4,846 research outputs found

    Design and debugging of multi-step analog to digital converters

    Get PDF
    With the fast advancement of CMOS fabrication technology, more and more signal-processing functions are implemented in the digital domain for a lower cost, lower power consumption, higher yield, and higher re-configurability. The trend of increasing integration level for integrated circuits has forced the A/D converter interface to reside on the same silicon in complex mixed-signal ICs containing mostly digital blocks for DSP and control. However, specifications of the converters in various applications emphasize high dynamic range and low spurious spectral performance. It is nontrivial to achieve this level of linearity in a monolithic environment where post-fabrication component trimming or calibration is cumbersome to implement for certain applications or/and for cost and manufacturability reasons. Additionally, as CMOS integrated circuits are accomplishing unprecedented integration levels, potential problems associated with device scaling – the short-channel effects – are also looming large as technology strides into the deep-submicron regime. The A/D conversion process involves sampling the applied analog input signal and quantizing it to its digital representation by comparing it to reference voltages before further signal processing in subsequent digital systems. Depending on how these functions are combined, different A/D converter architectures can be implemented with different requirements on each function. Practical realizations show the trend that to a first order, converter power is directly proportional to sampling rate. However, power dissipation required becomes nonlinear as the speed capabilities of a process technology are pushed to the limit. Pipeline and two-step/multi-step converters tend to be the most efficient at achieving a given resolution and sampling rate specification. This thesis is in a sense unique work as it covers the whole spectrum of design, test, debugging and calibration of multi-step A/D converters; it incorporates development of circuit techniques and algorithms to enhance the resolution and attainable sample rate of an A/D converter and to enhance testing and debugging potential to detect errors dynamically, to isolate and confine faults, and to recover and compensate for the errors continuously. The power proficiency for high resolution of multi-step converter by combining parallelism and calibration and exploiting low-voltage circuit techniques is demonstrated with a 1.8 V, 12-bit, 80 MS/s, 100 mW analog to-digital converter fabricated in five-metal layers 0.18-µm CMOS process. Lower power supply voltages significantly reduce noise margins and increase variations in process, device and design parameters. Consequently, it is steadily more difficult to control the fabrication process precisely enough to maintain uniformity. Microscopic particles present in the manufacturing environment and slight variations in the parameters of manufacturing steps can all lead to the geometrical and electrical properties of an IC to deviate from those generated at the end of the design process. Those defects can cause various types of malfunctioning, depending on the IC topology and the nature of the defect. To relive the burden placed on IC design and manufacturing originated with ever-increasing costs associated with testing and debugging of complex mixed-signal electronic systems, several circuit techniques and algorithms are developed and incorporated in proposed ATPG, DfT and BIST methodologies. Process variation cannot be solved by improving manufacturing tolerances; variability must be reduced by new device technology or managed by design in order for scaling to continue. Similarly, within-die performance variation also imposes new challenges for test methods. With the use of dedicated sensors, which exploit knowledge of the circuit structure and the specific defect mechanisms, the method described in this thesis facilitates early and fast identification of excessive process parameter variation effects. The expectation-maximization algorithm makes the estimation problem more tractable and also yields good estimates of the parameters for small sample sizes. To allow the test guidance with the information obtained through monitoring process variations implemented adjusted support vector machine classifier simultaneously minimize the empirical classification error and maximize the geometric margin. On a positive note, the use of digital enhancing calibration techniques reduces the need for expensive technologies with special fabrication steps. Indeed, the extra cost of digital processing is normally affordable as the use of submicron mixed signal technologies allows for efficient usage of silicon area even for relatively complex algorithms. Employed adaptive filtering algorithm for error estimation offers the small number of operations per iteration and does not require correlation function calculation nor matrix inversions. The presented foreground calibration algorithm does not need any dedicated test signal and does not require a part of the conversion time. It works continuously and with every signal applied to the A/D converter. The feasibility of the method for on-line and off-line debugging and calibration has been verified by experimental measurements from the silicon prototype fabricated in standard single poly, six metal 0.09-µm CMOS process

