall-back implementation, it is quite negligible in practice, and again
would benefit from the mantra import less.

3.4 The Parser

The parser is the component with perhaps the most dramatic technological
shift from Lean 3 to Lean 4: in previous versions, it was a hand-written
recursive-descent implementation with precedence and (limited) extensi-
bility of term notations handled by a dynamic parsing table based on Pratt

49

3 An Overview of Lean 4

parsing [Pratt, 1973]. A syntax tree, even an abstract one, did not exist of
the whole file: terms were parsed into kernel-structure pre-terms we have
already seen in Section 2.3, while the only output of parsers of top-level
commands was their side effects such as additions to the environment, i.e.
elaboration did not exist as a separate step from parsing.

Quite in contrast to these versions, we designed the Lean 4 parser from
scratch with the following primary goals in mind:

flexibility Lean 4’s lexical and syntactical grammar is complex and in-
cludes indentation and other whitespace sensitivity. It should be
possible to introduce such custom "tweaks" locally without having
to adjust the fundamental parsing approach.

extensibility Lean’s grammar can be extended dynamically within a Lean
file, and with Lean 4 we want to extend this to cover embedding
domain-specific languages that may look nothing like Lean, down to
using a separate set of tokens.

losslessness The parser should not only produce a concrete syntax
tree that can be used in the macro system, but also preserve all
whitespace and other "sub-token" information for use in tooling. The
exact original input should be recoverable from the syntax tree.

performance Despite the above goals, the overhead of the parser building
blocks, and the overall parser performance on average-complexity
input, should be comparable with that of the previous parser hand-
written in C++.

While many parser implementations in theorem provers are similarly
manual as Lean 3’s, there are some exceptions such as Isabelle’s use
of an Earley parser [Earley, 1970] for parsing its inner syntax even in
absence of precedence annotations, potentially generating multiple, over-
lapping syntax tree interpretations. For the purpose of embedding domain-
specific languages, we especially looked at scannerless generalized LR-parsing
(SGLR) [Visser, 1997] as used in the implementation of the Syntax Defi-
nition Formalism SDF [Bravenboer et al., 2006]. However, both of these
algorithms require a context-free grammar in a sufficiently analyzable
representation. A more flexible, dynamic approach is presented by
[Swierstra and Duponcheel, 1996] who enrich parser combinators with

50

3.4 The Parser

just enough static structure to efficiently parse LL(1) grammars without
backtracking. In order to attain our goals of flexibility and performance,
we thus combined this approach with Pratt precedence parsing that had
already proven itself in previous versions of Lean, but added the possibility
of backtracking when necessary so as not to prevent user extensions that
in combination may not be LL(1). The backtracking combinator is backed
by a cache inspired by packrat parsing [Ford, 2002] in order to avoid
exponential run times.

The goal of losslessness finally is not as much a question of parser
implementation as of its output. I have implemented syntax objects in
Lean 4 as an inductive type of nodes (or nonterminals), atoms (or terminals),
and, as a special case of terminals (which will become important in
Chapter 4), identifiers.

inductive Syntax where
| node (kind : Name) (args : Array Syntax)
| atom (info : SourceInfo) (val : String)
| ident (info : SourceInfo) (rawVal : String) . . .
| missing

An additional constructor represents missing parts from syntax error
recovery. Using a uniform, generic constructor node for inner nodes of
arbitrary arity that is identified merely by an attached name ensures that
the syntax tree is arbitrarily extensible. Tokens (atoms and identifiers) are
annotated with source location metadata unless generated by a macro.

inductive SourceInfo where
| original (leading : Substring) (pos : String.Pos) (trailing :

Substring) (endPos : String.Pos)
| synthetic . . .
| none

By capturing both the start and end position of a token as well as its
leading and trailing whitespace/comments, we make sure to preserve all
lexical information a consumer of the syntax tree may need. Keeping the
information locally in the syntax leaves means that it will not be lost or
become desynchronized when other parts of the tree are transformed.

Users of Lean for the most part do not interact with the parser combina-
tors or the definition of Syntax directly. A convenient shorthand allows for
writing down new syntax in a style reminiscent of (Extended) Backus-Naur
Form.

51

3 An Overview of Lean 4

syntax "N" : term -- atoms
syntax "if" term "then" term "else" term : term -- sequences
syntax "{" ident (":" term)? "//" term "}" : term -- optionals
syntax "[" term,* "]" : term -- repetition, with separator

-- implementing the syntax of `syntax` in itself
declare_syntax_cat stx2
syntax "syntax2" stx2* ":" ident : command
syntax ident : stx2
syntax str : stx2
syntax "(" stx2* ")" : stx2
syntax stx2 ("?" <|> "*" <|> ",*" <|> . . .) : stx2
. . .

A syntax command registers a given syntax specification with a syntactic
category, such as term and command above, given after the colon. A syntactic
category can be thought of as a kind of extensible nonterminal in the
grammar, with syntax registering new grammar rules for that nonterminal.
The declare_syntax_cat command can be used to introduce new syntax
categories. Every syntax command by default generates a unique name
that is used as the kind in a Syntax.node object generated when the grammar
rule is applied. The name is usually irrelevant as syntax objects are mostly
consumed and transformed by use of syntax quasiquotations as described
in detail in Chapter 4. We will see many more examples of declaring and
using syntax there as well as in Chapter 5.

3.5 The Elaborator

Elaboration, in short, can be thought of as taking a fully macro-expanded
(“desugared”) syntax tree and producing a corresponding kernel represen-
tation, i.e. a fully specified lambda term in the case of term elaboration;
in truth, macro expansion and elaboration are intertwined in Lean (Sec-
tion 4.5). For the purpose of this section though we will focus on the
traditional tasks of the elaborator requiring type information without
considering macro expansion, which include:

• inference, by unification plus conversion, of elided subterms from
e.g. implicit parameters or explicit holes (_) in the syntax tree

• insertion of coercions on type conflicts

52

3.5 The Elaborator

• typeclass inference

• tactic execution (now part of macro expansion: Section 4.6)

• resolving ambiguous notation and overloaded references

While these tasks are relatively unchanged across Lean versions, there are
some fundamental differences in their implementation. Lean 2 for example
put great focus on approximating higher-order unification by constraint
solving [de Moura et al., 2015a]. This approach was replaced in Lean 3 by
a simpler and far more efficient scheme, never gathering constraints but
resolving them on the spot, failing otherwise. Only typeclass inference
and tactic execution were potentially delayed until the expected type at
that position was sufficiently known. Thus the elaboration order for the
most part was fixed, proceeding in practice from left to right in the term,
which can greatly limit the effectiveness of type inference. For example, in

List.map (fun x => x.fst) xs

elaboration of the projection notation x.fst will fail unless the type of x
is sufficiently known, which requires elaborating the second argument xs
first.

Possibly the biggest elaboration change from Lean 3 to Lean 4 is the lifting
of this strict ordering. Instead of a fixed ordering of nested elaboration calls
that either succeed or fail, each elaboration handler for a specific kind of
term syntax can request to be postponed, in which case its result is replaced
with a fresh metavariable. The elaboration procedure is eventually rerun
to resolve the metavariable; if all currently postponed elaborators keep
requesting postponement because of some type checking dependency
cycle, elaboration fails. This approach was explored in parallel to Lean 4
development in the Klister language [Barrett et al., 2022], refining upon
our implementation by continuing the postponed elaborator at the point
of the suspension instead of rerunning it from the beginning. After initial
experiments with basing elaboration on a continuation monad transformer,
we decided against this approach because the transformer would have
increased overall overhead using our current code generator. We have not
noticed significant overhead from rerunning elaborators so far.

53

3 An Overview of Lean 4

3.6 The Code Generator

Lean 4 currently features a single backend for native compilation of Lean
code: a C code generator. The resulting code can be compiled with a stan-
dard C compiler and linked against the Lean runtime implemented in C++.
C was an obvious choice as a first target because of its simple interfacing
with C++while being sufficiently expressive to translate our Lean interme-
diate representation (IR) to in a straightforward transformation, and being
slightly faster to compile with standard compilers than C++. Another
strong advantage of C compared to perhaps more typical choices such as
LLVM IR is that we can check the generated code into the Lean 4 repository
and so bootstrap Lean 4 on any system that provides standard C and C++
compilers. A direct LLVM backend is being developed by Siddharth Bhat
at the time of writing, but we will still want to keep the C backend around
for the purpose of bootstrapping. We support both the programming use
case of creating a standalone executable from Lean code (as is the case for
the executables distributed with Lean 4) and the metaprogramming use case
of compiling e.g. tactics into native shared libraries for efficient execution.

Before being emitted as C code, Lean definitions go through two major
intermediate representations:

• λpure is a pure, strict, untyped language used for general optimizing
transformations common to functional languages and in particular
based on those used in GHC [Peyton Jones, 1996].

• λRC extends λpure with explicit instructions for reference counting,
thus losing purity. We will discuss it in much greater detail in
Chapter 6, in which I also present formal semantics for both IRs.

Both IRs as well as their transformations are implemented in Lean itself,
replacing an initial implementation in C++ for bootstrapping.

Lean 4 also comes with an interpreter for λRC I have implemented, which
allows for rapid incremental development and testing right from inside
the editor. Whenever the interpreter calls a function for which native,
ahead-of-time compiled code is available, which in particular is true for all
functions from the standard library, it will switch to that instead. Thus the
interpretation overhead is negligible as long as e.g. all expensive tactics
are precompiled.

54

3.6 The Code Generator

In detail, precompilation consists of the build system compiling the tactics
and other relevant Lean code into a shared library, which can then be
loaded into both the interactive Lean server and the batch compiler via a
command line flag. Then, before entering a function for the first time, the
interpreter will check if the mangled name of that function is available as
a symbol in the current process via dlsym or similar platform functions. In
implementing this approach, I specifically took care in making this setup
as invisible and painless as possible for users. Users should not even
have to think about what has to happen in the background to make their
tactics fast, and in particular the setup should not be dependent on or be
likely break from external factors. For this purpose I have extended the
Lean binary releases with a self-contained LLVM toolchain consisting of a
C compiler, basic headers, a linker, and other tools necessary for native
compilation, inspired by a similar setup for the Zig language [Kelley, 2020].
A critical component not provided by LLVM is interfacing with the system
C library, which depending on the operating system requires installing
an SDK with download size and permission requirements that may be
prohibitive for some users of Lean, such as those using restricted university
machines. Following Zig, we solve this issue by distributing necessary
files bundled with Lean directly.

Windows requires installation of the Windows SDK for native compilation
in the standard setup. Because Lean and its runtime can currently
only be built with the alternative, Unix-like MSYS2 toolchain4 in any
case, we replace required import libraries for linking from the SDK
with those from MSYS2.

macOS usually requires installation of the Xcode Command Line Tools to
acquire stub files necessary for linking against the C library. We ship
Lean with copies of those stub files to skip this step.

Linux distributions should not require additional components because
they usually allow linking against the system C shared library
directly. However, a similar but separate issue is that doing so
may embed versioned symbols of this specific library version into the
binary, unnecessarily complicating distribution of Lean programs

4 https://www.msys2.org/

55

https://www.msys2.org/

3 An Overview of Lean 4

platform compr. size uncompressed size

(zstd) basic Lean files LLVM libc interface

macOS 108MB 384MB 116MB 1.6MB
Linux 112MB 406MB 119MB 3.9MB
Windows 116MB 407MB 180MB 3.8MB

Figure 3.2: Example of the composition of a Lean release5 per platform.

(including Lean itself) to other Linux machines. We resolve this issue
by distributing a sufficiently old version of glibc with Lean, which
we link Lean program against (but still use the system glibc at run
time).

The result is a truly stand-alone compilation toolchain for all platforms
supported by Lean. Fig. 3.2 gives an impression of the space overhead of
this solution.

Bootstrapping. A purely internal but fundamental issue we faced as
soon as we started reimplementing parts of Lean in Lean itself is how to
bootstrap the system given this cyclic build dependency. Standard solutions
to this problem implemented by other self-hosting compilers include:

• Use of a previous release. GHC for example can be compiled using
the two previous major releases [GHC, 2020] while building the
Rust compiler requires and automatically downloads the latest beta
release [Rust, 2021]. This is a sensible option for mature languages,
since it constrains at least the first built stage to the features available
in the previous release (however, Rust takes the liberty of enabling
otherwise inaccessible unstable features in the release via a special
environment variable). Later stages, if they implement more func-
tionality than the first stage, may make use of language features
introduced after the previous release via conditional compilation.

• Bundling the bootstrap compiler with the code. This is a simple
solution that allows for updating the bootstrap compiler at any time

5 https://github.com/leanprover/lean4-nightly/releases/tag/nightly-2022-01-31

56

https://github.com/leanprover/lean4-nightly/releases/tag/nightly-2022-01-31

3.7 The User Interface

and as often as desired between releases. However, version control
systems may not scale well when checking in large binaries, especially
when doing so for every supported platform. The OCaml compiler
partially avoids this issue by checking in a platform-independent
bytecode executable of the compiler that is run by an interpreter
written in C.6 Idris 2, which coincidentally became a bootstrapped
dependently typed language at roughly the same time as Lean,
bundles generated bootstrap files for Racket and Chez Scheme.7

Because we expected frequent changes to the Lean 4 language during
development, we decided to go with an approach inspired by OCaml,
but avoiding interpretation overhead when building the first stage: as
mentioned above, Lean code is currently compiled into C, and this code is
platform-independent because all platform-specific functionality is part of
the runtime written in C++. Thus it is sufficient to check in this C code in
order to derive a bootstrap compiler on any supported platform running
at native speed, dependent only on a C/C++ compiler toolchain.

3.7 The User Interface

Lean 4 aims to provide editor integration on par with regular programming
languages via the Language Server Protocol (LSP)8. The LSP was not
designed for theorem proving languages and thus needs to be extended to
provide additional information such as a current-goal display, but we still
strived for implementing the standard LSP requests whenever possible in
order to leverage existing support in editors. At the time of writing, there
are mature Lean 4 editor extensions for VS Code9, Emacs10, and Neovim11.

One particular aspect that was influenced by our experiences from Lean
3 is the server process architecture. While Lean 3 did not implement the
LSP, like most language server implementations it used a single process to
serve information about the set of Lean files in a project, with changes in

6 https://github.com/ocaml/ocaml/tree/trunk/boot
7 https://github.com/idris-lang/Idris2/tree/main/bootstrap/idris2_app
8 https://microsoft.github.io/language-server-protocol/
9 https://github.com/leanprover/vscode-lean4
10 https://github.com/leanprover/lean4-mode
11 https://github.com/Julian/lean.nvim

57

https://github.com/ocaml/ocaml/tree/trunk/boot
https://github.com/idris-lang/Idris2/tree/main/bootstrap/idris2_app
https://microsoft.github.io/language-server-protocol/
https://github.com/leanprover/vscode-lean4
https://github.com/leanprover/lean4-mode
https://github.com/Julian/lean.nvim

3 An Overview of Lean 4

one file being automatically propagated to dependent open files. While
powerful, the concurrent architecture necessary for this approach turned
out to be complex to build and maintain. In Lean 4, we decided for a
simpler approach where every open Lean file is managed by a dedicated
server process, which brings with it other advantages:

• Crashes and side effects are limited to the current file, making sure
we do not lose other files’ states. This is especially important in the
case of Lean as user-defined meta code may trigger arbitrary panics
or stack overflows.

• The management of module memory mappings (Section 3.3) is
simplified: by making sure that files are represented by different
processes that exchange data only via the file system, we know
that we can map all imports from disk into memory regardless of
whether they are opened in the editor, with the sharing of mappings
providing the same memory deduplication benefits as the more
complex single-process architecture. By restarting the file-dedicated
process when the file’s imports have changed, we can completely
avoid the complication of when to free the mappings by relying on
the operating system’s cleanup at process exit, and we ensure that
we end up with a consistent state that is unaffected by the server’s
previous state.

As editors expect a single server process to communicate with via LSP,
these file worker processes are hidden behind and managed by a watchdog
process. The watchdog also accumulates and serves project-wide data
such as for the find-all-references request [Mennicken, 2022].

When file contents are processed in a server worker, we create a snapshot
of the entire parser and elaboration state after each command, which is
inexpensive as these are persistent Lean data structures. Every version
of the opened document is associated with a lazy list of such snapshots
that is extended asynchronously until the end of the file is reached. When
an incoming change results in a new document version, the prefix of
the snapshot list that is unaffected by the change is reused without re-
elaboration and the still-running elaboration tasks, if any, are replaced
with elaboration tasks of the new contents. Incoming requests retrieve
the lazy snapshot list of the current document version once and then wait
until the list is sufficiently progressed to answer the request. This design

58

3.7 The User Interface

of using different versions of immutable lists, which may share a prefix of
nodes, avoids race conditions between document changes and execution
of requests.

The main component that drives processing of semantic requests is called
the info tree, which is a result of elaboration and stored in the associated
snapshot. The info tree mirrors the call tree of elaboration, with each node
containing metadata and the result of the invocation of a specific elaborator,
such as:

• the Lean function name of the elaborator, which is used to e.g. jump
to the definition of a notation,

• the syntax tree input, which can be used to locate info tree nodes
relevant to the current cursor position,

• the global and local context at that point,

• for term elaboration, the expected type and the resulting kernel term,
used e.g. for jumping to the declaration of a referenced constant,

• for tactic elaboration, the goals before and after execution of the
tactic, shown in the editor as the tactic state.

While the concept of the snapshot list was established in Lean 3, the info
tree is a novel central component in Lean 4, replacing one of my more
questionable but quite effective hacks in Lean 3: as the Lean 3 elaborator
had not been designed with such metadata output in mind, requests
would instead execute re-elaboration of the command at point, triggering
an exception when the cursor location had been reached, attaching the
necessary metadata to the exception object while it bubbled up through
the elaborator. The info tree is a welcome improvement over this approach,
improving request latency and providing a cleaner separation of elaborator
and language server.

59

I found I could not say what it was I understood;
that it was in fact on the level of meaning above
language, a level we like to believe scarcely
exists

– Gene Wolfe, The Book of the New Sun 4
A Macro System for Theorem

Provers

In interactive theorem provers, extensible syntax is not only crucial to
lower the cognitive burden of manipulating complex mathematical objects,
but plays a critical role in developing reusable abstractions in libraries.
Mixfix notation systems have become an established part of many modern
ITPs for attaching terse and familiar syntax to functions and predicates of
arbitrary arity.

⊢:_ = Typing
Notation "Ctx ⊢ E : T" := (Typing Ctx E T).
notation typing ("_ ⊢ _ : _")
notation Γ `⊢` e `:` τ := Typing Γ e τ

Agda
Coq

Isabelle
Lean 3

As a further extension, all shown systems also allow binding names inside
mixfix notations.

syntax ∃ A (λ x → P) = ∃[x ∈ A] P
Notation "∃ x , P" := (exists (fun x => P)).
notation exists (binder "∃")
notation `∃` binder `,` r:(scoped P, Exists P) := r

Agda
Coq

Isabelle
Lean 3

While these extensions differ in the exact syntax used, what is true about
all of them is that at the time of the notation declaration, the system already,
statically knows what parts of the term are bound by the newly introduced
variable. This is in stark contrast to macro systems in Lisp and related
languages where the expansion of a macro (a syntactic substitution) can
be specified not only by a template expression with placeholders like above,
but also by arbitrary syntax transformers, i.e. code evaluated at compile

4 A Macro System for Theorem Provers

time that takes and returns a syntax tree.1 As we move to more and more
expressive notations and ideally remove the boundary between built-in
and user-defined syntax, I argue that we should no more be limited by the
static nature of existing notation systems and should instead introduce
syntax transformers to the world of ITPs.

However, as usual, with greater power comes greater responsibility.
By using arbitrary syntax transformers, we lose the ability to statically
determine what parts of the macro template can be bound by the macro
input. Thus it is no longer straightforward to avoid hygiene issues (i.e. acci-
dental capturing of identifiers; [Kohlbecker et al., 1986]) by automatically
renaming identifiers. In this chapter, I propose to learn from and adapt the
macro hygiene systems implemented in the Scheme family of languages
for interactive theorem provers in order to obtain more general but still
well-behaved notation systems.

After giving a practical overview of the new, macro-based notation
system Leonardo de Moura and I implemented in Lean 4 in Section 4.1, I
describe the issue of hygiene and the general hygiene algorithm, which
should be just as applicable to other ITPs, in Section 4.2. Section 4.3 gives
a detailed description of the implementation of this algorithm, and macros
in general, in Lean 4. In Section 4.5, I show how to extend the use case of
macros from mere syntax substitutions to type-aware elaboration. Finally,
we have already encountered hygiene issues in Lean 3 in a different part of
the system: the tactic framework. I discuss how these issues are inevitable
when implementing reusable tactic scripts and how the macro system can
be applied to this hygiene problem as well in Section 4.6.

Contributions. In this chapter, I present a system for hygienic macros
optimized for theorem proving languages as implemented in Lean 4.

• I describe a novel, efficient hygiene algorithm I developed for employ-
ing macros in ITP languages at large: a combination of a white-box,
effect-based approach for detecting newly introduced identifiers and
an efficient encoding of scope metadata.

• I show how such a macro system can be seamlessly integrated into
existing elaboration designs to support type-directed expansion even

1 These two macro declaration styles are commonly referred to as pattern-based vs. procedural.

62

4.1 Lean 4 Macro System by Example

if they are not based on homogeneous source-to-source transforma-
tions.

• I show how hygiene issues also manifest in tactic languages and how
they can be solved with the same macro system. To the best of my
knowledge, the tactic language in Lean 4 is the first tactic language
in an established theorem prover that is automatically hygienic in
this regard.

Acknowledgements. The macro system described in this chapter is joint
work with Leonardo de Moura [Ullrich and de Moura, 2022a], itself an
extended journal version of [Ullrich and de Moura, 2020] we were invited
to submit. I developed the macro system itself after thorough discussions
with Leo about our needs, performance requirements and, last but not
least, available complexity budget. I also designed and implemented the
syntax tree data structure described in Section 3.4 as part of this work as
well as related language features such as quotations and the antiquotation
language (Section 4.3.1) while Leo was the main implementer of users of
these such as the elaborator and tactic interpreter (Section 4.6). Section 4.4
describes novel work I have implemented after the above publications.

4.1 Lean 4 Macro System by Example

Lean’s previous notation system as shown above is still supported in Lean 4,
but based on a much more general macro system; in fact, the notation

keyword itself has been reimplemented as a macro, more specifically as a
macro-generating macro making use of a tower of abstraction levels. The
corresponding Lean 4 command2 for the example above

notation Γ "⊢" e ":" τ => Typing Γ e τ

expands to the macro declaration

macro Γ:term "⊢" e:term ":" τ:term : term => `(Typing $Γ $e $τ)

where the syntactic category (term) of placeholders and of the entire
macro is now specified explicitly. The right-hand side uses an explicit

2 All examples including full context can be found in [Ullrich and de Moura, 2023].

63

4 A Macro System for Theorem Provers

syntax quasiquotation to construct the syntax tree, with syntax placeholders
(antiquotations) prefixed with $. As suggested by the explicit use of
a quotation, the right-hand side may now be an arbitrary Lean term
computing a syntax object; in other words, there is no distinction between
pattern-based and procedural macros in Lean 4. In contrast to the term-
specific notation systems listed in the introduction, we can now use this
abstraction level to implement simple macros in syntactic categories other
than term, such as for a definition-like command macro that automatically
wraps the given value in a lazily-evaluated thunk.

macro "defthunk" id:ident ":=" e:term : command =>
`(def $id := Thunk.mk (fun _ => $e))

defthunk big := mkArray 100000 true

The expansion of the above command is

def big := Thunk.mk (fun _ => mkArray 100000 true)

macro itself is another command-level macro that, for our notation example,
expands to two commands

syntax term "⊢" term ":" term : term
macro_rules

| `($Γ ⊢ $e : $τ) => `(Typing $Γ $e $τ)

that is, a pair of parser extension (Section 3.4) and syntax transformer. The
reason we decided to ultimately separate these two concerns is that we
can now obtain a well-structured syntax tree pre-expansion, i.e. a concrete
syntax tree, for the tooling reasons described in Section 3.4.

Both syntax and macro_rules are in fact further macros for regular Lean
definitions encoding procedural metaprograms, though users should rarely
need to make use of this lowest abstraction level explicitly. Both commands
can only be used at the top level; we are not currently planning support
for local macros.

There is no more need for the complicated scoped syntax of Lean 3 since
the desired translation can now be specified naturally, without any need
for further annotations.

notation "∃" b "," P => Exists (fun b => P)

The lack of static restrictions on the right-hand side ensures that this works
just as well with custom binding notations, even ones whose translation

64

4.1 Lean 4 Macro System by Example

cannot statically be determined before substitution as in the following
flexible set comprehension notation.

syntax "{" term "|" term "}" : term
macro_rules
| `({$x ∈ $s | $e}) => `(preimage (fun $x => $e) $s)
| `({$x | $e}) => `({$x ∈ univ | $e})

notation "
⋃
" b "," e => Union {b | e}

The new notation allows us to build sets such as {n | n + 1} and {n ∈

primes | n * 2} via the set function preimage f s that encodes the preimage
of the set s over the function f. Because both binding forms $x ∈ $s and $x

are terms syntactically, we can abstract over them uniformly in derived
syntax such as the big union operator above.

In this example we explicitly made use of the macro_rules abstraction
level for its convenient syntactic pattern matching syntax. macro_rules

are “open” in the sense that multiple transformers for the same syntax

declaration can be defined; they are tried up to the first match, starting with
the newest macro_rules declaration (though this can be customized using
explicit priority annotations, as with most metaprogramming extension
points in Lean). Thus the following extension will not be shadowed by the
$x default case above:

macro_rules
| `({$x ≤ $hi | $e}) => `({$x ∈ setOf (fun x => x ≤ $hi) | $e})

As an extended example of grammatic reuse, I present a partial reimple-
mentation of the arithmetic “bigop” notations found3 in Coq’s Mathemati-
cal Components library [Mahboubi and Tassi, 2021] such as

\sum_ (i ← [0, 2, 4] | i != 2) i

for summing over a filtered sequence of elements. The specific bigop
notations are defined in terms of a single \big fold operator; however,
because Coq’s notation system is unable to abstract over the indexing
syntax, every specific bigop notation has to redundantly repeat every
specific index notation before delegating to \big. In total, the 12 index
notations for \big are duplicated for 3 different bigops in the file.

3 https://github.com/math-comp/math-comp/blob/master/mathcomp/ssreflect/bigop.
v

65

https://github.com/math-comp/math-comp/blob/master/mathcomp/ssreflect/bigop.v
https://github.com/math-comp/math-comp/blob/master/mathcomp/ssreflect/bigop.v

4 A Macro System for Theorem Provers

Notation "\sum_ (i ← r) F" := (\big[addn/0]_(i ← r) F).
Notation "\sum_ (i ← r | P) F" := (\big[addn/0]_(i ← r | P) F).
. . .
Notation "\prod_ (i ← r) F" := (\big[muln/1]_(i ← r) F).
Notation "\prod_ (i ← r | P) F" := (\big[muln/1]_(i ← r | P) F).
. . .

In contrast, in Lean 4, we can introduce a new syntactic category for index
notations, interpret it once in \big, and define new bigops on top of it
without any redundancy.

declare_syntax_cat index
syntax ident "←" term : index
syntax ident "←" term "|" term : index
syntax "\\big[" term:max "/" term "]_(" index ")" term : term
. . .

macro_rules
| `(\big[$op/$idx]_($i:ident ← $r) $F) => . . .
| `(\big[$op/$idx]_($i:ident ← $r | $p) $F) => . . .

. . .

macro "Σ" "(" idx:index ")" F:term : term =>
`(\big[Add.add/0]_($idx) $F)

macro "Π" "(" idx:index ")" F:term : term =>
`(\big[Mul.mul/1]_($idx) $F)

The full example as implemented by Leo is included in the original paper’s
supplement. Please note that this is not merely a showcase of a parsing
extension, but that abstracting over binding syntax in this manner is
fundamentally incompatible with any static approach of ensuring hygiene.
The dynamic nature of Scheme-like macros allows us to always apply
such factorings without being burdened by static restrictions while still
preserving hygiene.

We had decided early on that these examples were the minimum of
generality the new macro system should support. What was less clear
was how to do so in a hygienic manner given that previous approaches
based on static analysis were not feasible anymore. Instead we looked
at the Scheme family of languages and in particular Racket’s new Sets of
Scopes [Flatt, 2016] hygiene algorithm, which is described by its author as

66

4.2 Hygiene Algorithm

being both simpler and more uniform than previous algorithms based on
explicit renaming.

4.2 Hygiene Algorithm

In this section, I will give a mostly self-contained description of my
algorithm for automatic hygiene applied to a simple recursive macro
expander; I postpone comparisons to existing hygiene algorithms to
Section 4.8.

Hygiene issues occur when transformations such as macro expansions
lead to an unexpected capture (rebinding) of identifiers. For example, we
would expect the notation

notation "const" e =>
fun x => e

to always produce a constant function regardless of the specific e. We
would not expect the term const x to be the identity function fun x => x

because intuitively there is no x in scope at the argument position of const;
that the implementation of the macro makes use of the name internally
should be of no concern to the macro user.

Thus hygiene issues can also be described as a confusion of scopes when
syntax parts are removed from their original context and inserted into
new contexts, which makes name resolution strictly after macro expansion
(such as in a compiler preceded by a preprocessor) futile. Instead we need
to track scopes as metadata before and during macro expansion so as not to
lose information about the original context of identifiers. Specifically: 4

1. When an identifier captured in a syntax quotation matches one or
(in the case of overloading) more top-level symbols, the identifier
is annotated with a list of these symbols as top-level scopes to pre-
serve its extra-macro context (which, because of the lack of local
macros, can only contain top-level bindings). Here top-level is to be
understood as in the global context in Section 2.2: the set of Lean
declarations. For example, the identifier map may resolve to the

4 Lean allows overloaded top-level bindings whereas local bindings are shadowing.

67

4 A Macro System for Theorem Provers

symbol list {List.map,Option.map} when the respective namespaces
are opened.

2. When a macro is expanded, all identifiers freshly introduced by the
expansion are annotated with a new macro scope to preserve the
intra-macro context. In particular, different expansions of the same
macro introduce different annotations. Macro scopes are appended
to a list, meaning the list is implicitly ordered by expansion time
as we only append fresh macro scopes, ensuring we do not have
to worry about ordering when comparing two such lists. This full
“history of expansions” is necessary to treat macro-producing macros
correctly, as we shall see in Section 4.2.2.

Thus, the expansion of the above term const x should be (an equiva-
lent of) fun x.1 => x where 1 is a fresh macro scope appended to the
macro-introduced x, preventing it from capturing the x from the original
input. In general, I will present hygienic identifiers in the following as
n.msc1.msc2.. . ..mscn{tsc1,. . .,tscn} where n is the original name, msc are
macro scopes, and tsc top-level scopes, eliding the braces if there are no
top-level scopes as in the example above. I use this dot notation to suggest
both the ordered nature of macro scopes and their eventual implementation
in Section 4.3. I will now describe how to implement these operations in a
standard macro expander.

4.2.1 Expansion Algorithm

A Scheme-style macro expander takes a syntax tree as input and produces
a fully expanded tree, that is, where all macro uses have been reduced to
core forms that cannot be described as macros and are instead handled by
the later stages, such as a direct interpreter or an elaborator. Important
special cases are binding core forms, i.e. core forms such as Lean’s lambda
syntax fun x => . . . that introduce new identifiers, and potential references
to these bindings, that is, identifiers in any non-binding position. The
expander should rename bindings and their references where necessary to
avoid hygiene issues such that later stages do not have to know anything
about the implementation of hygiene, or indeed that it was applied at all.

Given a global context (a set of symbols), the expansion algorithm does
so by a conventional top-down expansion, keeping track of an initially-
empty local context (another set of symbols). When a binding core form

68

4.2 Hygiene Algorithm

is encountered, the local context is extended with the bound symbol(s);
existing top-level scopes on the binding identifier are discarded at this step
since they are only needed for references. Thus I will formally define a
symbol as an identifier together with a list of macro scopes, such as x.1
above. As we shall see in Section 4.3, this definition of symbol is covered by
the pre-existing one in Lean, so later stages indeed do not have to concern
themselves with it.

When a reference is encountered, it is resolved according to the following
rules:

1. If the local context has an entry for the same symbol, the reference
binds to the corresponding local binding; any top-level scopes are
again discarded.

2. Otherwise, if the identifier is annotated with one or more top-level
scopes or matches one or more symbols in the global context, it binds
to all of these (to be disambiguated by the elaborator).

3. Otherwise, the identifier is unbound and an error is generated.

In the common incremental compilation mode of ITPs, every command
is fully processed before subsequent commands. Thus, an expander for
such a system will never extend the global context by itself, but pass the
fully expanded command to the next compilation stage before being called
again with the next command’s unexpanded syntax tree and a possibly
extended global context.

Notably, the expander does not introduce macro scopes by itself, either,
much in contrast to other expansion algorithms. We instead delegate this
task to the macro’s implementation, though in a completely transparent
way for all pattern-based and for conventional procedural macros. I claim
that a macro should in fact be interpreted as an effectful computation since
two expansions of the same identifier-introducing macro should not return
the same syntax tree to avoid unhygienic interactions between them. Thus,
as a side effect, it should apply a fresh macro scope to each newly introduced
identifier. In particular, a syntax quotation should not merely be seen
as a datum, but as an effectful value that obtains and applies this fresh
scope to all the identifiers captured by it to immediately ensure hygiene
for pattern-based macros. Procedural macros producing identifiers not
originating from syntax quotations might need to obtain and make use of
the fresh macro scope explicitly.

69

4 A Macro System for Theorem Provers

As an aside, note that forgoing to do so is not sufficient to reliably
implement anaphoric or other hygiene-bending macros that make an iden-
tifier (conventionally it in Lisp languages) available in the scope of the
macro caller, as discussed in [Barzilay et al., 2011]. Instead, I believe that
the correct translation of anaphoric macros to Lean is to change such
identifiers to keywords that do not participate in hygiene at all, analogous
to the syntax parameters of [Barzilay et al., 2011]. An example for this is the
this keyword introduced by tactics such as have that can be used to refer
to the just-proved fact.5

I give a specific monad-based implementation of effectful syntax quota-
tions as a regular macro in Section 4.3. But before that, let us look at some
examples that illustrate the workings of the algorithm.

4.2.2 Examples

Given the following input,

def x := 1
def e := fun y => x
notation "const" e => fun x => e
def y := const x

a Lean-like system using the presented expansion algorithm should incre-
mentally parse, expand, and elaborate each declaration before advancing
to the next one. For a first, trivial example, let us focus on the expansion
of the second line. At this point, the global context contains the symbol
x (plus any default imports that we will ignore here). Descending into
the right-hand side of the definition, the expander first adds y to the local
context. The reference x does not match any local definitions, so it binds to
the matching top-level definition.

In the next line, the built-in notation macro expands to the two declara-
tions

syntax "const" term : term
macro_rules

| `(const $e) => `(fun x => $e)

5 https://github.com/leanprover/lean4/blob/6d0c91c/src/Init/Notation.lean#
L204-L207

70

https://github.com/leanprover/lean4/blob/6d0c91c/src/Init/Notation.lean#L204-L207
https://github.com/leanprover/lean4/blob/6d0c91c/src/Init/Notation.lean#L204-L207

4.2 Hygiene Algorithm

When a top-level macro application unfolds to multiple declarations, we
expand and elaborate these incrementally as well to ensure that declara-
tions are in the global context of subsequent declarations from the same
expansion. When recursively expanding the macro_rules declaration (we
will assume for this example that macro_rules itself is a core form) in the
global context {x, e}, we first visit the syntax quotation on the left-hand
side. The identifier e inside of it is in an antiquotation and thus not
captured by the quotation. Instead it is a pattern variable, so we add e
to the local context before visiting the right-hand side, where we find the
quotation-captured identifier x and annotate it with the matching top-level
definition of the same name; we do not yet know that it is in a binding
position. When visiting the reference e, we see that it matches a local
binding and do not add top-level scopes.

macro_rules
| `(const $e) => `(fun x{x} => $e)

Visiting the last line

def y := const x

with the global context {x, e}, we descend into the right-hand side. We
expand the const macro given a fresh macro scope 1, which is applied to
any captured identifiers.

def y := fun x.1{x} => x

We add the symbol x.1 (discarding the top-level scope x) to the local
context and finally visit the reference x. The reference does not match the
local binding x.1 but does match the top-level binding x, so it binds to the
latter.

def y := fun x.1 => x

Now let us briefly look at a more complex example of a macro-macro,
that is, a macro generating another macro, demonstrating use of the macro
scopes stack:

macro "m" n:ident : command => `(
def f := 1
macro "mm" : command => `(

def $n := f + 1
def f := $n + 1))

71

4 A Macro System for Theorem Provers

If we use this macro as in m f, we apply a fresh macro scope 1 to all captured
identifiers, then incrementally process the two new declarations.

def f.1 := 1
macro "mm" : command => `(

def f := f.1{f.1} + 1
def f.1{f.1} := f + 1)

If we use the new macro mm, we apply one more macro scope 2.

def f.2 := f.1.2{f.1} + 1
def f.1.2{f.1} := f.2 + 1

When processing these new definitions, we see that the scopes ensure the
expected name resolution.

def f.1 := 1
. . .
def f.2 := f.1 + 1
def f.1.2 := f.2 + 1

In particular, we now have global declarations f.1, f.2, and f.1.2 that show
that storing only a single macro scope would have led to a collision.

4.3 Implementation

The implementation of the macro system is based on the Syntax type,
which we have seen in Section 3.4. The most relevant constructor for
hygiene is Syntax.ident.

inductive Syntax where
| ident (info : SourceInfo) (rawVal : String) (val : Name)

(preresolved : List (Nat × List String))
| . . .

Identifiers carry macro scopes inline in their Name while top-level scopes are
held in a separate list preresolved. The additional Nat is an implementation
detail of Lean’s hierarchical name resolution.

The type Name of hierarchical names precedes the implementation of
the macro system (indeed, we have seen its Lean 3 equivalent referenced
before in Section 2.3) and is used throughout Lean’s implementation for
referring to (namespaced) symbols.

72

4.3 Implementation

1 partial def expand : Syntax → ExpanderM Syntax
2 | `($id:ident) => do
3 let val : Name := getIdentVal id
4 let gctx ← getGlobalContext
5 let lctx ← getLocalContext
6 if lctx.contains val then
7 pure (mkIdent val)
8 else match resolve gctx val ++ getPreresolved id with
9 | [] => throw ("unknown identifier " ++ toString val)

10 | [(id, _)] => pure (mkIdent id)
11 | ids => pure (mkOverloadedIds ids)
12 | `(fun ($id : $ty) => $e) => do
13 let val := getIdentVal id
14 let ty ← expand ty
15 let e ← withLocal val (expand e)
16 `(fun ($(mkIdent val) : $ty) => $e)
17 | . . . -- other core forms
18 | _ => do
19 let t ← getTransformerFor stx.getKind
20 let stx ← withFreshMacroScope (t stx)
21 expand stx

Figure 4.1: Abbreviated implementation of a recursive expander for the macro
system

inductive Name where
| anonymous
| str (base : Name) (s : String)
| num (base : Name) (n : Nat)

The syntax `a.b is a literal of type Name for use in meta-programs, just like
in Lean 3. The numeric part of Name is not accessible from the surface
syntax and reserved for internal names; similar designs are found in other
ITPs. By reusing Name for storing macro scopes, but not top-level scopes,
we ensure that the new definition of symbol from Section 4.2.1 coincides
with the existing Lean type and no changes to the implementation of the
local or global context are necessary for adopting the macro system.

