
UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

2019

On learning and visualizing lexicographic
preference trees
Ahmed S. Moussa
University of North Florida

This Master's Thesis is brought to you for free and open access by the
Student Scholarship at UNF Digital Commons. It has been accepted for
inclusion in UNF Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more information, please
contact Digital Projects.
© 2019 All Rights Reserved

Suggested Citation
Moussa, Ahmed S., "On learning and visualizing lexicographic preference trees" (2019). UNF Graduate Theses and Dissertations. 882.
https://digitalcommons.unf.edu/etd/882

http://digitalcommons.unf.edu
http://digitalcommons.unf.edu
https://digitalcommons.unf.edu
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu

ON LEARNING AND VISUALIZING LEXICOGRAPHIC PREFERENCE TREES

by

Ahmed S. Moussa

A thesis submitted to the
School of Computing

in partial fulfillment of the requirements for the degree of

Master of Science in Computer and Information Sciences

UNIVERSITY OF NORTH FLORIDA
SCHOOL OF COMPUTING

 April, 2019

 ii

Copyright (©) 2019 by Ahmed S. Moussa

All rights reserved. Reproduction in whole or in part in any form requires the prior written
permission of Ahmed S. Moussa or designated representative.

 iii

The thesis “On Learning and Visualizing Lexicographic Preference Trees” submitted by
Ahmed S. Moussa in partial fulfillment of the requirements for the degree of Master of
Science in Computer Science has been

Approved by the thesis committee: Date

Dr. Xudong Liu
Thesis Advisor and Committee Chairperson

Dr. Ayan Dutta

Dr. Sandeep Reddivari

Accepted for the School of Computing:

Dr. Sherif Elfayoumy
Director of the School

Accepted for the College of Computing, Engineering, and Construction:

Dr. William Klostermeyer
Interim Dean of the College

Accepted for the University:

Dr. John Kantner
Dean of the Graduate School

 iv

ACKNOWLEDGEMENT

I would like to thank committee members, professors, and friends. I like to express my

appreciation and thanks to my advisor Dr. Xudong Liu for the support, comments and

guidance throughout the development of this thesis. A special thanks to Dr. Sherif

Elfayoumy, School of Computing Director, for the advice and support, while achieving

this milestone in life and career.

 v

CONTENTS

List of Figures ... vii

List of Tables ... ix

Abstract ... x

Chapter 1 Introduction ... - 1 -

Chapter 2 Related Work.. - 4 -

2.1 Lexicographic Preference Trees ... - 4 -

2.1.1 Object Ranking Based On Lexicographic Preferences - 6 -

2.2 Preference Learning ... - 10 -

2.3 Genetic Algorithms .. - 24 -

Chapter 3 Preference Visualization ... - 28 -

3.1 Elicitation Phase ... - 29 -

3.2 Learning Phase ... - 31 -

3.3 Modeling Phase .. - 34 -

Chapter 4 Preference Learning .. - 36 -

4.1 Genetic Algorithm (GA) .. - 37 -

4.2 Dynamic Programming Algorithm (DPA) ... - 42 -

4.2.1 Complexity Analysis .. - 53 -

4.3 Results .. - 55 -

Chapter 5 Conclusion ... - 61 -

References ... - 63 -

 vi

Vita…………………………………………………………………………………… 67

 vii

FIGURES

Figure 1: Preference Learning Research Tasks and Approaches - 3 -

Figure 2: Preferences in Two Car Domain ... - 5 -

Figure 3: Label Ranking Problem [Fürnkranz11] ... - 13 -

Figure 4: Instance Ranking Problem [Fürnkranz11] .. - 16 -

Figure 5: Object Ranking Problem [Fürnkranz11] ... - 18 -

Figure 6: Page to capture user preferences via playing games - 29 -

Figure 7: Architecture Diagram .. - 31 -

Figure 8: Page to learn a certain type of preference tree .. - 32 -

Figure 9: Different Visualizations of Different Models ... - 35 -

Figure 10: UIUP Using Graph .. - 36 -

Figure 11: UICP Using Graph Presentation.. - 36 -

Figure 12: GA Program .. - 39 -

Figure 13: Accuracy .. - 40 -

Figure 14: Time in seconds ... - 40 -

Figure 15: Prediction Accuracy Scores... - 41 -

Figure 16: Testing Accuracy on unseen dataset ... - 41 -

Figure 17: Different representations for the same UIUP Model - 43 -

Figure 18: Mask ID from the power set .. - 45 -

Figure 19: Find Optimal Order Task .. - 47 -

Figure 20: Overlapping Sub-problems and their Optimal Substructures - 50 -

 viii

Figure 21: Pseudocode for Algorithm 2.. - 52 -

Figure 22: Accuracy Using Training Dataset ... - 56 -

Figure 23: Accuracy Using Test Dataset .. - 57 -

Figure 24: Time in Seconds to learn a model ... - 58 -

Figure 25: Noise in training dataset is 5 % ... - 59 -

Figure 26: Noise in training dataset is 50 % ... - 59 -

 ix

TABLES

Table 1: Example of LP-Trees: UIUP, UICP, CICP .. - 8 -

Table 2: The Cars Domain Used ... - 38 -

Table 3: Cars Domain ... - 42 -

Table 4: Observations or the input training dataset .. - 44 -

Table 5: Summary Table ... - 46 -

 x

ABSTRACT

Preferences are very important in research fields such as decision making, recommender

systems and marketing. The focus of this thesis is on preferences over combinatorial

domains, which are domains of objects configured with categorical attributes. For

example, the domain of cars includes car objects that are constructed with values for

attributes, such as ‘make’, ‘year’, ‘model’, ‘color’, ‘body type’ and ‘transmission’.

Different values can instantiate an attribute. For instance, values for attribute ‘make’ can

be Honda, Toyota, Tesla or BMW, and attribute ‘transmission’ can have automatic or

manual. To this end, this thesis studies problems on preference visualization and learning

for lexicographic preference trees, graphical preference models that often are compact

over complex domains of objects built of categorical attributes. Visualizing preferences is

essential to provide users with insights into the process of decision making, while

learning preferences from data is practically important, as it is ineffective to elicit

preference models directly from users.

The results obtained from this thesis are two parts: 1) for preference visualization, a web-

based system is created that visualizes various types of lexicographic preference tree

models learned by a greedy learning algorithm; 2) for preference learning, a genetic

algorithm is designed and implemented, called GA, that learns a restricted type of

lexicographic preference tree, called unconditional importance and unconditional

 xi

preference tree, or UIUP trees for short. Experiments show that GA achieves higher

accuracy compared to the greedy algorithm at the cost of more computational time.