    A review of advances in pixel detectors for experiments with high rate and radiation

    Full text link
    The Large Hadron Collider (LHC) experiments ATLAS and CMS have established hybrid pixel detectors as the instrument of choice for particle tracking and vertexing in high rate and radiation environments, as they operate close to the LHC interaction points. With the High Luminosity-LHC upgrade now in sight, for which the tracking detectors will be completely replaced, new generations of pixel detectors are being devised. They have to address enormous challenges in terms of data throughput and radiation levels, ionizing and non-ionizing, that harm the sensing and readout parts of pixel detectors alike. Advances in microelectronics and microprocessing technologies now enable large scale detector designs with unprecedented performance in measurement precision (space and time), radiation hard sensors and readout chips, hybridization techniques, lightweight supports, and fully monolithic approaches to meet these challenges. This paper reviews the world-wide effort on these developments.Comment: 84 pages with 46 figures. Review article.For submission to Rep. Prog. Phy

    Systems and Methods for the Spectral Calibration of Swept Source Optical Coherence Tomography Systems

    Get PDF
    This dissertation relates to the transition of the state of the art of swept source optical coherence tomography (SS-OCT) systems to a new realm in which the image acquisition speed is improved by an order of magnitude. With the aid of a better quality imaging technology, the speed-up factor will considerably shorten the eye-exam clinical visits which in turn improves the patient and doctor interaction experience. These improvements will directly lower associated medical costs for eye-clinics and patients worldwide. There are several other embodiments closely related to Optical Coherence Tomography (OCT) that could benefit from the ideas presented in this dissertation including: optical coherence microscopy (OCM), full-field OCT (FF-OCT), optical coherence elastography (OCE), optical coherence tomography angiography (OCT-A), anatomical OCT (aOCT), optical coherence photoacoustic microscopy (OC-PAM), micro optical coherence tomography (µ OCT), among others. In recent decades, OCT has established itself as the de-facto imaging process that most ophthalmologists refer to in their clinical practices. In a broader sense, optical coherence tomography is used in applications when low penetration and high resolution are desired. These applications include different fields of biomedical sciences including cardiology, dermatology, and pulmonary related sciences. Many other industrial applications including quality control and precise measurements have also been reported that are related to the OCT technology. Every new iteration of OCT technology has always come about with advanced signal processing and data acquisition algorithms using mixed-signal architectures, calibration and signal processing techniques. The existing industrial practices towards data acquisition, processing, and image creation relies on conventional signal processing design flows, which extensively employ continuous/discrete techniques that are both time-consuming and costly. The ideas presented in this dissertation can take the technology to a new dimension of quality of service