A Lean 4 implementation of the expansion algorithm described in the
previous section is given in Fig. 4.1; the full, executable implementation

73

4 A Macro System for Theorem Provers

including examples is included in [Ullrich and de Moura, 2023]. As a gen-
eralization, syntax transformers in the full implementation have the type
Syntax → TransformerM Syntax where the TransformerM monad gives access
to the global context and a fresh macro scope per macro expansion. The
expander itself uses an extended ExpanderM monad based on TransformerM

that also stores the local context and the set of registered macros. We
use the Lean equivalent of Haskell’s do notation (see also Chapter 5) to
program in these monads.

As described in Section 4.2.1, the expander in Fig. 4.1 has built-in
knowledge of some “core forms” (lines 2-16) with special expansion
behavior, while all other forms are assumed to be macros and expanded
recursively (lines 19-21). Identifiers form one base case of the recursion. As
described in the previous section, their symbol is first looked up in the local
context (line 6; recall that the Name of an identifier includes macro scopes),
then as a fall back in the global context plus its own top-level scopes
(line 8). mkIdent : Name → Syntax creates an identifier without source
information or top-level scopes, which are not needed after expansion.
mkOverloadedIds implements the Lean special case of overloaded symbols
to be disambiguated by elaboration; systems without overloading support
should throw an ambiguity error instead in this case.

As an example of a core binding form, the expansion of a single-
parameter fun is shown in lines 12-16 of Fig. 4.1. It recursively expands
the given parameter type, then expands the body in a new local context
extended with the symbol value of id. Here getIdentVal : Syntax → Name

in particular implements the discarding of top-level scopes from binders.
Finally, in the macro case, we look up the syntax transformer for the

given syntax kind, run it in a new context with a fresh current macro scope,
and recurse on the expansion result.

Syntax quotations are one example of a macro: they do not have built-in
semantics but transform into code that constructs the appropriate syntax
tree (expandStxQuot in Fig. 4.2). More specifically, a syntax quotation
will, at run time (of the surrounding macro), query the current macro
scope msc from the surrounding TransformerM monad (code generated by
expandStxQuot) and apply it to all captured identifiers (code generated
by quoteSyntax). quoteSyntax recurses through the quoted syntax tree,
reflecting its constructors. Basic datatypes such as String and Name are
turned into Syntax via the typeclass method quote. For antiquotations, we
return their contents unreflected. In the case of identifiers, we resolve

74

4.3 Implementation

1 partial def quoteSyntax : Syntax → TransformerM Syntax
2 | Syntax.ident info rawVal val preresolved => do
3 let gctx ← getGlobalContext
4 let preresolved := resolve gctx val ++ preresolved
5 `(Syntax.ident SourceInfo.none $(quote rawVal)
6 (addMacroScope $(quote val) msc) $(quote preresolved))
7 | stx@(Syntax.node k args) =>
8 if isAntiquot stx then pure (getAntiquotTerm stx)
9 else do

10 let args ← args.mapM quoteSyntax
11 `(Syntax.node $(quote k) $(quote args))
12 | Syntax.atom info val => `(Syntax.atom SourceInfo.none $(quote val))
13 | Syntax.missing => pure Syntax.missing
14
15 def expandStxQuot (stx : Syntax) : TransformerM Syntax := do
16 let stx ← quoteSyntax (stx.getArg 1)
17 `(do msc ← getCurrMacroScope; pure $stx)

Figure 4.2: Simplified syntax transformer for syntax quotations

possible global references at compile time and reflect them, while msc is
applied at run time. Thus a quotation `(a + $b) inside a global context
where the symbol a matches declarations a.a and b.a is transformed to the
equivalent of

do let msc ← getCurrMacroScope
pure (Syntax.node `plus [

Syntax.ident SourceInfo.none "a" (addMacroScope `a msc)
[`a.a, `b.a],

Syntax.atom SourceInfo.none "+",
b])

This implementation of syntax quotations itself makes use of syntax
quotations for simplicity and thus is dependent on its own implementation
in the previous stage of the compiler (Section 6.4). Indeed, the helper
variable msc must be renamed should the name already be in scope and
used inside an antiquotation.6 Note that quoteSyntax is allowed to reference

6 As long as no such case exists, a hygienic implementation of syntax quotations can be

75

4 A Macro System for Theorem Provers

the same msc as expandStxQuot because they are part of the same macro
call and the current macro scope is unchanged between them. While
alternative approaches that use fresh macro scopes on function calls within
a macro are thinkable, we prefer the presented behavior, which matches
that of the Scheme family, because it preserves referential transparency: if
quoteSyntax is inlined into expandStxQuot, the behavior is unchanged.

4.3.1 Extended Quasiquotations

Automatic hygiene can greatly simplify development of macros, but a
convenient way for constructing and destructing syntax is at least as
important. Before we get to more complex macro examples below, I will
describe some syntactic extensions to quotations and antiquotations I have
implemented that will come in useful.

A first obvious such extension is to allow quotations including antiquo-
tations as patterns such as after match or fun.

fun
| `(()) => . . .
| `(($e)) => . . .
| `(($e, $f)) => . . .

Because every use of patterns eventually unfolds to a match in Lean, this is
in fact implemented as a macro that expands match terms with quotation
patterns into ones without such patterns. Note also that because no new
syntactic identifiers are generated while matching against a quotation,
there is no issue of hygiene with quotation patterns.

For syntax with repeated parts, antiquotation splices enable us to match
or introduce these parts as a whole. For example, a recursive macro for
n-tuple syntax can be written as

macro_rules
| `(()) => `(Unit.unit)
| `(($e)) => e
| `(($e, $es,*)) => `(Prod.mk $e ($es,*))

Here $es,* matches/introduces the remaining elements of the tuple, includ-
ing its separators. Analogous splicing syntax exists for other separators,

bootstrapped from an unhygienic one, which is what I did in the case of Lean.

76

4.3 Implementation

as well as $x* for separator-less iteration. At most one splice can be used
per sequence in the case of syntax patterns, but it can be pre- and suffixed
with an arbitrary (but fixed) number of other elements.

In $x*, x has type Array Syntax, the same type as the second argument of
the node constructor. For $x,* and similar we instead use the dependent
wrapper type SepArray "," that provides convenience access functions
for the sequence both with and without separator elements. Finally, we
also provide implicit coercions between these types that automatically
insert/remove/replace the separators accordingly.

While exposing splices as typed values in this way ensures that we
can comfortably process or synthesize them procedurally as well, it is
often more convenient to inspect splice contents immediately as part of
the quotation. For this we support extended splices $[. . .]* etc. where
the splice content is parsed like an element of the sequence and can
contain nested antiquotations. If used as a pattern, the match succeeds if
and only if the nested pattern matches every element, in which case the
contained antiquotations are each bound to an Array of all corresponding
element-wise matches.

match stx with
| `(match $discr with $[| $patss,* => $branches]*) =>
-- discr : Syntax
-- patss : Array (SepArray ",")
-- branches : Array Syntax
. . .

By default, quotations are parsed as either terms or top-level commands,
since these syntactic categories are both commonly used and should usually
be disjoint. Other syntactic categories, e.g. the category of universe levels
that heavily overlaps with term, can be specified explicitly at the beginning
of a quotation. Similarly, antiquotations can be suffixed with a colon
followed by a category or syntax kind where otherwise ambiguous.

match levelStx with
| `(level| $id:ident) => . . . -- a universe variable
| `(level| _) => . . . -- a universe placeholder
| `(level| $l) => . . . -- any (other) universe term

When no kind is given, the parser always defaults to the outermost
applicable meaning in the grammar, e.g. $l:level above and not the more
specific $l:ident from a nested grammar rule.

77

4 A Macro System for Theorem Provers

1 macro_rules
2 | `(fun
3 | $ps1,* => $rhs1
4 $alts:matchAlt*) => do
5 let discrs ← ps1.getElems.mapM (fun _ => withFreshMacroScope `(x))
6 `(fun $discrs* =>
7 match $[$discrs:ident],* with
8 | $ps1,* => $rhs1
9 $alts:matchAlt*)

Figure 4.3: A macro rule for expanding a combined fun-match syntax.

For a full example of using these and other features, we can look at a
macro rule unfolding syntax such as

fun
| some a, some b => some (a + b)
| _, _ => none

into
fun x.1 x.2 =>
match x.1, x.2 with
| some a, some b => some (a + b)
| _, _ => none

The macro rule (Fig. 4.3) derives the number of discriminants (x.1, x.2 in
the example) from the number of patterns of the first alternative; if other
alternatives have differing number of patterns, it will lead to an elaboration
error in match later on. The macro then introduces a lambda abstraction
over a sequence of fresh variable names of this number and subsequently
matches on them using the given patterns.

It does so by matching on the first alternative of the match in detail, then
capturing the remaining ones in alts : Array Syntax. The left-hand side
ps1 of the first alternative is a SepArray ",", so we use getElems to access its
elements and generate a fresh variable for each of them, which we do by
running the single quotation `(x) repeatedly under withFreshMacroScope,
annotating the variable with a unique macro scope each time.7

7 This is comparable to a call to the gensym function found in many Lisp systems.

78

4.4 Typed Syntax

With discrs : Array Syntaxgenerated, we insert it into the final quotation,
once as a straight sequence after fun and once separated by commas after
match, followed by the alternatives copied from the input without changes.
Note that $discrs:ident* would not have worked in this case because
identifiers are merely a special case of the more general match discriminant
syntax that allows prefixing a discriminant with h:, where the identifier h

will then hold the proof that the discriminant matched the corresponding
pattern. Thus there is no direct identifier sequence to insert and we have
to instead say that we insert a sequence of general discriminants, each one
built up of an identifier without a proof variable prefix, which internally
will wrap each element in an additional syntax tree node of the matchDiscr

kind. This necessary disambiguation of overlapping syntax sadly is a price
we have to pay for our preference of such syntax over more regular but
verbose one such as S-expressions.

Finally, for the sake of completeness I will mention the token antiquotation
syntax %$x that any token can be suffixed with to extract/set its SourceInfo

metadata. This kind of antiquotation is mostly useful for displaying errors
on specific tokens and preserving metadata in transformations.

| `(tactic| case $tag =>%$arrTk $tac) => do
. . .
reportUnsolvedGoalsAt arrTk

. . .

case cons => skip
--^ unsolved goals displayed here

4.4 Typed Syntax

In the previous section, I mentioned how overlapping syntax can complicate
macro development compared to e.g. S-expression-based systems. As one
major refinement after publishing of the conference and journal paper, I
have sought to rectify this downside by introduction of a more type-safe
version of the homogeneous Syntax type and its integration into the macro
system.

For an even more drastic example of this issue, take the following macro
implementation.

79

4 A Macro System for Theorem Provers

syntax "mk_0" ident : command
macro_rules

| `(mk_0 $id) => `(def $id := 0)

The macro looks innocent enough: given an identifier, it expands to a new
declaration of that name that evaluates to zero. Unfortunately, it in fact
creates an invalid syntax tree in the macro system described so far, and
to understand why, we would need to look deep into the grammar of
def, where we would find a parser declaration roughly equivalent to the
following:

syntax declId := ident (".{" ident,+ "}")?
syntax defCmd := "def" declId . . .

Thus def is not actually followed just by an identifier but a “declaration
identifier”, which is an identifier optionally followed by a declaration of
universe levels of the form id.{l, . . .}. As a missing optional part is still
encoded as an empty node constructor in the syntax tree, the syntax tree
structure of declId is always different from ident and it is never correct to
pass a syntax tree of one of these kinds where the other is expected as the
macro does above; instead, syntax kind annotations have to be applied
carefully as in def $id:ident in order to insert the syntax tree at the correct
location and make the parser emit the empty node for the missing optional
part. The only reason the macro did not lead to some elaboration failure in
previous versions of Lean 4 is that the mistake was so common that the def

elaborator explicitly checked for this case and accepted the raw identifier
in place of the declId.

Obviously a more robust solution was needed. As this issue is similar to
a traditional type confusion error even if syntax kinds are not directly Lean
types, I have implemented a new component of the macro system that
lifts them to the type level via a wrapper structure over the homogeneous
Syntax type.

structure TSyntax (kinds : List Name) where
raw : Syntax

A value of type TSyntax ks is supposed to contain a syntax node of any
kind listed in ks. Most often this list consists of a single element, and there
is a coercion eliding the list for this common case as in TSyntax `declId.
While the new type can by itself be helpful for giving more precise type
signatures such as getIdentVal : TSyntax `ident → Name, the crucial part

80

4.4 Typed Syntax

is integration into the quasiquotation elaborator, which provides the main
ways of producing and consuming typed syntax: a quasiquotation with or
without kind annotation, both inside a pattern and outside, now always
is of type TSyntax ks where ks contains the applicable syntax kinds at
this position in the input, following the same outermost rule as described
above. Thus in `($e) we still end up with e : TSyntax `expr and not a
list containing `expr as well as all specific expr kinds, which would be a
large unhelpful list that because of extensibility could not be exhaustive
in any case. A non-singleton kind list mostly occurs from uses of the
non-extensible <|> alternation operator instead of an extensible syntax
category.

syntax "strOrNum" (str <|> num) : term
macro_rules
| `(strOrNum $x) => . . . -- x : TSyntax [`str, `num]

Finally, splices analogously have been changed to use kind-safe types
representing sequences of TSyntax objects with and without separators.

With this system in place, our original macro now raises a type error
instead of silently creating invalid syntax trees when executed.

macro_rules
| `(mk_0 $id) => `(def $id := 0) argument

id
has type

TSyntax `ident : Type
but is expected to have type

TSyntax `declId : Type

However, we can do even better: instead of using types merely to re-
ject invalid programs, we can use them to fix our programs as well. As the
given macro implementation is still intuitively reasonable to us, we can
make sure it is accepted as is with Lean taking care of the uninteresting
detail of kind conversion by registering a coercion implementing that part,
which is now part of the Lean core library:

instance : Coe (TSyntax `ident) (TSyntax `declId) where
coe id := Unhygienic.run `(declId| $id:ident)

Here Unhygienic.run allows us to run the effectful quotation in a pure
context, which is safe to do as long as there are no identifiers introduced

81

4 A Macro System for Theorem Provers

by the quotation like in this case. While it would be possible to derive such
coercions automatically from the grammar, it is not clear to us whether
that is always desirable, and we found that in practice a few key coercions
are sufficient to reduce the need for explicit kind annotations.

Our experience with the new typed syntax system has been very positive.
It has successfully prevented users from falling into kind confusion traps
as above and removed the need for reflexively specifying kind annotations
for all antiquotations out of an abundance of caution because the previous
rules were too subtle to rely on in practice.

4.5 Integrating Macros into Elaboration

The macro system as described so far can handle most syntax sugars of
previous versions of Lean except for (then built-in) ones requiring type
information. For example, the anonymous constructor ⟨e, . . .⟩ is sugar for the
application (c e . . .) if the expected type of the expression is known and it
is an inductive type with a single constructor c. While trivial to parse, there
is no way to implement this syntax as a macro if expansion is done strictly
prior to elaboration. A more complex example is the structure instance
notation { field1 := e, . . . } that must analyze the definition of the given
or inferred structure type in order to expand to the correct constructor call.
To the best of my knowledge, none of the ITPs listed in the introduction
support hygienic elaboration extensions of this kind, but I will show how
to extend their common elaboration scheme in that way in this section.

Elaboration8 can be thought of as a function elabTerm : Syntax → ElabM

Expr in an appropriate monad ElabM9 from a (concrete or abstract) surface-
level syntax tree type Syntax to a fully-specified core term type Expr. The
particular definition of Expr is not important in the following. While such
an elaboration system could readily be composed with a type-insensitive
macro expander such as the one presented in Section 4.2, we would rather
like to intertwine the two to support type-sensitive but still hygienic-by-
default macros (henceforth called elaborators) without having to reimple-
ment macros of the kind discussed so far. Indeed, these can automatically

8 at the term level; elaboration of other syntactic categories works analogously but with
different output types

9 or some other encoding of effects

82

4.5 Integrating Macros into Elaboration

be adapted to the new type given an adapter between the two monads,
similarly to the adaption of macros to expanders in [Dybvig et al., 1986]:

def transformerToElaborator (t : Syntax → TransformerM
Syntax) :
Syntax → ElabM Expr :=
fun stx => do
let stx' ← (transformerMToElabM t) stx
elabTerm stx'

Because most parts of the new hygiene system are implemented by the
expander for syntax quotations, the only changes to an elaboration system
necessary for supporting hygiene are storing the current macro scope in the
elaboration monad (to be passed to the expansion monad in the adapter)
and allocating a fresh macro scope whenever a macro or elaborator is
invoked. Thus elaborators immediately benefit from hygiene as well
whenever they use syntax quotations to construct unelaborated helper
syntax objects to pass to elabTerm. In order to support syntax quotations
in these two and other monads, I generalized their implementation to a
new monad typeclass implemented by both monads.

class MonadQuotation (m : Type → Type) where
getCurrMacroScope : m MacroScope
withFreshMacroScope : m α → m α

The second operation is not used by syntax quotations directly, but can be
used by procedural macros and elaborators to manually enter new macro
call scopes.

As an example, the following is a simplified implementation of the
anonymous constructor syntax mentioned above.

elab_rules <= expectedType
| `(⟨$args,*⟩) => do

match Expr.getAppFn expectedType with
| Expr.const constName _ => do

let ctors ← getCtors constName
match ctors with
| [ctor] => do

let stx ← `($(mkCIdent ctor) $args*)
elabTerm stx

83

4 A Macro System for Theorem Provers

elab_rules is analogous to macro_rules: instead of a transformer, it expects
a computation in the elaboration monad returning Expr (when given a
term syntax). Additionally, the expected type can be requested as an
additional elaboration input after <=. If the type is not sufficiently known
when the elaborator is invoked, it is automatically postponed (Section 3.5).
The function mkCIdent : Name → Syntax synthesizes a hygienic reference to
the given constant name by storing it as a top-level scope and applying
a reserved macro scope to the constructed identifier. Note the monadic
binding of the syntax quotation, and that the separators of $args,* are
implicitly discarded when it is used as a plain sequence $args*.

4.6 Tactic Hygiene

As we have seen in Chapter 2, Lean 3 includes a tactic framework that, much
like macros, allows users to write custom automation either procedurally
inside a tactic monad or “by example” using tactic language quotations, or
in a mix of both. For example, Lean 3 uses a short tactic block to prove
injection lemmas for data constructors.

def mkInjEq : TacticM Unit :=
`[intros; apply propext; apply Iff.intro; . . .]

Unfortunately, this code unexpectedly broke in Lean 3 when used from a
library for homotopy type theory that defined its own propext and Iff.intro

declarations;10 in other words, Lean 3 tactic quotations are unhygienic and
required manual intervention in this case. Just like with macros, the issue
with tactics is that binding structure in such embedded terms is not known
at declaration time. Only at tactic run time do we know all local variables
in the current context that preceding tactics may have added or removed,
and therefore the scope, if any, of each identifier captured in the quotation.

Arguably, the Lean 3 implementation also exhibits a lack of hygiene
in the handling of tactic-introduced identifiers: it does not prevent users
from referencing such an identifier outside of the scope it is declared in.

def myTac : TacticM Unit := `[intro h]
lemma triv (p : Prop) : p → p := begin myTac; exact h end

10 https://github.com/leanprover/lean/pull/1913

84

https://github.com/leanprover/lean/pull/1913

4.6 Tactic Hygiene

Coq’s similar Ltac tactic language [Delahaye, 2000] exhibits the same
issue and users are advised not to introduce fixed names in tactic scripts
but to generate fresh names using the fresh tactic first,11 which can be
considered a manual hygiene solution.

Lean 4 instead extends its automatically hygienic macro implementation
to tactic scripts by allowing regular macros in the place of tactic invocations.

macro "myTac" : tactic => `(intro h; exact h)
theorem triv (p : Prop) : p → p := by myTac

By the same hygiene mechanism described above, introduced identifiers
such as h are renamed so as not to be accessible outside of their original
scope, while references to global declarations are preserved as top-level
scope annotations. Thus Lean 4’s tactic framework resolves both hygiene
issues discussed here without requiring manual intervention by the user.
Expansion of tactic macros in fact does not precede but is integrated into the
tactic interpreter evalTactic : Syntax → TacticM Unit such that recursive
macro calls are expanded lazily, allowing for combinators like repeat that
would otherwise lead to infinite recursion during expansion.

syntax "repeat" tactic : tactic
macro_rules
| `(tactic| repeat $t) => `(tactic| try ($t; repeat $t))

Note that the macro shorthand cannot be used in this case because the
parser for repeat would not yet be available in the right-hand side. When
$t eventually fails, the recursion is broken without visiting and expanding
the subsequent repeat macro call. The try tactical is used to ignore this
eventual failure.

While we believe that macros will cover most use cases of Lean 3’s tactic
quotations in Lean 4, their use within larger TacticM metaprograms can be
recovered by passing such a quotation to evalTactic:

def myTac2 : TacticM Unit := do
let stx ← `(tactic| intro h; exact h)
evalTactic stx

TacticM implements the MonadQuotation typeclass for this purpose.

11 https://github.com/coq/coq/issues/9474

85

https://github.com/coq/coq/issues/9474

4 A Macro System for Theorem Provers

4.7 Best-Effort Eager Name Analysis in Macros

The dynamic nature of binding in macros has enabled us to implement
many Lean language features as macros, with hygiene guaranteeing that
bindings within the macro do not interfere with ones outside of it. However,
while knowing that a mistyped identifier in a macro will not be accidentally
be bound by bindings at the use site is great in theory, in practice it would be
even better to be told about the typo immediately while writing the macro!
This is especially true when renaming a declaration, either manually where
we might accidentally miss an occurrence of it inside a macro and then
must track name binding errors at use sites back to the responsible macro,
or automatically where refactoring tools must treat macros as black boxes.
After all, a static view of a notation’s binding structure is exactly what
we gave up in this chapter’s introduction in exchange for the ability to
arbitrarily abstract over bindings. For example, there is no general way to
statically analyze whether x inside the following quotation is well-scoped
given an arbitrary computation resulting in stx:

let stx ← . . .
`(fun $stx => x)

With this theoretical limitation in mind, and given that this is more of a
practical issue of maintenance, perhaps a practical, best-effort solution
is sufficient as long as we retain all hygiene guarantees. I have done so
with an opt-in, partial but extensible approach to eager name resolution in
macros based on a variant of our quotation syntax.12

``(fun x => x + $y + id z) -- error: unknown identifier 'z'

A double-backtick quotation eventually unfolds to the basic, single-backtick
version and thus retains all its semantics. Before that, however, it recur-
sively checks for identifiers that can statically be assumed to be unbound
using the following heuristics:

1. If there is a special precheck hook registered for the syntax kind in
question, we use it. Precheck hooks can signal binding errors as well
as recursively continue the precheck on nested syntax, possibly with

12 Note that, in contrast to Lean 3, the meaning of the number of backticks before a quotation
or name literal is consistent in Lean 4: in both cases, the second backtick adds static name
resolution.

86

4.7 Best-Effort Eager Name Analysis in Macros

an extended (untyped) quotation context, which is initially empty. For
example, we provide a precheck hook for fun x => e that recurses
into e after adding x to the quotation context. The central identifier
precheck hook ultimately raises an error if an identifier is reached
that is neither in the global, extra-macro context, nor in the quotation
context. Other examples for precheck hooks I have added are for
match and function application.

2. Otherwise, if there are no identifiers in the quoted syntax, we assume
that there is no risk of unbound ones, and the check succeeds. In
particular, antiquotations (which contain unquoted identifiers only)
are always skipped.

3. Otherwise, if the quoted syntax is a macro, we unfold it and precheck
the result. Here we assume that the macro is sufficiently good-
natured: while macros are pure functions by definition in Lean, their
behavior and in particular binding structure could in theory change
drastically enough in the presence of antiquotations that it could lead
to false positives of this analysis. If that is the case, the user either
has to provide a custom precheck hook for it, or fall back to the basic
quotation syntax.

In contrast to macros, we cannot typically run elaborators directly
during this check because they usually depend on type information
that is not yet available, and are not guaranteed to be pure.

4. Otherwise the check fails since we do not know how to analyze the
syntax at hand. Again, users would either have to provide a precheck
hook, or use the single-backtick quotation syntax.

This approach is clearly best-effort with many opportunities for unhandled
cases. However, since it is guaranteed that after the check the semantics
are the same as for the basic quotation syntax, including unchanged
hygiene guarantees, we believe that the practical advantages of using the
syntax where possible are significant. In particular, we have observed that
quotations capturing global identifiers, which are most at risk of breaking
during refactorings, are usually quite simple while complicated quotations
that are used to translate one syntax into a more general one often do not
reference any identifiers at all, and thus are trivially accepted by rule 2
from above.

87

4 A Macro System for Theorem Provers

This is especially true for notation right-hand sides, which are usually
exceedingly simple in structure, most often consisting of nothing but an
application of a global function symbol to the notation arguments, which
is covered by the identifier and application precheck hooks. Thus I have
modified the notation macro to use double-backtick quotations by default
in order to make users immediately aware of any unbound identifiers
inside of them, restoring its Lean 3 behavior (where the absence of macros
naturally allowed for such a check).

notation "∃" x "," e => Exits.intro (fun x => e) -- error: unknown
identifier 'Exits.intro'

We provide an option to disable this change, though all notations in the
standard library passed the additional check without modification. The
check did on the other hand find a notation example in our documentation
that contained an accidentally unbound identifier.

4.8 Related Work

The main inspiration behind the hygiene implementation presented in this
chapter was Racket’s Sets of Scopes hygiene algorithm [Flatt, 2016]. Much
like in the approach described above, Racket annotates identifiers both
with scopes from their original context as well as with additional macro
scopes when introduced by a macro expansion. However, there are some
significant differences: Racket stores both types of scopes in a homogeneous,
unordered set and does name resolution via a maximum-subset check. For
both simplicity of implementation and performance, I have reduced scopes
to the bare minimal representation using only strict equality checks, which
we can easily encode in our existing Name implementation. In particular, we
only apply scopes to matching identifiers and only inside syntax quotations.
This optimization is of special importance because top-level declarations
in Lean and other ITPs are not part of a single, mutually recursive scope
as in Racket, but they each open their own scope over all subsequent
declarations, which would lead to a total number of scope annotations
quadratic in the number of declarations using the Sets of Scopes algorithm.
Finally, Racket detects macro-introduced identifiers using a “black-box”
approach without the macro’s cooperation following the marking approach
of [Kohlbecker et al., 1986]: a fresh macro scope is applied to all identifiers

88

4.8 Related Work

in the macro input, then inverted on the macro output. While elegant, a
naive implementation of this approach can again result in quadratic runtime
compared to unhygienic expansion and requires further optimizations in
the form of lazy scope propagation [Dybvig et al., 1993], which is more
difficult to implement in a pure language like Lean. Lean’s “white-box”
approach based on the single primitive of an effectful syntax quotation,
while slightly easier to escape from in procedural syntax transformers,
is simple to implement, incurs minimal overhead, and is equivalent for
pattern-based macros.

The idea of automatically handling hygiene in the macro, and not in
the expander, was introduced in [Clinger and Rees, 1991], though only
for pattern-based macros. MetaML [Taha and Sheard, 2000] refined this
idea by tying hygiene more specifically to syntax quotations, which
Template Haskell [Sheard and Peyton Jones, 2002] interpreted as monadic
computations requiring access to a fresh-names generator, much like
in our design. However, both of the latter systems should perhaps be
characterized more as metaprogramming frameworks than Scheme-like
macro systems: there are no “macro calls” but only explicit splices and
so only built-in syntax with known binding semantics can be captured
inside syntax quotations. Thus the question of which captured identifiers
to rename becomes trivial again, just like in the basic notation systems
discussed in this chapter’s introduction.

While the vast majority of research on hygienic macro systems has
focused on S-expression-based languages, there have been previous efforts
on marrying that research with non-parenthetical syntax, with different
solutions for combining syntax tree construction and macro expansion.
The Dylan language requires macro syntax to use predefined termina-
tors and eagerly scans for the end of a macro call using this knowl-
edge [Bachrach et al., 1999], while in Honu [Rafkind and Flatt, 2012] the
syntactic structure of a macro call is discovered during expansion by a
process called “enforestation”. The Fortress language [Allen et al., 2005]
strictly separates the two concerns into grammar extensions and trans-
former declarations, much like we do. Dylan and Fortress are restricted
to pattern-based macro declarations and thus can make use of simple
hygiene algorithms while Honu uses the full generality of the Racket
macro expander. On the other hand, Honu’s authors “explicitly trade
expressiveness for syntactic simplicity” [Rafkind and Flatt, 2012]. In order
to express the full Lean language and desirable extensions in a macro

89

4 A Macro System for Theorem Provers

method my_allI =
rule_tac allI, rename_tac escaped

lemma "∀ x. x = x"
apply my_allI
apply (rule_tac t = escaped in refl)

Figure 4.4: Unstructured Eisbach proof method that unhygienically introduces an
identifier escaped that can be used outside of its original scope.

system, we require both unrestricted syntax of macros and procedural
transformers.

Many of the antiquotation extensions presented in Section 4.3.1 have
been inspired by similar syntax in Rust’s pattern-based macro language,
though we have opened their use to procedural macros as well, using
appropriate type representations.

Many theorem provers such as Agda, Coq, Idris, and Isabelle not already
based on a macro-powered language provide restricted syntax extension
mechanisms, circumventing hygiene issues by statically determining
binding as seen in this chapter’s introduction. Extensions that go beyond
that do not come with automatic hygiene guarantees. Agda’s macros,13 for
example, operate on the de Bruijn index-based core term level and are not
hygienic.14 The ACL2 prover in contrast uses a subset of Common Lisp as
its input language and adapts the hygiene algorithm of [Dybvig et al., 1993]
based on renaming [Eastlund and Felleisen, 2010]. The experimental Cur
theorem prover [Chang et al., 2019] is a kind of dual to Lean’s approach: it
takes an established language with hygienic macros, Racket, and extends
it with a dependent type system and theorem proving tools. ACL2
does not support tactic scripts, while in Cur they can be defined via
regular macros. However, this approach does not currently provide
tactic hygiene as defined in Section 4.6.15 The Eisbach proof method
language [Matichuk et al., 2016] for Isabelle is notable in that while it

13 https://agda.readthedocs.io/en/v2.6.0.1/language/reflection.html#macros
14 https://github.com/agda/agda/issues/3819
15 https://github.com/wilbowma/cur/issues/104

90

https://agda.readthedocs.io/en/v2.6.0.1/language/reflection.html#macros
https://github.com/agda/agda/issues/3819
https://github.com/wilbowma/cur/issues/104

4.8 Related Work

allows for reusable proof methods (comparable to Lean’s tactic macros) to
be abstracted over terms, these terms are analyzed and typechecked before
being passed to the proof method, and there is no interaction between
names in different proof methods either when using the “structured” proof
style, making the question of hygiene moot. Using the “unstructured”
proof style, the same hygiene issue as noted for other systems can be
encountered (Fig. 4.4).

91

I seek to stretch your imaginations towards what
programming can be if we choose to make it so
– Conor McBride, Epigram: Practical Programming

with Dependent Types [McBride, 2005] 5
An Imperative Extension of do

Notation

The success story of Haskell’s perhaps most well-known abstraction, the
monad as popularized by [Wadler, 1990a], is by now invariably linked
with its ubiquitous syntax sugar, the do notation. Together they can express
imperative sequencing on a more general, well-behaved abstraction level
while retaining a terse, familiar, and suggestive syntax. They are in fact
so commonly linked, and taught, together that programmers tend to use
them even when weaker, potentially more performant abstractions would
suffice [Marlow et al., 2016].

It is then surprising that no serious attempts to add more imperative
control flow techniques over just sequencing seem to have been made,
unless one considers that most of these only carry their weight in the
presence of mutable variables. For example, there is not much reason to
introduce an if _ then _ syntax without an else branch to Haskell when
there is already the when combinator that can be used to the same effect.
Mutable variables in turn are of course seen as an antithesis to purely
functional programming’s core tenet of referential transparency.

On the other hand, even imperative languages have started to rein
in mutability and make it the exception, not the rule. For example, in
Rust [Matsakis and Klock, 2014], let-bound variables are immutable un-
less explicitly marked mut, and mutable references are non-shareable to
prevent “spooky actions at a distance”. Ultimately, mutable variables
in imperative languages (excluding mutable references) are in fact com-
monly compiled down to static single assignment form [Rosen et al., 1988],
which is known to be equivalent to a subset of continuation passing
style [Kelsey, 1995], meaning it is certainly possible to transform them to

5 An Imperative Extension of do Notation

pure code.
Starting with mutable variables, I thus explore embracing imperative

language features as part of the do notation in this chapter. I do so in
the context of Lean 4, though the implementation can readily be adapted
to any other functional language with support for monads and monad
transformers. We will consider three extensions in total, which at this point
I merely want to tease using suggestive side-by-side examples of Rust and
Lean code:

• the mentioned mutable variables (Section 5.1),

let mut x = read_int();
if x != 0 {

x = f(x);
}
. . .

do let mut x ← readInt
if x != 0 then

x := f x
. . .

• early return (Section 5.2),

let line = read_line();
if line == "" {

return
}
. . .

do let line ← readLine
if line = "" then

return ()
. . .

• and finally iteration in the form of for loops (Section 5.3).

let lines = read_lines();
let mut sum = 0;
for line in lines {

if line == "END" {
break

}
sum += parse_int(line);

}
. . .

do let lines ← readLines
let mut sum := 0
for line in lines do

if line = "END" then
break

sum := sum + parseInt
line
. . .

94

5.1 Local Mutation

In each section, I will motivate the respective extension using examples,
discuss possible syntax and semantics, focusing on those that are least
surprising to both imperative and functional programmers, and give
formal translation rules into purely functional code. For validation of
the translation, I present an incremental, one-to-one implementation
using Lean’s flexible macro system in Appendix A and discuss it in
Section 5.4.1. I also discuss a more extensive implementation built into
Lean itself (Section 5.4.2). I show that the code produced by the translation
can still be analyzed and reasoned over using the same proof construction
tools we use for pure code (Section 5.5), and formally prove in Lean that the
translation preserves the input’s static and dynamic semantics specified as
a simple type system and natural semantics (Section 5.6; the full proof can
be found in Appendix B).

Contributions. In this chapter, I extend the do domain-specific language
with support for mutable variables as well as the familiar imperative
statements return, for, break, and continue, usable in both monadic and
pure computations. I give a formal translation of these extensions, backed
by a reference implementation and a formal equivalence proof in Lean,
down to well-known combinators so that the core language does not
have to be changed. Throughout, I discuss issues of syntax, semantics,
compilation, and proving.

Acknowledgements. The work described in this chapter is joint work
with Leonardo de Moura [Ullrich and de Moura, 2022b]. I designed the
language extension after discussions with Daniel Selsam about avoiding
boilerplate in monadic programming in Lean. Leo later added further
extensions such as try-catch blocks not described here. I authored the formal
translation rules below, the reference implementation in Appendix A, and
the semantics preservation proof in Appendix B; the full implementation
in Lean (Section 5.4.2) on the other hand is largely due to Leo.

5.1 Local Mutation

One incentive for introducing mutable variables to Lean was the prolifera-
tion of the following “conditional update” pattern in the Lean codebase:

95

5 An Imperative Extension of do Notation

do . . .
x ← if b then f x else pure x
. . .

One cannot help but notice that the else branch feels redundant: nothing
of interest is happening in it.1 While the boilerplate in this abstract case is
still minimal, the issue compounds in the presence of multiple variables
with names of more realistic length.

do . . .
(aVar, anotherVar) ← if someCondition then do

aVar ← transform1 aVar
anotherVar ← transform2 aVar anotherVar
pure (aVar, anotherVar)

else pure (aVar, anotherVar)
. . .

This code is still easy enough to scan and comprehend, but we would be
hard-pressed to defend it to e.g. a programmer coming from Rust, who
might expect something more like

do let mut aVar . . .
. . .
if someCondition then

aVar ← transform1 aVar
anotherVar ← transform2 aVar anotherVar
. . .

No matter how much we extoll the virtues of purely functional code to the
programmer, it is unlikely we can persuade them, or ourselves, that the
latter code is not easier to read, comprehend, and ultimately maintain. At
the same time, the boilerplate is mostly about bindings and not data so
that we cannot profitably abstract it into a new (higher-order) combinator.
Thus we finally relent and instead perform the before-unthinkable: we
will try to assign the above code semantics that are reasonable in the eyes
of both functional and imperative programmers.

Let us start by copying the careful approach of Rust and other languages
of introducing separate binding syntax for mutable variables: let mut x

1 Note that monadic bindings in both Haskell and Lean are non-recursive, thus shadowing
works as expected in this case.

96

5.1 Local Mutation

:= . . ., and let mut x ← . . . for the monadic form. This way, we can make
sure that users will not accidentally make use of local mutation without
even knowing it exists. For a thus introduced variable x, x := . . . seems like
the obvious choice of syntax for reassigning the variable to the value of a
pure term. Unfortunately, the corresponding syntax with a monadic← is
already taken. Since distinguishing between declaration and reassignment
is certainly a good idea, for Lean 4 we have decided on the drastic step of
realigning the monadic binding syntax to the pure one and changing the
syntax for introducing an immutable binding to let x ← . . . as seen in the
examples in the introduction2; we have seen the older Lean 3, Haskell-like
syntax without let in Section 2.2. Thus a variable-with-value definition in
Lean 4 is uniformly signified by the let keyword.

With syntactic questions out of the way, let us now turn to the expected
semantics, starting with the question of scope. Declaring a mutable variable
should grant us access to its value in the subsequent code just like with
immutable ones, but reassignment will have to be more limited: if there
is another do block nested anywhere inside the first one, say within an
argument to some monadic combinator, there is no way in general to
propagate reassignments back to the outer block without true mutation.
Neither changing the result type nor introducing a new monadic layer
to do the propagation is guaranteed to work (or even typecheck) in all
contexts of the inner block. Thus we will sensibly restrict reassignment
of a variable to the same do block it was declared in using let mut. This
also resolves the question as to how mutable variables should behave
when the block is executed multiple times: in any single execution, the
variable is first freshly declared and then mutated, so the executions are
independent. However, a similar but more subtle problem exists for some
specific monads, those that may execute the >>= right-hand side more than
once, such as the list/nondeterminism and the continuation monad:

do let mut x := 0
let y ← choose [0, 1, 2, 3]
x := x + 1
guard (x < 3)
pure (x + y)

2 In fact, the “new” syntax is reminiscent of the original monadic binding notation
(let x⇐ e in e′) in [Moggi, 1991].

97

5 An Imperative Extension of do Notation

In usual implementations of nondeterminism, this program will bind y
to the values 0 to 3 in turn, execute the remainder of the block with each
of them, and then collect all the results from the different executions in a
list. The guard function discards the “strands” of execution for which the
given condition is false. Should the reassignment of x then persist into
further executions, creating the output [1, 3], or should it be limited to
the current execution only, yielding [1, 2, 3, 4]? I argue that the more
intuitive (and implementable) semantics is the latter one, where local
mutation is interpreted as a local state effect on top of the underlying monad.
Thus re-running a nondeterministic computation or captured continuation
is still “pure”: mutable variables will start out with the same values as
in the first run. With the alternative semantics, it would not even be the
case that our initial examples from the beginning of the section are indeed
equivalent in all monads. If we wanted to implement these “impure”
semantics, we would to introduce the state effect below the nondeterminism
effect (or rely on existing arbitrary state from the base monad such as IO
or ST), which is not an option in general as not all monad transformers
commute.