Moreover, a Dynamic Programming Algorithm (DPA) was devised and implemented that

computes an optimal UIUP tree model in the sense that it satisfies as many examples as

possible in the dataset. This novel exact algorithm (DPA), was used to evaluate the

quality of models computed by GA, and it was found to reduce the factorial time

complexity of the brute force algorithm to exponential. The major contribution to the

field of machine learning and data mining in this thesis would be the novel learning

algorithm (DPA) which is an exact algorithm. DPA learns and finds the best UIUP tree

model in the huge search space which classifies accurately the most number of examples

in the training dataset; such model is referred to as the optimal model in this thesis.

Finally, using datasets produced from randomly generated UIUP trees, this thesis

presents experimental results on the performances (e.g., accuracy and computational

time) of GA compared to the existent greedy algorithm and DPA.

 - 1 -

Chapter 1

INTRODUCTION

The area of preferences has recently gained broad attention from the artificial intelligence

research community. For example, the Artificial Intelligence Journal (AIJ) published a

special issue in 2011 devoted to preferences titled “Representing, Processing, and

Learning Preferences: Theoretical and Practical Challenges” [Fürnkranz11]. The AI

Magazine also devoted a special issue in 2008 to preferences [Fürnkranz11]. This

demonstrates the importance of the field of preferences in AI. Many workshops on

preference learning and ranking topics were organized by the machine learning

researchers at NIPS 2004 and 2005, ECML/PKDD 2008 and 2009, SIGIR 2008 and 2009

[Fürnkranz11].

Various preference models have been proposed, including: numerical models, such as

fuzzy constraint satisfaction problems; logics-based models, such as answer set

optimization; and graphical models, such as conditional preference networks and

lexicographic preference trees. This thesis focuses on the visualization and learning

problems for lexicographic preference trees.

One of the key components of the research on preferences is preference visualization,

where preference models of an agent are visualized to help the agent gain insights into

their decision-making process. Despite its clear importance, preference visualization has

 - 2 -

received little attraction from the researchers. A web-based system that visualizes various

types of lexicographic preference tree models learned by an existing greedy learning

algorithm was developed.

Another critical component is preference learning, referring to the problem of learning

preference models of an agent or a group of agents from observations that explicitly or

implicitly acquired of the agent(s). The typical goal of preference learning is to generalize

the training data into a model to use it later for preference prediction, such as to predict

the preferences of a new and similar person or the preferences of the same person but in a

new situation. Learning to rank is a research area that utilizes preference learning

methods with a goal of predicting preferences in a total order form over a set of

alternatives which is useful in recommendations. The book “Preference Learning” by

Darmstadt Marburg, Johannes Fürnkranz, Eyke Hüllermeier [Fürnkranz11] provides a

comprehensive overview with many survey chapters that introduce subfields of

preference learning and explain important applications in different areas. In addition, the

book tried to structure the field via proposing a unified notation and categorization per

each learning task and learning technique, which helps future research in the field. Thus,

this thesis explores genetic algorithms and dynamic programming in learning

preferences. The below hierarchy in Figure 1 shows where this thesis fits.

 - 3 -

Figure 1: Preference Learning Research Tasks and Approaches

The focus of this thesis is on the preference learning problem for combinatorial domains.

A combinatorial domain is given by a set of attributes 𝐴 = { 𝑋1 , 𝑋2 , … , 𝑋𝑛 } with each

attribute 𝑋𝑖 associated with a set of categorical values, the size of which is bounded by a

constant. The combinatorial domain compactly represents the Cartesian product of

attributes in A. We call an ordered pair (α, β) an example, indicating that the agent prefers

object α to β, both objects from the combinatorial domain. The learning problem is

framed as follows: Given a set of examples (E), learn a UIUP preference tree model that

satisfies as many examples in E as possible.

 - 4 -

Chapter 2

RELATED WORK

This section discusses the relevant work and information that this thesis is based on.

There are major topics related to this research: preferences, genetic algorithms, voting

theory, data mining, and graph theory. The key topic to this research is order theory in

mathematics and all these topics are related. Related topics are discussed in details and an

in-depth analysis is provided. Having a deep understanding of the major topics and

concepts above is critical to this research. The shortcoming in techniques in these areas

that relate to current problem of preference learning are explained too.

2.1 Lexicographic Preference Trees

Consider the below image that explains some preferences. In Figure 2, ordering all

attributes in yellow and ordering all values within each attribute are required.

 - 5 -

Figure 2: Preferences in Two Car Domain

Challenges:

• The edge weights on the above graph dynamically change and aren’t static.

• The above figure is both directional and weighted graph. However, weights and

edges change all the time based on what node is visited first. This is because

visiting “MaintPrice” node first will remove weights of all dataset’s pairs that got

correctly or incorrectly classified by assuming the user’s first importance /

priority is “Maintenance Price” with “low > med > high > vhigh” as preferences.

Assumptions:

• Assume a combinatorial domain where choosing different values for a set of

attributes can produce different products.

• Assume the user’s preference relation is a linear order.

 - 6 -

• Assume the users has a model in mind where the order of attributes matter and the

order of values under each attribute is also important.

Here is an example from the cars domain in Figure 2. Order attributes from most

important to least important and order values under each attribute from most preferred to

least. This car domain is considered a combinatorial domain where 256 different cars

(products) could be instantiated. Different agents may order these 256 cars differently per

their preferences. There is 256! = 8.6 × 10 506 different permutations.

2.1.1 Object Ranking Based on Lexicographic Preferences

Consider the problem of learning someone’s ordinal preferences in a certain

combinatorial domain. Booth et al. authors of “Learning conditionally lexicographic

preference relations” introduced Lexicographic Preferences-Trees (LP-tress) as a general

graphical representation to model different classes of preference relations [Booth10].

However, there was one important assumption which is assuming “preferences are

lexicographic”. If someone’s preferences are lexicographic then a tree structure can

model such order like English words order in a dictionary. Sometimes, preference

relations captured from the user contains noise or inconsistency. Such inconsistency or

noise is better to be identified and removed because these would not make preferences

lexicographic. Assuming lexicographic preferences, LP-trees can capture many different

preference relations classes. Different preference relations classes emerge depending on

 - 7 -

the importance of the order of attributes marking out the nodes in the LP-tree and on the

order of local preferences on each attribute / node which could be conditioned on a parent

node’s value. The UIUP model is the focus of this research. Other classes of LP-trees are

identified in the below Table 1. When LP-trees are pruned, they are called PLP-trees or

Partial Lexicographic Preferences-Trees.