    Fault-based Analysis of Industrial Cyber-Physical Systems

    Get PDF
    The fourth industrial revolution called Industry 4.0 tries to bridge the gap between traditional Electronic Design Automation (EDA) technologies and the necessity of innovating in many indus- trial fields, e.g., automotive, avionic, and manufacturing. This complex digitalization process in- volves every industrial facility and comprises the transformation of methodologies, techniques, and tools to improve the efficiency of every industrial process. The enhancement of functional safety in Industry 4.0 applications needs to exploit the studies related to model-based and data-driven anal- yses of the deployed Industrial Cyber-Physical System (ICPS). Modeling an ICPS is possible at different abstraction levels, relying on the physical details included in the model and necessary to describe specific system behaviors. However, it is extremely complicated because an ICPS is com- posed of heterogeneous components related to different physical domains, e.g., digital, electrical, and mechanical. In addition, it is also necessary to consider not only nominal behaviors but even faulty behaviors to perform more specific analyses, e.g., predictive maintenance of specific assets. Nevertheless, these faulty data are usually not present or not available directly from the industrial machinery. To overcome these limitations, constructing a virtual model of an ICPS extended with different classes of faults enables the characterization of faulty behaviors of the system influenced by different faults. In literature, these topics are addressed with non-uniformly approaches and with the absence of standardized and automatic methodologies for describing and simulating faults in the different domains composing an ICPS. This thesis attempts to overcome these state-of-the-art gaps by proposing novel methodologies, techniques, and tools to: model and simulate analog and multi-domain systems; abstract low-level models to higher-level behavioral models; and monitor industrial systems based on the Industrial Internet of Things (IIOT) paradigm. Specifically, the proposed contributions involve the exten- sion of state-of-the-art fault injection practices to improve the ICPSs safety, the development of frameworks for safety operations automatization, and the definition of a monitoring framework for ICPSs. Overall, fault injection in analog and digital models is the state of the practice to en- sure functional safety, as mentioned in the ISO 26262 standard specific for the automotive field. Starting from state-of-the-art defects defined for analog descriptions, new defects are proposed to enhance the IEEE P2427 draft standard for analog defect modeling and coverage. Moreover, dif- ferent techniques to abstract a transistor-level model to a behavioral model are proposed to speed up the simulation of faulty circuits. Therefore, unlike the electrical domain, there is no extensive use of fault injection techniques in the mechanical one. Thus, extending the fault injection to the mechanical and thermal fields allows for supporting the definition and evaluation of more reliable safety mechanisms. Hence, a taxonomy of mechanical faults is derived from the electrical domain by exploiting the physical analogies. Furthermore, specific tools are built for automatically instru- menting different descriptions with multi-domain faults. The entire work is proposed as a basis for supporting the creation of increasingly resilient and secure ICPS that need to preserve functional safety in any operating context

    Γ (Gamma): cloud-based analog circuit design system

    Get PDF
    Includes bibliographical references.2016 Summer.With ever increasing demand for lower power consumption, lower cost, and higher performance, designing analog circuits to meet design specifications has become an increasing challenging task, On one hand, analog circuit designers must have intimate knowledge about the underlining silicon process technology's capability to achieve the desired specifications. On the other hand, they must understand the impact of tweaking circuits to satisfy a given specification on all circuit performance parameters. Analog designers have traditionally learned to tackle design problems with numerous circuit simulations using accurate circuit simulators such as SPICE, and have increasingly relied on trial-and-error approaches to reach a converging point. However, the increased complexity with each generation of silicon technology and high dimensionality of searching for solutions, even for some simple analog circuits, have made trial-and-error approaches extremely inefficient, causing long design cycles and often missed market opportunities. Novel rapid and accurate circuit evaluation methods that are tightly integrated with circuit search and optimization methods are needed to aid design productivity. Furthermore, the current design environment with fully distributed licensing and supporting structures is cumbersome at best to allow efficient and up-to-date support for design engineers. With increasing support and licensing costs, fewer and fewer design centers can afford it. Cloud-based software as a service (SaaS) model provides new opportunities for CAD applications. It enables immediate software delivery and update to customers at very low cost. SaaS tools benefit from fast feedback and sharing channels between users and developers and run on hardware resources tailored and provided for them by software vendors. However, web-based tools must perform in a very short turn-around schedule and be always responsive. A new class of analog design tools is presented in this dissertation. The tools provide effective design aid to analog circuit designers with a dash-board control of many important circuit parameters. Fast and accurate circuit evaluations are achieved using a novel lookup-table transistor models (LUT) with novel built-in features tightly integrated with the search engine to achieve desired speed and accuracy. This enables circuit evaluation time several orders faster than SPICE simulations. The proposed architecture for analog design attempts to break the traditional analog design flow using SPICE based trial-and-error methods by providing designers with useful information about the effects of prior design decisions they have made and potential next steps they can take to meet specifications. Benefiting from the advantages offered by web-hosted architectures, the proposed architecture incorporates SaaS as its operating model. The application of the proposed architecture is illustrated by an analog circuit sizer and optimizer. The Γ (Gamma) sizer and optimizer show how web-based design-decision supporting tool can help analog circuit designers to reduce design time and achieve high quality circuit

    A novel method for subjective picture quality assessment and further studies of HDTV formats