Now that the desired semantics are established, let us start the discussion
of the formal translation of these semantics with a basic syntax and
desugaring of do similar to that in the Haskell 98 report [Peyton Jones, 2003]
(Figure 5.1). Here do is followed by one of two kinds of statements, which
are defined inductively: either a plain expression, or a monadic binding
followed by another statement. The value of an expression as a statement
is that of the expression (D1), while a monadic binding desugars to an
application of the monadic bind operator >>= (D2). We do not directly
rewrite occurrences of do into other do terms but do so using a recursive
helper function D, which will become useful starting with the next section.
For the sake of presentation, let us also introduce a syntax for pure let
bindings as an abbreviation for monadic bindings of applications of the pure
function (A1). In the translation rules, I will assume that all abbreviations
have already been unfolded. A more direct translation of pure let bindings
is certainly possible3, but equivalent in Lean under the standard monad
laws (Figure 5.2), so I will use this shortcut to minimize the number of

3 and necessary in languages like Haskell where pure and monadic bindings have different
shadowing/recursive semantics

98

5.1 Local Mutation

Syntax

x, y ∈ Var
e ∈ Expr ::= do s

| x | fun x => e | let x := e in e′ | e e′ | e >>= e′ | . . .

s ∈ Stmt ::= e

| let x ← s; s′

Translation

do s ⇝ D(s) (5.1)

D : Stmt→ Expr
D(e) = e (D1)
D(let x ← s; s′) = D(s) >>= fun x => D(s′) (D2)

Abbreviations

let x := e; s ≡ let x ← pure e; s (A1)
s; s' ≡ let x ← s; s' (A2)

Figure 5.1: A basic do translation

translation cases that we need to consider. Similarly, we will restrict
ourselves to variable bindings instead of more complex pattern bindings,
but the translation naturally extends to the latter, as is done in the full
implementation in Lean 4 (Section 5.4.2). Finally, we introduce statement
sequencing s; s' not as a primitive but as yet another abbreviation, in this
case for a binding to a fresh variable name x (contrasted by its monospace
font from metavariables in italics) (A2). For simplicity, I will assume in the
following that the underlying rewriting system is hygienic as is the case
for my reference implementation (Section 5.4.1) utilizing the macro system
presented in Chapter 4 in order to avoid conflicts between such identifiers
introduced by rewriting rules and user-specified names.

I note that the grammar as presented has been optimized for translation,

99

5 An Imperative Extension of do Notation

Operations

pure : α → m α

(>>=) : m α→ (α→ m β)→ m β

Laws

(x >>= f) >>= g = x >>= (fun a => f a >>= g) (5.2)
pure a >>= f = f a (5.3)
f >>= pure = f (5.4)

Figure 5.2: Basic monadic operations and their laws. pure is usually defined in
the more general Applicative typeclass, which comes with even more operations
and laws, but I will focus on monads for this chapter. In the first law and its
applications in the text we assume tacitly, w.l.o.g., that a is not free in g.

not parsing, and is thus ambiguous regarding the associativity of semi-
colons. I will tacitly assume that they always associate to the right and
will use parentheses where necessary, i.e. let x ← s1; s2; s3 represents
the same statement as let x ← s1; (s2; s3), not let x ← (s1; s2); s3 nor
(let x ← s1; s2); s3. In the reference implementation, I resolve the issue
using parsing precedences and a curly braces notation for grouping state-
ments. The full implementation in Lean also supports a Haskell-inspired
indentation-sensitive syntax as seen in this chapter’s introduction, which I
will use in examples.

The syntax from Figure 5.1 already diverges from that known from
Haskell or previous versions of Lean in two distinct ways: firstly, we
denote both kinds of bindings with a leading let keyword as discussed
above. Secondly, our monadic binding binds not just a term but another
statement. With the grammar at hand, this isn’t very useful yet because
nested bindings can always be floated out by the monad associativity law

100

5.1 Local Mutation

Syntax

s ∈ Stmt ::= . . .
| let mut x := e; s

| x := e

| if e then s

Abbreviations

let mut x ← s; s’ ≡ let y ← s; let mut x := y; s’ (A3)
x ← s ≡ let y ← s; x := y (A4)

Figure 5.3: Syntax of a do with local mutation

as follows:

D(let x ← (let y ← s; s′); s′′)
(D2)
= D(let y ← s; s′) >>= fun x => D(s′′)

(D2)
= (D(s) >>= fun y => D(s′)) >>= fun x => D(s′′)

(5.2)
= D(s) >>= (fun y => D(s′) >>= fun x => D(s′′))

(D2)
= D(let y ← s; (D(s′) >>= fun x => D(s′′)))

(D2)
= D(let y ← s; let x ← s′; s′′)

Nested bindings become a more interesting option when we add con-
trol flow statements, which we do together with adding syntax for local
mutation in Figure 5.3: let mut x := e; s introduces a mutable variable x
that can later (inside s) be reassigned using x := e. We introduce monadic
equivalents let mut x ← s; s' and x ← s by desugaring them to the se-
quence of a temporary, non-mutable monadic binding and the respective
pure statement (A3, A4), thus simplifying our translation by keeping
let x ← s; s' as the only primitive monadic binding.

In straight-line code, local mutation is not very interesting: in let

mut x ← s; . . . ; x ← s'; . . . , we could achieve the expected semantics by

101

5 An Imperative Extension of do Notation

replacing both bindings with let x ← . . . and relying on shadowing for
“mutation”.

Thus we also introduce the one-sided conditional statement if e then s
so local mutation becomes meaningful:

do let mut a ← f
if b a then

a ← g a
pure a

We could now introduce an abbreviation for two-sided if e then s1 else s2

statements as is done in the reference and full implementation, but I will
refrain from doing so here to avoid possibly confusing overlap between
our source and target language.

By the informal semantics discussed above, we expect the translation of
the above code block to be equivalent to the term

f >>= fun a => if b a then g a else pure a

Let us start by unfolding all abbreviations we have introduced.
do let y ← f

let mut a := y
let x ←

if b a then
let y' ← g a
a := y'

pure a

We can easily eliminate the mutable variable by passing the updated state
outwards, much like we did manually in our very first example in this
section:

do let y ← f
let a := y
let (x, a) ←
if b a then

let y' ← g a
let a := y'
pure ((), a)

else
pure ((), a)

pure a

By the monad laws, this is in fact equivalent to the expected term. The

102

5.1 Local Mutation

Lean compiler as well manages to simplify this code in practice using
well-known functional optimizations such as case of case and case of con-
structor [Peyton Jones, 1996] for specific instances of pure and >>= that can
be inlined. For example, for the Reader monad, the generated code for the
example is the IR equivalent of

fun r =>
let a := f r
match b a with
| false => a
| true => g a r

Experienced purely functional programmers might notice a familiar
pattern in the state-returning code: putting the “return value” and state
into a pair and then extracting them at >>= mirrors the implementation of
the StateT monad transformer (Figure 5.4). Indeed, we can rewrite the
code using it:

do let y ← f
let a := y
StateT.run' (do

let x ←
if b a then
let y' ← StateT.lift (g a)
set y'

else
StateT.lift (pure ())

let a ← get
pure a) a

Here we introduce a state effect for the mutable variable a using StateT.run',
then get and set the current value inside. All existing monadic actions
are lifted to the base monad using StateT.lift (which is a no-op for the
specific case of pure).

For this simple example, the StateT code is not exactly simpler than the
previous version. However, the main motivation for abstracting translation
of mutable variables into a separate effect is that it does not only simplify
the presentation of that translation, but it will also ensure modularity of our
extension with others defined similarly: by separating every extension into
its own effect, we can layer them naturally without having to manually
reconcile their interaction. In other words, while we might need to add

103

5 An Imperative Extension of do Notation

Operations

StateT.run' : StateT σ m α → σ → m α

StateT.lift : m α → StateT σ m α

get : StateT σ m σ

set : σ → StateT σ m Unit

Properties

StateT.run' (pure a) s = pure a

StateT.run' (StateT.lift x >>= f) s = x >>= fun a =>

StateT.run' (f a) s

StateT.run' (get >>= f) s = StateT.run' (f s) s

StateT.run' (set s' >>= f) s = StateT.run' (f ()) s'

Figure 5.4: StateT monad transformer operations and relevant properties for
reasoning about them. Note that Lean’s set method is called put in Haskell.

new translation rules for local mutation when introducing new do syntax
in later sections, we will not have to modify existing rules for them. We
will not have to worry about how to preserve the state on break, nor about
how return inside loops has to be handled.

Figure 5.5 gives a formal translation of mutable variables to state effects:
when encountering the definition of a mutable variable y, we use the helper
function Sy to lift the following statements, i.e. y’s scope, into the state
transformer and rewrite them appropriately (D3). For monadic actions
e, we do this with StateT.lift (S1). We use the shadowing approach for
binding the current value of y, starting with its initial value in (D3), so we
need to rebind it after reassignments as well as at possible control flow
join points. In our reduced grammar, this can only be the case between
the two statements in let x ← s; s′, so we add a binding let y ← get in
between them (S2). This step could of course be elided if there are no
reassignments of y in s. Furthermore, it only makes sense if x and y are
distinct variables, which we enforce. We also do so for let mut x, meaning
shadowing of mutable variables is disallowed in general. Apart from

104

5.2 Early Return

Translation

D(let mut x := e; s) = let x := e; StateT.run' D(Sx(s)) x (D3)
D(if e then s) = if e then D(s) else pure () (D4)

S : Var→ Stmt→ Stmt
Sy(e) = StateT.lift e (S1)
Sy(let x ← s; s′) = let x ← Sy(s); let y ← get; Sy(s′) if x , y

(S2)

Sy(let mut x := e; s) = let mut x := e; Sy(s) if x , y
(S3)

Sy(x := e) = x := e if x , y
(S4)

Sy(y := e) = set e (S5)
Sy(if e then s) = if e then Sy(s) (S6)

Figure 5.5: Translation of a do with local mutation

simplifying the translation rules, another reason for this restriction is to
avoid any confusion on the user’s side between mutable and immutable
bindings. Finally, on a reassignment y := e of the variable in question, we
set the new value (S5).

Sy(s) will thus eliminate any reassignments of y in s. If any remaining
reassignments are encountered in the main translation function D, that
must mean that no such mutable variable is in scope, and an appropriate
error should be generated.

5.2 Early Return

Now that we have support for basic imperative control flow in do, it makes
sense to talk about supporting return as well. While not without its own
controversies, the programming pattern of early return seems to generally
be well regarded in imperative programming for quickly discharging

105

5 An Imperative Extension of do Notation

Operations

runCatch : ExcepT α m α → m α

ExcepT.lift : m α → ExcepT ε m α

throw : ε → ExcepT ε m α

Properties

runCatch (pure a) = pure a

runCatch (ExceptT.lift x >>= f) s = x >>= fun a => runCatch (f a)

runCatch (throw a >>= f) = pure a

Figure 5.6: ExceptT monad transformer operations and relevant properties for
reasoning about them

trivial/pathological cases in the beginning of a function without introducing
indentation creep from nested conditionals. This matches our experience
with it in Lean such as in the following example.

def isDefEqSingleton (structName : Name) (s : Expr) (v : Expr) :
MetaM Bool := do

let ctorVal ← getStructureCtor structName
if ctorVal.numFields != 1 then

return false -- not a structure with a single field
let s ← whnf s
if !s.isMVar then

return false -- not an unsolved metavariable
. . .

This code taken from the Lean unifier and slightly simplified for presenta-
tion tries to reduce a unification problem p s

?
= v where p is the projection

of a single-field structure type to s
?
= c v where c is the constructor of that

type, using early return to quickly abort when the problem is not of the
expected shape. As we shall see in the next section, return becomes even
more useful when combined with iteration.

As with mutation, the reasonable semantics we can implement without
changing code outside the do block is local: we will implement return e to
abort execution of the current do block and have it return the value of e. I

106

5.2 Early Return

Syntax

s ∈ Stmt ::= ...
| return e

Translation

do s ⇝ runCatch D(R(s)) (5.1’)

R : Stmt→ Stmt
R(return e) = throw e (R1)
R(e) = ExceptT.lift e (R2)
R(let x ← s; s′) = let x ← R(s); R(s′) (R3)
R(let mut x := e; s) = let mut x := e; R(s) (R4)
R(x := e) = x := e (R5)
R(if e then s1 else s2) = if e then R(s1) else R(s2) (R6)

Figure 5.7: A do with early return via exceptions

will discuss this decision more in Section 5.7.
Before we get to the implementation, a quick syntax consideration: in

Lean 4, even before introducing the extended do block, we had already
removed our analog of Haskell’s return function in favor of the more
general pure. Thus the decision to requisition the word as a keyword
known from many imperative languages instead was a relatively easy one.

Programmatically, we could implement support for return by restruc-
turing the entire do block into the noted nested conditionals. Even more
so than in the previous section, however, it turns out that we can im-
plement the desired semantics with relatively few additional rules by
introducing a new effect (Figure 5.7), this time using the exception monad
transformer ExceptT (Figure 5.6): we implement return e by raising e as
an exception (R1), lifting all other monadic actions into the monad using
ExceptT.lift (R2), and finally catching the exception, if any, and returning
its captured value at the top level of the do block (5.1’) using runCatch

(Figure 5.6). This way, we get the short-circuiting semantics for free from

107

5 An Imperative Extension of do Notation

ExceptT’s implementation of >>= introduced by our unchanged translation
of let x ← s; s'. The only existing rule we had to change was not that
of an extension but the basic top-level translation rule (5.1). If a do block
does not contain any return statements, we can of course fall back to the
original rule instead. Note also that we did not have to extend Sy at all
in this case because the only new syntax, return e, is eliminated before D,
and therefore Sy, is ever run.

5.3 Iteration

One of the first things a functional programmer usually learns is that loops
from imperative languages can be replaced by recursion. However, the
mere fact of equivalence does not imply that the translation is always as
readable or maintainable as the original. One issue with recursive helper
definitions is that of textual locality: we have to define the recursion either
before or after its (usually singular) use site even if it by itself is not a
self-contained abstraction, moving it out of its surrounding context and
hurting code comprehension compared to in-place usage of loops.

Focusing first on iteration over the elements of a collection, perhaps the
most common kind of loop, I note that the locality issue can be avoided by
use of folds, which allow in-place iteration using anonymous functions.
The monadic fold function for lists, for example, is defined in Lean as

List.foldlM [Monad m] (f : δ → α → m δ) (init : δ) (xs : List α)
: m δ

where List α is a list of elements of type α and δ is the accumulator type.
In our experience from working on the Lean codebase, where fold-like
traversal is pervasive, folds work relatively well for cases of simple control
flow and one or two datums kept in the accumulator.

do . . .
let (x, y) ← zs.foldlM (init := (x, y)) fun (x, y) z => do
let x' ← f x z
if p x' then

pure (x', g y z)
else

pure (x', y)
. . .

108

5.3 Iteration

Lean’s support for named parameters, the low precedence of fun, and
extended dot notation avoids some confusion about parameter order as
well as having to parenthesize the “loop body”. Specifically, the term
zs.foldlM (init := a) f is notation for List.foldlM f a zs. However, as
soon as the number of “mutables” increases and/or the control flow inside
the loop body gets more complex, handling and updating of the state tuple
can quickly get onerous. In a few cases, we even resorted to manually
introducing a temporary StateT layer exclusively for a single loop, in
which case we can use the simpler combinator

List.forM [Monad m] : List α → (α → m Unit) → m Unit

instead:

do . . .
let (x, y) ← StateT.run' (x, y) do
zs.forM fun z => do

let (x, y) ← get
let x' ← StateT.lift (f x z)
if p x' then

set (x', g y z)
else

set (x', y)
get
. . .

With local mutation in hand, we would like to remove the need for such
boilerplate code by adding a primitive syntax for iteration to do blocks
with full support for mutable variables.

do let mut x := . . .
let mut y := . . .
. . .
for z in zs do

x ← f x z
if p x then

y := g y z
. . .

Note that the second do keyword in the example above should not be
regarded as a separate do block for purposes of mut and return scoping,
but as part of the for statement syntax. Naturally, we would like to extend

109

5 An Imperative Extension of do Notation

support for return to for as well, providing us with a succinct way to
reimplement some well-known combinators.

def List.findM? (p : α → m Bool) (xs : List α) : m (Option α) := do
for x in xs do

let b ← p x
if b then

return some x
return none

Depending on the context and whether partial application can be used,
it might even be more natural to inline these small definitions (adjusting
the use of return if necessary) instead of remembering the combinator’s
name and calling it. As we will see later, we can prove by induction and
simplification that these implementations are equivalent to the recursive
definitions. Finally, in line with return we would also like to support
break and continue with the expected semantics.

The formal syntax and translation supporting all these features is given
in Figure 5.8. The main translation rule (D5) introduces two exception
effects using runCatch: one for break outside, and one for continue inside
a call to a collection-polymorphic forM, meaning both the loop body and
the overall loop term return Unit in their respective monad. The loop body
s is then rewritten appropriately, starting with the outer effect (so that its
actions will be lifted by the subsequent rewrite for the inner effect) using
the helper function B. B rewrites any break statement to throw () (B1) and
lifts all other monadic actions (B3), much like R. However, it should not
rewrite break in nested loops (B8), so at that point we switch to another
helper function L that merely lifts the loop into the correct monad. The
helper function C for the inner continue effect is defined analogously to B.

Finally, we adapt the existing extensions to the newly introduced syntax:
for R, this is merely recursive traversal (R7-R9), but for Sy, we need to
introduce a get call at the loop entrance since it is a control flow join
point (S9).

Before continuing, let us ensure that the order of effects indeed make
sense: in the most general case, a for loop can contain all of return,
reassignments to outer mutable variables, break, continue, and inner
mutable variables, which correspond to effects introduced on top of
the base monad in this order. While state effects and exception effects
commute with instances of the same kind, this is not true when combining

110

5.3 Iteration

Syntax

s ∈ Stmt ::= . . .
| break

| continue

| for x in e do s

Translation

D(for x in e do s) =
runCatch (forM e (fun x => runCatch D(C(B(s))))) (D5)

B : Stmt→ Stmt
B(break) = throw () (B1)
B(continue) = continue (B2)
B(e) = ExceptT.lift e (B3)
B(let x ← s; s′) = let x ← B(s); B(s′) (B4)
B(let mut x := e; s) = let mut x := e; B(s) (B5)
B(x := e) = x := e (B6)
B(if e then s1 else s2) = if e then B(s1) else B(s2) (B7)
B(for x in e do s) = for x in e do L(s) (B8)

L : Stmt→ Stmt
L(break) = break (L1)
L(continue) = continue (L2)
L(e) = ExceptT.lift e (L3)
L(let x ← s; s′) = let x ← L(s); L(s′) (L4)
L(let mut x := e; s) = let mut x := e; L(s) (L5)
L(x := e) = x := e (L6)
L(if e then s1 else s2) = if e then L(s1) else L(s2) (L7)
L(for x in e do s) = for x in e do L(s) (L8)

Figure 5.8: A do with support for iteration
111

5 An Imperative Extension of do Notation

Sy(break) = break (S7)
Sy(continue) = continue (S8)
Sy(for x in e do s) = for x in e do (let y ← get; Sy(s)) (S9)

R(break) = break (R7)
R(continue) = continue (R8)
R(for x in e do s) = for x in e do R(s) (R9)

Figure 5.8: A do with support for iteration (cont.)

the two different kinds: an exception monad transformer on top of a state
transformer will preserve the current state on an exception, whereas it will
be lost when stacked in reverse. Thus the state of inner mutable variables,
but not outer ones, will be lost on continue or break, while all state will
be lost on return, which matches our intuitive understanding of these
imperative concepts.

Figure 5.9 contains the translation of a small do block as an example. We
can see that the top-most exception effect is used in place of continue, the
one below for break, and that all other actions are lifted to the base monad
below both of them.

I note that while the translation functions B and C could readily be fused
into a single pass, separating them enables us to conditionally execute only
one of the two passes (or neither of them) depending on the presence of
the respective command in the loop. If a pass is not needed, the respective
runCatch call should be removed as well. Finally, the get call can also be
elided if there is no reassignment of the mutable variable in question inside
the loop body.

In the encoding implemented in Lean 4, the collection-polymorphic forM

is parameterized by the type class ForM γ α, where γ is some container
type of elements of type α.

forM [Monad m] [ForM γ α] : γ → (α → m Unit) → m Unit

A function with a similar signature exists in the Foldable t typeclass of

112

5.3 Iteration

do let mut s := 0
for x in xs do

if x % 2 = 0 then
continue

if x > 5 then
break

s := s + x
IO.println s

runCatch
(let s := 0 in
StateT.run' (do

runCatch (forM xs (fun x => runCatch (do
let s ← ExceptT.lift (ExceptT.lift get)
if x % 2 = 0 then throw ()
else ExceptT.lift (ExceptT.lift (StateT.lift (ExceptT.lift

(pure ()))))
let s ← ExceptT.lift (ExceptT.lift get)
if x > 5 then ExceptT.lift (throw ())
else ExceptT.lift (ExceptT.lift (StateT.lift (ExceptT.lift

(pure ()))))
let s ← ExceptT.lift (ExceptT.lift get)
ExceptT.lift (ExceptT.lift (set (s + x))))))

let s ← get
StateT.lift (ExceptT.lift (IO.println s)))

s)

Figure 5.9: Translation example, using basic donotation instead of >>= for readability

113

5 An Imperative Extension of do Notation

the Haskell base library, where our γ corresponds to t α. Alternatively,
the MonoFoldable typeclass of the mono-traversible package4 provides a
function that is closer to the above signature and as such also allows for
iterating over monomorphic collection types as well as ones with more
than one type parameter, such as the key-value pairs of a map, without
going through a temporary list of pairs.

Compared to other looping constructs, using fold-like traversal as a
primitive is particularly interesting for total languages such as Lean because
it delegates the issue of termination to the combinator. Indeed, if we opt
into Lean’s support for non-total functions, we can introduce the repeat
and while statements as two syntax abbreviations

repeat s ≡ for u in Loop.mk do s

while c do s ≡ repeat ((if ¬c then break); s)

where Loop is an auxiliary type containing a single constructor Loop.mk :

Loop, and its ForM Loop Unit instance is defined using the function

partial def loopForever [Monad m] (f : Unit → m Unit) :
m Unit := f () >>= fun _ => loopForever f

The partial keyword, as mentioned in Chapter 2, ensures soundness by
checking that the function type is inhabited (in this case by fun f => pure

()) and then turning the function into an opaque constant, making its body
inaccessible to proofs.

5.4 Implementation

We have implemented two versions of the extended do notation described
above: Section 5.4.1 describes a reference implementation, examples, and
equivalence proofs. The reference implementation relies on Lean’s hygienic
macro system described in the previous chapter, and is a direct encoding
of the presented translation rules. Languages with similarly expressive
macro systems should allow for easy adaptation of the implementation,

4 https://hackage.haskell.org/package/mono-traversable-1.0.15.1/docs/
Data-MonoTraversable.html

114

https://hackage.haskell.org/package/mono-traversable-1.0.15.1/docs/Data-MonoTraversable.html
https://hackage.haskell.org/package/mono-traversable-1.0.15.1/docs/Data-MonoTraversable.html

5.4 Implementation

but a built-in implementation manually ensuring hygiene is also conceiv-
able. Section 5.4.2 describes the actual implementation in Lean 4 and the
extensions it adds on top of the reference implementation.

5.4.1 Reference Implementation

The full reference implementation is given in Appendix A, of which I will
give an overview in the following.

For defining the syntax of the extended do notation, we start by introduc-
ing a new syntactic category stmt of do statements, which is used in a new
term notation do' stmt. We use the keyword do' instead of do to distinguish
the reference implementation from Lean’s full implementation.

declare_syntax_cat stmt

syntax "do'" stmt : term

Abbreviations such as A2 can now be implemented as simple macros.

macro:0 s1:stmt ";" s2:stmt : stmt => `(let x ← $s1; $s2)

Because the second stmt is not restricted to a precedence level, Lean will
greedily associate the notation to the right as desired; note that the first
occurrence of stmt is eliminated during elimination of left-recursion. By
restricting nested statements in trailing positions to precedence levels
greater than 0, we can force them not to contain a semicolon unless
wrapped in curly braces, which use maximum precedence applied to
syntax starting and ending with a token by default.

syntax "if" term "then" stmt:1 : stmt
macro "{" s:stmt "}" : stmt => `($s)

Thus if b then c; d unfolds to the same syntax tree as {if b then c}; d,
not if b then {c; d}.

We represent the translation function D using the following auxiliary
notation

syntax "d!" stmt : term -- `d! s` corresponds to `D(s)`

and encode rule D2 as follows:

macro_rules
| `(d! let $x ← $s; $s') => `((d! $s) >>= fun $x => (d! $s'))

115

5 An Imperative Extension of do Notation

Because macro_rules declarations may extend existing macros with new
cases at any point, we can in fact introduce our language extensions mod-
ularly just like in the formal translation, with each section of Appendix A
corresponding to one of these extensions.

Similarly to the above rule but using a generic expansion framework,
we can encode function Sy using the auxiliary notations

declare_syntax_cat expander
syntax "expand!" expander "in" stmt : stmt
syntax "mut" ident : expander
-- `expand! mut y in s` corresponds to `S_y(s)`

and encode rule S1 as follows

macro_rules
| `(stmt| expand! mut $y in $e:term) => `(stmt| StateT.lift $e)

where the stmt| prefix adjusts the syntactic category parsed by the quasi-
quotations. We can use the abstract expander syntax category above to
factor out common traversing rules at functions Sy, R, B, and L. We will
use the following syntax declarations for the latter three functions:

syntax "return" : expander
syntax "break" : expander
syntax "lift" : expander

Then, we can encode rules S6, R6, B7, and L7 using a single rule

macro_rules
| `(stmt| expand! $exp in if $e then $s1 else $s2) =>
`(stmt| if $e then expand! $exp in $s1 else expand! $exp in $s2)

As a simple optimization over the formal translation rules, the reference
implementation avoids introducing monadic layers that are not actually
used. If the number of nested occurrences of the keyword in question
(return, break, or continue) has not changed after applying the respective
helper function, it throws away the transformation result and does not emit
the respective runCatch code. Lean’s full implementation uses an abstract
syntax tree of do commands that allows for more efficient implementations
of such analyses.

As a further extension, the reference implementation produces meaning-
ful error messages when side conditions in the formal rules are violated.
For example, rule (S2) is implemented as follows

116

5.4 Implementation

macro_rules
| `(stmt| expand! mut $y in let $x ← $s; $s') =>
if x == y then

throw <| Macro.Exception.error x s!"cannot shadow 'mut'
variable '{x.getId}'"
else
`(stmt| let $x ← expand! mut $y in $s;

let $y ← get;
expand! mut $y in $s')

5.4.2 Full Implementation

I have written the reference implementation described above with the
primary goals of conciseness and simplicity in mind. Thus it intentionally
does not implement some features of the full implementation built into
Lean.

For one, the full implementation allows pattern bindings such as do

let (a, b) ← s; . . . that I kept out of the formal rules and the reference
implementation as mentioned above. The full implementation also sup-
ports a do equivalent of Lean’s match term where the right-hand side of
each alternative is a sequence of statements.

do let mut n := 0
for x in xs do

match x with
| none => n := n + 1
| _ => pure ()

IO.println n

The implementation of match statements is analogous to the one for if

statements. Indeed, the full implementation also supports the Rust-
inspired abbreviation if let none := x then n := n + 1 of the above match
block mixing the two styles.

For efficiency, the full implementation also implements variants such as
let mut x ← s; . . . instead of first expanding the code to let y ← s; let

mut x := y;
A fundamental restriction of a purely syntactic solution such as in the

formal rules and reference implementation is that we cannot reject some
undesirable inputs such as changing a variable’s type when reassigning

117

5 An Imperative Extension of do Notation

it. Fortunately, we have seen in the previous chapter that our macro
system allows for a seamless transition to type-aware elaborators, which
the full implementation uses to generate an error message on e.g. the input
do let mut x := 0; x := true;

error: invalid reassignment, value has type
Bool

but is expected to have type
Nat

The full implementation also supports two useful features that are not
directly inspired by imperative languages features, but nevertheless can
help in avoiding boilerplate in monadic programs absent from equivalent
imperative ones, so I will mention them here for the sake of completeness:
nested actions and automatic monadic lifting. The first feature allows
users to embed terms of the form← a in expressions, and is inspired to
the !a notation available in Idris. For example,

do if (← get).x >= 0 then
action

expands to

do let s ← get
if s.x >= 0 then
action

The main difference to Idris’ design is that I aimed to make the scope
of nested actions more predictable: instead of being lifted “as high as
possible” [Brady, 2014], they are always lifted to the enclosing do block, i.e.
to the same scope as the return statement. Using the notation outside of a
do block is an error.

The second feature, automatic monadic lifting, is not directly tied to the
do notation but part of Lean’s general coercions system. The monad lifting
typeclass

class MonadLift (m : Type → Type) (n : Type → Type) where
monadLift : m α → n α

which is based on the typeclass of the same name available in the
Control.Monad.Layer Haskell package, is automatically used by the coer-
cions system to remedy type errors when using one monad inside another
one. This feature is particularly useful in the Lean codebase because

118

5.5 Reasoning

we prefer using appropriate concrete monads over monad-polymorphic
functions where possible in order to reduce code specialization overhead.

5.5 Reasoning

One of the stated advantages of purely functional programming is ease
of reasoning. We can use Lean’s theorem proving aspect to show that
the output of our formal translation, while (sometimes unnecessarily)
verbose, can still be analyzed using the same tools as corresponding
functional code not using the extensions and indeed shown to be equivalent
to it. Appendix A includes such equivalence proofs. The proofs are
parameterized by an arbitrary monad m with an instance of the typeclass
LawfulMonad that encodes the monadic laws of Figure 5.2. These equivalence
proofs are straightforward using Lean tactics such as cases, induction,
and simp. The simplifier in particular helps with applying the monadic,
StateT (Figure 5.4), and ExceptT (Figure 5.6) laws automatically wherever
applicable.

To take one simple example, let us show that a monadic program using
the reference do' notation containing a conditional mutable update is
equivalent to one using only basic syntax.

theorem simple [Monad m] [LawfulMonad m] (b : Bool) (ma ma' : m α) :
(do' let mut x ← ma;

if b then { x ← ma' };
pure x)

= (ma >>= fun x => if b then ma' else pure x) :=
by cases b <;> simp

The tactic cases b splits the proof into two cases (b = true) and (b = false),
which is sufficient to solve the remainder by simplification. Appendix A
also contains more complex equivalence proofs such as ones about pro-
grams using for, which for a specific iteratee type such as lists we can do
by induction over the list.

5.6 Formalization

While the previous section demonstrated that specific examples of the ex-
tended do notation can be shown to correspond to their expected semantics,

119

5 An Imperative Extension of do Notation

that does not conclusively prove that our translation produces sensible
— or even type-correct — output in all cases. Most of the translation
rules are relatively straightforward, but there are subtle details around
variable binding and shadowing as well as layering and lifting of monad
transformers so that we should not a priori exclude the possibility of
mistakes in them.

In order to increase trust in the translation’s correctness, I have for-
mulated an operational semantics of extended do notation that gives an
alternative, dynamic and even simpler view of the expected behavior
(Figure 5.10) as well as a corresponding type system that formalizes the
expected static semantics of the notation (Figure 5.11) such that we expect
the following correctness theorem to hold.

Theorem. For any well-typed do block Γ ⊢ do s : τ, there exists a unique (up to
α-equivalence) translation do s⇝ e, which is of the same type (Γ ⊢ e : τ) and
equivalent under evaluation (∀v. do s⇒ v ←→ e⇒ v).

Proof. See below for a strictly stronger statement for the case of Lean as
the base language of terms, formalized and proved in Lean.

I necessarily restricted the given semantics to the special case of the
identity monad and iteration over lists (arbitrarily presented as strict, like
in the Lean language), as we would not be able to formulate operational
semantics as such in presence of arbitrary monad and ForM instances. Since
the translation functions are parametric over these instances, I believe this is
only a minor limitation, and we will revisit the base monad decision below.
The semantics and type system are otherwise generic over those of the base
language, and thus a proof of the correctness theorem is also dependent on
the base semantics, including an implementation of all monad transformer
functions that fulfills the previously presented equations.

In order to focus on the translation and semantics of the do notation
instead of these details of the base language, I decided to verify the
correctness theorem in Lean using the Lean language itself and its existing
implementation of monad transformers as the representation of terms
(Appendix B), that is, a shallow embedding of Lean terms (abstracted over the
contexts Γ and∆) inside of a deep embedding of do statements as an inductive
datatype. More specifically, statements are represented intrinsically typed
by an inductive family Stmt m ω Γ ∆ b c α such that the presented typing
rules are fulfilled by definition (Figure 5.12). The parameters of the type

120

5.6 Formalization

v ∈ Val ::= fun x => e | () | true | false | nil | cons v1 v2 | . . . ⊆ Expr
n ∈ Neut ::= v | return v | break | continue ⊆ Stmt
σ ∈ State ≡ Var⇀ Val

e⇒ v

. . .
⟨s, ∅⟩ ⇒ ⟨n, ∅⟩ n ∈ {v, return v}

do s⇒ v

⟨s, σ⟩ ⇒ ⟨n, σ′⟩

e[σ]⇒ v

⟨e, σ⟩ ⇒ ⟨v, σ⟩

⟨s, σ⟩ ⇒ ⟨v, σ′⟩ ⟨s′[v/x], σ′⟩ ⇒ ⟨n, σ′′⟩

⟨let x ← s; s′, σ⟩ ⇒ ⟨n, σ′′⟩

⟨s, σ⟩ ⇒ ⟨n, σ′⟩ n < Val

⟨let x ← s; s′, σ⟩ ⇒ ⟨n, σ′⟩

x ∈ σ e[σ]⇒ v

⟨x := e; s, σ⟩ ⇒ ⟨() , σ[x 7→ v]⟩

x < σ e[σ]⇒ v ⟨s, σ[x 7→ v]⟩ ⇒ ⟨n, σ′⟩

⟨let mut x := e; s, σ⟩ ⇒ ⟨n, σ′[x 7→ ⊥]⟩

Figure 5.10: Extending a natural semantics e⇒ v reducing expressions to values
with a rule for do block evaluation for the special case of the identity monad. A
helper relation ⟨s, σ⟩ ⇒ ⟨n, σ′⟩ reduces statements to neutral statements under a
mutable state context (a partial map from variables to values, updated via the
notation ·[· 7→ ·]). Immutable bindings are evaluated by immediate substitution in
the remainder statement, while the mutable context is substituted (e[·]) just before
evaluating any nested term e. The given value type and semantics are strict (see
cons), but could easily be changed to be lazy.

121

5 An Imperative Extension of do Notation

⟨s, σ⟩ ⇒ ⟨n, σ′⟩

e[σ]⇒ true ⟨s, σ⟩ ⇒ ⟨n, σ′⟩

⟨if e then s, σ⟩ ⇒ ⟨n, σ′⟩

e[σ]⇒ false

⟨if e then s, σ⟩ ⇒ ⟨() , σ⟩

e[σ]⇒ v

⟨return e, σ⟩ ⇒ ⟨return v, σ⟩

e[σ]⇒ nil

⟨for x in e do s, σ⟩ ⇒ ⟨() , σ⟩

e[σ]⇒ cons v1 v2 ⟨s[v1/x], σ⟩ ⇒ ⟨n, σ′⟩
n ∈ {() , continue} ⟨for x in v2 do s, σ′⟩ ⇒ ⟨n, σ′′⟩

⟨for x in e do s, σ⟩ ⇒ ⟨n, σ′′⟩

e[σ]⇒ cons v1 v2 ⟨s[v1/x], σ⟩ ⇒ ⟨break, σ′⟩

⟨for x in e do s, σ⟩ ⇒ ⟨() , σ′⟩

e[σ]⇒ cons v1 v2 ⟨s[v1/x], σ⟩ ⇒ ⟨return v, σ′⟩

⟨for x in e do s, σ⟩ ⇒ ⟨return v, σ′⟩

Figure 5.10: Extending a natural semantics with a rule for do block evaluation
(cont.)

122

5.6 Formalization

Γ ⊢ e : τ

. . .
Γ | · ⊢nofor s : m α ↪→ α

Γ ⊢ do s : m α Γ ⊢ () : Unit

Γ ⊢ nil : List α

Γ ⊢ e : α Γ ⊢ e′ : List α

Γ ⊢ cons e e′ : List α

Γ |∆ ⊢ f s : m α ↪→ ω

Γ,∆ ⊢ e : m α

Γ |∆ ⊢ f e : m α ↪→ ω

x < ∆ Γ |∆ ⊢ f s : m α ↪→ ω Γ, x : α |∆ ⊢ f s′ : m β ↪→ ω

Γ |∆ ⊢ f let x ← s; s′ : m β ↪→ ω

x < Γ,∆ Γ,∆ ⊢ e : α Γ |∆, x : α ⊢ f s : m β ↪→ ω

Γ |∆ ⊢ f let mut x := e; s : m β ↪→ ω

Γ,∆, x : α ⊢ e : α

Γ |∆, x : α ⊢ f x := e : m Unit ↪→ ω

Γ,∆ ⊢ e : ω

Γ |∆ ⊢ f return e : m α ↪→ ω

Figure 5.11: Extending an expression typing relation Γ ⊢ e : τwith a rule for typing
do blocks via a statement typing relation Γ |∆ ⊢ f s : m α ↪→ ω over some monad m.
∆ is an additional context of mutable variables, initially empty. ω is the return type
expected inside return statements, initially equal to α but may diverge from it in
let bindings. . . .

123

5 An Imperative Extension of do Notation

Γ |∆ ⊢ f s : m α ↪→ ω

Γ,∆ ⊢ e : Bool Γ |∆ ⊢ f s : m Unit ↪→ ω

Γ |∆ ⊢ f if e then s : m α ↪→ ω

x < ∆ Γ,∆ ⊢ e : List α Γ, x : α |∆ ⊢for s : m Unit ↪→ ω

Γ |∆ ⊢ f for x in e do s : m Unit ↪→ ω

Γ |∆ ⊢for break : m α ↪→ ω Γ |∆ ⊢for continue : m α ↪→ ω

Figure 5.11: . . . f ∈ {for, nofor} controls occurrences of break and continue.

constructor correspond to the variables of the same name in Figure 5.11,
except that we split f into b, c : Bool that separately control break and
continue, respectively, for reasons that will become clear in the next
paragraph. As is common with formalizations, we additionally do not
use named variables, but choose de Bruijn notation so that Γ and ∆ are
lists of types and variable references indices into those lists, trivializing
α-equivalence. Bindings outside of the do block are not part of Γ but
represented as regular Lean bindings so that Γ is initially empty. Thus the
statement

let x ← . . .; let mut y := . . .; y := pure (x + y)

is represented by the Lean term

Stmt.bind . . . (Stmt.letmut . . . (Stmt.assg 0 (fun ([x]) ([y]) =>
pure (x + y))))

where the context assignments are destructed into the individual vari-
ables by pattern matching on the heterogeneous lists. The full defini-
tions and proofs in Appendix B are written in a literate style explaining
further details and exported to LATEX via the Alectryon document gen-
erator [Pit-Claudel, 2020] and its Lean 4 frontend LeanInk [Bülow, 2022]
whose development I supervised.