 - 8 -

LP-Tree’s
name

Importance of
Attribute

Preference of
Values

Example

Unconditional
Importance
Unconditional
Preference

(UIUP)

Unconditioned

Unconditioned

Unconditional
Importance
Conditional
Preference

(UICP)

Unconditioned

Conditioned

Conditional
Importance
Conditional
Preference

(CICP)

Conditioned

Conditioned

Table 1: Example of LP-Trees: UIUP, UICP, CICP

 - 9 -

Current algorithms to learn such preferences are greedy and brute-force. There are two

greedy algorithms; one for learning LP-trees proposed by Richard Booth [Booth10] and

one for learning PLP-trees proposed by Xudong Liu [Liu15]. Both are generic greedy

algorithms able to generate LP-trees of various types. For example, the greedy algorithm

for learning LP-trees takes a set E of examples, then constructs a tree that satisfies the

examples by adding nodes from the root to the leaves. The nodes are added in a greedy

approach by picking an attribute that maximizes a certain gain among the remaining E.

These current state-of-the-art greedy preference-learning approaches work analogously to

the greedy decision tree induction algorithms like Hunt's algorithm, ID3, C4.5, CART,

SPRINT in data mining. These greedy algorithms make a series of locally optimum

greedy decisions to pick an attribute to partition the remaining data and grow a decision

tree. Current greedy approaches aren’t optimal and don’t perform well especially when

there is noise in the dataset. The assumed performance evaluation of a preference model

is the number of test records correctly predicted by the model. Traditional classification

techniques including Support Vector Machines, fail dramatically even with small datasets

of size 10 pairs of objects because an object data point can appear both positive and

negative relative to the other object data point. Also, preference-learning greedy approach

can’t handle noise well. This thesis contributes and proposes more accurate algorithms.

 - 10 -

2.2 Preference Learning

The preference learning field is about inducing a predictive model from available data.

The model learning technique could be supervised or unsupervised. There are important

points to clarify about human preferences. Human preferences are vulnerable to

inconsistency which makes the learning problem complex. For example, someone may

prefer food A over food B today, but this same person may change preference tomorrow.

Inconsistency may appear to reflect real user preferences over time or the user may

present insincere preferences either by mistake or intentionally. Inconsistency is a big

challenge because there is no model that can predict a conflicting preference. For

example, if a user said his preferences are A > B and B > A, then this is like a loop and

there is no useful information to learn here. In this section, an overview of preference

learning field is provided with the objective of establishing a unified terminology. The

focus of this thesis is on learning to rank, which is extensively studied preference

learning problem. Genetic algorithms will be introduced to this type of problem and will

be used to solve such preference problem in this thesis. Ranking problems can be

categorized as follows: label ranking, instance ranking, and object ranking

[Fürnkranz11].

Preference elicitation isn’t always simple, particularly in complex realistic applications.

Hence, preference modeling and representation languages are introduced in literature.

However, new learning algorithms for the automatic preference discovery are needed.

 - 11 -

Such algorithms are very useful for discovering individual preferences in e-commerce

since personalization of products and services are starting to trend nowadays. This was a

recent research topic in machine learning, knowledge discovery, and recommender

systems. Some of the approaches studied were approximating the utility function and

collaborative filtering that estimate a user’s preferences from other customers’

preferences. Indeed, there are many formalizations for the problems of preference

learning based on various settings such as the underlying preference model type or the

empirical data type used as an input. In decision theory literature, researchers used two

approaches for preference modeling such as utility functions and preference relations;

both approaches differ like classification and regression. The later approach predicts

complex structures, such as rankings rather than single values [Fürnkranz11]. Like any

research field in knowledge representation and reasoning in AI, reasoning with

preferences has been recognized as a particularly promising research direction for

artificial intelligence (AI). A preference-based problem has the advantage of increased

flexibility like preferences are considered relaxed constraint that could be violated.

2.2.1 Preference Learning Tasks

“Learning to rank” problem gained the most attention in the machine learning literature

in recent years among many problems in the realm of preference learning. Commonly

accepted terminology has not yet been established. The book “preference learning” by

Johannes Fürnkranz and Eyke Hüllermeier proposed a unifying and clarifying

terminology for the most important types of ranking problems [Fürnkranz11]. Generally,

 - 12 -

preference learning tasks involve learning a function to predict preferences over pairs of

items from a set while the required relation form total order. This is relation or function is

learned from a training set of items for which preferences are given. This problem type is

typically called a ranking problem. The term “ranking” is used frequently in different

domains and is used in preference learning too to categorize different problems.

In the field of operations research, the term “ranking” is used for arranging a set of

objects in a total order; which has similarities. The common terminology of supervised

learning tasks such as classification will be used in this thesis. A data object typically

consists of the input and the output or an instance and a class label; also, called predictive

and target or independent variable and dependent variable in statistics. One instance

normally is represented by a vector of features. Prediction process receives two instances

as input and output binary class that indicate whether first instance is ranked higher than

the second or not. Some binary class labels could be yes/no higher/lower or even 1/0.

Some problem types allow incomparability which means both instances can’t be

compared or equally preferred. In this thesis, the focus is on total order so there will

always be a binary preference relation. This total-order restriction is used because of the

assumption in this thesis that the customer or the user must pick one instance only such as

when buying a car or a house from e-commerce websites or even when deciding to marry

in which choosing one item only is a necessity and the user can’t afford picking, choosing

or buying two items. Different types of ranking problems are examined and discussed in

the following paragraphs. There are three types of ranking problems which are label

ranking, instance ranking, and object ranking [Fürnkranz11].

 - 13 -

2.2.1.1 Label Ranking

The goal in this type of problems is to learn a “label ranker” which assigns labels to an

instance from most preferred to least. Such ordering of labels is picked from all

permutations of the set of labels. Conventional classification in data mining could be

treated as a label ranking problem when instance x maps to only one single class label

which is the top. The input to the label ranker will be a training data T in the form of

pairwise preferences such as Xi > Xj which means label i is preferred to label j for

instance X. Such observations simply consist of an instance and two ordered labels. For

example, a picture and two labels suggesting this picture is more likely a dog than a cat or

a mammal than a bird or a mammal than a fish. Johannes Fürnkranz and Eyke

Hüllermeier formalized the label ranking problem in [Fürnkranz11] as the following:

Figure 3: Label Ranking Problem [Fürnkranz11]

Boutilier et al. used Conditional Preference Networks (CP-nets), which is a qualitative

graphical representation capturing preferences with conditional dependence and

independence, for the label ranking problem [Boutilier04]. They explained in their paper

“CP-nets: A tool for representing and reasoning with conditional ceteris paribus

 - 14 -

preference statements” that every statement in the well-known CP-nets approach is

formally equivalent to a label ranking [Boutilier04]. Also, many other research papers

such as [Dekel04, Fürnkranz03, Har-Peled02] noticed that conventional learning

problems such as classification and multiclass classification could be solved or

formalized using label preferences in a label ranking problem. Har-Peled formulated and

explained this in the paper titled “Constraint classification: A new approach to multiclass

classification” [Har-Peled02]. For example, classification assigns a single class label to

each example. Classification implicitly creates preferences among the set of labels with

top 1 label is assigned. Also, multi-label classification assigns a sub-set of possible labels

to each example. Multi-label classification implicitly creates preferences among the set of

labels with top k labels are assigned. In both scenarios, a ranking model is needed and

learned from a subset of all available preferences data in pairwise format.