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ IEEE 2008.This paper proposes a novel method for the assessment of picture quality, called triple stimulus continuous evaluation scale (TSCES), to allow the direct comparison of different HDTV formats. The method uses an upper picture quality anchor and a lower picture quality anchor with defined impairments. The HDTV format under test is evaluated in a subjective comparison with the upper and lower anchors. The method utilizes three displays in a particular vertical arrangement. In an initial series of tests with the novel method, the HDTV formats 1080p/50,1080i/25, and 720p/50 were compared at various bit-rates and with seven different content types on three identical 1920 times 1080 pixel displays. It was found that the new method provided stable and consistent results. The method was tested with 1080p/50,1080i/25, and 720p/50 HDTV images that had been coded with H.264/AVC High profile. The result of the assessment was that the progressive HDTV formats found higher appreciation by the assessors than the interlaced HDTV format. A system chain proposal is given for future media production and delivery to take advantage of this outcome. Recommendations for future research conclude the paper

    Design of a fault tolerant airborne digital computer. Volume 2: Computational requirements and technology

    Get PDF
    This final report summarizes the work on the design of a fault tolerant digital computer for aircraft. Volume 2 is composed of two parts. Part 1 is concerned with the computational requirements associated with an advanced commercial aircraft. Part 2 reviews the technology that will be available for the implementation of the computer in the 1975-1985 period. With regard to the computation task 26 computations have been categorized according to computational load, memory requirements, criticality, permitted down-time, and the need to save data in order to effect a roll-back. The technology part stresses the impact of large scale integration (LSI) on the realization of logic and memory. Also considered was module interconnection possibilities so as to minimize fault propagation

    A Pixel Vertex Tracker for the TESLA Detector

    Get PDF
    In order to fully exploit the physics potential of a e+e- linear collider, such as TESLA, a Vertex Tracker providing high resolution track reconstruction is required. Hybrid Silicon pixel sensors are an attractive sensor technology option due to their read-out speed and radiation hardness, favoured in the high rate TESLA environment, but have been so far limited by the achievable single point space resolution. A novel layout of pixel detectors with interleaved cells to improve their spatial resolution is introduced and the results of the characterisation of a first set of test structures are discussed. In this note, a conceptual design of the TESLA Vertex Tracker, based on hybrid pixel sensors is presentedComment: 20 pages, 11 figure

    Local Binary Patterns in Focal-Plane Processing. Analysis and Applications

    Get PDF
    Feature extraction is the part of pattern recognition, where the sensor data is transformed into a more suitable form for the machine to interpret. The purpose of this step is also to reduce the amount of information passed to the next stages of the system, and to preserve the essential information in the view of discriminating the data into different classes. For instance, in the case of image analysis the actual image intensities are vulnerable to various environmental effects, such as lighting changes and the feature extraction can be used as means for detecting features, which are invariant to certain types of illumination changes. Finally, classification tries to make decisions based on the previously transformed data. The main focus of this thesis is on developing new methods for the embedded feature extraction based on local non-parametric image descriptors. Also, feature analysis is carried out for the selected image features. Low-level Local Binary Pattern (LBP) based features are in a main role in the analysis. In the embedded domain, the pattern recognition system must usually meet strict performance constraints, such as high speed, compact size and low power consumption. The characteristics of the final system can be seen as a trade-off between these metrics, which is largely affected by the decisions made during the implementation phase. The implementation alternatives of the LBP based feature extraction are explored in the embedded domain in the context of focal-plane vision processors. In particular, the thesis demonstrates the LBP extraction with MIPA4k massively parallel focal-plane processor IC. Also higher level processing is incorporated to this framework, by means of a framework for implementing a single chip face recognition system. Furthermore, a new method for determining optical flow based on LBPs, designed in particular to the embedded domain is presented. Inspired by some of the principles observed through the feature analysis of the Local Binary Patterns, an extension to the well known non-parametric rank transform is proposed, and its performance is evaluated in face recognition experiments with a standard dataset. Finally, an a priori model where the LBPs are seen as combinations of n-tuples is also presentedSiirretty Doriast
    • …
    corecore