This very precise representation of statements not only guarantees that
the translation functions always produce unique, type-correct statements

124

5.6 Formalization

notation:30 Γ " ⊢ " α => Assg Γ → α

inductive Stmt (m : Type → Type) (ω : Type) :
(Γ ∆ : List Type) → (b c : Bool) → (α : Type) → Type where

| expr (e : Γ ⊢ ∆ ⊢ m α) : Stmt m ω Γ ∆ b c α

| bind (s : Stmt m ω Γ ∆ b c α) (s' : Stmt m ω (α :: Γ) ∆ b c β) :
Stmt m ω Γ ∆ b c β

| letmut (e : Γ ⊢ ∆ ⊢ α) (s : Stmt m ω Γ (α :: ∆) b c β) :
Stmt m ω Γ ∆ b c β

| assg (x : Fin ∆.length) (e : Γ ⊢ ∆ ⊢ ∆.get x) :
Stmt m ω Γ ∆ b c Unit

| if (e : Γ ⊢ ∆ ⊢ Bool) (s : Stmt m ω Γ ∆ b c Unit) :
Stmt m ω Γ ∆ b c Unit

| ret (e : Γ ⊢ ∆ ⊢ ω) : Stmt m ω Γ ∆ b c α

| for (e : Γ ⊢ ∆ ⊢ List α)
(s : Stmt m ω (α :: Γ) ∆ true true Unit) :

Stmt m ω Γ ∆ b c Unit
| break : Stmt m ω Γ ∆ true c α

| cont : Stmt m ω Γ ∆ b true α

Figure 5.12: Inductive family representing intrinsically typed do statements with
shallowly embedded terms. The notation Γ ⊢ ∆ ⊢ α stands for the type of functions
mapping assignments (heterogeneous lists) of the contexts Γ and ∆ to a value of α.
Each constructor encodes, in order, a typing rule from Figure 5.11. Of particular
note are constructors changing indices of the type family: bind and for extend the
immutable context while letmut extends the mutable context, which is accessed by
assg (assignment), representing the target variable as an index into the context, i.e.
a de Bruijn index.

and terms as long as they are themselves type-correct Lean functions, but
it also tells us much, and gives guarantees, about their working just by
looking at their signatures:

S [Monad m] : Stmt m ω Γ (∆ ++ [α]) b c β →

Stmt (StateT α m) ω (α :: Γ) ∆ b c β

R [Monad m] : Stmt m ω Γ ∆ b c α →

Stmt (ExceptT ω m) Empty Γ ∆ b c α

L [Monad m] : Stmt m ω Γ ∆ b c α →

Stmt (ExceptT Unit m) ω Γ ∆ b c α

125

5 An Imperative Extension of do Notation

B [Monad m] : Stmt m ω Γ ∆ b c α →

Stmt (ExceptT Unit m) ω Γ ∆ false c α

C [Monad m] : Stmt m ω Γ ∆ false c α →

Stmt (ExceptT Unit m) ω Γ ∆ false false α

D [Monad m] : Stmt m Empty Γ ∅ false false α → (Γ ⊢ m α)

We can immediately see that S transforms a mutable variable (always the
outermost one, so there is no need for the parameter y with de Bruijn
notation) to an immutable variable, that R eliminates return statements (by
setting their expected type to the uninhabited type Empty5), and B and C
break and continue statements, respectively, as well what monadic layers
they each introduce. Finally, D transforms a statement free of return and
unbounded occurrences of mutable variables, break, and continue to a
term of the expected type.

The choice of shallowly embedded terms obviates the dependency
on a presentation of the natural semantics for the base language, and
analogously we can express evaluation of statements directly as a definitional
interpreter ⟦·⟧ : Do Id α → α (where Do m α is an abbreviation of Stmt

m α ∅ ∅ false false α) instead of an inductive predicate. Lean again
guarantees that evaluation of any well-typed statement is unambiguous
and terminating this way, which are desirable properties that we would
expect to hold as long as the base language also fulfills them. Moreover,
the implementation as a function makes it trivial to lift the restriction
on the base monad and strengthen ⟦·⟧ into the type [Monad m] → Do m

α → m α. This generalization is in fact crucial for the Lean proof of the
correctness theorem because it allows us to verify each translation function
individually and modularly, finally composing the correctness proofs of R
and D into the following succinct generalization of the correctness theorem
over any monad obeying the laws from Figure 5.2.

def Do.trans [Monad m] (s : Do m α) : m α :=
runCatch (D (R s) ∅) -- (5.1′)

theorem Do.trans_eq_eval [Monad m] [LawfulMonad m] :
∀ s : Do m α, Do.trans s = ⟦s⟧ := . . . -- (B.5)

5 More explicit encodings such as ω : Option Type would be possible; it is an interesting
property of the chosen shallow embedding of terms and types though that while return
statements returning a value of Empty can certainly exist syntactically in an inconsistent
context, the translation function may use this same inconsistent context to prove that the
statement cannot exist and refuse to translate it.

126

5.7 Evaluation

Proving its correctness is not the only application of the formalization
Do.trans of the translation rules, however. While the choice of mixed
deep/shallow embedding by design blurs the distinction between the
translated language and the implementation language, we can still see
two separate stages in the signature of the main translation function, D:
it takes a Stmt, i.e. compile-time information, and returns a function that
then takes an assignment of the immutable context Γ, that is, run-time
information. Indeed, it is possible to partially evaluate D and the other
translation functions given a Stmt but not the context assignment (or values
of any other variables free in expressions nested in Stmt) such that the Stmt

is completely erased. While Lean does not natively support this kind of
multi-stage programming, I demonstrate in Appendix B.6 how the built-in
simplifier can be used as a partial evaluator for this purpose. Thus the
formal translation could be used to replace the macro implementation
while providing more static guarantees, though the latter is still more
desirable in terms of efficiency and modularity.

5.7 Evaluation

I designed the extended do notation described above for use in Lean’s
own, monad-heavy implementation. It has been readily adopted by the
Lean developers, with existing code being gradually refactored to make
use of the new features as well. The feedback by users has also been very
positive, and the extended do notation is used in many applications and
packages developed by the Lean community: out of 92 GitHub repositories
written in Lean with the topic “lean4”6 in January 2023, 57 repositories by
38 different authors make use of at least let mut and for. Thus I feel safe
to claim that the use of extended do notation in Lean 4 programming has
by now become ubiquitous.

At the time of writing, the Lean 4 codebase itself contains 708 occurrences
of let mut declarations, and 762 occurrences of for. The codebase also
contains 3323 occurrences of return, though many of them are equivalent
to pure, i.e. they do not actually short-circuit evaluation but merely avoid
the need for parentheses around the return value.

6 https://github.com/topics/lean4?l=lean

127

https://github.com/topics/lean4?l=lean

5 An Imperative Extension of do Notation

Figure 5.13: Highlighting the do keyword belonging to a return statement under
the cursor using the standard “document highlight” request of the Language Server
Protocol, shown here using Visual Studio Code

So far we have not heard of specific anti-patterns or “foot-guns” users
encountered with the notation. This is in contrast to our first implemen-
tation of the notation, which lacked the mut modifier. This resulted in
non-obvious bugs in code containing nested do blocks such as

do let x := a
. . .
f (fun y => do
. . .
x := b
. . .)

. . .

The developer’s intention in the above code was to reassign the variable
x from the outer do block, but in reality the reassignment was scoped
to the independent inner do block, resulting in a new kind of “scope
confusion” between the language semantics and the user’s intentions. The
introduction of the mut modifier makes sure that this kind of code raises
an appropriate compile-time error. It should also be remarked that the
mut keyword dramatically simplifies the implementation by making scope
checks a simple decision local to do notation as manifested in the helper
function Sy.

It is conceivable that similar scope confusion could also occur when
using return in nested blocks. In practice, this does not seem to be an
issue since the expected type for the nested do block is often different from
the outer one. Still, as a precaution, I have implemented highlighting of
the corresponding do keyword when users place their cursor on a return
statement in any editor supporting the Lean 4 language server (Figure
5.13).

We were pleasantly surprised to find that users are also using the

128

5.7 Evaluation

extended do notation in pure code via the identity monad. For example,
the wrapAt? function in the Cli package7 uses the following for statement.

Id.run do . . .
let mut line := line
let mut result := #[]
for i in [:resultLineCount] do

result := result.push (line.take maxWidth)
line := line.drop maxWidth

return "\n".intercalate result.toList

The notation #[] denotes the empty array, and [:resultLineCount] is a range
of natural numbers from 0 up to resultLineCount (exclusively).

Users also seem to prefer the for statement even when it corresponds to
an existing combinator such as foldl. For example, the translation verifier
reopt-vcg8 contains the following code fragment.

do . . .
let mut stats : GoalStats := GoalStats.init
for r in results do

stats := stats.addResult r
pure stats

As a final example, the function hasBadParamDep? from the Lean 4 code base
demonstrates combining nested iteration, nested actions, and early return.

def hasBadParamDep? (ys : Array Expr) (indParams : Array Expr)
: MetaM (Option (Expr × Expr)) := do

for p in indParams do
let pType ← inferType p
for y in ys do

if (← dependsOn pType y) then
return some (p, y)

return none

7 https://github.com/mhuisi/lean4-cli
8 https://github.com/GaloisInc/reopt-vcg

129

https://github.com/mhuisi/lean4-cli
https://github.com/GaloisInc/reopt-vcg

5 An Imperative Extension of do Notation

5.8 Related Work

I am not aware of similar formal work exploring imperative extensions
to a purely functional language, but there are multiple existing libraries
with some overlap. Perhaps the library closest to the presented work is the
proof-of-concept Haskell package ImperativeHaskell9, which via creative use
of custom operators encodes mutable variables, for counting loops, and
early return. The implementation is based on mutable references (IORef)
and limited to IO as the base monad, which is a significant restriction
in practice that in particular would severely complicate verification of
programs using it. It is my belief that any implementation of these
features generalized to arbitrary monads would require desugaring more
expressive than custom operators, such as presented in this chapter. The
early library10 makes use of a GHC plugin to provide a syntax for early
return when binding particular values, inspired by a similar syntax in
Rust. The control-monad-loop library11 provides a looping function with
continue and break functionality encoded via a continuations-carrying
monad, but none of the other effects. It also supports returning values
from breaks, which I have considered but discarded for the time being for
lack of convincing use cases.

Apart from these imperative extensions, I am aware of three further
extensions of Haskell’s do notation: [Marlow et al., 2016] optimize its
desugaring so that some blocks can be run using only Applicative instead
of Monad operations, making do blocks both more general and potentially
more efficient. [Erkök and Launchbury, 2002] add an mdo variant of the
notation that changes the semantics of monadic bindings to allow recursion.
Both extensions have since been implemented as language extensions of
the GHC compiler, and should be compatible with Lean’s imperative
extensions. [Paterson, 2001] adapts the notation to arrows, a generalization
of monads, which we have not explored in Lean so far.

Outside of Haskell, the Scala library effectful12 translates for loops in
a do-like macro to applications of traverse, but does not combine this
with support for further control flow like break, continue, and return, or

9 https://hackage.haskell.org/package/ImperativeHaskell
10 https://github.com/inflex-io/early
11 https://hackage.haskell.org/package/control-monad-loop-0.1
12 https://github.com/pelotom/effectful

130

https://hackage.haskell.org/package/ImperativeHaskell
https://github.com/inflex-io/early
https://hackage.haskell.org/package/control-monad-loop-0.1
https://github.com/pelotom/effectful

5.8 Related Work

for local mutation. Idris features an extended do notation [Brady, 2014]
that allows giving “alternative” patterns for a binding, which if matched
determine the result of the whole block without executing the remaining
statements:

do Just x_ok ← readNumber | Nothing => pure Nothing
Just y_ok ← readNumber | Nothing => pure Nothing
pure (Just (x_ok, y_ok))

This can be seen as an implementation of early return, though without
nesting in further control flow statements such as ifor for. A similar syntax
was later added to Agda and is also available in Lean, though only with a
single default pattern in the case of Lean. The Koka language [Leijen, 2014]
is a function-oriented language with built-in effects and as such does not
employ monads or do notation. However, I will note that it has support for
both mutable variables and multi-shot effects such as nondeterminism, for
the combination of which it has assigned the same “strand-local” semantics
as I discussed in Section 5.1.

[Gibbons and dos Santos Oliveira, 2009] identify mapping and accumulat-
ing as the core aspects of imperative iteration, and show that the traverse
operator can represent both of them simultaneously in functional code.
For Lean, we focused on the more restrictive folds, which embody only the
accumulating part, since they cover most use cases where local mutation
or extended control flow can profitably be applied in our experience.
However, it is possible to extend our approach to traverse, e.g. with a
new for mut x in xs do s syntax that for a mutable variable xs allows x to
be reassigned in the loop body and eventually reassigns the thus mapped
collection to xs.

I have previously explored the idea of rewriting code using mutable vari-
ables into equivalent pure code to make it amenable to formal verification
in my master’s thesis [Ullrich, 2016] in the context of translating a subset of
Rust to Lean, which served as direct inspiration for the presented work. As
in the translation above, mutation in straight-line code is translated to shad-
owing in the thesis, though for conditional statements, the continuation is
duplicated, which is less of an issue when compilation of the translated
code is not a goal. Similarly, both terminating and non-terminating loops
are supported via a fold-like monadic loop combinator, but the combinator
is not computable (i.e. executable) because it employs classical logic to
“decide” termination. Termination must instead be proved or disproved

131

5 An Imperative Extension of do Notation

after translation. The translation also handles some advanced cases like
turning mutable references into lenses [Foster et al., 2007], which we have
no plans of supporting in Lean’s do notation. [Ho and Protzenko, 2022]
introduced a similar but more general approach for verification of Rust
code.

[Nipkow, 1998] utilizes a formalization approach very similar to the
mixed deep/shallow embedding I used above, calling it “taking the seman-
tic view”. The lack of dependent types in Isabelle/HOL, however, would
complicate representing a heterogeneous context like I did.

132

these techniques are cleverly dreadful, rather
than dreadfully clever
– Conor McBride, Epigram: Practical Programming

with Dependent Types [McBride, 2005] 6
An Efficient Reference Counting

Scheme for Functional
Programming

In the previous chapter, we have seen how a relatively simple extension
of the Lean language allows for an imperative programming style where
beneficial. The syntactic support for e.g. mutable variables however could
be of limited use, and even actively misleading, if the data structures stored
in these variables did not behave like users might expect from imperative
languages. For example, it would be quite deceiving if the loop

let mut result := #[]
for i in [:resultLineCount] do
result := result.push (line.take maxWidth)
line := line.drop maxWidth

from Section 6.7 accumulating an array result did not run in linear time.
And yet purely functional languages, in order to preserve referential trans-
parency, usually have to resort to conservative copying of the array, choos-
ing a different representation such as a linked list or tree, or modeling the
in-place update as an explicit effect [Launchbury and Peyton Jones, 1995].

However, while discussing how to improve on the simplistic runtime
system presented in Chapter 2, an additional alternative presented itself to
Leo and me: if we stuck with reference counting for Lean 4 as well, which
we were quite willing to do considering the usual complexity of a tracing
garbage collector, we could make use of this reference counter for checking
uniqueness of references dynamically, allowing for destructive updates of
objects without violating referential transparency.

6 An Efficient Reference Counting Scheme for Functional Programming

This chapter describes the optimized reference counting system, along
with relevant compiler phases and runtime properties, implemented in
Lean 4 that resulted from these considerations. Going far beyond our
expectations, this system contributes to the fact that the run time of
Lean programs can not only compete with but even outperform binaries
implemented in established languages based on tracing garbage collec-
tion (Section 6.7). The fundamentals of the reference counting system have
since been adopted [Reinking et al., 2021] by the Koka language, where
the very fitting name of “Functional But In-Place” was introduced for
pure algorithms that make use of destructive updates in this way, as well
as by the Roc language [Feldman, 2021]. Combined with the imperative-
inspired extensions from the previous chapter, we obtain a new paradigm
for writing programs in Lean, which I have named pure imperative program-
ming: using imperative syntax for writing pure functional programs that
nevertheless can achieve the run time asymptotics usually expected from
impure languages only.

Contributions. In this chapter, I present a reference counting system
optimized for purely functional languages and used by Lean 4.

• I describe the core optimization of introducing sound destructive
updates, and the related optimization of using borrowed references.

• I formally define a compiler that implements the introduction of
reference counting instructions as well as these optimizations.

• I give a formal reference-counting semantics and prove the compiler
correct relative to it (Appendix C).

• I compare the actual implementation of this compiler in Lean 4 with
other compilers for functional languages and show its competitive-
ness.

Acknowledgements. The presented reference counting system is joint
work with Leonardo de Moura [Ullrich and de Moura, 2019a]. Leo and
I designed the intermediate representation and optimizations together
during my internship at Microsoft Research. Leo then went on to implement
them in Lean, while I authored the formal semantics and correctness proof
(which was previously published as [Ullrich and de Moura, 2019b] as a

134

6.1 IR Syntax

separate appendix). The formal descriptions of the compilation steps were
developed by us in tandem.

6.1 IR Syntax

For the source language λpure of the compiler in this chapter, we will use a
simple untyped functional intermediate representation (IR) in the style of
A-normal form [Flanagan et al., 1993]. While the actual IR implemented in
Lean 4 has subsequently acquired additional instructions and a restricted
type system, λpure captures all features relevant for this chapter.

w, x, y, z ∈ Var
c ∈ Const
e ∈ Expr ::= c y | pap c y | x y | ctori y | proji x

F ∈ FnBody ::= ret x | let x = e; F | case x of F
f ∈ Fn ::= λ y. F
δ ∈ Program = Const⇀ Fn

Expressions in this language are made up of various kinds of applications.
The applied function is a constant c (with partial applications marked
with the keyword pap), a variable x, the i-th constructor of an erased
datatype, or the special function proji, which returns the i-th argument
of a constructor application. All arguments of function applications are
variables. Function bodies always end with evaluating and returning a
variable. They can be chained with (non-recursive) let statements and
branch using case statements, which evaluate to their i-th arm given an
application of ctori. As further detailed in Section 6.4.3, we consider calls
of the form let r = c x; ret r to be tail calls. A program is a partial map
from constant names to their implementations. The body of a constant’s
implementation may refer back to the constant, which we use to represent
recursion, and analogously mutual recursion. In examples as seen in the
previous section, we use f x = F as syntax sugar for δ(f) = λ x. F.

As an intermediate representation, we can and should impose restrictions
on the structure of λpure to simplify working with it. We will assume that,
as partially expressed in the IR syntax,

• all constructor applications are fully applied, by eta-expanding them.

135

6 An Efficient Reference Counting Scheme for Functional Programming

• no constant applications are over-applied, that is, called with more
arguments than their static arity suggests because they in turn return
a function value. Instead, the additional arguments are applied to
the returned function value as separate applications as below so as
to homogenize the structure of constant applications.

• all variable applications take only one argument, again by splitting
them into separate applications where necessary. While this simplifi-
cation can introduce additional allocations of intermediary partial
applications, it greatly simplifies the presentation of the operational
semantics. All presented program transformations can be readily
extended to a system with n-ary variable applications, which are
handled analogously to n-ary constant applications.

• every function abstraction has been lambda-lifted to a top-level
constant c.

• trivial bindings let x = y have been eliminated through copy propa-
gation.

• all dead let bindings have been removed.

• all parameter and let names of a function are mutually distinct.
Thus we do not have to worry about shadowing.

One major extension of the IR as implemented in Lean 4 over this
reference language is the addition of join points [Maurer et al., 2017] for
representing common parts of code, much like basic blocks with multiple
predecessors in imperative IRs. While the presence of join points does
complicate the presented analyses, there is no fundamental change and an
IR without join points is just as expressive, at the cost of redundant code.

Our target language λRC is an impure extension of λpure with operations
specific to reference counting:

e ∈ Expr ::= . . . | reset x | reuse x in ctori y
F ∈ FnBody ::= . . . | inc x; F | dec x; F

I will use the subscripts pure or RC (e.g., Exprpure or ExprRC) to refer to the
base or extended syntax, respectively, where otherwise ambiguous.

136

6.2 IR by Example

The new instructions inc and dec modify the reference counter of an
object. reset and reuse work together to reuse memory used to store
constructor values and simulate destructive updates in constructor values,
as further detailed in the following sections.

6.2 IR by Example

Before formally introducing the semantics of the IR in the next section and
the compiler transformations in the subsequent sections, let us start by
looking at representative examples using these instructions and give an
intuitive understanding of the reference counting model.

A helpful mental model for thinking about reference-counted objects
in the following examples and further on is to view each such counter
as a collection of virtual tokens (which do not exist as actual objects in
the intermediate representation or at run time). Then an object should be
held alive as long as someone (the token owner) holds at least one of its
tokens. The inc instruction creates a new token while dec destroys one
token. A freshly created object starts with one token passed to the creator.
When its last token is destroyed, the allocation is freed after one token of
each contained field is destroyed, which recursively can lead to further
deallocations. By default, functions take arguments as owned references,
i.e. they also get passed a corresponding token to ensure that the lifetime
of the passed reference is not dependent on the caller. The function is
responsible for eventually consuming the token, which it may do not only
by using the dec instruction, but also by storing it in a newly allocated
object, returning it, or passing it to another function that takes an owned
reference.

As a first trivial example, the identity function id does not require any
token manipulations when it takes and returns its argument as an owned
reference. It is represented in the reference counting IR as

id x = ret x

The function mkPairOf takes an x and returns the pair (x, x).

mkPairOf x = inc x ; let p = ctorProd.mk x x ; ret p

Now an inc instruction is required because two tokens for x are consumed

137

6 An Efficient Reference Counting Scheme for Functional Programming

by the Prod.mk constructor1 (we will also say that “x is consumed” twice)
in order to make sure that consumers of the created pair can use both
components independently. The function fst on the other hand, which
takes two arguments x and y and returns x, uses a dec instruction for
consuming the unused y.

fst x y = dec y ; ret x

The examples above suggest that we do not need any RC operations when
we take arguments as owned references and consume them exactly once,
i.e. use them linearly. Contrast this with a function that only inspects its
argument: isNil returns true if the given list is empty and false otherwise.
If the parameter is taken as an owned reference, the compiler generates
the following code

isNil xs = case xs of
(nil → dec xs ; ret true)
(cons → dec xs ; ret false)

dec is again used to consume all unused owned parameters; note that case
itself does not consume a token because, in contrast to arbitrary function
calls, we know that it will not hold on to the passed reference.

As an alternative to owned references, a function can accept a borrowed
reference that does not come with a token, much like for the operand of
case. The function can assume that at least one token for the referenced
object must have existed at the time of the call, and that this token will
persist until the call is finished, but no more. In particular, it may not
return the reference (directly or wrapped in a new object) without creating
a new token for it. We can generate the following compact code for isNil
that fulfills these conditions if we take a borrowed reference.

isNil xs = case xs of (nil → ret true) (cons → ret false)

Note that xs being a borrowed reference is not directly reflected in the IR
since borrowing does not exist as a concept in the formal semantics of the
IR; instead it is merely a convention the compiler introduces, a part of the
Lean calling convention, and of the formal type system in Appendix C.

1 The actual IR as defined above uses indices for constructor references in case and ctor
as well as field references in proj, though I will use suggestive names in most examples
as here instead.

138

6.2 IR by Example

As a less trivial example, let us take a look at the function hasNone that
checks whether a given list of optional values contains a none value, which
in Lean we could define as

def hasNone : List (Option α) → Bool
| [] => false
| none :: _ => true
| some _ :: xs => hasNone xs

Similarly to isNil, hasNone only inspects its argument, though via recursion.
Nevertheless, when considering the parameter as a borrowed reference,
the compiler can produce the following code free of reference counting
instructions for it
hasNone xs = case xs of

(nil → ret false)
(cons → let h = projhead xs ; case h of

(none → ret true)
(some → let t = projtail xs ; let r = hasNone t ; ret r))

Note that the case instruction does not introduce binders. Instead, we use
explicit projections proji for accessing the head and tail of the cons cell.
The borrow inference heuristic discussed in Section 6.4 correctly infer xs as
a borrowed parameter.

When using owned references only, we know at run time whether a
value is uniquely referenced or not simply by checking its reference counter.
We can leverage this information and minimize the number of allocations
using the other set of extensions in λRC:

• let y = reset x effectively consumes a token like dec x and assigns
a special dummy value to y to mark it as “unset” from this point
on; however, if this was the last reference to x, the allocation is
not actually freed but assigned to y instead of the dummy value.
The reference counters of each field are still decremented and the
referenced objects possibly freed, so y should be thought of pointing
not to an actual Lean object but a “raw allocation” in this case.

• let z = (reuse y in ctori w) then creates the constructor value ctori w
either (when y is set) reusing the raw allocation y, or otherwise using
a fresh allocation.

139

6 An Efficient Reference Counting Scheme for Functional Programming

Let us explore the use of these instructions in the compiler output of the
list function map as an example.

map f xs = case xs of
(nil → ret xs)
(cons →
let x = projhead xs ; inc x ;
let s = projtail xs ; inc s ;
let w = reset xs ;
let y = f x ; let ys = map f s ;
let r = (reuse w in ctorcons y ys) ; ret r)

If the input list xs is nil, map just returns it. Otherwise, it extracts the head
x and tail s from xs and then uses the inc instruction to create owned
references to these two values. Then, reset xs consumes xs, possibly
storing a raw allocation in y that is reused to create the new cons cell after
mapping the head and, recursively, the tail of xs.

If no cell of the list referenced by xs is shared, the code above will not
allocate any memory, entirely reusing the existing allocations. This would
not be true if we did not have separate reset and reuse instructions: if
we removed the reset instruction and directly used xs in an alternative
version of reuse, it would be kept alive during the recursive call, preventing
allocation reuses in the tail s as a second reference would still be stored in
xs. Note that removing the inc s instruction instead would be incorrect
when xs is a shared value. Although the reset and reuse instructions can
in general be used for reusing memory between two otherwise unrelated
values, in examples like map where the reused value has a close semantic
connection to the reusing value, we will use common functional vocabulary
and say that the list is being destructively updated (up to the first shared
cell).

6.3 Semantics of the Reference-Counting IR

Before discussing the compiler transformations that can produce the
presented output, we should make our reference counting model more
precise. We define the semantics of λRC (Figures 6.1 and 6.2) using a
big-step relation ρ ⊢ ⟨F, σ⟩ ⇓ ⟨l, σ′⟩ that maps the body F and a mutable
heap σ under a context ρ to a location and the resulting heap. The context
ρ maps variables to locations. A heap σ is a mapping from locations to

140

6.3 Semantics of the Reference-Counting IR

pairs of values and reference counters. A value is a constructor value or a
partially-applied constant. The reference counters of live values should
always be positive; dead values are removed from the heap map.

l ∈ Loc
ρ ∈ Ctxt = Var⇀ Loc
σ ∈ Heap = Loc \ { }⇀ Value ×N+

v ∈ Value ::= ctori l | pap c l

The first rule for saturated applications in Fig. 6.1 demonstrates the gen-
eral use of all these parts: it looks up the called function’s implementation
in the program map and the arguments’ locations in the context. Then it
constructs a fresh context from the function’s bound parameters and these
locations (which we implicitly take as an assertion that these two lists have
the same length), with which it finally executes the called function’s body,
resulting in a new heap and return value location. If, on the other hand,
a function is partially applied, the function’s name and the arguments’
locations are stored in a pap cell in a fresh location.

pap cells are retrieved from the heap by the rules for application of
variables. We have to be careful to increment the partial application
arguments’ reference counters when copying them out of the pap cell,
and to decrement the cell afterwards, which we do with helper functions
defined in Fig. 6.2.2 We cannot do so via explicit reference counting
instructions because the number of arguments in a pap cell is not known
statically. Similarly, the ctor instruction allocates a new ctor cell, while
case and proj inspect such a cell (without consuming it) and select the
appropriate function continuation or constructor field, respectively.

Continuing with the reference counting instructions in Fig. 6.2, inc is
a direct manipulation of the pointee’s reference counter. decrementing
a unique reference additionally removes the value from the heap and
recursively decrements its components. reset, when used on a unique
reference, eagerly decrements the components of the referenced value,
replaces them with the special location ,3 and returns the location of the

2 If the pap reference is unique, the two steps could be coalesced so that the arguments do
not have to be touched.

3 which can be represented by any unused pointer value such as the null pointer in a real

141

6 An Efficient Reference Counting Scheme for Functional Programming

Const-App-Full
δ(c) = λ yc. F l = ρ(y) [yc 7→ l] ⊢ ⟨F, σ⟩ ⇓ ⟨l′, σ′⟩

ρ ⊢ ⟨c y, σ⟩ ⇓ ⟨l′, σ′⟩

Const-App-Part
δ(c) = λ yc. F l = ρ(y) | l |<| yc | l′ < dom(σ)

ρ ⊢ ⟨pap c y, σ⟩ ⇓ ⟨l′, σ[l′ 7→ (pap c l, 1)]⟩

Var-App-Full
σ(ρ(x)) = (pap c l, _) δ(c) = λ yc. F

ly = ρ(y) [yc 7→ l ly] ⊢ ⟨F,dec(ρ(x), inc(l, σ))⟩ ⇓ ⟨l′, σ′⟩

ρ ⊢ ⟨x y, σ⟩ ⇓ ⟨l′, σ′⟩

Var-App-Part
σ(ρ(x)) = (pap c l, _)

δ(c) = λ yc. F ly = ρ(y) | l ly |<| yc | l′ < dom(σ)

ρ ⊢ ⟨x y, σ⟩ ⇓ ⟨l′,dec(ρ(x), inc(l, σ))[l′ 7→ (pap c l ly, 1)]⟩

Ctor-App
l = ρ(y) l′ < dom(σ)

ρ ⊢ ⟨ctori y, σ⟩ ⇓ ⟨l′, σ[l′ 7→ (ctori l, 1)]⟩

Case
σ(ρ(x)) = (ctori l, _) ρ ⊢ ⟨Fi, σ⟩ ⇓ ⟨l′, σ′⟩

ρ ⊢ ⟨case x of F, σ⟩ ⇓ ⟨l′, σ′⟩

Proj
σ(ρ(x)) = (ctor j l, _) l′ = li
ρ ⊢ ⟨proji x, σ⟩ ⇓ ⟨l′, σ⟩

Return
ρ(x) = l

ρ ⊢ ⟨ret x, σ⟩ ⇓ ⟨l, σ⟩

Let
ρ ⊢ ⟨e, σ⟩ ⇓ ⟨l, σ′⟩ ρ[x 7→ l] ⊢ ⟨F, σ′⟩ ⇓ ⟨l′, σ′′⟩

ρ ⊢ ⟨let x = e; F, σ⟩ ⇓ ⟨l′, σ′′⟩

Figure 6.1: λRC semantics: the λpure fragment

142

6.3 Semantics of the Reference-Counting IR

Inc
ρ ⊢ ⟨F, inc(ρ(x), σ)⟩ ⇓ ⟨l′, σ′⟩

ρ ⊢ ⟨inc x; F, σ⟩ ⇓ ⟨l′, σ′⟩

Dec
ρ ⊢ ⟨F,dec(ρ(x), σ)⟩ ⇓ ⟨l′, σ′⟩

ρ ⊢ ⟨dec x; F, σ⟩ ⇓ ⟨l′, σ′⟩

inc(l, σ) = σ[l 7→ (v, i + 1)] if σ(l) = (v, i)

inc(l l′, σ) = inc(l′, inc(l, σ))

dec(l, σ) =

σ if l =
σ[l 7→ (v, i − 1)] if σ(l) = (v, i), i > 1
dec(l′, σ[l 7→ ⊥]) if σ(l) = (pap c l′, 1)
dec(l′, σ[l 7→ ⊥]) if σ(l) = (ctori l′, 1)

dec(l l′, σ) = dec(l′,dec(l, σ))

Reset-Uniq
ρ(x) = l σ(l) = (ctori l′, 1)

ρ ⊢ ⟨reset x, σ⟩ ⇓ ⟨l,dec(l′, σ[l 7→ (ctori
|l′ |, 1)])⟩

Reset-Shared
ρ(x) = l σ(l) = (_, i) i , 1

ρ ⊢ ⟨reset x, σ⟩ ⇓ ⟨ ,dec(l, σ)⟩

Reuse-Uniq
ρ(x) = l σ(l) = (ctor j

|y|, 1) ρ(y) = l′′

ρ ⊢ ⟨reuse x in ctori y, σ⟩ ⇓ ⟨l, σ[l 7→ (ctori l′′, 1)]⟩

Reuse-Shared
ρ(x) = ρ ⊢ ⟨ctori y, σ⟩ ⇓ ⟨l′, σ′⟩

ρ ⊢ ⟨reuse x in ctori y, σ⟩ ⇓ ⟨l′, σ′⟩
Figure 6.2: λRC semantics: the impure extensions

143

6 An Efficient Reference Counting Scheme for Functional Programming

now-invalid cell. This value is intended to be used only by reuse or dec.
The former reuses it for a new constructor cell, asserting that its size is
compatible with the old cell. The latter frees the cell, ignoring the replaced
children.

If reset is used on a shared, non-reusable reference, it behaves like dec
and returns , which instructs reuse to behave like ctor. Note that we
cannot simply return the reference in both cases and do another uniqueness
check in reuse because other code between the two expressions may have
altered its reference count.

6.4 A Compiler from λpure to λRC

Following the actual implementation of the compiler in Lean, I will discuss
a compiler from λpure to λRC in three steps:

1. inserting reset/reuse pairs (Section 6.4.1)

2. inferring borrowed parameters (Section 6.4.2)

3. inserting inc/dec instructions (Section 6.4.3)

Only the last step is obligatory for obtaining correct λRC programs. I de-
scribe a correctness proof of these steps relative to the semantics presented
in the previous section in Appendix C.

6.4.1 Inserting Destructive Update Operations

As a first step, we will construct a heuristics-based function

δreuse : Const→ FnRC

that amends a given pure program δ : Const → Fnpure by inserting
reset/reuse instructions.

We define δreuse as

δreuse(c) = λ y. R(F) if δ(c) = λ y. F

implementation. In the actual implementation in Lean, we avoid these memory writes
by introducing a del instruction that behaves like dec but ignores the constructor fields.

144

6.4 A Compiler from λpure to λRC

R : FnBodypure → FnBodyRC

R(let x = e; F) = let x = e; R(F)
R(ret x) = ret x

R(case x of F) = case x of D(x,ni,R(Fi))
where ni = #fields of x in i-th branch

D : Var ×N × FnBodyRC → FnBodyRC

D(x,n, case y of F) = case y of D(x,n,F)
D(x,n, ret y) = ret y
D(x,n, let y = e; F) = let y = e; D(x,n,F)

if x ∈ e or x ∈ F
D(x,n,F) = let w = reset x; S(w,n,F)

otherwise, if S(w,n,F) , F for a fresh w
D(x,n,F) = F otherwise

S : Var ×N × FnBodyRC → FnBodyRC

S(w,n, let x = ctori y; F) = let x = reuse w in ctori y; F
if | y |= n

S(w,n, let x = e; F) = let x = e; S(w,n,F)
otherwise

S(w,n, ret x) = ret x

S(w,n, case x of F) = case x of S(w,n,F)

Figure 6.3: Inserting reset/reuse pairs

145

6 An Efficient Reference Counting Scheme for Functional Programming

where R(F) (Figure 6.3) uses a simple heuristic for replacing ctori y
expressions occurring in F with reuse w in ctori y where w is a fresh
variable introduced by R as the result of a new reset operation: for every
operation case x of F, R attempts to insert reset instructions for x. It
does so by scanning each subsequent control path for a point where x
becomes dead (unused) via the helper function D. At each such point, a
further helper function S scans forward for possible substitution points
where x could be reused: ctor expressions that have the same arity as the
constructor value referenced by x in the respective branch of the original
case.4 If S does not find a matching substitution, D leaves this case branch
unchanged. As an example, let us try to recreate the reset/reuse result for
the function map from Section 6.2.

map f xs = case xs of
(nil → ret xs)
(cons →
let x = projhead xs ;
let s = projtail xs ;
let y = f x ; let ys = map f s ;
let r = ctorcons y ys ; ret r)

Applied to the body of map, R will invoke D on both case branches. There
is no change in the first branch, but in the second branch the discriminant
xs becomes unused, and so S is invoked to find a constructor instruction of
arity 2, the arity of the matched constructor cons. r binds such a constructor,
so S injects a reuse w in, which leads to D to inject let w = reset xs before
the recursive call, resulting in the output we saw in Section 6.2 except for
inc instructions inserted later.

As a second example, consider a function swap that swaps the first two
elements of a list.

def swap : List α → List α

| [] => []
| [x] => [x]
| x :: y :: zs => y :: x :: zs

The λpure representation of this function is

4 which I assume here as ambient information for simplicity; in the actual implementation,
we save this information for each branch when we compile the typed frontend language
into λpure

146

6.4 A Compiler from λpure to λRC

swap xs = case xs of
(nil → ret xs)
(cons → let t1 = projtail xs ; case t1 of

(nil → ret xs)
(cons →
let h1 = projhead xs ;
let h2 = projhead t1 ; let t2 = projtail t1 ;
let r1 = ctorcons h1 t2 ;
let r2 = ctorcons h2 r1 ; ret r2))

By applying R to swap, we obtain

swap xs = case xs of
(nil → ret xs)
(cons → let t1 = projtail xs ; case t1 of

(nil → ret xs)
(cons →
let h1 = projhead xs ; let w1 = reset xs ;
let h2 = projhead t1 ; let t2 = projtail t1 ; let w2 = reset t1 ;
let r1 = (reuse w2 in ctorcons h1 t2) ;
let r2 = (reuse w1 in ctorcons h2 r1) ; ret r2))

As with map, this code is allocation-free if the relevant list cells are uniquely
referenced.

6.4.2 Inferring Borrowing Signatures

The reuse optimization discussed in the previous section is the most
important RC-based optimization as it avoids costly allocations; see also
Section 6.7 for a quantitative comparison of the impact of the various
optimizations. Inferring borrowing signatures in comparison is a secondary
optimization that does not avoid allocations, but can avoid unnecessary
RC modifications. As either optimization can potentially be applied to the
same value, preventing the other optimization from applying, we make
sure to run the more important reuse optimization first and to preserve its
output during borrow inference.