Finally, there are different approaches to measure the performance of a label ranker.

Normally, a loss function on rankings is used to report the predictive performance of the

ranker. The loss function can be any correlation or distance measure on rankings or

permutations such as the number of incorrectly ordered pairs of labels. Some

researchers improved predictions and minimized a ranking loss function’s value by using

a semi-supervised learning technique that reduces the disagreement of several ranking

functions. There were some efforts in tackling label ranking learning problems using

decision-tree learning algorithms such as CART. For example, some authors explained

modifying CART to solve label ranking problems by extending the purity concept to

label ranking data and learning by pairwise comparison [Fürnkranz11].

 - 15 -

2.2.1.2 Instance Ranking

This problem is like the previous label ranking problem but the labels or classes

themselves exhibit a natural order. For example, the papers submitted to a conference

could be labeled as accept, weak accept, weak reject, and reject. These labels represent

categories with ‘accept’ is ranked higher or is more preferred than weak accept and so on.

Normally, training data consists of labeled instances and these labels represent

preferential ranks for these instances. The goal is not to learn a classifier like in

classification, but a ranking function to rank instances into ordered classes. It could be

multi-classification in terms of assigning the instances to classes but these classes

represent order or preferences too. Given training data composed of some instances as an

input, the output would be a function that ranks and possibly assigns score to instances.

Voting rules could be used in such problem and they will be discussed further more.

Instance ranking problem is the same as the multipartite or k-partite ranking problem

with special case of k=2 is known as bipartite ranking problem. An example of instance

ranking problem would be ranking conference papers per quality by the conference chair

who maybe assigns scores. The goal of instance ranking which is the proposed term by

Fürnkranz is to rank instances where higher classes instances are more preferred than

those from lower classes [Fürnkranz11]. Fürnkranz formalized this task as below:

 - 16 -

Figure 4: Instance Ranking Problem [Fürnkranz11]

There are different accuracy measures for predictions in this type of problem. One

example is the number of ranking errors which counts the pairs that got ranked wrong by

predicting a lower class for one instance over the other while the opposite is correct.

Decision-tree learning and rule learning algorithms have been used for learning such

rankings and literature examined aggregating estimates into a single probability estimate.

One important distinction or uniqueness to this type of problem is that instances are not

in feature vector representation so a total order based on instances is needed such which

isn’t based on attributes rather on instances themselves [Fürnkranz11].

2.2.1.3 Object Ranking

The last preference learning task in object ranking which doesn’t output any class labels

to objects or instances. The goal of the object ranking problem is to learn a ranking

function that receive a training data as input and outputs a ranking of these objects. It is

important to notice that training data will be in the form of object x is preferred to object

y like x > y. Also, such training data would be only a subset of all possible comparisons.

 - 17 -

If we know all possible comparisons in advance, then there would be no need for

prediction and putting these objects in total order would be accomplished by normal

sorting algorithms such as bubble sort or quick sort. However, new algorithms are needed

to find a model out of many possible models to fit training data because training data is

only a subset of all possible comparisons. In literature, some approaches used by

typically assigning a score to each instance and then sorting by scores. One way is to use

voting rules to assign scores which will be discussed in details later. Other approaches

use certain models such as trees such as LP-trees where LP means lexicographic

preferences or graphs such as CP-nets where CP stands for conditional preferences. There

are many types for LP-trees and one that concerns this research most is UIUP model

which stands for unconditional importance and unconditional preferences.

LP-trees will be discussed later in this document.

In object ranking problems, objects are commonly represented in terms of an attribute-

value representation. Training data typically represents exemplary rankings in the form of

pairwise preferences in the form x > y suggesting that x should be ranked higher than y.

For example, [Joachims02, Radlinski05] discussed the learning problem to rank query

results of a search engine as object ranking. They explained training information can be

implicitly elicited when the user clicks on some certain links in the query result than

others which can be turned into binary preferences in the form selected pages are

preferred over nearby pages. This object ranking problem is also known as “learning to

order things” and it is summarized as:

 - 18 -

Figure 5: Object Ranking Problem [Fürnkranz11]

Many learning approaches for object ranking tasks exist such as dimensionality reduction

methods that try to retain the preference information while reducing the data dimension.

Such methods’ goal is to predict a total ordering of the full set of objects given supervised

total orders for certain subsets of objects. This thesis fall under this category with an extra

assumption that training data objects are from a combinatorial domain and that

preferences form consistent tree model. While, the number of items to be ordered in

object ranking is much larger, the performance measure can be a distance function or the

number of ranking errors [Fürnkranz11].

2.2.2 Techniques and Approaches for Preference Learning

Different preference learning approaches proposed in the literature that solve the three

core learning tasks discussed before. Each learning task can be tackled by similar basic

techniques that would be discussed in the next paragraphs. In literature, two approaches

got proposed as general to preference learning which are evaluating instances based on a

utility function and learning binary preference predicate after comparing pairs of

instances. An important note is that researchers in literatures normally set sufficiently

 - 19 -

restrictive model assumptions about the preference relation structure. In this thesis, a tree

structure is assumed and the training data would be used for identifying this structure.

