2,681 research outputs found

    Group aggregation of pairwise comparisons using multi-objective optimization

    Get PDF
    AbstractIn group decision making, multiple decision makers (DMs) aim to reach a consensus ranking of alternatives in a decision problem. The differing expertise, experience and, potentially conflicting, interests of the DMs will result in the need for some form of conciliation to achieve consensus. Pairwise comparisons are commonly used to elicit values of preference of a DM. The aggregation of the preferences of multiple DMs must additionally consider potential conflict between DMs and how these conflicts may result in a need for compromise to reach group consensus.We present an approach to aggregating the preferences of multiple DMs, utilizing multi-objective optimization, to derive and highlight underlying conflict between the DMs when seeking to achieve consensus. Extracting knowledge of conflict facilitates both traceability and transparency of the trade-offs involved when reaching a group consensus.Further, the approach incorporates inconsistency reduction during the aggregation process to seek to diminish adverse effects upon decision outcomes. The approach can determine a single final solution based on either global compromise information or through utilizing weights of importance of the DMs.Within multi-criteria decision making, we present a case study within the Analytical Hierarchy Process from which we derive a richer final ranking of the decision alternatives

    Machine learning-driven approach for large scale decision making with the analytic hierarchy process

    Get PDF
    The Analytic Hierarchy Process (AHP) multicriteria method can be cognitively demanding for large-scale decision problems due to the requirement for the decision maker to make pairwise evaluations of all alternatives. To address this issue, this paper presents an interactive method that uses online learning to provide scalability for AHP. The proposed method involves a machine learning algorithm that learns the decision maker’s preferences through evaluations of small subsets of solutions, and guides the search for the optimal solution. The methodology was tested on four optimization problems with different surfaces to validate the results. We conducted a one factor at a time experimentation of each hyperparameter implemented, such as the number of alternatives to query the decision maker, the learner method, and the strategies for solution selection and recommendation. The results demonstrate that the model is able to learn the utility function that characterizes the decision maker in approximately 15 iterations with only a few comparisons, resulting in significant time and cognitive effort savings. The initial subset of solutions can be chosen randomly or from a cluster. The subsequent ones are recommended during the iterative process, with the best selection strategy depending on the problem type. Recommendation based solely on the smallest Euclidean or Cosine distances reveals better results on linear problems. The proposed methodology can also easily incorporate new parameters and multicriteria methods based on pairwise comparisons.This research was funded by National Funds through the FCT—Portuguese Foundation for Science and Technology, References UIDB/05256/2020 and UIDP/05256/2020

    Multivariate feature ranking of gene expression data

    Full text link
    Gene expression datasets are usually of high dimensionality and therefore require efficient and effective methods for identifying the relative importance of their attributes. Due to the huge size of the search space of the possible solutions, the attribute subset evaluation feature selection methods tend to be not applicable, so in these scenarios feature ranking methods are used. Most of the feature ranking methods described in the literature are univariate methods, so they do not detect interactions between factors. In this paper we propose two new multivariate feature ranking methods based on pairwise correlation and pairwise consistency, which we have applied in three gene expression classification problems. We statistically prove that the proposed methods outperform the state of the art feature ranking methods Clustering Variation, Chi Squared, Correlation, Information Gain, ReliefF and Significance, as well as feature selection methods of attribute subset evaluation based on correlation and consistency with multi-objective evolutionary search strategy

    Nuevos Modelos de Aprendizaje Híbrido para Clasificación y Ordenamiento Multi-Etiqueta