Formally we will model the task of inferring borrowing signatures as a
mapping β : Const⇀ {O,B}∗, which for every function should return a list
describing each parameter of the function as eitherOwned or Borrowed —
as mentioned in Section 6.2, borrow information is not part of the actual
program. Marking a parameter as borrowed means that the caller of the

147

6 An Efficient Reference Counting Scheme for Functional Programming

collectO : FnBodyRC → 2Vars

collectO(let z = ctori x ; F) = collectO(F)
collectO(let z = reset x ; F) = collectO(F) ∪ {x}
collectO(let z = reuse x in ctori x ; F) = collectO(F)
collectO(let z = c x ; F) = collectO(F) ∪ {xi ∈ x | β(c)i = O}
collectO(let z = x y ; F) = collectO(F) ∪ {x, y}
collectO(let z = pap cO x; F) = collectO(F) ∪ {x}
collectO(let z = proji x ; F) = collectO(F) ∪ {x} if z ∈ collectO(F)
collectO(let z = proji x ; F) = collectO(F) if z < collectO(F)
collectO(ret x) = ∅

collectO(case x of F) =
⋃

Fi∈F
collectO(Fi)

Figure 6.4: Collecting variables that should not be marked as borrowed

function will guarantee that the referenced object is alive for the entire call.
Note that this view makes partially applying constants with borrowed
parameters problematic because we do not, in general, know when the
applied function will actually be called. Therefore we will extend the
program δreuse from the previous section to a program δβ by defining a
trivial wrapper constant cO := c (we will assume that this name is fresh) for
any such constant c, set β(cO) := O, and replace any occurrence of pap c y
with pap cO y. The compiler step given in the next subsection will, as part
of the general transformation, insert the necessary inc and dec instructions
into cO to convert between the two signatures.

Informally, the current heuristic for computing β says that a parameter
should be borrowed if neither it nor any projections of it are used in reset
or passed as an owned reference to a function (which itself may try to
reset the corresponding parameter). This is sufficient to guarantee that
borrow inference does not prevent reuse; in other cases like for ret the
best choice is less clear as forcing parameters used in ret to be owned
can avoid inc instructions, but may lead to more instructions in other
branches of the function. The formal definition of the current heuristic
that opportunistically marks parameters as borrowed in such cases is
given in Fig. 6.4. This implementation depends on β already being defined
appropriately for all constants referenced by the given function body. In the
case of (mutual) recursion, we start with the approximation β(c) = B|y| for
any involved constant c with δ(c) = λy. b, then iteratively update each β(c)

148

6.4 A Compiler from λpure to λRC

using collectO(b) until a fixed point is reached. By applying this heuristic
to the hasNone function described before, we obtain β(hasNone) = B. That
is, in an application hasNone xs, xs is taken as a borrowed reference.

6.4.3 Inserting Reference Counting Operations

Given any well-formed definition of β and δβ, I finally give a procedure for
correctly inserting inc and dec instructions.5

δRC(c) : Const→ FnRC

δRC(c) = λ y. O−(y,C(F, βl)) where δβ(c) = λ y. F,
βl = [y 7→ β(c), . . . 7→ O]

The map βl : Var→ {O,B} keeps track of the borrow status of each local
variable. For simplicity, I default all missing entries to O.

In general, variables should be incremented prior to being used in an
owned context that consumes an RC token, unless that is the last use of the
variable. Variables used in any other (borrowed) context do not need to be
incremented. The definition of the core compilation function C (Fig. 6.5)
makes use of the following two helper functions to conditionally add RC
instructions in these contexts:

• O+x prepares x for usage in an owned context by incrementing it. The
increment can be omitted on the last use of an owned variable, with
V representing the set of live variables after the use.

O+x (V,F, βl) = F if βl(x) = O ∧ x < V
O+x (V,F, βl) = inc x; F otherwise

• O−x decrements x if it is both owned and dead.

O−x (F, βl) = dec x; F if βl(x) = O ∧ x < FV(F)
O−x (F, βl) = F otherwise

5 I will tersely say that a variable x “is incremented/decremented” when an inc/dec
operation is applied to it, i.e. the RC of the referenced object is incremented/decremented
at runtime.

149

6 An Efficient Reference Counting Scheme for Functional Programming

C : FnBodyRC × (Var→ {O,B})→ FnBodyRC

C(ret x, βl) = O+x (∅, ret x, βl)

C(case x of F, βl) = case x of O−(y,C(F, βl), βl)
where {y} = FV(case x of F)

C(let y = proji x ; F, βl) = let y = proji x ; inc y ; O−x (C(F, βl), βl)
if βl(x) = O

C(let y = proji x ; F, βl) = let y = proji x ; C(F, βl[y 7→ B])
if βl(x) = B

C(let y = reset x ; F, βl) = let y = reset x ; C(F, βl)
C(let z = c y ; F, βl) = Capp(y, β(c), let z = c y; C(F, βl), βl)
C(let z = pap c y ; F, βl) = Capp(y,O, let z = pap c y; C(F, βl), βl)
C(let z = x y ; F, βl) = Capp(x y,O O, let z = x y; C(F, βl), βl)
C(let z = ctori y ; F, βl) = Capp(y,O, let z = ctori y; C(F, βl), βl)
C(let z = reuse x in ctori y ; F, βl) =

Capp(y,O, let z = reuse x in ctori y; C(F, βl), βl)

Capp : Var∗ × {O,B}∗ × FnBodyRC × (Var→ {O,B})→ FnBodyRC

Capp(y y′,O b, let z = e; F, βl) =
O+y (y′ ∪ FV(F),Capp(y′, b, let z = e; F, βl), βl)

Capp(y y′,B b, let z = e; F, βl) =
Capp(y′, b, let z = e; O−y (F, βl), βl)

Capp([], [], let z = e; F, βl) = let z = e; F

Figure 6.5: Inserting inc/dec instructions

O−(x,F, βl) decrements multiple variables, which may be needed at
the start of a function or case branch.

O−(x x′,F, βl) = O−(x′,O−x (F, βl), βl)
O−([],F, βl) = F

More specifically, ret is an owned context and the set of live variables after
it is empty. case is not an owned context and any owned variables that are
dead in any of the branches should be decremented. proj itself is not an
owned context, but if the input is owned, we unconditionally increment
the output to make it owned as well such that we do not have to track the

150

6.4 A Compiler from λpure to λRC

lifetime relationship between the two variables and we can decrement the
input if it is now unused. If a borrowed variable is projected, we do not
need to insert RC instructions, but we do have to update βl.

Applications are handled by a separate function, recursing over the
arguments and parameter borrow annotations in parallel; for partial,
variable and constructor applications, the latter is set to all-O. For any
owned parameter, we increment the passed variable unless it is owned
and not part of the remaining program or the remaining arguments. For
a borrowed parameter, we merely make sure to decrement the passed
variable after the call if it is owned and now unused. Note the subtle
interplay between passing the same owned variable as both an owned
and as a borrowed parameter: if it is passed as owned first, the latter
occurrence in the argument list will trigger an increment that ensures the
variable is live for the entirety of the call even after consuming one RC
token for the owned parameter, and the borrowed parameter later will
ensure to free this extra token via a decrement after the call if the variable
is now unused. If instead the variable is passed as borrowed first, it first
triggers the decrement, if any, after the call, after which the variable is
now considered live after the call and any further use of it as an owned
parameter will trigger an increment as expected. Similarly, if an owned
variable is passed as a borrowed parameter multiple times in the same
call, a decrement, if any, is generated only once because after the first such
decrement the variable is considered live after the call. Thus in total, if the
same variable is passed n times as an owned parameter in a call, it will be
incremented n − 1 times before the call, and once more if it must be live
after the call because it is either syntactically used after it or because it is
passed as borrowed at least once. Correspondingly, it will be decremented
once after the call if it was borrowed at least once but is unused after that.

Examples

Let us validate the behavior of the compiler on two application special
cases. The value of βl is constant in these examples and left implicit in
applications.

1. Consuming the same argument multiple times

β(c) := O O

151

6 An Efficient Reference Counting Scheme for Functional Programming

βl := [y 7→ O]
C(let z = c y y; ret z)

= Capp(y y,O O, let z = c y y; C(ret z))
= Capp(y y,O O, let z = c y y; ret z)
= O+y ({y, z},Capp(y,O, let z = c y y; ret z))

= O+y ({y, z},O+y ({z},Capp([], [], let z = c y y; ret z)))

= O+y ({y, z},O+y ({z}, let z = c y y; ret z))

= O+y ({y, z}, let z = c y y; ret z)

= inc y; let z = c y y; ret z

Because y is dead after the call, it needs to be incremented only once,
moving its last token into c instead.

2. Borrowing and consuming the same argument

β(c) := B O
βl := [y 7→ O]

C(let z = c y y; ret z)
= Capp(y y,B O, let z = c y y; C(ret z))
= Capp(y y,B O, let z = c y y; ret z)
= Capp(y,O, let z = c y y; O−y (ret z))

= Capp(y,O, let z = c y y; dec y; ret z)
= O+y ({y, z}, Capp([], [], let z = c y y; dec y; ret z))

= O+y ({y, z}, let z = c y y; dec y; ret z)

= inc y; let z = c y y; dec y; ret z

Even though the owned parameter comes after the borrowed parame-
ter, the presence of y in the dec instruction emitted when handling the
first parameter makes sure we do not accidentally move ownership
when handling the second parameter, but copy y by emitting an inc
instruction.

152

6.5 Optimizing Functional Data Structures for reset/reuse

6.4.4 Preserving Tail Calls

An important caveat with the RC insertion algorithm given above is that
it can destroy tail calls, which in the Lean IR have the shape let r =
c x; ret r, as seen the in the last example above. As recursive tail calls
can be implemented as direct jumps without nesting stack frames, it is
highly desirable to preserve them throughout the compiler. In the actual
implementation in Lean, this is done with a small adjustment to the borrow
inference algorithm outlined above: if a parameter involved in a recursive
tail call is marked as borrowed but passed an owned variable, we mark it
as owned instead. If the parameter is marked as borrowed and passed as
borrowed, no change is necessary.

6.5 Optimizing Functional Data Structures for
reset/reuse

In the previous examples, we have seen that the reuse optimization
automatically handles operations over nested data structures like lists
quite well. Let us now look at a slightly more complex example of a
functional data structure, a red-black tree, as a more advanced example.

inductive Color where
| r | b

inductive Tree α where
| leaf : Tree α

| node : Color → Tree α → α → Tree α → Tree α

Following [Okasaki, 1999], a red-black tree can be represented as an induc-
tive type with two constructors: a nullary constructor for leaf nodes, and a
constructor for interior nodes holding the color red or black, a left child, a
generic value, and a right child.

As with the list operations, reuse analysis just works for many operations
on such trees such as the following function for painting a node black.

def setBlack : Tree → Tree
| .node _ a x b => .node .b a x b
| t => t

153

6 An Efficient Reference Counting Scheme for Functional Programming

As long as the input reference is unshared, this function will perform an
in-place update of it. Note that we can use the convenient “prefix dot”
notation to reference an inductive type’s constructor without prefixing
it with the full type name, in which case the namespace will be inferred
from the expected type at that location, while still clearly differentiating
between constructor and variable names.

A more interesting operation is the following function for rebalancing
the tree after an insertion.

def balance1 : Tree α → α → Tree α → Tree α

| .node .r (.node .r a x b) y c, z, d
| .node .r a x (.node .r b y c), z, d =>

.node .r (.node .b a x b) y (.node .b c z d)
| a, x, b => .node .b a x b

def ins [Ord α] (v : α) : Tree α → Tree α

| .node .b a x b =>
if v < x then

balance1 (ins v a) x b else . . .
| . . .

balance1 corresponds to the first half of balance in [Okasaki, 1999], which
is concerned with recoloring sequences of red nodes (a violation of the
red-black invariant) resulting from insertion into the left child of a black
node. Note that in Lean we can give multiple patterns separated by | that
share a common right-hand side after =>.

Considering possible reuse, we see that in each case, the right-hand
side contains one more node constructor reference than the corresponding
pattern, so a priori at least one new node will be allocated on each call to
balance1. However, should the compiler decide to inline the function into
ins, which in Lean we can force it to do using an @[inline] annotation,
another nodepattern from ins comes into view and we can achieve insertion
into sufficiently unshared red-black trees with only one allocation (the
new node holding the inserted value) after all. Thus the efficacy of the
reuse optimization may depend on other optimizations implemented by
the compiler.

If we want to avoid depending on the inliner in this manner, all is not
lost, however. We can refactor the code to create an intermediary node
object in ins, reusing the passed node object if possible, and pass it to
balance1, where we now have as many node patterns as constructor calls.

154

6.6 Runtime Considerations

def balance1 : Tree α → Tree α

| .node .b (.node .r (.node .r a x b) y c) z d
| .node .b (.node .r a x (.node .r b y c)) z d =>

.node .r (.node .b a x b) y (.node .b c z d)
| a => a

def ins [Ord α] (v : α) : Tree α → Tree α

| .node .b a x b =>
if v < x then

balance1 (.node .b (ins v a) x b) else . . .
| . . .

Thus we again can achieve reusing all but one newly allocated node for
insertion. This example shows that programming with reuse in mind
might lead to different code patterns compared to languages lacking the
optimization, where the second version could lead to additional allocations
absent inlining. In fact, it could be argued that the second version, while
being further from [Okasaki, 1999], is more natural: we use the recursive
result of ins to assemble a temporary new tree that may violate the
red-black invariant, then call upon balance1 to transform it into a valid
tree.

6.6 Runtime Considerations

Apart from the static optimizations described above, Lean 4 features
multiple reference counting-related optimizations in its runtime. One of
the most expensive features to support in a reference-counted runtime is
multithreading: usually when values of a program may potentially be used
by multiple threads at the same time, all reference-counting operations
have to be upgraded to atomic versions, which introduces considerable
overhead even for the usual majority of values that are accessed by only
one thread after all. The Lean runtime improves upon this all-or-nothing
approach by tagging runtime values with one of three states: single-threaded,
multi-threaded, or persistent. Persistent values are the simplest: they are
never freed and thus all reference-counting operations can be implemented
as no-ops without any need for cross-thread synchronization. Persistent
values may only reference other persistent values, and they are never
considered for reuse. Persistent values are currently created in two ways:

155

6 An Efficient Reference Counting Scheme for Functional Programming

the compiler marks “constant” values whose lifetime is the entire program
run time as persistent. Additionally, Lean’s internal object graph serializer
used to persist the results of checking a Lean module stores objects to
disk as persistent values. Thus when this information is imported into
subsequent Lean processes, we can access it without paying for reference-
counting operations apart from a conditional jump on the object state,
and in particular we can map the file into the process memory as shared,
read-only pages as described in Section 3.3.

Multi-threaded values may reference persistent or other multi-threaded
values and always use thread-safe reference-counting operations. Single-
threaded values may reference values in any state and use unsynchronized
reference-counting operations. Apart from the persistent cases mentioned
above, a newly allocated value is marked as single-threaded. Before
a single-threaded value is stored in a location that may potentially be
accessed by multiple threads, which primarily consists of the closure
passed to the thread creation primitive of the Lean runtime, as well as
special mutable cells if they themselves are marked as multi-threaded, it is
converted to the multi-threaded state, which is sufficient for establishing
correct happens-before relations between reference-counting operations
on the value both before and after conversion. Converting a value to
multi-threaded implies converting all contained single-threaded values
as well to preserve the invariant mentioned above. Both single-threaded
and multi-threaded values can participate in reuse: if one thread observes
a reference count of 1 on a multi-threaded value, there can be no other
threads referencing the value and potentially conflicting with the reuse.

As mentioned there is a real cost of additional branches for checking
the value state in each reference-counting operation. Note, however, that
accessing and modifying the value state does not require atomic operations
as all state transitions happen in single-threaded contexts. We will take
a look at the real cost and benefit of this dynamic check compared to a
simpler always-atomic implementation in Section 6.7.

One more aspect of the Lean runtime deserves to be mentioned here:
apart from arbitrary inductive types, the runtime has special support for
dynamically sized types such as contiguous arrays and strings. While reuse
optimization as presented in this chapter aims to reuse existing allocations
of inductive types, even when there is no direct semantic connection
between the source and target of the reuse, the situation is quite different in
case of the dynamically sized types, which are transformed not by pattern

156

6.7 Experimental Evaluation

matching and constructor applications but specific functions with built-in
runtime implementations (that is, implementations not written in Lean)
such as

Array.set : (a : Array α) → Fin a.size → Array α

String.push : String → Char → String

where the first operation implements proven-in-bounds array writes and
the second operation implements string appends. Unlike with the reuse
heuristic, there is a clear source for potential reuse in these cases. The
runtime implementations of these functions dynamically check whether the
input array or string is uniquely referenced, and if so perform a destructive
update and return the changed value. Thus on unshared inputs the array
write takes constant time and the string append takes asymptotically
constant time (using a constant growth factor on reallocation) as expected.
There is no need for a distinct reset step in these cases, which on a value
referencing arbitrarily many other values would be counter-productive in
any case.

6.7 Experimental Evaluation

All RC optimizations described in the previous sections are implemented
in the Lean 4 compiler, written in Lean itself.6 To test the efficiency
of the compiler and RC optimizations, Leo and I have created and/or
ported a number of benchmarks7 that aim to replicate common tasks
performed in compilers and proof assistants. All timings reported below
are arithmetic means of 20 runs as reported by the temci benchmarking
tool [Bechberger, 2016], executed on a PC with an i9-10900 Intel CPU
(2.8GHz–5.2GHz, 20 hardware threads) and 32 GB RAM running Ubuntu
22.04, using Clang 14.0.1 for compiling the Lean runtime library as well as
the C code emitted by the Lean compiler.

• deriv and const_fold are implementations of symbolic differenti-
ation and constant folding of arithmetic expressions, respectively,
exemplifying the kind of tree transformations that are found through-

6 https://github.com/leanprover/lean4/tree/IFL19/library/init/lean/compiler/ir
7 https://github.com/leanprover/lean4/tree/master/tests/bench

157

https://github.com/leanprover/lean4/tree/IFL19/library/init/lean/compiler/ir
https://github.com/leanprover/lean4/tree/master/tests/bench

6 An Efficient Reference Counting Scheme for Functional Programming

out the implementation of an interactive theorem prover and in
particular of automation.

• rbmap stress tests a red-black tree implementation, parts of which
I discussed in Section 6.6. The benchmarks rbmap_10, rbmap_2,
and rbmap_1 are variants where every 10th, second, or every tree
operation, respectively, is prevented from performing destructive
updates by retaining an additional reference to the tree. Thus rbmap_1
presents the worst case for an implementation optimized for reuse,
though as we will see in the results it still benefits from reuse in other
parts of the benchmark.

• parser benchmarks the Lean parser (Section 3.4) on a single Lean
file.

• qsort is an implementation of the quicksort sorting algorithm, using
destructive updates of unshared arrays for an efficient yet simple
and pure implementation in Lean.

• binarytrees is taken from the Computer Languages Benchmarks
Game8. This benchmark is a simple adaption of Hans Boehm’s
GCBench benchmark9. The Lean version is a translation of the then
fastest, parallelized Haskell solution.10

• unionfind implements the union-find algorithm, which is frequently
used to implement decision procedures in automated reasoning,
again making use of destructive array updates in the Lean imple-
mentation.

I have tested the impact of each optimization described in this chapter
by selectively disabling it and comparing the resulting runtime with the
base runtime (Fig. 6.6, Fig. 6.7):

8 https://benchmarksgame-team.pages.debian.net/benchmarksgame/program/
binarytrees-ghc-6.html

9 http://hboehm.info/gc/gc_bench/
10 Faster Haskell implementations using finer-grained parallelism and compact regions

have since been submitted, but I have kept the version that is comparable to the versions
in other languages.

158

https://benchmarksgame-team.pages.debian.net/benchmarksgame/program/binarytrees-ghc-6.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/program/binarytrees-ghc-6.html
http://hboehm.info/gc/gc_bench/

6.7 Experimental Evaluation

bi
na
ry
tr
ee
s

bi
na
ry
tr
ee
s.
st

de
ri
v

co
ns
t_
fo
ld

pa
rs
er

qs
or
t

rb
ma
p

un
io
nf
in
d

ge
om
.
me
an

0.5x

2x

1x

1.
00

1.
00

1.
00

1.
38

1.
30

0.
99

·
·
·
2.

69

1.
28

1.
25

1.
26

1.
25

1.
10

0.
91

1.
13

0.
96 1.

05

0.
97 1.

07

1.
43

1.
16

1.
39

1.
21

1.
42

1.
15

1.
63

·
·
·
2.

81

1.
46

R
el

at
iv

e
ti

m
e

(l
ow

er
is

be
tt

er
)

no reuse no borrow no ST

Figure 6.6: Lean variant benchmarks, normalized by the base run time. Error bars
signify one standard deviation.

• no reuse disables the insertion of reset/reuse operations. Built-in
functions as described in Section 6.6 are unaffected, i.e. at most
constant-time overhead is introduced per operation. If built-ins such
as array updates were disabled as well, array-based benchmarks
would not terminate in any reasonable amount of time from the
change in asymptotics.

• no borrow disables borrow inference, assuming that all parameters are
owned. Note that the compiler must still honor borrow annotations
on builtins, which are unaffected.

• no ST uses atomic RC operations for all values. Destructive updates
are unaffected.

159

6 An Efficient Reference Counting Scheme for Functional Programming

rb
ma
p

rb
ma
p_
10

rb
ma
p_
2

rb
ma
p_
1

0.5x

2x

1x

0.
22 0.

32

0.
65

1.
00

0.
58 0.
64

0.
83

1.
04

0.
23 0.

31

0.
61

0.
94

0.
35 0.

51

1.
04

1.
66

R
el

at
iv

e
ti

m
e

(l
ow

er
is

be
tt

er
)

base no reuse no borrow no ST

Figure 6.7: rbmap variation benchmarks by increasing frequency of retaining
intermediate values, normalized by the base run time of rbmap_1.

The results show that the reuse analysis significantly improves per-
formance in the benchmarks const_fold, parser, rbmap, and unionfind.
qsort notably is unaffected because while it heavily benefits from destruc-
tive array updates, these are not part of reuse analysis per se as mentioned
above. Borrow inference provides significant speedups in the benchmarks
binarytrees and deriv, though it also leads to slight slowdowns in other
benchmarks, suggesting that the heuristic could further be refined in the
future. Avoiding atomic RC operations significantly speeds up every
benchmark, including the heavily parallelized benchmark binarytrees.

Leo and I have also directly translated some of these programs to
other statically typed, functional languages: Haskell, OCaml, and Stan-
dard ML (Fig. 6.8, Fig. 6.9). For the latter we selected the compilers
MLton [Weeks, 2006], which performs whole program optimization and
can switch between multiple GC schemes at runtime, and MLKit, which
combines region inference and garbage collection [Hallenberg et al., 2002].
While not primarily a functional language, we have also included Swift

160

6.7 Experimental Evaluation

bi
na
ry
tr
ee
s

bi
na
ry
tr
ee
s.
st

de
ri
v

co
ns
t_
fo
ld

rb
ma
p

0.5x

2x

4x

1x

1.
00

1.
00

1.
00

1.
00

1.
00

2.
07

0.
63

2.
16

1.
75

1.
77

1.
58

1.
03 1.

28

4.
41

1.
07

1.
04

0.
88 0.
96

3.
30

1.
12

3.
23

2.
42

4.
39

·
·
·
6.

77

·
·
·
5.

98

2.
45

4.
84 ·
·
·
7.

61

R
el

at
iv

e
ti

m
e

(l
ow

er
is

be
tt

er
)

Lean 2023-01-19 GHC 9.4.4 OCaml 5.0.0
MLton 2022-11-16 MLKit 4.7.2 Swift 5.6.2

Figure 6.8: Cross-language benchmarks by wall-clock time, normalized by the Lean
run time. Error bars signify one standard deviation, the striped portion signifies an
approximation of GC time as reported by the respective compiler where available.
For Swift, we measure time spent in inc, dec, and deallocation runtime functions
as GC time using perf. For Lean, the “fast path” of a single-threaded inc or dec is
inlined, so we can only measure atomic RC adjustment time and object deletion
time.

161

6 An Efficient Reference Counting Scheme for Functional Programming

rb
ma
p

rb
ma
p_
10

rb
ma
p_
2

rb
ma
p_
1

0.5x

2x

4x

1x

0.
22 0.
32 0.

65

1.
00

0.
38 0.

70

1.
69

2.
54

0.
23 0.

38

0.
92

1.
56

0.
71 0.
78 0.

91

0.
92

0.
95

1.
52

2.
17

3.
12

1.
64 1.
77

2.
20

2.
72

R
el

at
iv

e
ti

m
e

(l
ow

er
is

be
tt

er
)

Lean 2023-01-19 GHC 9.4.4 OCaml 5.0.0
MLton 2022-11-16 MLKit 4.7.2 Swift 5.6.2

Figure 6.9: rbmap variation benchmarks by increasing frequency of retaining
intermediate values, normalized by the Lean run time for rbmap_1.

as a popular statically typed language using reference counting. For
binarytrees, we have used the mentioned Haskell implementation and
comparable versions: For Swift, we used the second-fastest, safe Bench-
mark Game implementation, which is much more comparable to the other
versions than the fastest one completely depending on unsafe code. The
parallel OCaml 5.0 implementation is taken from the Sandmark benchmark
suite11. We did not find a comparable SML implementation.

While the absolute runtimes in Fig. 6.8 and Fig. 6.9 are influenced by
many factors other than the implementation of garbage collection that
make direct comparisons difficult, the results still signify that both Lean’s
garbage collection and the overall runtime and compiler implementation

11 https://github.com/ocaml-bench/sandmark/blob/62a71ee/benchmarks/
multicore-numerical/binarytrees5_multicore.ml

162

https://github.com/ocaml-bench/sandmark/blob/62a71ee/benchmarks/multicore-numerical/binarytrees5_multicore.ml
https://github.com/ocaml-bench/sandmark/blob/62a71ee/benchmarks/multicore-numerical/binarytrees5_multicore.ml

6.8 Related Work

are very competitive. The time Lean spends on garbage collection in
particular is usually smaller than for other compilers, sometimes drasti-
cally so, never exceeding 50% of the total time. A notable exception is
binarytrees.st where the allocation pattern of independent trees does
not lend itself to reuse but seems to benefit some generational garbage
collection implementations, though the advantage does not translate to
the multi-threaded version in the case of GHC. Further machine-specific
tweaking of GC parameters can alleviate a significant part of the over-
head12, but a significant benefit of our simple reference counting scheme is
that there are no parameters to tweak.

In general, the results demonstrate that the differences in implementation
are at least as impactful as the fundamental differences between reference
counting and tracing garbage collection. Lean and Swift are both reference
counted, but the lack of non-atomic reference counting updates in Swift
introduces immense overhead in this kind of benchmarks. Fig. 6.9 shows
how both GC schemes are impacted by increased retention, but the specific
impact varies significantly, with MLton scaling much better than other
implementations with a tracing GC, which eventually spend most of the
time in the garbage collector.

6.8 Related Work

The idea of representing RC operations as explicit instructions so as to
optimize them via static analysis is described as early as [Barth, 1977].
[Schulte, 1994] describes a system with many features similar to the ones I
described above. In general, Schulte’s language is much simpler than the
Lean IR, with a single list type as the only non-primitive type, and no higher-
order functions, nor is there a description of its formal dynamic semantics.
Schulte gives an algorithm for inserting RC instructions that, like the
algorithm from this chapter, has an on-the-fly optimization for omitting
inc instructions if a variable is already dead and would immediately be
decremented afterwards. Schulte briefly discusses how RC operations
can be minimized by treating some parameters as “nondestructive” in
the sense of our borrowed references. In contrast to our inference of

12 https://gitlab.haskell.org/ghc/ghc/-/issues/14981#note_474988

163

https://gitlab.haskell.org/ghc/ghc/-/issues/14981#note_474988

6 An Efficient Reference Counting Scheme for Functional Programming

borrow annotations, Schulte proposes to create one copy of a function for
each possible destructive/nondestructive combination of parameters (i.e.
exponential in the number of (non-primitive) parameters) and to select an
appropriate version for each call site of the function. Our approach never
duplicates code.

Introducing destructive updates into pure programs has traditionally fo-
cused on primitive operations like array updates [Hudak and Bloss, 1985],
particularly in the functional array languages Sisal [McGraw et al., 1983]
and SaC [Scholz, 1994]. [Grelck and Trojahner, 2004] propose an instruc-
tion alloc_or_reuse for SaC that can select one of multiple array candidates
for reuse, but do not describe heuristics for when to use the instruction.
[Férey and Shankar, 2016] describe how functional update operations ex-
plicit in the source language can be turned into destructive updates using
the reference counter. In contrast, [Schulte, 1994] presents a “reusage” opti-
mization that has an effect similar to the one obtained with our reset/reuse
instructions. In particular, it is independent of a specific surface-level
update syntax. However, his optimization (named transformation T14) is
more restrictive and is only applicable to a branch of a case x if x is dead
at the beginning of the branch. His optimization cannot handle the simple
swap described earlier, let alone more complex functions such as the red
black tree re-balancing function balance1.

While not a purely functional language, the Swift programming lan-
guage13 has directly influenced many parts of the work described in this
chapter. To the best of my knowledge, Swift was the first non-research
language to use an intermediate representation with explicit RC instruc-
tions, as well as the idea of (safely) avoiding RC operations via “borrowed”
parameters (which are called “+0” or “guaranteed” in Swift), in its imple-
mentation. While Swift’s primitives may also elide copies when given
a unique reference, no speculative destructive updates are introduced
for user-defined types, but this may not be as important for an impure
language as it is for Lean. Parameters default to borrowed in Swift, but
the compiler may locally change the calling convention inside individual
modules.

[Baker, 1994] describes optimizing reference counting by use of two
pointer kinds, a standard one and a deferred increment pointer kind. The

13 https://developer.apple.com/swift/

164

https://developer.apple.com/swift/

6.8 Related Work

latter kind can be copied freely without adding RC operations, but must be
converted into the standard kind by incrementing it before storing it in an
object or returning it. The two kinds are distinguished at runtime by pointer
tagging. Our borrowed references can be viewed as a static refinement of
this idea. Baker then describes an extended version of deferred-increment
he calls anchored pointers that store the stack level (i.e. the lifetime) of the
standard pointer they have been created from. Anchored pointers do not
have to be converted to the standard kind if returned from a stack frame
above this level. In order to statically approximate this extended system,
we would need to extend the IR type system with support for some kind of
lifetime annotations on return types as featured in Cyclone [Jim et al., 2002]
and Rust.

[Ungar et al., 2017] optimize Swift’s reference counting scheme by using
a single bit to tag objects possibly shared between multiple threads, much
like Lean’s approach. However, because of mutability, every single store
operation must be intercepted to (recursively) tag objects before becoming
reachable from an already tagged object. [Choi et al., 2018] remove the
need for tagging by extending every object header with the ID of the thread
T that allocated the value, and two reference counters: a shared one that
requires atomic operations, and another one that is only updated by T.
Again thanks to immutability, we can make use of the simpler scheme for
Lean without introducing store barriers during normal code generation.
Object tagging instead only has to be done in threading primitives and
explicitly mutable cells.

After publication of the original paper ([Ullrich and de Moura, 2019a])
this chapter is based on, the presented approach has been adapted
and further extended in context of the Koka language [Leijen, 2014]:
[Reinking et al., 2021] describe Koka’s RC algorithm “Perceus” based on a
linear resource calculus that is more general and higher-level than the ANF
presentation in this chapter14, and further extend the presented work with
drop and reuse specialization, which replace uses of the generic instructions
corresponding to Lean’s dec and reuse, respectively, with specialized code
for the given type and reuse context. Work is underway on a new Lean IR

14 In particular, it does not directly support n-ary function applications, which are a
significant source of complication as we have seen in Section 6.4.3, allocating n − 1
intermediary closures instead.

165

6 An Efficient Reference Counting Scheme for Functional Programming

with more type information that would allow adopting this optimization.
[Lorenzen and Leijen, 2022] introduce drop-guided, frame-limited reuse for
Koka, which improves on the reuse algorithm presented above by both
limiting the memory overhead reuse analysis can introduce by holding on
to allocations and introducing new opportunities for reuse. The basic idea
is that instead of running reuse analysis before RC insertion as described
in this chapter, turning the order around allows one to use the lifetime
information encoded by the inserted RC instructions in the reuse analysis
for the mentioned goals. However, borrow inference is not part of this work
and the approach for it described in this chapter is not directly adaptable
as it is designed to run after reuse analysis but before RC insertion. As
of this writing, we have not incorporated these improvements back into
Lean, partially because the performance of the initial design described
here proved sufficient for our use cases, but we are interested in revisiting
them in the future.

166

Here my pen shall halt, reader, though I do not
– Gene Wolfe, The Book of the New Sun 7

Conclusion

I have carried you, as Gene Wolfe would have said, from gate to gate — from
the parser to the depths of the runtime system, from the theory of the kernel
to the practice of syntax design. After more than four years of development,
we have achieved an unprecedented state of extensibility with Lean 4. The
macro system I have developed is the central piece of this work, powering
everything from simple to understand notations to powerful type-aware
elaboration procedures as part of a unified architecture. It is a direct
continuation of the decades of work on such systems in the Lisp family,
taking their learned lessons and applying them to the peculiarities of
interactive theorem provers. The extended do notation is a prime example
for how the macro system enables users to embed non-trivial domain-
specific languages into Lean naturally, without compromising the ability to
reason about it and its output. But far from a mere example, as the syntactic
foundation of the pure imperative programming paradigm it has by now
become a fundamental aspect of how programming in Lean is done by
beginners and experts alike. Meanwhile, the optimized reference counting
scheme as the semantic foundation of the paradigm has far exceeded the
expectations of Leo and me, both in the demonstrated competitiveness
compared to established functional compilers that made us double-check
our results as well as in the quick adoption by Koka and the resulting
series of publications uncovering further refinements.

In time with the conclusion of my PhD, Lean 4 has now reached a degree
of maturity where it is starting to be embraced by programmers, lecturers,
and mathematicians porting over Lean 3 mathlib at an incredible speed.
It is now up to these users to utilize the flexibility we have provided and
together with us explore new applications of Lean and interactive theorem
proving at large.

7 Conclusion

7.1 Future Work

There is, however, only so much a group of, for the majority of the time,
two people can achieve in four years. We have not yet come around to
research, design, and implement everything we had planned, and had to
set aside interesting subproblems for a lack of time.

Kernel and Type System. I have elided a more formal description of
nested inductive types from Section 3.2, which would likely take at least
as much space as the description of the other extensions combined. Other
properties such as decidability of algorithmic reduction and type checking
have not been investigated for either Lean 3 or Lean 4 so far. An interesting
approach for doing this is to formalize the algorithm in the prover itself
assuming correctness of the theory and extract a certified, executable type
checker from it [Sozeau et al., 2019].

An unintended aspect of the type system that did not change be-
tween Lean 3 and 4 is the undecidability of definitional equality and
non-transitivity of algorithmic equality [Carneiro, 2019]. Different solu-
tions to this problem have been proposed, including an explicit move
towards the undecidability of extensional type theory, but will have to be
evaluated on their practical impact, especially as we are not aware of such
impact resulting from the theoretic issue.

Syntax and Macros. For the most part, the current syntax system has
been shaped by the needs of the Lean implementation itself. We have seen
people successfully apply it to building their own embedded languages,
but also notice current limitations such as not being able to introduce
custom token parsers. Will our approach scale to their needs, will we need
deeper grammar analysis for optimization and introspection? Only time
will tell.

The macro system as well features some deliberate limitations such as
the lack of local macros. It is not unimaginable that with more and more
sophisticated macros written by users, we will want to integrate even more
ideas from the Lisp world of macros and extend our hygiene algorithm.

Finally, a topic I was quite interested in researching, but which I aban-
doned during my PhD in favor of focusing on the presented topics, is the
theory side of macros and hygiene. Given Lean’s capabilities as a theorem

168

7.1 Future Work

prover, it would be tempting to try and prove that its hygienic macro
system is actually so, as well as proving some equivalence between the
Lean and Racket hygiene systems on Lean’s more limited macro language.
It is not immediately clear whether existing formal definitions of macro hy-
giene [Adams, 2015, Pombrio et al., 2017] would be sufficiently applicable
to this language.

Pure Imperative Programming. The extended do notation as described
features a minimum viable set of imperative primitives to make the
extension worthwhile, but even more extensions have (such as try ...
catch/finally) and surely will be integrated into Lean in the future. A
particular problem we have not tackled so far is the question of how to
extend do blocks and their effects across sufficiently generic higher-order
functions as well as local helper functions. With more extensions, however,
there is always the danger of introducing confusion for users regarding
the expected semantics and control flow, so more research of the usability
side for people from different backgrounds will be necessary.

On the runtime side, the convenience of implicitly inserted allocation
reuse is also its main limitation currently. In order for the execution time
of a Lean program to be more robust in the face of refactorings or simple
oversights, it would be desirable to statically guarantee reuse at important
locations. At the time of writing, Marc Huisinga is completing a master’s
thesis on such a uniqueness type system [Smetsers et al., 1994] for a limited
set of Lean programs under my supervision, but further work will be
necessary to cover more of the Lean language and to integrate it into Lean
and expose it to users in a convenient fashion.

169

A
Macro Implementation of do

Notation

This appendix contains the complete reference implementation of the ex-
tended do notation from Chapter 5. macros and macro_rules are annotated
with their corresponding translation/abbreviation name.