2.2.2.1 Learning Utility Function

A well-established approach for modeling preferences is the approach of learning a utility

function that gives a utility score to each alternative. The utility scale can be numeric or

ordinal and this is discussed as regression learning or ordered classification in the

literature of machine learning. In the case of label ranking problem, the utility function is

learned for each label. In the instance and object ranking problems, the utility function

becomes a mapping from a utility degree to each instance or object which can produce a

total order. When learning a utility function, it is important to modify the conventional

learning algorithms since the goal becomes maximizing ranking performance and not

classification accuracy and the learner challenge becomes finding a function that agrees

with as much preference data as possible. For example, [Tesauro89] was the first to

formalize comparison training which is the alternative name used for object ranking. In

[Tesauro89], a symmetric neural network architecture is trained with two states and a

training signal for preferable state. Replacing the network’s two symmetric components

with a single network’s state would allow the utility function to provide a real-valued

evaluation. Learning the utility function for label ranking has been approached

algorithmically as optimization problem by iteratively minimizing a loss function based

on a least-squares approximation of the ranking error. One disadvantage of this approach

is that models can not be easily explained to people. However, decision trees and LP-

 - 20 -

trees are much easier to explain which gives insight to decision-makers about the

decision process which is favored in some domains like healthcare [Tesauro89,

Fürnkranz11, Dunn18].

2.2.2.2 Binary Preference Relation Models

The second approach’s idea is to learn a model in the form of binary preference relation

which says if one alternative is better than another without using a utility function.

Converting such binary preference relations into a ranking is an optimization problem

because the goal is finding a ranking maximally consistent with the pairwise preferences.

Normally, the objective of minimizing the number of pairs’ ranks in conflict with their

pairwise preference is NP-hard problem. There exist efficient techniques to deliver good

provable approximations including simple voting such as Borda count of social choice

theory. More complex preference structures can be derived from the preference relation

to provide weak relaxed orders instead of strict linear orders. For example, Ukkonen

proposed a method of leaning a bucket order which is a linear order with ties to allow

indifference between two alternatives [Ukkonen09]. For label ranking problems, one

predicate is learned for each pair of labels and an instance then a label ranking is

calculated by weighted voting such as Borda counting using the previous pairwise

predicate preferences. Different pairwise learning techniques got proposed for instance

ranking problem; For object ranking problem, the relational approach has been further

explored by learning a binary preference predicate then a ranking maximally consistent

 - 21 -

with these predictions generates the final ordering [Cohen99, Coppersmith06,

Ukkonen09, Fürnkranz11].

2.2.2.3 Structure-based Models

The third approach is the model-based approach in which preference learning starts from

specific model assumptions with an assumption such as the structure of the preference

relations. Such assumption is an inductive bias that restricts the hypothesis space. If such

bias is correct for the problem at hand, then the advantage would be a simplified learning

problem. One disadvantage of this approach is that it is less generic since it strongly

depends on the assumptions made. For example, an assumption can be that the target

ranking of a set of objects is representable as a lexicographic order when these objects are

represented in terms of multiple attributes. Some researchers in literature addressed

learning of lexicographic orders for the object ranking problem using different

algorithms. For example, a complete ranking of all objects is uniquely identified by a

total order of the attributes plus a total order of each of the attribute’s values. Suppose

objects are made of four binary attributes then, there are 2^4 = 16 objects and 16! =

2*(10^13) rankings in total or around 2e13 which is huge. However, only 24 * 4! = 384

of these rankings can be expressed in terms of a lexicographic order. Such model in

literature is called UIUP model type or unconditional importance unconditional

preference tree model as discussed in [Booth10, Liu15]. Sometimes, preferences on an

attribute’s values depend on another attribute’s values. In this case, some models like CP-

nets were discussed in literature like in [Boutilier04]. CP-nets or Conditional Preference

 - 22 -

Networks provide a graphical representation for modeling dependencies when expressing

preferences among a single attribute’s values like Bayesian networks. The CP-net is

analogous to Bayesian networks that use conditional independence among random

variables to reduce complexity of probability models. CP-net represents (in)dependencies

among attributes drawn as nodes while assigning a preference relation over an attribute’s

values for each combination of the parent attributes’ values. Some papers in literature

discussed CP-networks’ learning algorithms in a passive and an active setting. This CP-

net model is also a quite restrictive model assumption same as the case of lexicographic

orders models [Booth10, Liu15, Fürnkranz11, Boutilier04].

2.2.2.4 Aggregation and Estimation

The forth approach is local aggregation of preferences which is analogous to the idea of

local estimation techniques such as the nearest neighbor estimation principle for example.

In nearest neighbor estimation, a problem ranking is predicted by estimation based on

“neighbored” rankings observed in input dataset then obtaining a final ranking using

averaging-like aggregation operator on these “neighbored” rankings. While this approach

is flexible and doesn’t impose a specific model assumption, it implicitly assumes

consistency underlying the nearest neighbor inference principle. For label ranking

problem, the nearest neighbor approach gets the query’s k nearest neighbors then applies

any aggregation technique like voting theory or the average to combine the different

rankings into a prediction. For other types of preference learning problems like object

ranking, aggregation techniques got used also to combine separate rankings into a

 - 23 -

complete ranking of all objects. One practical application is information retrieval when

different rankings of different search engines would be combined into an overall ranking.

Another example is ranking sports players in a certain game when judges have different

rankings that must be aggregated into an overall competition ranking. Voting theory play

a vital role in such scenarios and different voting rules have been proposed that will be

examined further in this thesis [Fürnkranz11].

2.2.3 Preference Learning Applications

Preference learning problems and ranking problems appear naturally in various domains.

In the previous section, the different preference learning problems got discussed and

categorized per the learning task (label, instance, or object ranking) [Fürnkranz11]. Also,

different approaches or learning technique found in literature got explained such as

(learning utility functions, learning binary preference relations, learning preference

models having a specific structure, or using local estimation and preference aggregating

methods) [Fürnkranz11]. It is important to notice that any combination of a task and a

technique from above can be found in literature. Sometimes one research paper can be

about several categories since learning a utility function or a binary preference relation

commonly used with other techniques. Preference learning is important for many

application areas such as recommender systems and search engines. For example, search

results can be ranked per a user’s preferences and new product recommendations such as

cars can be ranked per a customer’s preferences based on the features of different car

models. When ranking search results, an unknown preference relation would be learned

 - 24 -

from user feedback implicitly collected via their clicking behavior on past queries’ results

rankings. Many research on information retrieval literature used LETOR or ‘LEarning

TO Rank’ package that contains queries with user feedback datasets [Fürnkranz11].

Preference learning is also important for recommender systems which online stores use to

recommend products to customers. There are other approaches for recommender systems

like collaborative filtering systems that provide recommendations based on user

similarity, and other systems that provide recommendations based on item similarities.

Some preference learning approaches learn decision trees or models to recognize

recommendation features to predict preference ranking [Fürnkranz11].