    Get PDF
    En la última década, el aprendizaje multi-etiqueta se ha convertido en una importante tarea de investigación, debido en gran parte al creciente número de problemas reales que contienen datos multi-etiqueta. En esta tesis se estudiaron dos problemas sobre datos multi-etiqueta, la mejora del rendimiento de los algoritmos en datos multi-etiqueta complejos y la mejora del rendimiento de los algoritmos a partir de datos no etiquetados. El primer problema fue tratado mediante métodos de estimación de atributos. Se evaluó la efectividad de los métodos de estimación de atributos propuestos en la mejora del rendimiento de los algoritmos de vecindad, mediante la parametrización de las funciones de distancias empleadas para recuperar los ejemplos más cercanos. Además, se demostró la efectividad de los métodos de estimación en la tarea de selección de atributos. Por otra parte, se desarrolló un algoritmo de vecindad inspirado en el enfoque de clasifcación basada en gravitación de datos. Este algoritmo garantiza un balance adecuado entre eficiencia y efectividad en su solución ante datos multi-etiqueta complejos. El segundo problema fue resuelto mediante técnicas de aprendizaje activo, lo cual permite reducir los costos del etiquetado de datos y del entrenamiento de un mejor modelo. Se propusieron dos estrategias de aprendizaje activo. La primer estrategia resuelve el problema de aprendizaje activo multi-etiqueta de una manera efectiva y eficiente, para ello se combinaron dos medidas que representan la utilidad de un ejemplo no etiquetado. La segunda estrategia propuesta se enfocó en la resolución del problema de aprendizaje activo multi-etiqueta en modo de lotes, para ello se formuló un problema multi-objetivo donde se optimizan tres medidas, y el problema de optimización planteado se resolvió mediante un algoritmo evolutivo. Como resultados complementarios derivados de esta tesis, se desarrolló una herramienta computacional que favorece la implementación de métodos de aprendizaje activo y la experimentación en esta tarea de estudio. Además, se propusieron dos aproximaciones que permiten evaluar el rendimiento de las técnicas de aprendizaje activo de una manera más adecuada y robusta que la empleada comunmente en la literatura. Todos los métodos propuestos en esta tesis han sido evaluados en un marco experimental adecuado, se utilizaron numerosos conjuntos de datos y se compararon los rendimientos de los algoritmos frente a otros métodos del estado del arte. Los resultados obtenidos, los cuales fueron verificados mediante la aplicación de test estadísticos no paramétricos, demuestran la efectividad de los métodos propuestos y de esta manera comprueban las hipótesis planteadas en esta tesis.In the last decade, multi-label learning has become an important area of research due to the large number of real-world problems that contain multi-label data. This doctoral thesis is focused on the multi-label learning paradigm. Two problems were studied, rstly, improving the performance of the algorithms on complex multi-label data, and secondly, improving the performance through unlabeled data. The rst problem was solved by means of feature estimation methods. The e ectiveness of the feature estimation methods proposed was evaluated by improving the performance of multi-label lazy algorithms. The parametrization of the distance functions with a weight vector allowed to recover examples with relevant label sets for classi cation. It was also demonstrated the e ectiveness of the feature estimation methods in the feature selection task. On the other hand, a lazy algorithm based on a data gravitation model was proposed. This lazy algorithm has a good trade-o between e ectiveness and e ciency in the resolution of the multi-label lazy learning. The second problem was solved by means of active learning techniques. The active learning methods allowed to reduce the costs of the data labeling process and training an accurate model. Two active learning strategies were proposed. The rst strategy e ectively solves the multi-label active learning problem. In this strategy, two measures that represent the utility of an unlabeled example were de ned and combined. On the other hand, the second active learning strategy proposed resolves the batch-mode active learning problem, where the aim is to select a batch of unlabeled examples that are informative and the information redundancy is minimal. The batch-mode active learning was formulated as a multi-objective problem, where three measures were optimized. The multi-objective problem was solved through an evolutionary algorithm. This thesis also derived in the creation of a computational framework to develop any active learning method and to favor the experimentation process in the active learning area. On the other hand, a methodology based on non-parametric tests that allows a more adequate evaluation of active learning performance was proposed. All methods proposed were evaluated by means of extensive and adequate experimental studies. Several multi-label datasets from di erent domains were used, and the methods were compared to the most signi cant state-of-the-art algorithms. The results were validated using non-parametric statistical tests. The evidence showed the e ectiveness of the methods proposed, proving the hypotheses formulated at the beginning of this thesis

    Exploring the Concept of the Digital Educator During COVID-19

    Get PDF
    T In many machine learning classification problems, datasets are usually of high dimensionality and therefore require efficient and effective methods for identifying the relative importance of their attributes, eliminating the redundant and irrelevant ones. Due to the huge size of the search space of the possible solutions, the attribute subset evaluation feature selection methods are not very suitable, so in these scenarios feature ranking methods are used. Most of the feature ranking methods described in the literature are univariate methods, which do not detect interactions between factors. In this paper, we propose two new multivariate feature ranking methods based on pairwise correlation and pairwise consistency, which have been applied for cancer gene expression and genotype-tissue expression classification tasks using public datasets. We statistically proved that the proposed methods outperform the state-of-the-art feature ranking methods Clustering Variation, Chi Squared, Correlation, Information Gain, ReliefF and Significance, as well as other feature selection methods for attribute subset evaluation based on correlation and consistency with the multi-objective evolutionary search strategy, and with the embedded feature selection methods C4.5 and LASSO. The proposed methods have been implemented on the WEKA platform for public use, making all the results reported in this paper repeatable and replicabl