A.1 Basic do Notation

open Lean

declare_syntax_cat stmt
syntax "do'" stmt : term

-- Prevent `return/let/. . .` from being parsed as a term
syntax (priority := low) term : stmt
syntax "let" ident "←" stmt:1 ";" stmt : stmt
macro "{" s:stmt "}" : stmt => `($s)

syntax "d!" stmt : term -- corresponds to `D(s)`

macro_rules
| `(do' $s) => `(d! $s) -- (1)

-- helper function; see usage below
def expandStmt (s : TSyntax `stmt) : MacroM (TSyntax `stmt) := do
let s' ← expandMacros s
if s == s' then

Macro.throwUnsupported

A Macro Implementation of do Notation

else
-- There is no static guarantee that `expandMacros` stays in
-- the `stmt` category, but it is true for all our macros
return TSyntax.mk s'

macro_rules
/-(D1)-/ | `(d! $e:term) => `($e)
/-(D2)-/ | `(d! let $x ← $s; $s') =>

`((d! $s) >>= fun $x => (d! $s'))
| `(d! $s) => do

-- fallback rule: try to expand abbreviation
let s' ← expandStmt s
`(d! $s')

/-(A1)-/ macro "let" x:ident ":=" e:term ";" s:stmt : stmt => `(let
$x ← pure $e; $s)

-- priority `0` prevents `;` from being used in trailing contexts
without braces (see e.g. `:1` above)

/-(A2)-/ macro:0 s1:stmt ";" s2:stmt : stmt => `(let x ← $s1; $s2)

A.2 Mutable Variables

import Do.Basic

open Lean

syntax "let" "mut" ident ":=" term ";" stmt : stmt
syntax ident ":=" term : stmt
syntax "if" term "then" stmt:1 : stmt

declare_syntax_cat expander
-- generic syntax for traversal-like functions S_y/R/B/L
syntax "expand!" expander "in" stmt:1 : stmt
syntax "mut" ident : expander -- corresponds to `S_y`

-- generic traversal rules
macro_rules

-- subsumes (R3, B4, L4)
| `(stmt| expand! $exp in let $x ← $s; $s') => `(stmt| let $x ←

expand! $exp in $s; expand! $exp in $s')
-- subsumes (R4, B5, L5)

172

A.2 Mutable Variables

| `(stmt| expand! $exp in let mut $x := $e; $s') => `(stmt| let
mut $x := $e; expand! $exp in $s')

-- subsumes (R5, B6, L6)
| `(stmt| expand! $_ in $x:ident := $e) => `(stmt| $x:ident := $e)
-- subsumes (S6, R6, B7, L7)
| `(stmt| expand! $exp in if $e then $s1) => `(stmt| if $e then

expand! $exp in $s1)
| `(stmt| expand! $exp in $s) => do
let s' ← expandStmt s
`(stmt| expand! $exp in $s')

macro_rules
/-(D3)-/ | `(d! let mut $x := $e; $s) => `(let $x := $e; StateT.run'

(d! expand! mut $x in $s) $x)
| `(d! $x:ident := $_:term) =>

throw <| Macro.Exception.error x s!"variable '{x.getId}'
is not reassignable in this scope"

/-(D4)-/ | `(d! if $e then $s1) => `(if $e then d! $s1 else pure ())
-- (D4)

macro_rules
/-(S1)-/ | `(stmt| expand! mut $_ in $e:term) => `(stmt| StateT.lift

$e)
/-(S2)-/ | `(stmt| expand! mut $y in let $x ← $s; $s') =>

if x == y then
throw <| Macro.Exception.error x s!"cannot shadow

'mut' variable '{x.getId}'"
else
`(stmt| let $x ← expand! mut $y in $s; let $y ← get;

expand! mut $y in $s')
/-(S3)-/ | `(stmt| expand! mut $y in let mut $x := $e; $s') =>

if x == y then
throw <| Macro.Exception.error x s!"cannot shadow

'mut' variable '{x.getId}'"
else
`(stmt| let mut $x := $e; expand! mut $y in $s')

| `(stmt| expand! mut $y in $x:ident := $e) =>
if x == y then

/-(S5)-/ `(stmt| set $e)
else

173

A Macro Implementation of do Notation

/-(S6)-/ `(stmt| $x:ident := $e)

/-(A3)-/ macro:0 "let" "mut" x:ident "←" s:stmt:1 ";" s':stmt :
stmt => `(let y ← $s; let mut $x := y; $s')

/-(A4)-/ macro:0 x:ident "←" s:stmt:1 : stmt => `(let y ← $s;
$x:ident := y)

-- a variant of (A4) since we technically cannot make the above
macro a `stmt`

macro:0 x:ident "←" s:stmt:1 ";" s':stmt : stmt => `(let y ← $s;
$x:ident := y; $s')

/- Examples -/

variable [Monad m]
variable (ma ma' : m α)

-- mark `map_eq_pure_bind : f <$> x = x >>= pure (f a)` as a
simplification lemma.

attribute [local simp] map_eq_pure_bind

-- The typeclass `LawfulMonad` encodes the monad laws (6.2-6.4)
example [LawfulMonad m] :

(do' let mut x ← ma;
pure x : m α)

=
ma

:= by simp

example [LawfulMonad m] :
(do' let mut x ← ma;

x ← ma';
pure x)

=
(ma >>= fun _ => ma')

:= by simp

-- `#check_failure` succeeds if the given term fails to be elaborated
#check_failure do'

let mut x ← ma;
let x ← ma'; -- cannot shadow 'mut' variable 'x'
pure x

174

A.2 Mutable Variables

#check_failure do'
x ← ma; -- variable 'x' is not reassignable in this scope
pure ()

variable (b : Bool)

-- The following equivalence is true even if `m` does not satisfy
the monad laws

example :
(do' if b then {

discard ma
})

=
(if b then discard ma else pure ())

:= rfl

theorem simple [LawfulMonad m] :
(do' let mut x ← ma;

if b then {
x ← ma'

};
pure x)

=
(ma >>= fun x => if b then ma' else pure x)

:= by cases b <;> simp

-- nondeterminism example from Section 6.2
def choose := @List.toLazy

def ex : LazyList Nat := do'
let mut x := 0;
let y ← choose [0, 1, 2, 3];
x := x + 1;
guard (x < 3);
pure (x + y)

-- Generate all solutions
#eval ex.toList -- [1, 2, 3, 4]

175

A Macro Implementation of do Notation

A.3 Early Return

import Do.Mut

open Lean

def runCatch [Monad m] (x : ExceptT α m α) : m α :=
ExceptT.run x >>= fun

| Except.ok x => pure x
| Except.error e => pure e

/-- Count syntax nodes satisfying `p`. -/
partial def Lean.Syntax.count (stx : Syntax) (p : Syntax → Bool) :

Nat :=
stx.getArgs.foldl (fun n arg => n + arg.count p) (if p stx then 1

else 0)

syntax "return" term : stmt

syntax "return" : expander

macro_rules
/-(6.1')-/ | `(do' $s) => do

-- optimization: fall back to original rule (1) if now `return`
statement was expanded

let s' ← expandStmt (← `(stmt| expand! return in $s))
if s'.raw.count ·(matches `(stmt| return $_)) == s.raw.count ·(

matches `(stmt| return $_)) then
`(d! $s)

else
`(ExceptCpsT.runCatch (d! $s'))

macro_rules
/-(R1)-/ | `(stmt| expand! return in return $e) => `(stmt| throw $e)
/-(R2)-/ | `(stmt| expand! return in $e:term) => `(stmt|

ExceptCpsT.lift $e)

/- Examples -/

variable [Monad m]
variable (ma ma' : m α)

176

A.4 Iteration

variable (b : Bool)

example [LawfulMonad m] :
(do' let x ← ma;

return x)
= ma

:= by simp

example : Id.run
(do' let x := 1; return x)
= 1

:= rfl

example [LawfulMonad m] :
(do' if b then {

let x ← ma;
return x

};
ma')

=
(if b then ma else ma')

:= by cases b <;> simp

A.4 Iteration

import Do.Return

open Lean

syntax "for" ident "in" term "do'" stmt:1 : stmt
syntax "break " : stmt
syntax "continue " : stmt

syntax "break" : expander
syntax "continue" : expander
syntax "lift" : expander

macro_rules
-- subsumes (S7, R7, B2, L1)
| `(stmt| expand! $_ in break) => `(stmt| break)
-- subsumes (S8, R8, L2)

177

A Macro Implementation of do Notation

| `(stmt| expand! $_ in continue) => `(stmt| continue)
-- subsumes (L8, R9)
| `(stmt| expand! $exp in for $x in $e do' $s) => `(stmt| for $x

in $e do' expand! $exp in $s)

macro_rules
-- (D5), optimized like (6.1')
| `(d! for $x in $e do' $s) => do

let mut s := s
let sb ← expandStmt (← `(stmt| expand! break in $s))
let hasBreak := sb.raw.count ·(matches `(stmt| break)) <
s.raw.count ·(matches `(stmt| break))
if hasBreak then

s := sb
let sc ← expandStmt (← `(stmt| expand! continue in $s))
let hasContinue := sc.raw.count ·(matches `(stmt| continue)) <
s.raw.count ·(matches `(stmt| continue))
if hasContinue then

s := sc
let mut body ← `(d! $s)
if hasContinue then

body ← `(ExceptCpsT.runCatch $body)
let mut loop ← `(forM $e (fun $x => $body))
if hasBreak then

loop ← `(ExceptCpsT.runCatch $loop)
pure loop

| `(d! break%$b) =>
throw <| Macro.Exception.error b "unexpected 'break' outside
loop"

| `(d! continue%$c) =>
throw <| Macro.Exception.error c "unexpected 'continue' outside
loop"

macro_rules
/-(B1)-/ | `(stmt| expand! break in break) => `(stmt| throw ())
/-(B3)-/ | `(stmt| expand! break in $e:term) => `(stmt|

ExceptCpsT.lift $e)
/-(B8)-/ | `(stmt| expand! break in for $x in $e do' $s) => `(stmt|

for $x in $e do' expand! lift in $s)
| `(stmt| expand! continue in continue) => `(stmt| throw ())

178

A.4 Iteration

| `(stmt| expand! continue in $e:term) => `(stmt|
ExceptCpsT.lift $e)

| `(stmt| expand! continue in for $x in $e do' $s) =>
`(stmt| for $x in $e do' expand! lift in $s)

macro_rules
/-(L3)-/ | `(stmt| expand! lift in $e:term) => `(stmt|

ExceptCpsT.lift $e)

macro_rules
/-(S9)-/ | `(stmt| expand! mut $y in for $x in $e do' $s) => `(stmt|

for $x in $e do' { let $y ← get; expand! mut $y in $s })

/- Examples -/

variable [Monad m]
variable (ma ma' : m α)
variable (b : Bool)
variable (xs : List α) (act : α → m Unit)

attribute [local simp] map_eq_pure_bind

example [LawfulMonad m] :
(do' for x in xs do' {

act x
})

=
xs.forM act

:= by induction xs <;> simp_all!

def ex2 (f : β → α → m β) (init : β) (xs : List α) : m β := do'
let mut y := init;
for x in xs do' {

y ← f y x
};
return y

example [LawfulMonad m] (f : β → α → m β) :
ex2 f init xs = xs.foldlM f init := by

unfold ex2; induction xs generalizing init <;> simp_all!

179

A Macro Implementation of do Notation

@[simp] theorem List.find?_cons {xs : List α} : (x::xs).find? p =
if p x then some x else xs.find? p := by

cases h : p x <;> simp_all!

example (p : α → Bool) : Id.run
(do' for x in xs do' {

if p x then {
return some x

}
};
pure none)

=
xs.find? p

:= by induction xs with
| nil => simp [Id.run, List.find?]
| cons x => cases h : p x <;> simp_all [Id.run]

variable (p : α → m Bool)

theorem byCases_Bool_bind (x : m Bool) (f g : Bool → m β) (isTrue
: f true = g true) (isFalse : f false = g false) : (x >>= f) =
(x >>= g) := by

have : f = g := by
funext b
cases b with
| true => exact isTrue
| false => exact isFalse

rw [this]

theorem eq_findM [LawfulMonad m] :
(do' for x in xs do' {

let b ← p x;
if b then {

return some x
}

};
pure none)

=
xs.findM? p

:= by induction xs with
| nil => simp!

180

A.4 Iteration

| cons x xs ih =>
rw [List.findM?, ← ih]; simp
apply byCases_Bool_bind <;> simp

def ex3 [Monad m] (p : α → m Bool) (xss : List (List α)) : m
(Option α) := do'

for xs in xss do' {
for x in xs do' {

let b ← p x;
if b then {

return some x
}

}
};
pure none

theorem eq_findSomeM_findM [LawfulMonad m] (xss : List (List α)) :
ex3 p xss = xss.findSomeM? (fun xs => xs.findM? p) := by

unfold ex3
induction xss with
| nil => simp!
| cons xs xss ih =>

simp [List.findSomeM?]
rw [← ih, ← eq_findM]
induction xs with
| nil => simp
| cons x xs ih => simp; apply byCases_Bool_bind <;> simp [ih]

def List.untilM (p : α → m Bool) : List α → m Unit
| [] => pure ()
| a::as => p a >>= fun | true => pure () | false => as.untilM p

theorem eq_untilM [LawfulMonad m] :
(do' for x in xs do' {

let b ← p x;
if b then {

break
}

})
=
xs.untilM p

181

A Macro Implementation of do Notation

:= by induction xs with
| nil => simp!
| cons x xs ih =>

simp [List.untilM]; rw [← ih]; clear ih
apply byCases_Bool_bind <;> simp

/- Adding `repeat` and `while` statements -/

@[specialize] partial def loopForever [Monad m] (f : Unit → m Unit)
: m Unit :=

f () *> loopForever f

inductive Loop' where
| mk : Loop'

instance : ForM m Loop' Unit where
forM _ f := loopForever f

macro:0 "repeat" s:stmt:1 : stmt => `(stmt| for u in Loop'.mk do' $s)

#eval do' -- 0 1 2 3
let mut i := 0;
repeat {

if i ≥ 3 then {
break

};
IO.println i;
i := i + 1

};
return i

macro:0 "while" c:term "do'" s:stmt:1 : stmt =>
`(stmt| repeat { if !$c then break; { $s } })

#eval do' -- 0 1 2 3
let mut i := 0;
while (i < 3) do' {
IO.println i;
i := i + 1

};
return i

182

B
Formal Correctness of do

Translation

import Do.For
import Lean
import Aesop

In this appendix, I present an intrinsically typed representation of the
syntax of do statements from Chapter 5 as well of their translation functions
and an equivalence proof thereof to a simple denotational semantics.

The appendix is generated from a Lean file in literate style using the doc-
umentation generator Alectryon [Pit-Claudel, 2020]. I make extensive use
of the proof search tactic Aesop [Limperg and From, 2023] for automation.

B.1 Contexts

We represent contexts as lists of types and assignments of them as het-
erogeneous lists over these types. As is common with lists, contexts
grow to the left in our presentation. The following encoding of hetero-
geneous lists avoids the universe bump of the usual inductive definition
([Altenkirch, 2010]).

def HList : List (Type u) → Type u
| [] => PUnit
| α :: αs => α × HList αs

@[matchPattern]
abbrev HList.nil : HList [] := ⟨⟩
@[matchPattern]

B Formal Correctness of do Translation

abbrev HList.cons (a : α) (as : HList αs) : HList (α :: αs) := (a, as)

We overload the common list notations :: and [e, ...] for HList using
the macro system. Note the recursive macro usage in the latter notation.

infixr:67 " :: " => HList.cons

syntax (name := hlistCons) "[" term,* "]" : term
macro_rules (kind := hlistCons)
| `([]) => ``(HList.nil)
| `([$x]) => ``(HList.cons $x [])
| `([$x, $xs,*]) => ``(HList.cons $x [$xs,*])

Lean’s very general, heterogeneous definition of ++ causes some issues
with our overloading above in terms such as a ++ [b], so we restrict
it to the List interpretation in the following, which is sufficient for our
purposes.

local macro_rules
| `($a ++ $b) => ``(List.append $a $b)

abbrev Assg Γ := HList Γ

The following function updates a heterogeneous list at a given, guar-
anteed in-bounds index. It uses the subtype Fin n of natural numbers
smaller than n.

def HList.set : {αs : List (Type u)} → HList αs →
(i : Fin αs.length) → αs.get i → HList αs

| _ :: _, _ :: as, ⟨0, _⟩, b => b :: as
| _ :: _, a :: as, ⟨n + 1, h⟩, b =>

a :: set as ⟨n, Nat.le_of_succ_le_succ h⟩ b
| [], [], _, _ => []

We write ∅ for empty contexts and assignments and Γ ⊢ α for the type
of values of type α under the context Γ, that is, the function type from an
assignment to α.

instance : EmptyCollection (Assg ∅) where
emptyCollection := []

184

B.2 Intrinsically Typed Representation of do Statements

notation:30 Γ " ⊢ " α => Assg Γ → α

def Assg.drop : Assg (α :: Γ) → Assg Γ
| _ :: as => as

In one special case, we will need to manipulate contexts from the right,
i.e. the outermost scope.

def Assg.extendBot (x : α) : {Γ : _} → Assg Γ → Assg (Γ ++ [α])
| [], [] => [x]
| _ :: _, a :: as => a :: extendBot x as

def Assg.dropBot : {Γ : _} → Assg (Γ ++ [α]) → Assg Γ
| [], _ => []
| _ :: _, a :: as => a :: dropBot as

B.2 Intrinsically Typed Representation of do
Statements

The type Stmt representing statements defined below is parameterized by

• m: base monad (fixed: to the left of the colon)

• ω: return type, m ω is the type of the entire do block (fixed)

• Γ: do-local immutable context

• ∆: do-local mutable context

• b: break allowed

• c: continue allowed

• α: local result type, m α is the type of the statement

The constructor signatures are best understood by comparing them with
the corresponding typing rules in Section 5.6. Note that the choice of de
Bruijn indices changes/simplifies some parts, such as obviating freshness
checks (x < ∆).

185

B Formal Correctness of do Translation

inductive Stmt (m : Type → Type u) (ω : Type) :
(Γ ∆ : List Type) → (b c : Bool) → (α : Type) → Type _ where

| expr (e : Γ ⊢ ∆ ⊢ m α) : Stmt m ω Γ ∆ b c α
| bind (s : Stmt m ω Γ ∆ b c α)

(s’ : Stmt m ω (α :: Γ) ∆ b c β) :
Stmt m ω Γ ∆ b c β -- let _ ← s; s’

| letmut (e : Γ ⊢ ∆ ⊢ α) (s : Stmt m ω Γ (α :: ∆) b c β) :
Stmt m ω Γ ∆ b c β -- let mut _ := e; s

| assg (x : Fin ∆.length) (e : Γ ⊢ ∆ ⊢ ∆.get x) :
Stmt m ω Γ ∆ b c Unit -- x := e

| «if» (e : Γ ⊢ ∆ ⊢ Bool) (s : Stmt m ω Γ ∆ b c Unit) :
Stmt m ω Γ ∆ b c Unit -- if e then s

| ret (e : Γ ⊢ ∆ ⊢ ω) : Stmt m ω Γ ∆ b c α -- return e
| «for» (e : Γ ⊢ ∆ ⊢ List α)

(s : Stmt m ω (α :: Γ) ∆ true true Unit) :
Stmt m ω Γ ∆ b c Unit -- for _ in e do s

| «break» : Stmt m ω Γ ∆ true c α -- break
| cont : Stmt m ω Γ ∆ b true α -- continue

Neutral statements are a restriction of the above type.

inductive Neut (ω α : Type) : (b c : Bool) → Type _ where
| val (a : α) : Neut ω α b c
| ret (o : ω) : Neut ω α b c
| «break» : Neut ω α true c
| cont : Neut ω α b true

We elide Neut.val where unambiguous.

instance : Coe α (Neut ω α b c) := ⟨Neut.val⟩
instance : Coe (Id α) (Neut ω α b c) := ⟨Neut.val⟩

We write e[ρ][σ] for the substitution of both contexts in e, a simple
application in this encoding. σ[x 7→ v] updates σ at x (a de Bruijn index).

macro:max (priority := high)
e:term:max noWs "[" ρ:term "]" "[" σ:term "]" : term => `($e $ρ $σ)

macro:max (priority := high)
σ:term:max noWs "[" x:term " 7→ " v:term "]" : term =>
``(HList.set $σ $x $v)

186

B.3 Dynamic Evaluation Function

B.3 Dynamic Evaluation Function

A direct encoding of the operational semantics from Section 5.6 as a
definitional interpreter, generalized over an arbitrary monad. Note that
the immutable context ρ is accumulated (v :: ρ) and passed explicitly
instead of immutable bindings being substituted immediately as that is
a better match for the above definition of Stmt. Iteration over the values
of the given list in the for case introduces a nested, mutually recursive
helper function, with termination of the mutual bundle following from a
size argument over the statement primarily and the length of the list in the
for case secondarily.

@[simp] def Stmt.eval [Monad m] (ρ : Assg Γ) :
Stmt m ω Γ ∆ b c α → Assg ∆ → m (Neut ω α b c × Assg ∆)

| .expr e, σ => e[ρ][σ] >>= fun v => pure ⟨v, σ⟩
| .bind s s’, σ =>

-- defining this part as a separate definition helps Lean
-- with the termination proof
let rec @[simp] cont val

| ⟨.val v, σ’⟩ => val v σ’
-- the `Neut` type family forces us to repeat these cases
-- as the LHS/RHS indices are not identical
| ⟨.ret o, σ’⟩ => pure ⟨.ret o, σ’⟩
| ⟨.break, σ’⟩ => pure ⟨.break, σ’⟩
| ⟨.cont, σ’⟩ => pure ⟨.cont, σ’⟩

s.eval ρ σ >>= cont (fun v σ’ => s’.eval (v :: ρ) σ’)
| .letmut e s, σ =>

s.eval ρ (e[ρ][σ], σ) >>= fun ⟨r, σ’⟩ => pure ⟨r, σ’.drop⟩
-- `x` is a valid de Bruijn index into `σ` by definition of `assg`
| .assg x e, σ => pure ⟨(), σ[x 7→ e[ρ][σ]]⟩
| .if e s, σ => if e[ρ][σ] then s.eval ρ σ else pure ⟨(), σ⟩
| .ret e, σ => pure ⟨.ret e[ρ][σ], σ⟩
| .for e s, σ =>

let rec @[simp] go σ
| [] => pure ⟨(), σ⟩
| a::as =>

s.eval (a :: ρ) σ >>= fun
| ⟨(), σ’⟩ => go σ’ as
| ⟨.cont, σ’⟩ => go σ’ as
| ⟨.break, σ’⟩ => pure ⟨(), σ’⟩
| ⟨.ret o, σ’⟩ => pure ⟨.ret o, σ’⟩

187

B Formal Correctness of do Translation

go σ e[ρ][σ]
| .break, σ => pure ⟨.break, σ⟩
| .cont, σ => pure ⟨.cont, σ⟩

termination_by
eval s _ => (sizeOf s, 0)
eval.go as => (sizeOf s, as.length)

At the top-level statement, the contexts are empty, no loop control flow
statements are allowed, and the return and result type are identical.

abbrev Do m α := Stmt m α ∅ ∅ false false α

def Do.eval [Monad m] (s : Do m α) : m α :=
Stmt.eval ∅ s ∅ >>= fun

| ⟨Neut.val a, _⟩ => pure a
| ⟨Neut.ret o, _⟩ => pure o

notation "⟦" s "⟧" => Do.eval s

B.4 Translation Functions

We adjust the immutable context where necessary. The mutable context
never has to be adjusted.

@[simp] def Stmt.mapAssg (f : Assg Γ’ → Assg Γ) :
Stmt m ω Γ ∆ b c β → Stmt m ω Γ’ ∆ b c β

| .expr e => .expr (e ◦ f)
| .bind s1 s2 =>

.bind (s1.mapAssg f) (s2.mapAssg (fun (a :: as) => (a :: f as)))
| .letmut e s => .letmut (e ◦ f) (s.mapAssg f)
| .assg x e => .assg x (e ◦ f)
| .if e s => .if (e ◦ f) (s.mapAssg f)
| .ret e => .ret (e ◦ f)
| .for e s => .for (e ◦ f) (s.mapAssg (fun (a :: as) => (a :: f as)))
| .break => .break
| .cont => .cont

Let us write f ◦e e for the composition of f : α → βwith e : Γ ⊢ ∆
⊢ α, which we will use to rewrite embedded terms.

infixr:90 " ◦e " => fun f e => fun ρ σ => f e[ρ][σ]

188

B.4 Translation Functions

The formalization of S presents some technical hurdles. Because it
operates on the outer-most mutable binding, we have to operate on that
context from the right, from which we lose some helpful definitional
equalities and have to rewrite types using nested proofs instead.

The helper function shadowSnd is particularly interesting because it
shows how the shadowing in translation rules (S2) and (S9) is expressed
in our de Bruijn encoding: The context α :: β :: α :: Γ corresponds, in
this order, to the y that has just been bound to the value of get, then x from
the respective rule, followed by the y of the outer scope. We encode the
shadowing of y by dropping the third element from the context as well as
the assignment. We are in fact forced to do so because the corresponding
branches of S would not otherwise typecheck. The only mistake we
could still make is to drop the wrong α value from the assignment, which
(speaking from experience) would eventually be caught by the correctness
proof.

@[simp] def S [Monad m] : Stmt m ω Γ (∆ ++ [α]) b c β →
Stmt (StateT α m) ω (α :: Γ) ∆ b c β

/-(S1)-/ | .expr e => .expr (StateT.lift ◦e unmut e)
/-(S2)-/ | .bind s1 s2 =>

.bind (S s1) (.bind (.expr (fun _ _ => get))
(.mapAssg shadowSnd (S s2)))

/-(S3)-/ | .letmut e s => .letmut (unmut e) (S s)
| .assg x e =>

if h : x < ∆.length then
/-(S4)-/ .assg ⟨x, h⟩ (fun (y :: ρ) σ => List.get_append_left .. ▶

e ρ (Assg.extendBot y σ))
else

/-(S5)-/ .expr (set (σ := α) ◦e cast (List.get_last h) ◦e unmut e)
/-(S6)-/ | .if e s => .if (unmut e) (S s)

-- unreachable case; could be eliminated by a more precise
-- specification of `ω`, but the benefit would be minimal
| .ret e => .ret (unmut e)

/-(S7)-/ | .break => .break
/-(S8)-/ | .cont => .cont
/-(S9)-/ | .for e s =>

.for (unmut e) (.bind (.expr (fun _ _ => get))
(.mapAssg shadowSnd (S s)))

where
@[simp] unmut {β} (e : Γ ⊢ ∆ ++ [α] ⊢ β) : α :: Γ ⊢ ∆ ⊢ β

189

B Formal Correctness of do Translation

| y :: ρ, σ => e ρ (Assg.extendBot y σ)
@[simp] shadowSnd {β} :

Assg (α :: β :: α :: Γ) → Assg (α :: β :: Γ)
| a’ :: b :: _ :: ρ => a’ :: b :: ρ

Formalizing the remaining translation functions is straightforward.

@[simp] def R [Monad m] :
Stmt m ω Γ ∆ b c α → Stmt (ExceptT ω m) Empty Γ ∆ b c α

/-(R1)-/ | .ret e => .expr (throw ◦e e)
/-(R2)-/ | .expr e => .expr (ExceptT.lift ◦e e)
/-(R3)-/ | .bind s s’ => .bind (R s) (R s’)
/-(R4)-/ | .letmut e s => .letmut e (R s)
/-(R5)-/ | .assg x e => .assg x e
/-(R6)-/ | .if e s => .if e (R s)
/-(R7)-/ | .break => .break
/-(R8)-/ | .cont => .cont
/-(R9)-/ | .for e s => .for e (R s)

@[simp] def L [Monad m] :
Stmt m ω Γ ∆ b c α → Stmt (ExceptT Unit m) ω Γ ∆ b c α

/-(L1)-/ | .break => .break
/-(L2)-/ | .cont => .cont
/-(L3)-/ | .expr e => .expr (ExceptT.lift ◦e e)
/-(L4)-/ | .bind s s’ => .bind (L s) (L s’)
/-(L5)-/ | .letmut e s => .letmut e (L s)
/-(L6)-/ | .assg x e => .assg x e
/-(L7)-/ | .if e s => .if e (L s)

| .ret e => .ret e
/-(L8)-/ | .for e s => .for e (L s)

@[simp] def B [Monad m] :
Stmt m ω Γ ∆ b c α → Stmt (ExceptT Unit m) ω Γ ∆ false c α

/-(B1)-/ | .break => .expr (fun _ _ => throw ())
/-(B2)-/ | .cont => .cont
/-(B3)-/ | .expr e => .expr (ExceptT.lift ◦e e)
/-(B4)-/ | .bind s s’ => .bind (B s) (B s’)
/-(B5)-/ | .letmut e s => .letmut e (B s)
/-(B6)-/ | .assg x e => .assg x e
/-(B7)-/ | .if e s => .if e (B s)

| .ret e => .ret e
/-(B8)-/ | .for e s => .for e (L s)

190

B.4 Translation Functions

-- (elided in the paper)
@[simp] def C [Monad m] : Stmt m ω Γ ∆ false c α →

Stmt (ExceptT Unit m) ω Γ ∆ false false α
| .cont => .expr (fun _ _ => throw ())
| .expr e => .expr (ExceptT.lift ◦e e)
| .bind s s’ => .bind (C s) (C s’)
| .letmut e s => .letmut e (C s)
| .assg x e => .assg x e
| .if e s => .if e (C s)
| .ret e => .ret e
| .for e s => .for e (L s)

The remaining function to be translated is D, which is straightforward
as well except for its termination proof, as it recurses on the results of S
(D3) and C ◦ B (D5). Because of rules (S2, S9) that introduce new bindings,
S may in fact increase the size of the input, and the same is true for C
and B for the sizeOf function automatically generated by Lean. Thus
we introduce a new measure numExts that counts the number of special
statements on top of basic do notation and prove that all three functions do
not increase the size according to that measure. Because the rules (D3) and
(D5) each eliminate such a special statement, it follows that D terminates
because either the number of special statements decreases in each case, or
it remains the same and the total number of statements decreases.

@[simp] def Stmt.numExts : Stmt m ω Γ ∆ b c α → Nat
| .expr _ => 0
| .bind s1 s2 => s1.numExts + s2.numExts
| .letmut _ s => s.numExts + 1
| .assg _ _ => 1
| .if _ s => s.numExts
| .ret _ => 1
| .for _ s => s.numExts + 1
| .break => 1
| .cont => 1

@[simp] theorem Stmt.numExts_mapAssg (f : Assg Γ’ → Assg Γ)
(s : Stmt m ω Γ ∆ b c β) :
numExts (mapAssg f s) = numExts s := by

induction s generalizing Γ’ <;> simp [*]

191

B Formal Correctness of do Translation

theorem Stmt.numExts_S [Monad m] (s : Stmt m ω Γ (∆ ++ [α]) b c β) :
numExts (S s) ≤ numExts s := by

-- `induction` does not work with non-variable indices, so we first
-- generalize `∆ ++ [α]` into an explicit equation
revert s
suffices {∆’: _ } → (s : Stmt m ω Γ ∆’ b c β) →

(h : ∆’ = (∆ ++ [α])) →
numExts (S (h ▶ s : Stmt m ω Γ (∆ ++ [α]) b c β)) ≤ numExts s

from fun s => this s rfl
intro ∆’ s h
induction s generalizing ∆ with
subst h

| bind _ _ ih1 ih2 => simp [Nat.add_le_add, ih1 rfl, ih2 rfl]
| letmut _ _ ih =>
simp [Nat.add_le_add, ih (List.cons_append ..).symm]

| assg => aesop
| «if» _ _ ih => simp [Nat.add_le_add, ih rfl]
| «for» _ _ ih => simp [Nat.add_le_add, ih rfl]
| _ => simp

theorem Stmt.numExts_L_L [Monad m] (s : Stmt m ω Γ ∆ b c β) :
numExts (L (L s)) ≤ numExts s := by

induction s <;> simp [Nat.add_le_add, *]

theorem Stmt.numExts_C_B [Monad m] (s : Stmt m ω Γ ∆ b c β) :
numExts (C (B s)) ≤ numExts s := by

induction s <;> simp [Nat.add_le_add, numExts_L_L, *]

-- Auxiliary tactic for showing that `D` terminates
macro "D_tac" : tactic =>
`({simp_wf

solve
| apply Prod.Lex.left; assumption
| apply Prod.Lex.right’ <;> simp_arith })

@[simp] def D [Monad m] : Stmt m Empty Γ ∅ false false α → (Γ ⊢ m α)
| .expr e => (e[·][∅])
| .bind s s’ => (fun ρ => D s ρ >>= fun x => D s’ (x :: ρ))
| .letmut e s =>
-- for termination
have := Nat.lt_succ_of_le <| Stmt.numExts_S (∆ := []) s

192

B.5 Equivalence Proof

fun ρ =>
let x := e[ρ][∅]
StateT.run’ (D (S s) (x :: ρ)) x

| .if e s => (fun ρ => if e[ρ][∅] then D s ρ else pure ())
| .for e s =>

-- for termination
have := Nat.lt_succ_of_le <| Stmt.numExts_C_B (∆ := []) s
fun ρ => runCatch

(forM e[ρ][∅] (fun x => runCatch (D (C (B s)) (x :: ρ))))
| .ret e => (nomatch e[·][∅])

termination_by _ s => (s.numExts, sizeOf s)
decreasing_by D_tac

Finally we compose D and R into the translation rule for a top-level
statement (6.1’).

def Do.trans [Monad m] (s : Do m α) : m α := runCatch (D (R s) ∅)

B.5 Equivalence Proof

Using the monadic definitional interpreter, we can modularly prove for
each individual translation function that evaluating its output is equivalent
to directly evaluating the input, modulo some lifting and adjustment of
resulting values. After induction on the statement, the proofs are mostly
concerned with case splitting, application of congruence theorems, and
simplification. We can mostly offload these tasks onto Aesop.

attribute [local simp] map_eq_pure_bind ExceptT.run_bind
attribute [aesop safe apply] bind_congr

variable [Monad m] [LawfulMonad m]

theorem eval_R (s : Stmt m ω Γ ∆ b c α) :
(R s).eval ρ σ = (

ExceptT.lift (s.eval ρ σ) >>= fun x =>
match (generalizing := false) x with
| (.ret o, _) => throw o
| (.val a, σ) => pure (.val a, σ)
| (.cont, σ) => pure (.cont, σ)
| (.break, σ) => pure (.break, σ)

193

B Formal Correctness of do Translation

: ExceptT ω m (Neut Empty α b c × Assg ∆)) := by
apply ExceptT.ext
induction s with
| «for» e =>
simp only [Stmt.eval, R]
induction e ρ σ generalizing σ <;>

aesop (add norm unfold Stmt.eval.go)
| _ => aesop (add unsafe cases Neut)

(erase Aesop.BuiltinRules.destructProducts)

@[simp] theorem eval_mapAssg (f : Assg Γ’ → Assg Γ) :
∀ (s : Stmt m ω Γ ∆ b c β),

Stmt.eval ρ (.mapAssg f s) σ = Stmt.eval (f ρ) s σ := by
intro s
induction s generalizing Γ’ with
| «for» e s ih =>
simp only [Stmt.eval, Stmt.mapAssg, Function.comp]
induction e (f ρ) σ generalizing σ <;>

aesop (add norm unfold Stmt.eval.go)
| _ => aesop (add unsafe cases Neut)

We need one last helper function on context bottoms to be able to state
the invariant of S, and then prove various lemmas about their interactions.

def Assg.bot : {Γ : _} → Assg (Γ ++ [α]) → α
| [], [a] => a
| _ :: _, _ :: as => bot as

@[simp] theorem Assg.dropBot_extendBot (a : α) (σ : Assg Γ) :
Assg.dropBot (Assg.extendBot a σ) = σ := by

induction Γ <;> cases σ <;> simp [dropBot, extendBot, *]
@[simp] theorem Assg.bot_extendBot (a : α) (σ : Assg Γ) :

Assg.bot (Assg.extendBot a σ) = a := by
induction Γ <;> cases σ <;> simp [bot, extendBot, *]

@[simp] theorem Assg.extendBot_bot_dropBot (σ : Assg (Γ ++ [α])) :
Assg.extendBot (Assg.bot σ) (Assg.dropBot σ) = σ := by

induction Γ <;> cases σ <;> simp [dropBot, bot, extendBot, *]
rfl

@[simp] theorem Assg.dropBot_set_extendBot_init (a : α) (σ : Assg Γ)
(h : i.1 < Γ.length) {b} :

194

B.5 Equivalence Proof

Assg.dropBot ((Assg.extendBot a σ).set i b) =
σ.set ⟨i.1, h⟩ (List.get_append_left .. ▶ b) := by

induction Γ with
| nil => contradiction
| cons _ _ ih =>

cases σ
have ⟨i, h’⟩ := i
cases i <;> simp [HList.set, dropBot]
rw [ih]

@[simp] theorem Assg.bot_set_extendBot_init (a : α) (σ : Assg Γ)
(h : i.1 < Γ.length) {b} :
Assg.bot ((Assg.extendBot a σ).set i b) = a := by

induction Γ with
| nil => contradiction
| cons _ _ ih =>

cases σ
have ⟨i, h’⟩ := i
cases i <;> simp [HList.set, dropBot, bot]
rw [ih]; apply Nat.lt_of_succ_lt_succ h

@[simp] theorem Assg.dropBot_set_extendBot_bottom (a : α) (σ : Assg Γ)
(h : ¬ i.1 < Γ.length) {b} :
Assg.dropBot ((Assg.extendBot a σ).set i b) = σ := by

induction Γ with
| nil => rfl
| cons _ _ ih =>

cases σ
have ⟨i, h’⟩ := i
cases i
· apply False.elim (h (Nat.zero_lt_succ _))
· simp [HList.set, dropBot]

rw [ih]
intro h’’
apply False.elim (h (Nat.succ_lt_succ h’’))

@[simp] theorem Assg.bot_set_extendBot_bottom (a : α) (σ : Assg Γ)
(h : ¬ i.1 < Γ.length) {b} :
Assg.bot ((Assg.extendBot a σ).set i b) =
cast (List.get_last h) b := by

induction Γ with

195

B Formal Correctness of do Translation

| nil =>
have ⟨i, h’⟩ := i
cases i
· simp [HList.set, extendBot, bot]; rfl
· apply False.elim

apply Nat.not_lt_zero _ (Nat.lt_of_succ_lt_succ h’)
| cons _ _ ih =>
cases σ
have ⟨i, h’⟩ := i
cases i
· apply False.elim (h (Nat.zero_lt_succ _))
· simp [bot]

rw [ih]
intro h’’
apply False.elim (h (Nat.succ_lt_succ h’’))

theorem eval_S : ∀ (s : Stmt m ω Γ (∆ ++ [α]) b c β),
StateT.run ((S s).eval (a :: ρ) σ) a =

s.eval ρ (Assg.extendBot a σ) >>= fun
| r :: σ => pure ((r :: Assg.dropBot σ), Assg.bot σ) := by

suffices {∆’: _ } → (s : Stmt m ω Γ ∆’ b c β) →
(h : ∆’ = (∆ ++ [α])) →
StateT.run ((S (h ▶ s)).eval (a :: ρ) σ) a

= s.eval ρ (h ▶ Assg.extendBot a σ) >>= fun
| r :: σ => pure ((r :: Assg.dropBot (h ▶ σ)),

Assg.bot (h ▶ σ))
from fun s => this s rfl

intro ∆’ s h
induction s generalizing ∆ a with
subst h

| bind s1 s2 ih1 ih2 =>
have ih1 := @ih1 (h := rfl)
have ih2 := @ih2 (h := rfl)
aesop (add safe cases Neut)

| letmut e s ih =>
have ih := @ih (∆ := _ :: ∆) (h := rfl)
aesop

| «for» e s ih =>
have ih := @ih (h := rfl)
simp only [S, Stmt.eval, S.unmut]
-- surgical generalization

196

B.5 Equivalence Proof

generalize h : a = a’
conv =>
pattern HList.cons a’ _
rw [← h]

clear h
induction e ρ _ generalizing σ a’ <;> aesop (add safe cases Neut)

| _ => aesop

theorem HList.eq_nil (as : HList ∅) : as = ∅ := rfl

attribute [local simp] ExceptT.run_bind

theorem eval_L (s : Stmt m ω Γ ∆ b c α) :
(L s).eval ρ σ = ExceptT.lift (s.eval ρ σ) := by

apply ExceptT.ext
induction s with
| «for» e =>

simp only [Stmt.eval, L]
induction e ρ σ generalizing σ <;> aesop

| _ => aesop (add safe cases Neut)

theorem eval_B (s : Stmt m ω Γ ∆ b c α) :
(B s).eval ρ σ =

(ExceptT.lift (s.eval ρ σ) >>= fun x =>
match (generalizing := false) x with
| (.ret o, σ) => pure (.ret o, σ)
| (.val a, σ) => pure (.val a, σ)
| (.cont, σ) => pure (.cont, σ)
| (.break, _) => throw ()
: ExceptT Unit m (Neut ω α false c × Assg ∆)) := by

apply ExceptT.ext
induction s with
| «for» e =>

simp only [Stmt.eval, B]
induction e ρ σ generalizing σ <;> aesop (add norm simp eval_L)

| _ => aesop (erase Aesop.BuiltinRules.destructProducts)

@[simp] def throwOnContinue : (Neut ω α false c × Assg ∆) →
ExceptT Unit m (Neut ω α false false × Assg ∆)

| (.ret o, σ) => pure (.ret o, σ)
| (.val a, σ) => pure (.val a, σ)

197

B Formal Correctness of do Translation

| (.cont, _) => throw ()

theorem eval_C (s : Stmt m ω Γ ∆ false c α) : (C s).eval ρ σ =
ExceptT.lift (s.eval ρ σ) >>= throwOnContinue := by

revert s
suffices {b: _ } → (s’ : Stmt m ω Γ ∆ b c α) → (h : b = false) →

let s : Stmt m ω Γ ∆ false c α := h ▶ s’
(C s).eval ρ σ = ExceptT.lift (s.eval ρ σ) >>= throwOnContinue

from fun s => this s rfl
intro b’ s h
induction s with
(first | subst h | trivial)

| «for» e =>
simp only [Stmt.eval, C]
induction e ρ σ generalizing σ <;>

aesop (add norm simp eval_L, unsafe apply ExceptT.ext)
| _ => aesop (add unsafe apply ExceptT.ext)

theorem D_eq {m} [Monad m] [LawfulMonad m] :
(s : Stmt m Empty Γ ∅ false false α) →
D s ρ = s.eval ρ ∅ >>= fun (Neut.val a, _) => pure a

| .expr e => by simp
| .bind s1 s2 => by

have ih1 := @D_eq (s := s1)
have ih2 := @D_eq (s := s2)
aesop

| .letmut e s => by
-- for termination
have := Nat.lt_succ_of_le <| Stmt.numExts_S (∆ := []) s
have ih := (D_eq (ρ := ·) (S s))
aesop (add safe cases Neut, norm simp eval_S)

| .if e s => by simp; split <;> simp [D_eq s]
| .ret e => nomatch e ρ ∅
| .for e s => by
-- for termination
have := Nat.lt_succ_of_le <| Stmt.numExts_C_B (∆ := []) s
have ih := (D_eq (ρ := ·) (C (B s)))
simp
induction e ρ ∅ <;>

aesop (add safe cases Neut, norm unfold runCatch,
norm simp [eval_C, eval_B])

198

B.6 Partial Evaluation

termination_by _ s => (s.numExts, sizeOf s)
decreasing_by D_tac

The equivalence proof follows from the invariants of D and R.

theorem Do.trans_eq_eval : ∀ s : Do m α, Do.trans s = ⟦s⟧ := by
aesop (add norm simp [D_eq, eval_R],

norm unfold [runCatch, Do.trans, Do.eval])

B.6 Partial Evaluation

We define a new term notation simp [...] in e that rewrites the term e
using the given simplification theorems. This is an example of a simple
term elaborator.

open Lean in
open Lean.Parser.Tactic in
open Lean.Meta in
open Lean.Elab in
elab "simp" "[" simps:simpLemma,* "]" "in" e:term : term => do
-- construct goal `⊢ e = ?x` with fresh metavariable `?x`,
-- simplify, solve by reflexivity, and return assigned value of `?x`
let e ← Term.elabTermAndSynthesize e none
let x ← mkFreshExprMVar (← inferType e)
let goal ← mkFreshExprMVar (← mkEq e x)
-- disable ζ-reduction to preserve `let`s
Term.runTactic goal.mvarId! (← `(tactic|

(simp (config := { zeta := false }) [$simps:simpLemma,*]
rfl)))

instantiateMVars x

-- further clean up generated programs
attribute [local simp] Assg.extendBot cast
attribute [-simp] StateT.run’_eq

We can now use this new notation to completely erase the translation
functions from an invocation on the example ex2 from For.lean (manually
translated to Stmt).