2.3 Genetic Algorithms

The idea of the genetic algorithm is inspired by the natural selection theory in biology. In

that theory, natural selection ensures the population’s survival for the fittest

[Dewdney93]. The same idea is applicable to the genetic algorithm where it will move

from among generations of possible solutions. Generally, the population’s fitness will

increase until a steady state. In such steady state, no improvement can be done once the

population has reached this stable state. This state could contain a global or local optimal

solution. However, the steady state does not always mean that no improvement can be

done since there is a chance that the fitness measure get stuck for long time at a local

optimum. Assume a function F is used as a fitness measure for a problem. If F has many

local maxima, then the genetic algorithm will run longer to find the true maximum.

 - 25 -

Early computer science pioneers were interested in biology and psychology beside

computers too and were inspired by natural systems. From the earliest days, computers

were used to model the human brain, mimic human learning, and simulate evolution in

biology. Since 1980s, biologically motivated computer research grown into separate

fields such as neural networks, machine learning, evolutionary computation that includes

genetic algorithms [Mitchell99].

Many researchers started to examine evolutionary systems in 1950s as inspiration to

optimize engineering problems. The idea was to develop a population of candidate

solutions to a certain problem using operations such as natural selection and variation.

Evolutionary computation consists of evolution strategies, evolutionary programming,

and genetic algorithms [Mitchell99]. Later, many algorithms were inspired by evolution

and developed for optimization and machine learning. John Holland invented and

developed Genetic algorithms (GAs) in the 1960s at the University of Michigan

[Mitchell99]. Hollands paved the theoretical foundation for adaptation using genetic

algorithms by publishing his book: Adaptation in Natural and Artificial Systems.

Holland’s method was moving from one population of solutions to another using

selection and genetic-inspired operators such as crossover, mutation, and inversion.

Solutions were called chromosomes and each chromosome was encoded as a string.

Each chromosome composed of many traits, features, attributes, or simply "genes" with

each gene being one value or “allele”. The selection process picks the fittest

chromosomes in the populations to reproduce children. This is proportional to one’s

fitness so the fittest chromosomes will produce more children on average. The crossover

 - 26 -

process will recombine subparts of two chromosomes to produce a new chromosome.

Mutation process, which mimic genetic error while copying, will modify the allele value

of any location in the chromosome randomly. Inversion process simply reverses the order

of values in a section in the chromosome [Mitchell99].

The evolution mechanisms are suited for some computational problems that require

searching a massive number of candidate solutions. Protein engineering is an inspiring

example of such problems that search among the vast number of possible sequences for a

protein. This relates somehow to the preference mining problem. These search problems

benefit and make use of parallelism since different solutions are explored simultaneously

[Mitchell99].

Multiple processors could measure the fitness of chromosomes simultaneously providing

computational parallelism plus an intelligent strategy could provide a boost like smart

heuristics that help prone search space in A* algorithm. In evolutionary computation,

natural selection theory is the rule that guarantee variation due to crossover or mutation;

which lead to emergent behavior of designing high−quality solutions to problems with

ability to adapt if environment evolves. An evolutionary-based learning algorithm could

better adapt to feedback or new information because of the adaptability feature of

evolutionary computation. Biological Evolution is an inspiration because it is a searching

technique that look up for a solution among many possibilities. Evolution is a method of

finding innovative solutions to complex problems. Sometimes, the fitness function is not

fixed and can be continually changing as population evolve, so evolution will be

 - 27 -

searching a constantly changing candidate solutions. This can happen in preference

mining problem when you learn a new preference relation and add it to the old

preferential data or old requirements. Searching for solutions with changing conditions is

requires adaptive programs. Therefore, evolution is a huge parallel search program rather

than exploring one solution or path at a time. Evolution evaluate and changes millions of

solutions in parallel [Mitchell99]. At the end, evolution rules are not difficult and the

population evolve by random variation via crossover, mutation, and other operators; then

natural selection guarantees the fittest to survive and reproduce propagating their fit or

good genetic features to future generations.

Searching in a “search space” is a famous problem type in computer science in which a

computer tries to find a goal solution among a huge collection of candidate solutions. The

term "search space" means the collection of candidate solutions to a problem and there is

sometimes some notion of distance between them. Genetic algorithms assume that good

parent candidate solutions in the space can be combined by crossover produce

high−quality offspring candidate solutions. Fitness values can form a landscape with

hills, peaks, or valleys like physical landscapes. Under Wright's formulation, evolution

move populations along landscapes, and "adaptation" guide the movement toward local

peaks or local optimum. Crossover and mutation in genetic algorithms lead population

while moving around on the fitness function landscape. It important to say an individual

fitness must be relative to current population. Candidate solutions are assigned a fitness

value relative the other solutions in the population [Mitchell99].

 - 28 -

Chapter 3

PREFERENCE VISUALIZATION

A framework was developed for preference visualization. The functional product could

be tested in real world in the future to understand and quantify its potential impact. This

framework is helpful and applies my new technique to let people understand their own

preferences. This framework is useful to industry and companies in predicting their

customers’ preferences and purchasing behavior. This chapter outlines the design aspects

of the visualization framework. The framework is web-based with the objective of

learning user preference models (e.g., LP-trees and CP-nets) through interacting with the

user. Python and Django version 1.11 were used for developing the framework.

The web-based framework visualizes various types of LP-Tree models (UIUP, UICP,

CICP) learned by an existing greedy learning algorithm developed by Liu in C++

[Liu15]. The system consists of three parts or phases to: (1) elicit user preferences, (2)

learn graphical preference models (UIUP, UICP, CICP), and (3) visualize these models to

the user in different representations (Outline, GUI, JSON, XML). Different modules are

built for the elicitation of user preferences and for visualization of learnt models. The

existing greedy learning algorithm. In summary, the framework gives these options to

the users:

 - 29 -

1. Play games as a way for preference elicitation to generate a training dataset

2. Learn different types of trees (UIUP, UICP, CICP)

3. Visualize the different trees in different formats (Outline, GUI, JSON, XML). D3

library is used to create the GUI representation.

3.1 Elicitation Phase

Preference elicitation is done via a game playing approach where the user can play as

many games as possible. On each game, the framework shows two options and the user

must pick the one s/he prefers most. Text is currently used to describe the two options

like in Figure 6:

Figure 6: Page to capture user preferences via playing games

 - 30 -

The framework may use images beside text to show the two products as above. A lot of

dataset in different domains are gathered. Datasets with images (car domain, watches

domain, houses) got collected too. The framework typically use one dataset of products.