    On learning and visualizing lexicographic preference trees

    Get PDF
    Preferences are very important in research fields such as decision making, recommendersystemsandmarketing. The focus of this thesis is on preferences over combinatorial domains, which are domains of objects configured with categorical attributes. For example, the domain of cars includes car objects that are constructed withvaluesforattributes, such as ‘make’, ‘year’, ‘model’, ‘color’, ‘body type’ and ‘transmission’.Different values can instantiate an attribute. For instance, values for attribute ‘make’canbeHonda, Toyota, Tesla or BMW, and attribute ‘transmission’ can haveautomaticormanual. To this end,thisthesis studiesproblemsonpreference visualization and learning for lexicographic preference trees, graphical preference models that often are compact over complex domains of objects built of categorical attributes. Visualizing preferences is essential to provide users with insights into the process of decision making, while learning preferences from data is practically important, as it is ineffective to elicit preference models directly from users. The results obtained from this thesis are two parts: 1) for preference visualization, aweb- basedsystem is created that visualizes various types of lexicographic preference tree models learned by a greedy learning algorithm; 2) for preference learning, a genetic algorithm is designed and implemented, called GA, that learns a restricted type of lexicographic preference tree, called unconditional importance and unconditional preference tree, or UIUP trees for short. Experiments show that GA achieves higher accuracy compared to the greedy algorithm at the cost of more computational time. Moreover, a Dynamic Programming Algorithm (DPA) was devised and implemented that computes an optimal UIUP tree model in the sense that it satisfies as many examples as possible in the dataset. This novel exact algorithm (DPA), was used to evaluate the quality of models computed by GA, and it was found to reduce the factorial time complexity of the brute force algorithm to exponential. The major contribution to the field of machine learning and data mining in this thesis would be the novel learning algorithm (DPA) which is an exact algorithm. DPA learns and finds the best UIUP tree model in the huge search space which classifies accurately the most number of examples in the training dataset; such model is referred to as the optimal model in this thesis. Finally, using datasets produced from randomly generated UIUP trees, this thesis presents experimental results on the performances (e.g., accuracy and computational time) of GA compared to the existent greedy algorithm and DPA

    Decision Analysis of Giving Credit Using Pairwise Comparisons and Scoring Methods (Case Study: Bank XYZ)

    Get PDF
    Kredit Usaha Rakyat (KUR) is a type of credit was given by Bank for segmen business Micro, Small and Medium Enterprises (UMKMK). Along with the high interest of the community in applying for credit to the Bank, it raises its own problems, namely determining the feasibility of customers. Determining this feasibility is important considering that KUR is one of the Government's programs in empowering the UMKMK industry sector, so that the risk of non-performing loans is expected to be minimized. The method used in this study is the Pairwise Comparisons and Scoring, based on the consideration that Pairwise Comparisons and Scoring are aids in priority of criteria, priority of sub criteria and giving scoring to determine lending decisions. Pairwise Comparisons are the basic concepts of the Analytical Hierarchy Process which have been proven to solve decision problems which involve many complex criteria. The results obtained in this study are priority of criteria, priority of sub criteria and scoring of debtors for the determination of debtors who are eligible or not eligible for receive credit. 30 debtors who were sampled in this study, 17 debtors were eligible to receive credit and 13 debtors were not eligible to receive credit

    Optimization for Decision Making II

    Get PDF
    In the current context of the electronic governance of society, both administrations and citizens are demanding the greater participation of all the actors involved in the decision-making process relative to the governance of society. This book presents collective works published in the recent Special Issue (SI) entitled “Optimization for Decision Making II”. These works give an appropriate response to the new challenges raised, the decision-making process can be done by applying different methods and tools, as well as using different objectives. In real-life problems, the formulation of decision-making problems and the application of optimization techniques to support decisions are particularly complex and a wide range of optimization techniques and methodologies are used to minimize risks, improve quality in making decisions or, in general, to solve problems. In addition, a sensitivity or robustness analysis should be done to validate/analyze the influence of uncertainty regarding decision-making. This book brings together a collection of inter-/multi-disciplinary works applied to the optimization of decision making in a coherent manner
    corecore