/-

199

B Formal Correctness of do Translation

let mut y := init;
for x in xs do’ {
y ← f y x

};
return y
-/
def ex2’ (f : β → α → m β) (init : β) (xs : List α) : Do m β :=

.letmut (fun _ _ => init) <|
.bind (

.for (fun _ _ => xs) <|
-- `y ← f y x` unfolded to `let z ← f y x; y := z` (A4)
.bind

(.expr (fun ([x]) ([y]) => f y x))
(.assg ⟨0, by simp⟩ (fun ([z, x]) _ => z))) <|

.ret (fun _ ([y]) => y)

def ex2’’ (f : β → α → m β) (init : β) (xs : List α) : m β :=
simp [Do.trans] in Do.trans (ex2’ f init xs)

Compare the output of the two versions - the structure is identical except
for unused monadic layers in the formal translation, which would be
harder to avoid in this typed approach.

#print ex2
/-
def ex2 : ... → (β → α → m β) → β → List α → m β :=
fun {m} {α} [Monad m] {β} f init xs =>

ExceptCpsT.runCatch
(let y := init;
StateT.run’

(do
forM xs fun x => do

let y ← get
let y ← StateT.lift (ExceptCpsT.lift (f y x))
let _ ← get
set y

let y ← get
StateT.lift (throw y))

y)
-/
#print ex2’’

200

B.6 Partial Evaluation

/-
def ex2’’ : ... → (β → α → m β) → β → List α → m β :=
fun {m} [Monad m] {β α} f init xs =>
runCatch

(let x := init;
StateT.run’
(do

runCatch
(forM xs fun x =>

runCatch do
let x_1 ← ExceptT.lift (ExceptT.lift get)
let x ← ExceptT.lift

(ExceptT.lift (StateT.lift (ExceptT.lift (f x_1 x))))
let _ ← ExceptT.lift (ExceptT.lift get)
ExceptT.lift (ExceptT.lift (set x)))

let x ← get
StateT.lift (throw x))

x)
-/

We can evaluate the generated program like any other Lean program,
and prove that both versions are equivalent.

#eval ex2’’ (m := Id) (fun a b => pure (a + b)) 0 [1, 2]

example (f : β → α → m β) :
ex2’’ f init xs = ex2 f init xs := by

rw [ex2, ex2’’]
unfold runCatch
induction xs generalizing init <;> simp_all! [StateT.run’_eq]

For one more example, consider ex3 from For.lean.

/-
for xs in xss do’ {

for x in xs do’ {
let b ← p x;
if b then {
return some x

}
}

};

201

B Formal Correctness of do Translation

pure none
-/

def ex3’ [Monad m] (p : α → m Bool) (xss : List (List α)) :
m (Option α) :=

simp [Do.trans] in Do.trans (
.bind
(.for (fun _ _ => xss) <|

.for (fun ([xs]) _ => xs) <|
.bind
(.expr (fun ([x, xs]) _ => p x))
(.if (fun ([b, x, xs]) _ => b)

(.ret (fun ([b, x, xs]) _ => some x))))
(.expr (fun _ _ => pure none)))

#print ex3
#print ex3’
#eval ex3’ (m := Id) (fun n => n % 2 == 0) [[1, 3], [2, 4]]

example (p : α → m Bool) (xss : List (List α)) :
ex3’ p xss = ex3 p xss := by

rw [ex3, ex3’]
unfold runCatch
induction xss with
| nil => simp!
| cons xs xss ih =>
simp
induction xs <;> aesop (add safe apply byCases_Bool_bind)

While it would be possible to override our do’ notation such that its
named syntax is first translated to nameless Stmt constructors and then
applied to simp [Do.trans] in, for demonstration purposes I decided to
encode these examples manually. In practice, the macro implementation
remains more desirable as mentioned in Section 5.6.

202

C
Formal Reference Counting

Semantics & Proof of
Correctness

This appendix contains the correctness proof of the compiler presented in
Section 6.4. Parts of it have been formalized by [Huisinga, 2019] in Lean 3
under my supervision.

The proof is split into the following parts:

• a specification of the semantics of λpure

• a well-formedness predicate on pure programs that we assume holds
for the compiler inputs

• well-formedness predicates on reset/reuse and borrow inference steps
that abstract from the specific implementations

• a type system for λRC

• a proof that type-correct programs are semantics-preserving in that
pure and RC semantics coincide

• a proof that the presented compiler produces type-correct output,
and therefore preserves semantics

C.1 Pure Semantics

The following rules present a natural semantics of λpure, which correspond
to the λRC semantics given in Section 6.3 after removing reference counts

C Formal Reference Counting Semantics & Proof of Correctness

and locations, resulting in a heap-less presentation where values directly
reference other values and are never explicitly freed.

ρ ∈ Ctxt = Var⇀ Value
v ∈ Value ::= ctori v | pap c v

Const-App-Full
δ(c) = λ yc. F v = ρ(y) [yc 7→ v] ⊢ F ⇓ v′

ρ ⊢ c y ⇓ v′

Const-App-Part
δ(c) = λ yc. F v = ρ(y) | v |<| yc |

ρ ⊢ pap c y ⇓ pap c v
Var-App-Full
ρ(x) = pap c v δ(c) = λ yc. F v′ = ρ(y) [yc 7→ v v′] ⊢ F ⇓ v′′

ρ ⊢ x y ⇓ v′′

Var-App-Part
ρ(x) = pap c v δ(c) = λ yc. F v′ = ρ(y) | v v′ |<| yc |

ρ ⊢ x y ⇓ pap c v v′

Ctor-App
v = ρ(y)

ρ ⊢ ctori y ⇓ ctori v

Proj
ρ(x) = ctor j v v′ = vi

ρ ⊢ proji x ⇓ v′

Return
ρ(x) = v

ρ ⊢ ret x ⇓ v
Let
ρ ⊢ e ⇓ v ρ[x 7→ v] ⊢ F ⇓ v′

ρ ⊢ let x = e; F ⇓ v′

Case
ρ(x) = ctori v ρ ⊢ Fi ⇓ v′

ρ ⊢ case x of F ⇓ v′

We also trivially extend the pure semantics to λRC in order to express se-
mantic refinement for the compiler passes that only change the RC semantics
of a program.

204

C.2 Well-Formedness

Inc
ρ ⊢ F ⇓ v

ρ ⊢ inc x; F ⇓ v

Dec
ρ ⊢ F ⇓ v

ρ ⊢ dec x; F ⇓ v

Reset

ρ ⊢ reset x ⇓ v

Reuse
ρ ⊢ ctori y ⇓ v

ρ ⊢ reuse x in ctori y ⇓ v

Definition 1. We say δB refines δA in the pure semantics if for each constant c
with δA(c) = λ y. F, we have δB(c) = λ y′. F′ and

[y 7→ v] ⊢ F ⇓ v′ ⇐⇒ [y′ 7→ v] ⊢ F′ ⇓ v′ for all v, v′

Note that there are no assertions about constants in δB but not in δA (e.g. helper
definitions introduced by compiler passes).

C.2 Well-Formedness

We will make the following reasonable assumptions about inputs of the
compiler, formally described as a predicate ⊢pure δ:

• used variables are first defined (definite assignment)

• defined variables are used at least once (the input is reduced)

• full applications are of the correct arity

• bindings are fresh

205

C Formal Reference Counting Semantics & Proof of Correctness

Definition 2 (well-formedness of pure programs).

∀c ∈ dom(δ). δ ⊢pure c

⊢pure δ

δ(c) = λ y. F y ⊢pure F

δ ⊢pure c

Γ, x ⊢pure ret x

Γ, x ⊢pure F

Γ, x ⊢pure case x of F

Γ ⊢pure e z ∈ FV(F) z < Γ Γ, z ⊢pure F

Γ ⊢pure let z = e; F

δ(c) = λ yc. F′ | y |=| yc |

Γ, y ⊢pure c y Γ, y ⊢pure pap c y Γ, x, y ⊢pure x y

Γ, y ⊢pure ctori y Γ, x ⊢pure proji x

The free-variables function FV is defined as usual.

We will implicitly assume ⊢pure δ for the pure input program δ in the
following.

Theorem 1. If Γ ⊢pure F, then FV(F) ⊆ Γ.

Proof. By induction over F. Any free variables in a subterm are covered by
a corresponding context extension, and the only point where the context is
reduced is where that variable is bound and thus removed from FV. □

C.3 reset/reuse

Variables introduced by reset form a separate, affine context ∆, i.e. they
may not be duplicated. They may be consumed by reuse. dec instructions
introduced later will turn the context linear, as postulated by the full type
system below.

206

C.4 Borrow Inference

Definition 3 (Well-formedness including reset/reuse instructions).

∀c ∈ dom(δ). δ ⊢reuse c

⊢reuse δ

δ(c) = λ y. F y; · ⊢reuse F

δ ⊢reuse c

Γ, x;∆ ⊢reuse ret x

Γ, x;∆ ⊢reuse F

Γ, x;∆ ⊢reuse case x of F

Γ ⊢pure e z ∈ FV(F) z < Γ ∪ ∆ Γ, z;∆ ⊢reuse F

Γ;∆ ⊢reuse let z = e; F

z < Γ ∪ ∆ Γ;∆, z ⊢reuse F

Γ;∆ ⊢reuse let z = reset e; F

Γ;∆ ⊢reuse F

Γ;∆, x ⊢reuse let z = reuse x in ctori y; F

Theorem 2. For the specific δreuse described in Chapter 6, we have ⊢reuse δreuse.
Moreover, δreuse refines δ in the pure semantics.

Proof. The first statement follows from the definition δreuse and the assump-
tion ⊢pure δ. The second statement follows directly from the definition of
δreuse and of the pure semantics of reset and reuse. □

Theorem 3. If Γ;∆ ⊢reuse F, then FV(F) ⊆ Γ ∪ ∆.

Proof. As before. □

C.4 Borrow Inference

The borrow heuristic function β (Section 6.4.2) does not immediately affect
the program, except that we introduce an owned wrapper for every function
with a borrowed parameter, which may not directly be applied partially.

Definition 4 (Program after borrow inference). We assume that for every
constant c ∈ δreuse there exists an unused constant name cO. The program after
borrow inference δβ is defined as the extension

δβ = δ
′

reuse[cO 7→ λ y. c y | B ∈ β(c), δreuse(c) = λ y. F]

where δ′reuse is obtained from δreuse by replacing every occurrence of pap c y where
B ∈ β(c) by pap cO y.

207

C Formal Reference Counting Semantics & Proof of Correctness

Definition 5 (Well-formedness of borrow inference). β is arity-correct.
Partially applied constants do not have borrowed parameters.

⊢reuse δ δ ⊢β c ∀c ∈ dom(δ)

⊢β δ

δ(c) = λ y. F | y |=| β(c) | ⊢β F

δ ⊢β c

B < β(c) ⊢β F

⊢β let x = pap c y; F ⊢β ret x

The rules for all other instructions proceed by direct induction on F or F.

Theorem 4. For δβ from Definition 4 and any arity-correct β, we have ⊢β δβ.
Moreover, δβ refines δreuse in the pure semantics.

Proof. By definition of δβ. □

C.5 A Type System for RC-Correct Programs

A program’s behavior should not be changed by compiling it to (or
optimizing it in) λRC. Before designing the compiler, it is helpful to capture
the global, dynamic invariants necessary for this in a static type system
that reasons about just the local context of a function.

Intuitively, a program is RC-correct if

1. owned variables are locally count-correct: every owned variable is
ultimately consumed or deced on each control flow path, with every
inc allowing and necessitating one more consumption,

2. borrowed parameters are not deced, as conceptually they do not
carry their own RC token, and

3. values from reset are handled by exactly one reuse or dec on each
control flow path, and are not used in any other context.

The type system formalizing these constraints is quite simple: since
types have been erased from λpure, the only types are O, B, and R for
owned, borrowed, and reset references, respectively.

τ ∈ Ty ::= O | B | R

208

C.5 A Type System for RC-Correct Programs

The type system is linear to represent conditions (1) and (3); for borrowed
references, we add the usual weakening and contraction rules from in-
tuitionistic linear logic [Benton et al., 1993] to model their non-linear, or
intuitionistic, semantics.

Ty-Var

x : τ ⊢RC x : τ

Ty-Weaken
Γ ⊢RC e : τ

Γ, x : B ⊢RC e : τ
Ty-Contract
Γ, x : B, x : B ⊢RC e : τ

Γ, x : B ⊢RC e : τ

Ty-Contract-F
Γ, x : B, x : B ⊢RC F

Γ, x : B ⊢RC F

We define well-typed programs and constants in terms of well-typed
function bodies; the return type is elided since it is always O.

⊢β δ ∀c ∈ dom(δ). δ ⊢RC c

⊢RC δ

δ(c) = λ y. F y : β(c) ⊢RC F

δ ⊢RC c

inc introduces a new owned reference from a borrowed or owned
reference, dec consumes an owned or reset reference.

Ty-Inc
τ ∈ {O,B} Γ, x : τ, x : O ⊢RC F

Γ, x : τ ⊢RC inc x; F

Ty-Dec
τ ∈ {O,R} Γ ⊢RC F

Γ, x : τ ⊢RC dec x; F

Note that the first rule can introduce the same variable with two different
types. It may help to view this type system as a capability system: A
hypothesis of type O or R grants (exactly) one consuming usage, while
one of type B grants only non-consuming usage.

Return values must be owned, while non-consuming, immediate uses
like in case can be owned or borrowed.

Ty-Return
Γ ⊢RC x : O

Γ ⊢RC ret x

Ty-Case
τ ∈ {O,B} Γ, x : τ ⊢RC F

Γ, x : τ ⊢RC case x of F

209

C Formal Reference Counting Semantics & Proof of Correctness

Applications are typed by splitting up the linear context: in e.g. the
conclusion Γ ⊢RC c y : O below, Γmust be split in as many parts as y, each
pair of which must then fulfill Γ ⊢RC y : β(c). Thus, Γmust contain exactly
the owned variables passed to owned parameters, at least the borrowed
variables passed to borrowed parameters (leftover borrowed variables
can be weakened away), and no reset references (by definition of β in
Section 6.4.2). Arguments to partial, variable and constructor applications
must be owned because, in general, we cannot statically assert that the
resulting value will not escape the current function and thus the scope of
borrowed references.

Ty-Const-App-Full
Γ ⊢RC y : β(c)

Γ ⊢RC c y : O

Ty-Const-App-Part
β(c) = O

y : O ⊢RC pap c y : O

Ty-Var-App

x : O, y : O ⊢RC x y : O

Ty-Cnstr-App

y : O ⊢RC ctori y : O

Ty-Reset

x : O ⊢RC reset x : R

Ty-Reuse

x : R, y : O ⊢RC reuse x in ctori y : O

In order to type (saturated) applications with borrowed parameters, the
rule for let should support temporarily obtaining a borrowed reference
from an owned reference, much like [Wadler, 1990b]’s let! construct. The
rule makes the owned reference unavailable during the call to ensure that
the borrowed reference is valid for that duration. The result type of e
ensures that the borrow cannot survive past the call.

Ty-Let
Γ1, x : B ⊢RC e : τ τ ∈ {O,R} Γ2, x : O, z : τ ⊢RC F

Γ1,Γ2, x : O ⊢RC let z = e; F

Projections are handled specially. It is sound to treat the projection of
a borrowed reference as borrowed because the full object graph reach-
able from the borrowed references is assumed to be valid for the entire

210

C.5 A Type System for RC-Correct Programs

function call. On the other hand, when projecting an owned reference,
we conservatively treat the result as owned as well by requiring that it
is incremented immediately; a more flexible model would need a more
sophisticated “borrow checker” that makes sure that the projection cannot
outlive the projected reference.

Ty-Proj-Bor
Γ, x : B, y : B ⊢RC F

Γ, x : B ⊢RC let y = proji x; F

Ty-Proj-Own
Γ, x : O, y : O ⊢RC F

Γ, x : O ⊢RC let y = proji x; inc y; F

Definition 6. The function valof : Loc×Heap⇀ Valuepure projecting a reference
into a heap back to a pure value is defined as follows:

valof(l, σ) = ctori valof(l′, σ) if σ(l) = ctori l′

valof(l, σ) = pap c valof(l′, σ) if σ(l) = pap c l′

The central semantics preservation theorem holds for all closed, well-
typed function bodies F, which for simplicity we will assume to be part of
the program map δ.

Theorem 5 (semantics preservation). Suppose the program is well-typed,
⊢RC δ, and c is a parameter-less constant, δ(c) = F.

1. If ⊢ F ⇓ v, then ⊢ ⟨F, ∅⟩ ⇓ ⟨l, σ⟩ and valof(l, σ) = v.

2. If ⊢ ⟨F, ∅⟩ ⇓ ⟨l, σ⟩, then ⊢ F ⇓ valof(l, σ).

Proof. Below. The proof directly follows [Chirimar et al., 1996]’s proof of
this theorem for a similar linear type system (I direct interested readers
to this paper for proofs of further properties such as freedom of memory
leaks). The fundamental idea of inducing a memory graph from the heap
and local variables and proving that the in-degrees of its nodes is equal to
the values’ reference counts is directly applicable to our owned references.
I will quickly discuss parts of Lean’s RC system not present in theirs that
needed to be fitted into the proofs:

211

C Formal Reference Counting Semantics & Proof of Correctness

• Borrowed references do not change the reference count and thus the def-
inition of the memory graph does not need to be adjusted. However,
the proof needed to be extended with an additional hypothesis that
every borrowed reference is reachable from an owned root variable
in a parent stack frame, which implies that the borrowed reference is
valid for the duration of the current function call.

• Reset references are restricted by the semantics and type system to
be used only in reuse and dec, but otherwise behave linearly like
owned references. Because we replace their former contents with ⊥
instead of leaving them as dangling pointers, treating reset references
like owned references in the memory graph results in the correct
behavior without further changes. An additional assumption makes
sure that every reset references does in fact have this shape.

□

C.6 Proof of Semantics Preservation

A memory graph G is a tuple (V,E, l) where (V,E) is a directed multigraph of
a set of vertices V ⊆ Loc and a multiset of edges E ⊆ V × V, and lr ⊆ V is a
root (multi)set1. The reference count of a vertex v ∈ V is the sum of inner and
outer references

in-degree(v) + | {i | v = lri } |

A state is a pair (lr, σ) of a root set lr pointing into a heap σ.

Definition 7. For a state S = (lr, σ), the memory graph G(S) induced by S is
a memory graph with dom(σ) as its vertices and one edge from l ∈ dom(σ) to
every l′ contained in σ(l).

Definition 8. A state S = (lr, σ) is count-correct if, for each σ(l) = (v, i), the
reference count of l in G(S) is i.

Definition 9. A state S = (lr, σ) is called regular, written R(S), provided the
following conditions hold:

1 We will operate on such lists up to permutations without further mention

212

C.6 Proof of Semantics Preservation

R1 S is count-correct.

R2 dom(σ) is finite.

R3 The reference count is non-zero for every l ∈ dom(σ).

Definition 10 (Reference reachability). A reference l′ is reachable from l in the
heap σ, reachσ(l, l′), if there is a path from l to l′ in G(([], σ))2.

Theorem 6 (Memory Graph Laws).

B R(l, σ) iff R(l , σ).

D If R(l l′, σ), then R(l,dec(l′, σ)).

I If R(l, σ) and l′ ∈ dom(σ), then R(l l′, inc(l′, σ)).

Proof.

B As is not a memory graph vertex (< dom(σ) by definition of σ), it
does not influence reference counts.

D By induction over the total sum of reference counts (which is finite by
regularity).

I Trivial.

□

Theorem 7 (Preservation of regularity). Suppose

⊢RC δ,

yO : O, yB : B, yR : R ⊢RC F,
dom(ρ) = yO yB yR, (static and dynamic contexts coincide)

R(l ρ(yO yR), σ), and (non-borrowed variables are roots)

∀y ∈ yB. ∃l ∈ l. reachσ(l, ρ(y)). (borrowed variables are reachable)

2 The root set is irrelevant for this definition.

213

C Formal Reference Counting Semantics & Proof of Correctness

If ρ ⊢ ⟨F, σ⟩ ⇓ ⟨l′, σ′⟩, then R(l l′, σ′), i.e. regularity is preserved with parameter
roots replaced by the return value. Moreover, for any l1 ⊆ l and any l ∈ dom(σ)
such that l is not reachable from l1 cod(ρ) in G(l cod(ρ), σ), we have σ′(l) = σ(l)
and l is not reachable from l1 l′ in G(l l′, σ′) (the reachability property).

Here l are roots outside of the current context, i.e. from a parent stack
frame, which guarantee that borrowed references are alive. The reachability
property says that if a location is not reachable from from some set of
locations including the parameters in the pre-state, then its value will be
unchanged in the post-state and it will be unreachable from that same set
of locations with parameters replaced by the return value.

Proof. By induction on ρ ⊢ ⟨F, σ⟩ ⇓ ⟨l′, σ′⟩.

Case Let + Ctor-App
By case inversions of the typing assumption, we have Γ1 = y : O.
Thus there exists y′

O
such that y y′

O
= yO. For the IH we need to show

R(l ρ(y′
O

yR) l′, σ[l′ 7→ (ctori ρ(y), 1)]) and the reachability property.
l′ is fresh, so its in-degree is indeed 0. All ρ(y) have been moved
from roots into l′, so they are count-correct as well. The reachability
property holds because the heap is only extended, not modified,
and all locations reachable from l′ have already been reachable from
ρ(yO).

Case Let + Const-App-Part/Var-App-Part
Analogously.

Case Let + Const-App-Full
We have F = let y = c y′; F′, δ(c) = λ yc. Fc. We first apply the IH
to Fc: by the typing assumption, it is well-typed and the types of
arguments correspond to their respective parameter types, so owned
arguments are rooted and borrowed variables are reachable (either
from l by the reachability assumption, or from some yO not passed
to c but temporarily borrowed in Ty-Let). We obtain that the new
state is regular and fulfills the reachability property after removing
all owned variables passed to c from and adding l′ to the root set.
Thus we can apply the IH to F′.

214

C.6 Proof of Semantics Preservation

To show the reachability property, assume l ∈ dom(σ) is not reachable
from l1 cod(ρ) where l1 ⊆ l. Then by the first IH, it is unreachable
from l1 l′ in the new state and σ′(l) = σ(l). Thus we can conclude by
the second IH. Like [Chirimar et al., 1996], I will omit further similar
proofs of the reachability property.

Case Let + Var-App-Full
Similarly, but we need additional steps to argue for the regularity of
the state passed to Fc: ρ(x) is a root by the inductive assumptions,
but is not passed to either of Fc or F′. dec thus correctly removes it
from the root set by law D. Conversely, the l′ in σ(ρ(x)) are passed as
owned arguments not taken from existing roots (but reachable from
the root ρ(x), i.e. in dom(σ)), so inc correctly adds them to the root
set by I.

Case Let + Proj
We have F = let y = proji x; F′. We continue by case analysis of the
typing assumption.

Case Ty-Proj-Bor
We have x, y : B, so x ∈ yB. Thus x is reachable by assumption,
and so is y as it is contained in σ(ρ(x)). Therefore we can apply
the IH.

Case Ty-Proj-Own
We have F′ = inc y; F′′ and x, y : O, so x ∈ yO. Because y is both
registered as a new root and incremented, we can apply the IH
to F′′.

Case Return
By the typing assumption, x is the only owned variable left. Thus
we can directly apply the regularity assumption.

Case Case
No changes to the context or heap, so the IH applies immediately.

Case Inc
By the typing assumption, we have τ ∈ {O,B}. In either case, ρ(x) is
equal to or reachable from a root and thus ρ(x) ∈ dom(σ), so we are
done by law I and the IH.

215

C Formal Reference Counting Semantics & Proof of Correctness

Case Dec
x is a root by the typing assumption, so we are done by law D and
the IH.

Case Let + Reset-Uniq
It is easy to see that the new heap is count-correct. While x changes
its type, it remains a root, so the state is regular and we can apply
the IH.

Case Let + Reset-Shared
By laws B and D and the IH.

Case Let + Reuse-Uniq
Similarly to Ctor-App.

Case Let + Reuse-Shared
By the IH.

□

Lemma 1. Suppose (as above)

⊢RC δ, yO : O yB : B yR : R ⊢RC F,

dom(ρ) = yO yB yR, R(l ρ(yO yR), σ),

∀y ∈ yB. ∃l ∈ l. reachσ(l, ρ(y)),

and

∀y ∈ yR. ρ(y) = ∨ ∃i,n, r. σ(ρ(y)) = (ctori
n, r)

(reset variables are reset).

1. If valof(ρ(yO yB), σ) ⊢ F ⇓ v, then ρ ⊢ ⟨F, σ⟩ ⇓ ⟨l, σ′⟩ and v = valof(l, σ′).

2. If If ρ ⊢ ⟨F, σ⟩ ⇓ ⟨l, σ′⟩, then valof(ρ(yO yB), σ) ⊢ F ⇓ valof(l, σ′).

Proof. The first part is proved by induction over valof(ρ(yO yB), σ) ⊢ F ⇓ v.

Case Let + Proj, Ty-Proj-Own
We have F′ = inc y; F′′. Note that F′ and F′′ are equivalent in the
pure semantics, so we can apply the IH to F′′ as well, after noticing
that inc(·, ·) does not affect valof(·, ·).

216

C.6 Proof of Semantics Preservation

Case Let + Proj, Ty-Proj-Bor
By the IH.

Case Let + Reset-Uniq/Reset-Shared
In either case, the assumption about reset variables is fulfilled and
we can apply the IH. Note that the pure context is unchanged.

Case Let + Reuse-Uniq/Reuse-Shared
By the assumption about reset references and the IH.

Case Let + Const-App-Full
We have δ(c) = λ yc. Fc. In order to apply the IH on F′, we need to
show that the value of all remaining context variables has not been
changed by the call, which follows from Theorem 7’s reachability
property.

Case Let + Const-App-Part
There exists an l′ < dom(σ) by R2. Apply the IH.

Case Let + Ctor-App/Var-App-Full/Var-App-Part
Analogously.

Case Return
Trivial.

Case Case
Directly by the IH.

Case Inc
We have valof(ρ(yO yB x), inc(ρ(x), σ)) = valof(ρ(yO yB x), σ) by the
definition of valof, so we can apply the IH.

Case Dec
Let Γ, x : τ be the context. By R1, we have that all values reach-
able from Γ still have reference count ≥ 1 in σ′ := dec(ρ(x), σ), so
valof(Γ, σ′) = valof(Γ, σ) by the definition of dec, and we can apply
the IH.

The reverse direction is proved by induction over ρ ⊢ ⟨F, σ⟩ ⇓ ⟨l, σ′⟩ with
similar but simpler cases. □

217

C Formal Reference Counting Semantics & Proof of Correctness

Theorem 5 (semantics preservation). Suppose the program is well-typed,
⊢RC δ, and c is a parameter-less constant, δ(c) = F.

1. If ⊢ F ⇓ v, then ⊢ ⟨F, ∅⟩ ⇓ ⟨l, σ⟩ and valof(l, σ) = v.

2. If ⊢ ⟨F, ∅⟩ ⇓ ⟨l, σ⟩, then ⊢ F ⇓ valof(l, σ).

Proof. A direct corollary of Lemma 1. □

C.7 Proof of Compilation Well-Typedness

Theorem 8. For the specific δRC given in the paper, we have ⊢RC δRC.

Proof. We start with a helper lemma about C.

Lemma 2. C does not introduce new variables, FV(C(F)) = FV(F).

Proof. By induction over F. □

By the definition of δRC, we need to show for each c ∈ dom(δβ) that

y : β(c) ⊢RC O
−(y,C(F)) with βl := [y 7→ β(c), ... 7→ O]

where δβ(c) =: λ y. F.
Aside: In this proof, I will style βl as an implicit variable to reduce verbosity.
By the wellformedness of δβ (Theorem 4), we have ⊢β F and y; · ⊢reuse F.
Note that all yi : O are alive in F′ := O−(y,C(F)): If they do not occur in

C(F), they will occur in a dec instruction from O− instead. Thus we can
generalize the goal to

yO yR ⊆ FV(F′) yO yB; yR ⊢reuse F ⊢β F yO yB yR distinct

yO : O, yB : B, yR : R ⊢RC F′ with βl := [yB 7→ B, . . . 7→ O]

where yR := [] and yO yB := y.
Unfolding O− and applying the dec typing rule repeatedly, we remove

all yO < FV(C(F)) and, reusing the name yO for the reduced variable list
and applying Lemma 2, are left with

yO yR ⊆ FV(F) yO yB; yR ⊢reuse F ⊢β F yO yB yR distinct

yO : O, yB : B, yR : R ⊢RC C(F) with βl := [yB 7→ B, . . . 7→ O]

218

C.7 Proof of Compilation Well-Typedness

We proceed by induction over F, but not before noting a peculiarity
about this induction hypothesis: not only does the type context contain
only owned variables that are alive in the remaining body (as one may
expect), it also contains each of them no more than once. It turns out that
duplicating a reference is only necessary just before applications, which
will happen in between the induction steps of the proof. In this sense, we
see that the compiler keeps all reference counts as low as possible.

Case F = ret x
We need to show

yO : O, yB : B, yR : R ⊢RC O
+
x (ret x)

By the first two inductive assumptions, we have yO yR ⊆ {x} and
x ∈ yO yB, respectively. Together with the fourth assumption, x may
appear at most once in either yO or yB.

If βl(x) = B, it remains to be shown that

x : B, y : B ⊢RC inc x; ret x

Applying the inc rule, we get to the same goal as in the case βl(x) = O:

x : O, y′ : B ⊢RC ret x

which is closed by the ret rule plus weakening.

Case F = case x of F′
We need to show

yO : O, yB : B, yR : R ⊢RC case x of O−(y′,C(F′))

where {y′} = FV(case x of F′). By the first two inductive assumptions,
we have

yO yR ⊆ y′

x ∈ yO yB, yO yB; yR ⊢reuse F′

Using x ∈ yO yB, we can apply the case typing rule, leaving us with,
for each F′i ,

yO : O, yB : B, yR : R ⊢RC O
−(y′,C(F′i))

219

C Formal Reference Counting Semantics & Proof of Correctness

By Theorem 3, we have y′ ⊆ yO yB yR, and can repeatedly apply the
dec rule for any y′j < FV(C(F′i)), βl(y′j) , B. We are left with

y′
O

: O, yB : B, y′
R

: R ⊢RC C(F′i)

where y′
O
= [y ∈ yO | y ∈ FV(C(F′i))] (and analogously for y′

R
) , thus

y′
O

y′
R
⊆ FV(C(F′i)), which allows us to close the goal by the inductive

hypothesis.

Case F = let y = proji x; F′ if βl(x) = O
We need to show

yO : O, yB : B, yR : R ⊢RC let y = proji x; inc y; O−x (C(F′))

From βl(x) = O, we have x < yB, so together with yO yB; yR ⊢reuse
let y = proji x; F′, we have x ∈ yO. Applying Ty-Proj-Own, we are
left with

yO : O, y : O, yB : B, yR : R ⊢RC O
−

x (C(F′))

If x < FV(C(F′)), we apply Ty-Dec. In either case, we need to show

yO′ : O, y : O, yB : B, yR : R ⊢RC C(F′)

for some yO′ ⊆ FV(C(F′)). We also have y ∈ FV(C(F′)) = FV(F′) from
δreuse, as well as yR ∩ FV(C(F′)) = yR ∩ FV(C(F)), so we can apply the
induction hypothesis.

Case F = let y = proji x; F′ if βl(x) = B
By Ty-Proj-Bor and the induction hypothesis.

Case F = let y = reset x; F′

By Ty-Let, Ty-Reset, and the induction hypothesis.

Case F = let z = c y; F′

We need to show

yO : O, yB : B, yR : R ⊢RC Capp(y, β(c), let z = c y; C(F′))

We generalize the goal (using yl := bl := []) to

y = yl yr β(c) = bl br | yl |=| bl | yO′ = O(yl)

yO : O, yO′ : O, yB : B, yR : R ⊢RC

Capp(yr, br, let z = c y; O−(B(yl),C(F′)))

220

C.7 Proof of Compilation Well-Typedness

where

O(yl) = OB(yl) OO(yl)

OB(yl) = [yl
i ∈ yl | β(c)i = O ∧ βl(yl

i) = B]

OO(yl) = [yl
i ∈ yl | β(c)i = O ∧ βl(yl

i) = O ∧

(yl
i ∈ FV(F′) ∨ ∃ j. yl

i = y j ∧ [j > i ∨ β(c) j = B])]

B(yl) = [yl
i ∈ yl | β(c)i = B ∧ βl(yl

i) = O ∧

∄ j < i. yl
i = y j ∧ β(c) j = B]

O and B accurately describe what arguments to increment/decrement
in an explicit form: We increment borrowed references that are
passed to an owned parameter, as well as owned references passed
to an owned parameter that

• are still used in F′ or

• are also passed to a borrowed parameter or

• are also passed to another owned parameter later.

We decrement owned references passed to a borrowed parameter
and dead in F′ (as enforced by O−), but at most once per variable.

We proceed by parallel induction over yr and br, which, by ⊢pure, have
the same length:

Case yr = y′ y′r, br = O b′r

We need to show

· · · ⊢RC O
+
y′ (y′r ∪ FV(O−(B(yl),C(F′))),

Capp(y′r, b′r, let z = c y; O−(B(yl),C(F′)))

We see that B(yl y′) = B(yl), and that O(yl y′) is O(yl) with y′

appended iff

βl(y′) = B ∨ y′ ∈ FV(F′) ∨ y′ ∈ y′r ∨ y′ ∈ B(yl)

This is exactly the condition for which an inc is inserted by O+y′ ,
so after conditionally applying Ty-Inc, we can apply the inner
induction hypothesis.

221

C Formal Reference Counting Semantics & Proof of Correctness

Case yr = y′ y′r, br = B b′r

We need to show

· · · ⊢RC Capp(y′r, b′r, let z = c y; O−y′ (O
−(B(yl),C(F′))))

We see that O(yl y′) = O(yl), and that B(yl y′) is B(yl) with y′

appended iff y′ < B(yl) ∧ βl(y′) = O. In either case, we have

O−y′ (O
−(B(yl),C(F′))) = O−(B(yl y′),C(F′))

and can apply the inner induction hypothesis.

Case yr = [], br = []
We are left to show

yO : O,O(y) : O, yB : B, yR : R ⊢RC

let z = c y; O−(B(y),C(F′))))

We have y ⊆ yO yB by ⊢pure. We thus notice that B(y) is a
submultiset of yO and call the difference list D. We further split
D into

D1 = [x ∈ D | x < FV(F′)]
D2 = [x ∈ D | x ∈ FV(F′)]

We apply Ty-Let, moving D1 and O(y) into the first goal, tem-
porarily borrowing B(y), and copying yB into both goals via
contraction, leaving us with

D1 : O, yB : B,O(y) : O,B(y) : B ⊢RC c y : O

D2 : O, yB : B, yR : R,B(y) : O, z : O ⊢RC O
−(B(y),C(F′))

For the first goal, we notice that every argument used as a
borrowed parameter is in yB or B(y) by ⊢pure, so by weakening we
can fulfill them. For arguments used as owned parameters, we
have to pay closer attention to the exact number of hypotheses:
We notice that because yO is distinct, so is D1, so we have
covered the first occurrence of every variable dead in F′ and not

222

C.7 Proof of Compilation Well-Typedness

in B(y). The missing arguments are by definition exactly O(y),
so we are done.

For the second goal, we iteratively apply Ty-Dec and then
apply the outer induction hypothesis: we have D2 ⊆ FV(F′) by
definition, z ∈ FV(F′) and z < D2∪B(y) by ⊢pure, and D2∩B(y) = ∅
by definition of the split.

All other application cases are mostly analogous to the constant case
(in particular, without any borrowed parameters). For pap, ⊢β proves
the assumption β(c) = O. For reuse, the hypothesis x : R, whose
existence is guaranteed by ⊢reuse, additionally has to be moved into
the first goal.

□

Theorem 9. δRC refines δβ in the pure semantics.

Proof. Trivial, given that the only change is insertion of inc/dec instructions.
□

Corollary 1 (δRC preserves semantics). Suppose c is a parameter-less constant,
δ(c) = F.