In each game, it picks two products and show them to the user. Then the user must pick

the one that he/she prefers most. Text description of outcomes is only implemented like

in the figure 6. First, the user logins to the framework and then plays as many games as

possible. On each game, the framework shows the user two options and the user must

pick one. If a user picks option one over option two, then this implies the user prefers

option 1 over two. Each option has different values for each attribute. As an example, the

above image show 6 attributes in the car domain which are “Buying Price”,

“Maintenance Price”, “Number of Doors”, “Number of Persons”, “Luggage Size”, and

“Safety Level”. This is a combinatorial domain and each attribute has different values

that can be combined to reach different outcomes. A random combination is used to reach

a random option. However, there was a need for real-life datasets to make this framework

useful for real-life applications. Many different datasets were gathered including images

that represent the outcome from different domains such as Cars domains, Houses domain,

Watches domain, and People Talents domain. Each domain has its own attribute names

and each attribute has its values. It is a good idea to use pictures and ask the user to

compare two pictures. This is a better approach since each picture visualizes the attribute

values. For example, if a car has an attribute called Color and the value is red in outcome

1 and black in outcome 2 then the two pictures will show such contrast easily. Showing

pictures combined with textual descriptions is planned since users generally prefer

pictures over text. Below is an overview of the architecture diagram of the framework:

 - 31 -

Figure 7: Architecture Diagram

3.2 Learning Phase

In this phase, the framework provides the user with the option to pick one LP-Tree model

to learn and how to present this learnt model like in Figure 8. Then, the framework would

send the set of examples gathered during the elicitation phase to the greedy algorithm as

the training dataset along with domain description files. The greedy algorithm learns the

selected tree model like UIUP from the dataset and returns a pointer to a tree object in

C++. Hence, more development needed and implemented during this thesis to bring this

C++ tree object from a computer memory to a usable visualized model. The following

sections discuss the details of such development’s implementation.

 - 32 -

Figure 8: Page to learn a certain type of preference tree

Django framework was used to create a poll app that ask users for polls. These polls are a

way to capture user preferences directly. Django is integrated with the C++ preference

learning libraries developed using pybind11 [Liu15]. A web form was created to read in

three files (Domain Descriptor File, Outcomes File, Examples File) and the number of

examples to learn. Then, these data were used for learning a preference model.

A function named treeToString was developed to convert or serialize a tree structure to a

string representation. This can be helpful in encoding trees into chromosomes for

genetics algorithms. A tree traversal function was implemented in python to be used

directly in Django Web App. JS library called D3 was used to represent the C++

preference tree structure into a graphical tree that the user can interact with by expanding

nodes and collapsing nodes.

 - 33 -

A function was implemented to convert the preference tree structure into XML format. A

Drop Menu control is added that allows the user to select the way to present the learned

preference model. Some of these visualization options are Outline, XML, JSON, GUI.

The GUI improves understandability and readability by adding labels to the edges, by

appending local preference information to nodes, by using colors to mark parents through

a path, and by using greater than symbol among local preferences.

A page was developed to capture the user input over two options and store them in a

database for later usage by the learning algorithm. Support was added to save the learned

model into a JSON file format. Then, a web page was created where the user can play

games where he picks his preference among two options. The Car Domain was used to

generate two car objects with random attributes and value pairs presented in a table.

Then, the game results were saved into the database as one example with the two options

and the user preference.

The framework was enhanced by adding an authentication system to allow multiple users

use the framework. The users can independently report their preferences. This was done

by enforcing a login page to authorize the user before playing the games unlimited

number of times until the user logs out.

The database was used to dynamically generate a strict_examples file for each user then

fed these data to the algorithm to learn a model.

 - 34 -

Amazon Mechanical Turk was used to create surveys that integrate with the web

framework. Also, one example of hits on Amazon Turks was implemented to compare

two images with the attached image descriptions. The amazon survey results were

exported into a key-value pairs.

3.3 Modeling Phase

In this phase, the framework presented a certain model to the user. There are different

visualization formats such as: Collapsible List/Accordion, Graph, GUI (using D3 lib),

JSON, and XML. Visualization support were added to all the different tree types such as

UIUP, UICP, and CICP. While, JSON and XML representation formats are well known,

Figure 9 shows the other different visualization formats of different models; UIUP model

in collapsible list format is shown on the left, UICP model in graph format is in the

middle, and CICP model in GUI format on the right.

 - 35 -

 Collapsible List Graph GUI

Figure 9: Different Visualizations of Different Models

The framework was deployed on a Linux server using Apache and WSGI. The use of

graphs improved understanding of the UIUP and UICP models since big circles

represented attributes order and tables used to describe conditions and/or preferences as

in Figure 10 and Figure 11.

 - 36 -

Figure 10: UIUP Using Graph

Figure 11: UICP Using Graph Presentation

The framework was improved to allow the user easily switch among different tree types

(UIUP, UICP, CICP) and different visualizations formats like Outline, Accordion, GUI,

Graph, JSON, XML). D3 library was used to visualize the trees in the GUI format as

shown with CICP model in Figure 9.

It is important to notice that LP-Trees are different than other trees in two aspects. The

first one is that the order of nodes in the tree from the root to the leaf has a useful

meaning which is the importance of the attribute. The second one is that the order of

outgoing edges from a certain node to all its children matters and has another meaning

which is local preferences for values of this specific attribute with first left most edge is

the most preferred.

 - 37 -

Chapter 4

PREFERENCE LEARNING

4.1 Genetic Algorithm (GA)

 A genetic algorithm was implemented to learn UIUP models from preferential data. The

genetic algorithm performs the following steps while repeating last three steps repeatedly

for 100 generations:

0. Initialization: randomly create 100 chromosomes like (B201 A210 C012). These

100 chromosomes are called the seed.

1. Fitness Function: evaluate each chromosome based on the number of examples

(#examples) it can correctly classify. This is called the accuracy of a

chromosome.

2. Selection: select the best/top 100 chromosomes overall as a current population.

This technique is called elitism selection as explained in chapter 2. These 100

chromosomes are referred to as the elite in this thesis.

3. Reproduction: produce new variants from the elite. These variants are called

children. This is done via crossover and mutation operations that are the source of

exploitation and exploration of the search space. The mutation operation shuffles

 - 38 -

the order of attributes and values of one randomly selected attribute. The crossover

operation keeps the longest common prefix (agreement) between two parent

chromosomes then shuffle the remaining; one of the two parent chromosomes is the

best chromosome found over all generations.