1. If ⊢ δ(c) ⇓ v, then ⊢ ⟨δRC(c), ∅⟩ ⇓ ⟨l, σ⟩ and valof(l, σ) = v.

2. If ⊢ ⟨δRC(c), ∅⟩ ⇓ ⟨l, σ⟩, then ⊢ δ(c) ⇓ valof(l, σ).

Proof. By the pure refinement steps (Theorem 2, Theorem 4, Theorem 9),
the welltypedness of δRC (Theorem 8), and the semantics preservation
proof of welltyped programs (Theorem 5). □

223

Bibliography

[Adams, 2015] Adams, M. D. (2015). Towards the essence of hygiene. In
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 457–469.

[Allen et al., 2005] Allen, E., Chase, D., Hallett, J., Luchangco, V., Maessen,
J.-W., Ryu, S., Steele Jr, G. L., Tobin-Hochstadt, S., Dias, J., Eastlund,
C., et al. (2005). The Fortress language specification. Sun Microsystems,
139(140):116.

[Altenkirch, 2010] Altenkirch, T. (2010). Agda mailing list: Heteroge-
neous vectors. https://web.archive.org/web/20221110164046/https:
//lists.chalmers.se/pipermail/agda/2010/001826.html. Accessed:
2022-11-10.

[Bachrach et al., 1999] Bachrach, J., Playford, K., and Street, C. (1999).
D-expressions: Lisp power, Dylan style. Style DeKalb IL.

[Baker, 1994] Baker, H. G. (1994). Minimizing reference count updating
with deferred and anchored pointers for functional data structures.
SIGPLAN Not., 29(9):38–43.

[Barendregt, 1991] Barendregt, H. (1991). Introduction to generalized type
systems. Journal of functional programming, 1(2):125–154.

[Barrett et al., 2022] Barrett, L., Christiansen, D. T., and Gélineau, S. (2022).
Predictable macros for Hindley-Milner (extended abstract). Workshop
on Type-Driven Development.

[Barth, 1977] Barth, J. M. (1977). Shifting garbage collection overhead to
compile time. Commun. ACM, 20(7):513–518.

https://web.archive.org/web/20221110164046/https://lists.chalmers.se/pipermail/agda/2010/001826.html
https://web.archive.org/web/20221110164046/https://lists.chalmers.se/pipermail/agda/2010/001826.html

Bibliography

[Barzilay et al., 2011] Barzilay, E., Culpepper, R., and Flatt, M. (2011). Keep-
ing it clean with syntax parameters. Proc. Wksp. Scheme and Functional
Programming.

[Bechberger, 2016] Bechberger, J. (2016). Besser benchmarken. Bachelor’s
thesis, Karlsruher Institut für Technologie (KIT). https://pp.ipd.kit.
edu/publication.php?id=bechberger16bachelorarbeit.

[Benton et al., 1993] Benton, P. N., Bierman, G. M., Paiva, V. d., and Hyland,
M. (1993). A term calculus for intuitionistic linear logic. In Proceedings
of the International Conference on Typed Lambda Calculi and Applications,
TLCA ’93, pages 75–90, London, UK, UK. Springer-Verlag.

[Bloom, 2021] Bloom, T. F. (2021). On a density conjecture about unit
fractions. https://arxiv.org/abs/2112.03726.

[Bloom and Mehta, 2022] Bloom, T. F. and Mehta, B. (2022). Unit
fractions. https://web.archive.org/web/20220705040548/https://
b-mehta.github.io/unit-fractions/. Accessed: 2023-01-13.

[Brady, 2013] Brady, E. (2013). Idris, a general-purpose dependently typed
programming language: Design and implementation. J. Funct. Program.,
23(5):552–593.

[Brady, 2014] Brady, E. (2014). Resource-dependent algebraic effects. In
International Symposium on Trends in Functional Programming, pages 18–33.
Springer.

[Bravenboer et al., 2006] Bravenboer, M., Tanter, É., and Visser, E. (2006).
Declarative, formal, and extensible syntax definition for AspectJ. ACM
SIGPLAN Notices, 41(10):209–228.

[Bülow, 2022] Bülow, N. (2022). Proof visualization for the Lean 4
theorem prover. Bachelor’s thesis, Karlsruher Institut für Tech-
nologie (KIT). https://pp.ipd.kit.edu/publication.php?id=b%C3%
BClow22bachelorarbeit.

[Carneiro, 2019] Carneiro, M. (2019). The type theory of Lean. Mas-
ter’s thesis, Carnegie Mellon University. https://github.com/digama0/
lean-type-theory/releases/download/v1.0/main.pdf.

226

https://pp.ipd.kit.edu/publication.php?id=bechberger16bachelorarbeit
https://pp.ipd.kit.edu/publication.php?id=bechberger16bachelorarbeit
https://arxiv.org/abs/2112.03726
https://web.archive.org/web/20220705040548/https://b-mehta.github.io/unit-fractions/
https://web.archive.org/web/20220705040548/https://b-mehta.github.io/unit-fractions/
https://pp.ipd.kit.edu/publication.php?id=b%C3%BClow22bachelorarbeit
https://pp.ipd.kit.edu/publication.php?id=b%C3%BClow22bachelorarbeit
https://github.com/digama0/lean-type-theory/releases/download/v1.0/main.pdf
https://github.com/digama0/lean-type-theory/releases/download/v1.0/main.pdf

Bibliography

[Chang et al., 2019] Chang, S., Ballantyne, M., Turner, M., and Bowman,
W. J. (2019). Dependent type systems as macros. Proceedings of the ACM
on Programming Languages, 4(POPL):1–29.

[Chirimar et al., 1996] Chirimar, J., Gunter, C. A., and Riecke, J. G. (1996).
Reference counting as a computational interpretation of linear logic.
Journal of Functional Programming, 6(2):195–244.

[Choi et al., 2018] Choi, J., Shull, T., and Torrellas, J. (2018). Biased refer-
ence counting: Minimizing atomic operations in garbage collection. In
Proceedings of the 27th International Conference on Parallel Architectures and
Compilation Techniques, PACT ’18, pages 35:1–35:12, New York, NY, USA.
ACM.

[Christiansen, 2022] Christiansen, D. T. (2022). Functional programming in
Lean. https://leanprover.github.io/functional_programming_in_
lean/.

[Christiansen and Brady, 2016] Christiansen, D. T. and Brady, E. (2016).
Elaborator reflection: Extending Idris in Idris. In Garrigue, J., Keller, G.,
and Sumii, E., editors, Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming, ICFP 2016, pages 284–297. ACM.

[Clinger and Rees, 1991] Clinger, W. and Rees, J. (1991). Macros that work.
In Proceedings of the 18th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 155–162.

[Cohen et al., 2015] Cohen, C., Coquand, T., Huber, S., and Mörtberg,
A. (2015). Cubical Type Theory: a constructive interpretation of the
univalence axiom. In 21st International Conference on Types for Proofs and
Programs, page 262. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[Coquand and Huet, 1988] Coquand, T. and Huet, G. (1988). The calculus
of constructions. Inform. and Comput., 76(2-3):95–120.

[de Bruijn, 1970] de Bruijn, N. G. (1970). The mathematical language
AUTOMATH, its usage, and some of its extensions. In Symposium on
automatic demonstration, pages 29–61. Springer.

[de Moura et al., 2015a] de Moura, L., Avigad, J., Kong, S., and Roux, C.
(2015a). Elaboration in dependent type theory. https://arxiv.org/
abs/1505.04324.

227

https://leanprover.github.io/functional_programming_in_lean/
https://leanprover.github.io/functional_programming_in_lean/
https://arxiv.org/abs/1505.04324
https://arxiv.org/abs/1505.04324

Bibliography

[de Moura and Bjørner, 2008] de Moura, L. and Bjørner, N. (2008). Z3: An
efficient SMT solver. In International conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 337–340. Springer.

[de Moura et al., 2015b] de Moura, L., Kong, S., Avigad, J., van Doorn,
F., and von Raumer, J. (2015b). The Lean theorem prover (system
description). In Automated Deduction - CADE-25 - 25th International
Conference on Automated Deduction, 2015, Proceedings, pages 378–388.

[de Moura and Passmore, 2013] de Moura, L. and Passmore, G. O. (2013).
The strategy challenge in SMT solving. In Automated Reasoning and
Mathematics, pages 15–44. Springer.

[de Moura and Ullrich, 2021] de Moura, L. and Ullrich, S. (2021). The
Lean 4 theorem prover and programming language. In International
Conference on Automated Deduction, pages 625–635. Springer.

[Delahaye, 2000] Delahaye, D. (2000). A tactic language for the system
Coq. In Logic for Programming and Automated Reasoning, 7th International
Conference, LPAR 2000, Proceedings, pages 85–95.

[Delahaye, 2002] Delahaye, D. (2002). A proof dedicated meta-language.
Electr. Notes Theor. Comput. Sci., 70(2):96–109.

[Dybjer, 1994] Dybjer, P. (1994). Inductive families. Formal aspects of
computing, 6(4):440–465.

[Dybvig et al., 1986] Dybvig, R. K., Friedman, D. P., and Haynes, C. T.
(1986). Expansion-passing style: Beyond conventional macros. In
Proceedings of the 1986 ACM conference on LISP and functional programming,
pages 143–150.

[Dybvig et al., 1993] Dybvig, R. K., Hieb, R., and Bruggeman, C. (1993).
Syntactic abstraction in Scheme. Lisp and symbolic computation, 5(4):295–
326.

[Earley, 1970] Earley, J. (1970). An efficient context-free parsing algorithm.
Communications of the ACM, 13(2):94–102.

[Eastlund and Felleisen, 2010] Eastlund, C. and Felleisen, M. (2010). Hy-
gienic macros for ACL2. In International Symposium on Trends in Functional
Programming, pages 84–101. Springer.

228

Bibliography

[Ebner et al., 2017] Ebner, G., Ullrich, S., Roesch, J., Avigad, J., and
de Moura, L. (2017). A metaprogramming framework for formal
verification. Proc. ACM Program. Lang., 1(ICFP).

[Erkök and Launchbury, 2002] Erkök, L. and Launchbury, J. (2002). A
recursive do for Haskell. In Proceedings of the 2002 ACM SIGPLAN
workshop on Haskell, pages 29–37.

[Ershov, 1958] Ershov, A. P. (1958). On programming of arithmetic opera-
tions. Communications of the ACM, 1(8):3–6.

[Feldman, 2021] Feldman, R. (2021). Outperforming imperative with
pure functional languages. Recorded presentation. https://youtu.be/
vzfy4EKwG_Y.

[Feller, 1950] Feller, W. (1950). An introduction to probability theory and its
applications, Volume 1. John Wiley & Sons.

[Férey and Shankar, 2016] Férey, G. and Shankar, N. (2016). Code genera-
tion using a formal model of reference counting. In Proceedings of the 8th
International Symposium on NASA Formal Methods - Volume 9690, NFM
2016, pages 150–165, New York, NY, USA. Springer-Verlag New York,
Inc.

[Flanagan et al., 1993] Flanagan, C., Sabry, A., Duba, B. F., and Felleisen,
M. (1993). The essence of compiling with continuations. In Proceedings of
the ACM SIGPLAN 1993 Conference on Programming Language Design and
Implementation, PLDI ’93, pages 237–247, New York, NY, USA. ACM.

[Flatt, 2002] Flatt, M. (2002). Composable and compilable macros: you
want it when? ACM SIGPLAN Notices, 37(9):72–83.

[Flatt, 2016] Flatt, M. (2016). Binding as sets of scopes. In Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’16, pages 705–717, New York, NY, USA.
ACM.

[Ford, 2002] Ford, B. (2002). Packrat parsing: Simple, powerful, lazy, linear
time (Functional Pearl). SIGPLAN Not., 37(9):36–47.

229

https://youtu.be/vzfy4EKwG_Y
https://youtu.be/vzfy4EKwG_Y

Bibliography

[Foster et al., 2007] Foster, J. N., Greenwald, M. B., Moore, J. T., Pierce,
B. C., and Schmitt, A. (2007). Combinators for bidirectional tree trans-
formations: A linguistic approach to the view-update problem. ACM
Transactions on Programming Languages and Systems (TOPLAS), 29(3):17–
es.

[GHC, 2020] GHC (2020). List of tools needed to build GHC.
https://web.archive.org/web/20210116000343/https://gitlab.
haskell.org/ghc/ghc/-/wikis/building/preparation/tools. Ac-
cessed: 2022-03-10.

[Gibbons and dos Santos Oliveira, 2009] Gibbons, J. and dos San-
tos Oliveira, B. C. (2009). The essence of the iterator pattern. Journal of
functional programming, 19(3 and 4).

[Girard, 1972] Girard, J.-Y. (1972). Interprétation fonctionnelle et élimination
des coupures de l’arithmétique d’ordre supérieur. PhD thesis, University of
Paris VII.

[Gordon et al., 1978] Gordon, M., Milner, R., Morris, L., Newey, M., and
Wadsworth, C. (1978). A metalanguage for interactive proof in LCF. In
Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 119–130.

[Gratzer et al., 2022] Gratzer, D., Sterling, J., Angiuli, C., Coquand, T.,
and Birkedal, L. (2022). Controlling unfolding in type theory. https:
//arxiv.org/abs/2210.05420.

[Grelck and Trojahner, 2004] Grelck, C. and Trojahner, K. (2004). Implicit
memory management for SAC. In Implementation and Application of
Functional Languages, 16th International Workshop, IFL, volume 4, pages
335–348.

[Hallenberg et al., 2002] Hallenberg, N., Elsman, M., and Tofte, M. (2002).
Combining region inference and garbage collection. In ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI’02).
ACM Press. Berlin, Germany.

[Ho and Protzenko, 2022] Ho, S. and Protzenko, J. (2022). Aeneas: Rust
verification by functional translation. Proceedings of the ACM on Program-
ming Languages, 6(ICFP):711–741.

230

https://web.archive.org/web/20210116000343/https://gitlab.haskell.org/ghc/ghc/-/wikis/building/preparation/tools
https://web.archive.org/web/20210116000343/https://gitlab.haskell.org/ghc/ghc/-/wikis/building/preparation/tools
https://arxiv.org/abs/2210.05420
https://arxiv.org/abs/2210.05420

Bibliography

[Howard, 1980] Howard, W. A. (1980). The formulae-as-types notion of
construction. To HB Curry: essays on combinatory logic, lambda calculus
and formalism, 44:479–490.

[Hudak and Bloss, 1985] Hudak, P. and Bloss, A. (1985). The aggregate
update problem in functional programming systems. In Proceedings of
the 12th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL ’85, pages 300–314, New York, NY, USA. ACM.

[Huisinga, 2019] Huisinga, M. (2019). Formally verified insertion of ref-
erence counting instructions. Bachelor’s thesis, Karlsruher Institut
für Technologie (KIT). https://pp.ipd.kit.edu/publication.php?id=
huisinga19bachelorarbeit.

[Inria, CNRS and contributors, 2021] Inria, CNRS and contrib-
utors (2021). Record types - Coq 8.16.1 documentation.
https://web.archive.org/web/20221115002532/https://coq.inria.
fr/refman/language/core/records.html#primitive-projections.
Accessed: 2022-12-01.

[Jim et al., 2002] Jim, T., Morrisett, J. G., Grossman, D., Hicks, M. W.,
Cheney, J., and Wang, Y. (2002). Cyclone: A safe dialect of C. In USENIX
Annual Technical Conference, General Track, pages 275–288.

[Kaiser et al., 2018] Kaiser, J.-O., Ziliani, B., Krebbers, R., Régis-Gianas, Y.,
and Dreyer, D. (2018). Mtac2: typed tactics for backward reasoning in
Coq. Proceedings of the ACM on Programming Languages, 2(ICFP):1–31.

[Kaposi and von Raumer, 2020] Kaposi, A. and von Raumer, J. (2020). A
syntax for mutual inductive families. In Ariola, Z. M., editor, 5th
International Conference on Formal Structures for Computation and De-
duction (FSCD 2020), volume 167 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 23:1–23:21, Dagstuhl, Germany. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik.

[Kelley, 2020] Kelley, A. (2020). ‘zig cc‘: a powerful drop-
in replacement for GCC/Clang. http://web.archive.
org/web/20220115054443/https://andrewkelley.me/post/
zig-cc-powerful-drop-in-replacement-gcc-clang.html. Accessed:
2022-01-28.

231

https://pp.ipd.kit.edu/publication.php?id=huisinga19bachelorarbeit
https://pp.ipd.kit.edu/publication.php?id=huisinga19bachelorarbeit
https://web.archive.org/web/20221115002532/https://coq.inria.fr/refman/language/core/records.html#primitive-projections
https://web.archive.org/web/20221115002532/https://coq.inria.fr/refman/language/core/records.html#primitive-projections
http://web.archive.org/web/20220115054443/https://andrewkelley.me/post/zig-cc-powerful-drop-in-replacement-gcc-clang.html
http://web.archive.org/web/20220115054443/https://andrewkelley.me/post/zig-cc-powerful-drop-in-replacement-gcc-clang.html
http://web.archive.org/web/20220115054443/https://andrewkelley.me/post/zig-cc-powerful-drop-in-replacement-gcc-clang.html

Bibliography

[Kelsey, 1995] Kelsey, R. A. (1995). A correspondence between continua-
tion passing style and static single assignment form. ACM SIGPLAN
Notices, 30(3):13–22.

[Kohlbecker et al., 1986] Kohlbecker, E., Friedman, D. P., Felleisen, M.,
and Duba, B. (1986). Hygienic macro expansion. In Proceedings of the
1986 ACM conference on LISP and functional programming, pages 151–161.

[Lample et al., 2022] Lample, G., Lachaux, M.-A., Lavril, T., Martinet, X.,
Hayat, A., Ebner, G., Rodriguez, A., and Lacroix, T. (2022). Hypertree
proof search for neural theorem proving. https://arxiv.org/abs/2205.
11491.

[Launchbury and Peyton Jones, 1995] Launchbury, J. and Peyton Jones,
S. L. (1995). State in Haskell. Lisp and symbolic computation, 8(4):293–341.

[Leijen, 2014] Leijen, D. (2014). Koka: Programming with row polymor-
phic effect types. Electronic Proceedings in Theoretical Computer Science,
153:100–126.

[Limperg and From, 2023] Limperg, J. and From, A. H. (2023). Aesop:
White-box best-first proof search for Lean. In Proceedings of the 12th
ACM SIGPLAN International Conference on Certified Programs and Proofs,
pages 253–266.

[Lorenzen and Leijen, 2022] Lorenzen, A. and Leijen, D. (2022). Refer-
ence counting with frame limited reuse. Proceedings of the ACM on
Programming Languages, 6(ICFP):357–380.

[MacQueen, 1984] MacQueen, D. (1984). Modules for Standard ML. In Pro-
ceedings of the 1984 ACM Symposium on LISP and Functional Programming,
pages 198–207.

[Mahboubi and Tassi, 2021] Mahboubi, A. and Tassi, E. (2021). Mathemati-
cal Components. Zenodo. https://doi.org/10.5281/zenodo.4457887.

[Marlow et al., 2016] Marlow, S., Peyton Jones, S., Kmett, E., and Mokhov,
A. (2016). Desugaring Haskell’s do-notation into applicative operations.
ACM SIGPLAN Notices, 51(12):92–104.

232

https://arxiv.org/abs/2205.11491
https://arxiv.org/abs/2205.11491
https://doi.org/10.5281/zenodo.4457887

Bibliography

[Mathlib, 2022] Mathlib (2022). Mathlib documentation: Math-
lib tactics. https://web.archive.org/web/20220308182313/https://
leanprover-community.github.io/mathlib_docs/tactics.html. Ac-
cessed: 2022-03-22.

[Matichuk et al., 2016] Matichuk, D., Murray, T., and Wenzel, M. (2016).
Eisbach: A proof method language for Isabelle. Journal of Automated
Reasoning, 56(3):261–282.

[Matsakis and Klock, 2014] Matsakis, N. D. and Klock, II, F. S. (2014). The
Rust language. In Proceedings of the 2014 ACM SIGAda Annual Conference
on High Integrity Language Technology, HILT ’14, pages 103–104, New
York, NY, USA. ACM.

[Maurer et al., 2017] Maurer, L., Downen, P., Ariola, Z. M., and Pey-
ton Jones, S. (2017). Compiling without continuations. In Proceedings of
the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2017, pages 482–494, New York, NY, USA. ACM.

[McBride, 2005] McBride, C. (2005). Epigram: Practical programming
with dependent types. In Advanced Functional Programming, pages
130–170. Springer.

[McBride and McKinna, 2004] McBride, C. and McKinna, J. (2004). Func-
tional Pearl: I am not a number — I am a free variable. In Nilsson, H.,
editor, Proceedings of the ACM SIGPLAN Workshop on Haskell, Haskell
2004, pages 1–9. ACM.

[McGraw et al., 1983] McGraw, J., Skedzielewski, S., Allan, S., Grit, D.,
Oldehoeft, R., Glauert, J., Dobes, I., and Hohensee, P. (1983). SISAL:
streams and iteration in a single-assignment language. Language refer-
ence manual, version 1. Technical report, Lawrence Livermore National
Lab., CA (USA).

[Mennicken, 2022] Mennicken, J. (2022). Locating and presenting lexical
references in a theorem prover. Bachelor’s thesis, Karlsruher Institut
für Technologie (KIT). https://pp.ipd.kit.edu/publication.php?id=
mennicken22bachelorarbeit.

[Milner, 1979] Milner, R. (1979). LCF: A way of doing proofs with a
machine. In International Symposium on Mathematical Foundations of
Computer Science, pages 146–159. Springer.

233

https://web.archive.org/web/20220308182313/https://leanprover-community.github.io/mathlib_docs/tactics.html
https://web.archive.org/web/20220308182313/https://leanprover-community.github.io/mathlib_docs/tactics.html
https://pp.ipd.kit.edu/publication.php?id=mennicken22bachelorarbeit
https://pp.ipd.kit.edu/publication.php?id=mennicken22bachelorarbeit

Bibliography

[Moggi, 1991] Moggi, E. (1991). Notions of computation and monads.
Information and computation, 93(1):55–92.

[Nipkow, 1998] Nipkow, T. (1998). Winskel is (almost) right: Towards a
mechanized semantics textbook. Formal Aspects of Computing, 10:171–186.

[Norell, 2009] Norell, U. (2009). Dependently typed programming in
Agda. In Advanced Functional Programming, pages 230–266. Springer.

[Okasaki, 1999] Okasaki, C. (1999). Red-black trees in a functional setting.
Journal of functional programming, 9(4):471–477.

[Paterson, 2001] Paterson, R. (2001). A new notation for arrows. ACM
SIGPLAN Notices, 36(10):229–240.

[Paulin-Mohring, 2015] Paulin-Mohring, C. (2015). Introduction to the
calculus of inductive constructions. College Publications.

[Peyton Jones, 2003] Peyton Jones, S. (2003). Haskell 98 language and li-
braries: the revised report. Cambridge University Press.

[Peyton Jones, 1996] Peyton Jones, S. L. (1996). Compiling Haskell by
program transformation: a report from the trenches. In Proc. European
Symp. on Programming, pages 18–44. Springer-Verlag.

[Pit-Claudel, 2020] Pit-Claudel, C. (2020). Untangling mechanized proofs.
In Proceedings of the 13th ACM SIGPLAN International Conference on
Software Language Engineering, SLE 2020, page 155–174, New York, NY,
USA. Association for Computing Machinery.

[Polu et al., 2022] Polu, S., Han, J. M., Zheng, K., Baksys, M., Babuschkin,
I., and Sutskever, I. (2022). Formal mathematics statement curriculum
learning. https://arxiv.org/abs/2202.01344.

[Pombrio et al., 2017] Pombrio, J., Krishnamurthi, S., and Wand, M. (2017).
Inferring scope through syntactic sugar. Proceedings of the ACM on
Programming Languages, 1(ICFP):1–28.

[Pratt, 1973] Pratt, V. R. (1973). Top down operator precedence. In Proceed-
ings of the 1st annual ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 41–51.

234

https://arxiv.org/abs/2202.01344

Bibliography

[Rafkind and Flatt, 2012] Rafkind, J. and Flatt, M. (2012). Honu: syntactic
extension for algebraic notation through enforestation. In ACM SIGPLAN
Notices, volume 48, pages 122–131. ACM.

[Reinking et al., 2021] Reinking, A., Xie, N., de Moura, L., and Leijen, D.
(2021). Perceus: Garbage free reference counting with reuse. In Proceed-
ings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, pages 96–111.

[Richter and Nasarre, 2008] Richter, J. and Nasarre, C. (2008). Windows via
C/C++, fifth edition. Microsoft Press.

[Rosen et al., 1988] Rosen, B. K., Wegman, M. N., and Zadeck, F. K. (1988).
Global value numbers and redundant computations. In Proceedings of
the 15th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 12–27.

[Rust, 2021] Rust (2021). Guide to rustc development: Bootstrapping the
compiler. https://web.archive.org/web/20211123003848/https://
rustc-dev-guide.rust-lang.org/building/bootstrapping.html. Ac-
cessed: 2022-03-10.

[Scholz, 1994] Scholz, S.-B. (1994). Single assignment C — functional
programming using imperative style. In In John Glauert (Ed.): Proceed-
ings of the 6th International Workshop on the Implementation of Functional
Languages. University of East Anglia.

[Schulte, 1994] Schulte, W. (1994). Deriving residual reference count
garbage collectors. In Proceedings of the 6th International Symposium
on Programming Language Implementation and Logic Programming, PLILP
’94, pages 102–116, London, UK. Springer-Verlag.

[Sheard and Peyton Jones, 2002] Sheard, T. and Peyton Jones, S. (2002).
Template meta-programming for Haskell. In Proceedings of the 2002 ACM
SIGPLAN workshop on Haskell, pages 1–16. ACM.

[Smetsers et al., 1994] Smetsers, S., Barendsen, E., van Eekelen, M., and
Plasmeijer, R. (1994). Guaranteeing safe destructive updates through a
type system with uniqueness information for graphs. In Graph Trans-
formations in Computer Science: International Workshop Dagstuhl Castle,
Germany, January 4–8, 1993 Proceedings, pages 358–379. Springer.

235

https://web.archive.org/web/20211123003848/https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html
https://web.archive.org/web/20211123003848/https://rustc-dev-guide.rust-lang.org/building/bootstrapping.html

Bibliography

[Sozeau et al., 2020] Sozeau, M., Anand, A., Boulier, S., Cohen, C., Forster,
Y., Kunze, F., Malecha, G., Tabareau, N., and Winterhalter, T. (2020). The
MetaCoq project. Journal of Automated Reasoning, 64(5):947–999.

[Sozeau et al., 2019] Sozeau, M., Boulier, S., Forster, Y., Tabareau, N., and
Winterhalter, T. (2019). Coq Coq Correct! Verification of type checking
and erasure for Coq, in Coq. Proceedings of the ACM on Programming
Languages, 4(POPL):1–28.

[Sterling and Harper, 2021] Sterling, J. and Harper, R. (2021). A metalan-
guage for multi-phase modularity. ML Family workshop.

[Swierstra and Duponcheel, 1996] Swierstra, S. D. and Duponcheel, L.
(1996). Deterministic, error-correcting combinator parsers. In Inter-
national School on Advanced Functional Programming, pages 184–207.
Springer.

[Taha and Sheard, 2000] Taha, W. and Sheard, T. (2000). MetaML and
multi-stage programming with explicit annotations. Theoretical computer
science, 248(1-2):211–242.

[The Coq Team, 2017] The Coq Team (2017). The Coq proof assistant,
version 8.7.0. https://doi.org/10.5281/zenodo.1028037.

[The mathlib Community, 2020] The mathlib Community (2020). The
Lean mathematical library. In Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP 2020, page
367–381, New York, NY, USA.

[The mathlib Community, 2022a] The mathlib Community (2022a).
Completion of the Liquid Tensor Experiment. https://web.archive.
org/web/20221129050433/https://leanprover-community.github.io/
blog/posts/lte-final/. Accessed: 2023-01-13.

[The mathlib Community, 2022b] The mathlib Community (2022b). Math-
lib statistics. https://web.archive.org/web/20221203000358/https:
//leanprover-community.github.io/mathlib_stats.html. Accessed:
2022-12-13.

236

https://doi.org/10.5281/zenodo.1028037
https://web.archive.org/web/20221129050433/https://leanprover-community.github.io/blog/posts/lte-final/
https://web.archive.org/web/20221129050433/https://leanprover-community.github.io/blog/posts/lte-final/
https://web.archive.org/web/20221129050433/https://leanprover-community.github.io/blog/posts/lte-final/
https://web.archive.org/web/20221203000358/https://leanprover-community.github.io/mathlib_stats.html
https://web.archive.org/web/20221203000358/https://leanprover-community.github.io/mathlib_stats.html

Bibliography

[The Univalent Foundations Program, 2013] The Univalent Foundations
Program (2013). Homotopy Type Theory: Univalent Foundations of Mathe-
matics. http://homotopytypetheory.org/book, Institute for Advanced
Study.

[Ullrich, 2016] Ullrich, S. (2016). Simple verification of Rust programs
via functional purification. Master’s thesis, Karlsruher Institut für
Technologie (KIT). https://pp.ipd.kit.edu/publication.php?id=
ullrich16masterarbeit.

[Ullrich and de Moura, 2019a] Ullrich, S. and de Moura, L. (2019a). Count-
ing immutable beans: Reference counting optimized for purely func-
tional programming. In 31st Symposium on Implementation and Application
of Functional Languages.

[Ullrich and de Moura, 2019b] Ullrich, S. and de Moura, L. (2019b). Count-
ing immutable beans – appendix. https://leanprover.github.io/
papers/beans_appendix.pdf.

[Ullrich and de Moura, 2020] Ullrich, S. and de Moura, L. (2020). Beyond
notations: Hygienic macro expansion for theorem proving languages.
In International Joint Conference on Automated Reasoning, pages 167–182.
Springer.

[Ullrich and de Moura, 2022a] Ullrich, S. and de Moura, L. (2022a). Be-
yond notations: Hygienic macro expansion for theorem proving lan-
guages. Logical Methods in Computer Science, Volume 18, Issue 2.

[Ullrich and de Moura, 2022b] Ullrich, S. and de Moura, L. (2022b). ‘do’
unchained: Embracing local imperativity in a purely functional language
(Functional Pearl). Proc. ACM Program. Lang., 6(ICFP):512–539.

[Ullrich and de Moura, 2023] Ullrich, S. and de Moura, L. (2023). Supple-
ment for A Macro System for Theorem Provers.

[Ungar et al., 2017] Ungar, D., Grove, D., and Franke, H. (2017). Dynamic
atomicity: Optimizing Swift memory management. In Proceedings of the
13th ACM SIGPLAN International Symposium on on Dynamic Languages,
DLS 2017, pages 15–26, New York, NY, USA. ACM.

237

http://homotopytypetheory.org/book
https://pp.ipd.kit.edu/publication.php?id=ullrich16masterarbeit
https://pp.ipd.kit.edu/publication.php?id=ullrich16masterarbeit
https://leanprover.github.io/papers/beans_appendix.pdf
https://leanprover.github.io/papers/beans_appendix.pdf

Bibliography

[van der Walt and Swierstra, 2012] van der Walt, P. and Swierstra, W.
(2012). Engineering proof by reflection in Agda. In Hinze, R., editor,
Implementation and Application of Functional Languages - 24th International
Symposium, IFL 2012, volume 8241 of Lecture Notes in Computer Science,
pages 157–173. Springer.

[van Doorn et al., 2023] van Doorn, F., Massot, P., and Nash, O. (2023).
Formalising the h-principle and sphere eversion. In Proceedings of the
12th ACM SIGPLAN International Conference on Certified Programs and
Proofs, pages 121–134.

[Visser, 1997] Visser, E. (1997). Scannerless generalized LR parsing. Univer-
siteit van Amsterdam. Programming Research Group.

[Wadler, 1990a] Wadler, P. (1990a). Comprehending monads. In Proceedings
of the 1990 ACM conference on LISP and functional programming, pages
61–78.

[Wadler, 1990b] Wadler, P. (1990b). Linear types can change the world!
In Broy, M. and Jones, C., editors, IFIP TC 2 Working Conference on
Programming Concepts and Methods, Sea of Galilee, Israel, IFIP TC 2, pages
347–359. North Holland.

[Wadler and Blott, 1989] Wadler, P. and Blott, S. (1989). How to make
ad-hoc polymorphism less ad hoc. In Proceedings of the 16th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 60–76. ACM.

[Weeks, 2006] Weeks, S. (2006). Whole-program compilation in MLton. In
Proceedings of the 2006 Workshop on ML, ML ’06, pages 1–1, New York,
NY, USA. ACM.

[Whitehead and Russell, 1910] Whitehead, A. N. and Russell, B. (1910).
Principia mathematica, volume 1. Cambridge University Press.

[Yang et al., 2015] Yang, E. Z., Campagna, G., Ağacan, Ö. S., El-Hassany,
A., Kulkarni, A., and Newton, R. R. (2015). Efficient communication
and collection with compact normal forms. In Proceedings of the 20th
ACM SIGPLAN International Conference on Functional Programming, pages
362–374.

238

Bibliography

[Ziliani et al., 2015] Ziliani, B., Dreyer, D., Krishnaswami, N. R., Nanevski,
A., and Vafeiadis, V. (2015). Mtac: A monad for typed tactic program-
ming in Coq. J. Funct. Program., 25.

239

Index

. (prefix dot notation), 154

. (projection notation), 4, 53

antiquotation, 64
antiquotation splice, 76, 81
antiquotation, token, 79

bootstrapping, 56, 75
by, 8

Calculus of Constructions, 6
Calculus of Inductive Construc-

tions, 6
class, 4
code generator, 54, 144
core language, 34, 95
Cubical Type Theory, 11
Curry-Howard correspondence,

6

def, 4
dependent function type, 6
dependent type, 5
dependent type theory, 9, 13, 35,

46
do, 27, 74, 93

elaborator, 25, 52, 82, 118
elab_rules, 84
environment, 17
η-conversion (structure), 38
example, 7
extended dot notation, 109

field (inductive type), 36
frontend, 2, 34
fun, 4

global context, see environment,
68

Homotopy Type Theory, 11

import, 34, 58, 156
impredicative, 7
index (inductive type), 6, 36
inductive, 5
inductive type, 5
info tree, 59
interactive theorem proving, 1
intermediate representation, 54,

135

kernel, 15, 35

241

Index

language server, 46, 57
Language Server Protocol, 57, 128
large elimination, 37, 41
Lean, 4
Lean 0.1, 10
Lean 2, 11, 40, 53
Lean 3, 11, 13, 35, 48, 49, 53, 57,

84
Lean 4, 33
Lean 5, 12
local context, 18, 68
locally nameless, 18

macro, 34, 61
macro, 64, 85, 171
macro expander, 68
macro hygiene, 67, 99
macro, anaphoric, 70
macro_rules, 64, 171
mathlib, 2, 11, 21, 29, 45, 48, 167
memory mapping, 48
metaprogramming, 4, 13, 46, 54
metavariable, 19, 53
metavariable context, 19
module system, 45

opaque, 16, 35

parameter (inductive type), 6
parser, 49, 64, 77
partial, 16
precompilation, 55
pretty printer, 34
proof irrelevance, 8
Prop, 7

quasiquotation, 52, 64
quasiquotation, prechecked, 86

recursor, 9, 15, 37, 42

structure, 4
structure projection, primitive, 36
subsingleton elimination, 42
surface language, 26, 34
symbol, 69
syntactic category, 26, 52, 66, 115
Syntax (type), 51, 72
syntax, 64

tactic, 8, 13, 53, 84
tactic interpreter, 85
telescope, 36
this, 70
Trusted Code Base, 15, 34, 36
Type, 7
type family, 5
type system, 35
typeclass, 4, 45, 53, 83, 118

universe, 7
universe variable, 7

white-box automation, 9

242

List of Publications

[1] Sebastian Buchwald, Denis Lohner, and Sebastian Ullrich. Verified
construction of static single assignment form. In Manuel Hermenegildo,
editor, 25th International Conference on Compiler Construction, CC 2016,
pages 67–76. ACM, 2016.

[2] Gabriel Ebner, Sebastian Ullrich, Jared Roesch, Jeremy Avigad, and
Leonardo de Moura. A metaprogramming framework for formal
verification. Proc. ACM Program. Lang., 1(ICFP), 2017.

[3] Sebastian Ullrich and Leonardo de Moura. Counting immutable beans:
Reference counting optimized for purely functional programming. In
31st Symposium on Implementation and Application of Functional Languages,
2019.

[4] Sebastian Ullrich and Leonardo de Moura. Beyond notations: Hygienic
macro expansion for theorem proving languages. In International Joint
Conference on Automated Reasoning, pages 167–182. Springer, 2020.

[5] Leonardo de Moura and Sebastian Ullrich. The Lean 4 theorem prover
and programming language. In International Conference on Automated
Deduction, pages 625–635. Springer, 2021.

[6] Sebastian Ullrich and Leonardo de Moura. Beyond notations: Hygienic
macro expansion for theorem proving languages. Logical Methods in
Computer Science, Volume 18, Issue 2, 2022.

[7] Sebastian Ullrich and Leonardo de Moura. ‘do’ unchained: Embracing
local imperativity in a purely functional language (Functional Pearl).
Proc. ACM Program. Lang., 6(ICFP):512–539, 2022.

243

	Contents
	Abstract
	Zusammenfassung
	Acknowledgements
	Introduction
	Interactive Theorem Proving
	Structure
	Lean
	Programming in Lean
	Proving in Lean
	The Essence of Lean
	A Short History of Lean

	A Retrospective of Extensibility in Lean 3
	Lean 3 as a Programming Language
	Lean 3 as a Metaprogramming Language
	Advanced Tactic Programming
	Interactive Proving
	Related Work

	An Overview of Lean 4
	Architecture
	The Kernel and Type Theory
	Internalizations
	η-Conversion for Structure Types
	Mutual Inductive Types

	The (Future of the) Module System
	The Parser
	The Elaborator
	The Code Generator
	The User Interface

	A Macro System for Theorem Provers
	Lean 4 Macro System by Example
	Hygiene Algorithm
	Expansion Algorithm
	Examples

	Implementation
	Extended Quasiquotations

	Typed Syntax
	Integrating Macros into Elaboration
	Tactic Hygiene
	Best-Effort Eager Name Analysis in Macros
	Related Work

	An Imperative Extension of do Notation
	Local Mutation
	Early Return
	Iteration
	Implementation
	Reference Implementation
	Full Implementation

	Reasoning
	Formalization
	Evaluation
	Related Work

	An Efficient Reference Counting Scheme for Functional Programming
	IR Syntax
	IR by Example
	Semantics of the Reference-Counting IR
	A Compiler from lambda_pure to lambda_RC
	Inserting Destructive Update Operations
	Inferring Borrowing Signatures
	Inserting Reference Counting Operations
	Preserving Tail Calls

	Optimizing Functional Data Structures for reset/reuse
	Runtime Considerations
	Experimental Evaluation
	Related Work

	Conclusion
	Future Work

	Macro Implementation of do Notation
	Basic do Notation
	Mutable Variables
	Early Return
	Iteration

	Formal Correctness of do Translation
	Contexts
	Intrinsically Typed Representation of do Statements
	Dynamic Evaluation Function
	Translation Functions
	Equivalence Proof
	Partial Evaluation

	Formal Reference Counting Semantics & Proof of Correctness
	Pure Semantics
	Well-Formedness
	reset/reuse
	Borrow Inference
	A Type System for RC-Correct Programs
	Proof of Semantics Preservation
	Proof of Compilation Well-Typedness

	Bibliography
	Index
	List of Publications