Attribute Values

BuyingPrice: vhigh, high, med, low
MaintPrice: vhigh, high, med, low
Doors: 2, 3, 4, 5more
Persons: 2, 4, more
Luggage: small, med, big
Safety: low, med, high

Table 2: The Cars Domain Used

Extensive experimentations were performed on the genetic algorithm to test out different

implementations and techniques for selection, mutation, crossover, population size, and

number of generations. The genetic algorithm showed promising results, but it was

trapped in local optima in some cases. The genetic algorithm was compared against the

greedy implementation. The genetic algorithm outperformed the greedy approach in

accuracy. However, when the training dataset size was huge, the genetic algorithms

started to take longer time to evaluate candidate solutions. Cars Domain is used as shown

in Table 2. Figure 12 shows the output of the genetic algorithm program during the

learning process. The program prints some information about the input dataset and the

accuracy of the model learned by the greedy algorithms. The program starts performing

the genetic algorithm steps while reporting best accuracy found and the average accuracy

of the population. At the end, the program reports the fittest model and it accuracy.

 - 39 -

Figure 12: GA Program

Many experiments were conducted using the cars domain in Table 2 to compare the

genetic algorithm against the greedy algorithm in terms of accuracy (Figure 13) and

execution time (Figure 14). Different training dataset sizes were used from 100 to 1000

examples. Dataset sizes are plotted on the x-axis below in Figure 13 and Figure 14. Each

experiment was run for ten times per each dataset size and the average accuracy and

execution time of both the genetic algorithm and the greedy algorithm were recorded.

Figure 13 is a plot comparing the accuracy of the genetic algorithm vs the greedy

algorithm. Figure 14 is a plot comparing the time needed in seconds to learn a UIUP

model using the genetic algorithm and the greedy algorithm. There is a clear tradeoff

between accuracy and time; the genetic algorithm is more accurate while the greedy

algorithm is faster.

 - 40 -

Figure 13: Accuracy

Figure 14: Time in seconds

After testing both the accuracy and the time using the input training dataset, further

testing was done to check the prediction performance on unseen dataset for the models

generated from both algorithms. The unseen dataset size contained 10k examples. Figure

15 and Figure 16 show the prediction accuracy of both the genetic and greedy algorithms.

The genetic algorithm was around 10% more accurate on average than the greedy

algorithm.

500 89.25 98.22

500 89.97 97.69

600 86.49 99.11

600 87.26 100

600 86.25 97.91

600 90.57 99.26

600 88.83 98.63

700 86.64 99.17

700 94.92 98.64

700 88.11 99.64

700 92.96 98.88

700 93.89 99.03

700 88.05 98.54

799 87.35 99.13

799 93.34 99.14

800 87.12 99.11

800 86.88 98.7

800 91.9 98.45

800 87.36 100

800 91.04 98.26

800 88.97 98.6

900 91.34 98.7

900 90.98 99.13

900 93.91 100

900 91.86 99.06

999 87.56 98.73

999 89.65 98.35

999 85.95 100

999 88.75 99.31

999 88.03 99.04

0

10

20

30

40

50

60

70

80

90

100

100 200 300 400 500 600 700 800 900 1000

Accuracy

greedy_avg genetic_avg

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200

Accuracy

greedy_avg genetic_avg

Accuracy

 - 41 -

Figure 15: Prediction Accuracy Scores

Figure 16: Testing Accuracy on unseen dataset

Using the voting theory of the computational social choice field was tested. The program

implemented many voting rules to make two parent reproduce better children or to reach

to an ordering based on a voting profile of two solutions. Such fast algorithms based on

voting do not necessarily yield an acceptable agreement. To conclude, voting-based

heuristics did not help much in guiding the genetic algorithm into the right path of

finding an optimal solution. Two main operations were performed which are mutations

and crossover. These two operations were performed twice for importance of attributes

and for local preference ordering of one attribute’s values. These operations helped in

finding optimal models because crossover always kept the better solutions in the pool of

elite chromosomes leading to better chromosomes evolution across generations.

size greedy genetic size greedy_avg genetic_avg

100 0 90.7 100 0.00 91.98

100 0 91.6 200 79.52 96.46

100 0 92.29 300 84.10 98.56

100 0 94.92 400 82.64 99.13

100 0 92.03 500 87.33 98.80

100 0 92.96 600 87.88 98.98

100 0 91.35 700 90.76 98.98

100 0 90.34 800 88.88 98.85

100 0 91.65 900 92.02 99.22

200 78.62 94.46 1000 89.76 98.96

200 79.12 97.36

200 79.78 98.4

200 78.73 93.57

200 81.35 98.53

300 79.58 97.76

300 88.7 99.15

300 86.23 98.77

300 77.81 99.37

300 88.17 97.77

400 77.45 98.75

400 79.96 98.35

400 87.89 99.48

400 80.36 99.75

400 87.54 99.33

499 77.92 98.49

500 89.49 98.89

500 80.49 98.95

500 87.98 99.49

500 86.77 99.57

0

10

20

30

40

50

60

70

80

90

100

100 200 300 400 500 600 700 800 900 1000

Chart	Title

greedy_avg genetic_avg

100

Accuracy

 - 42 -

4.2 Dynamic Programming Algorithm (DPA)

An exact algorithm to learn optimal UIUP tree models from noiseless and noisy data is

introduced in this thesis. The algorithm was devised after discovering a way to speed up

the genetic algorithm evaluations which represented a bottleneck via transforming the

initial dataset into a summary table. This phase is called data preprocessing and

transforms data from one format to another. For this summary table, all information that

are useless for decision making such as similar attribute’s values are removed.

Understanding Held–Karp algorithm is important since its idea is relatively close

[Held62]. The DPA algorithm is explained below. First, assume Table 3 is the domain

with attributes A, B, C:

A [PRICE] B [COLOR] C [MODEL]
0 (cheap) 0 (white) 0 (honda)
1 (average) 1 (black) 1 (toyota)
2 (expensive) 2 (green) 2 (nissan)

Table 3: Cars Domain

In other words, attributes are alphabets like A, B, C and values are indices like 0, 1, 2.

From the above combinatorial domain, there are 27 different objects, combinations of

values of the three attributes. Now we need to build a model from a training dataset to

learn the user preferences or total order over these products. For example, when buying a

car, you may consider the most important attribute of a car to be the price. The second

most important attribute is the color. Finally, the least important property is the model.

Besides having order for the importance of attributes, you also might have preferences

 - 43 -

over the values within each attribute like prefer red color over white color. This is called

UIUP model. Another example, when choosing between two same-price flights, one may

prefer a nonstop flight to a flight with stops. A UIUP model can capture such preferences

and it can be either represented graphically or textually as demonstrated below in Figure

17.

Figure 17: Different representations for the same UIUP Model

Given two products such as ([A2 B0 C0], [A0 B0 C2]) or simply ([200], [002]), the

above model can predict and entail that product [A2 B0 C0] or [200] will be preferred by

the user over the other one. This is because the value for attribute B is the same for both

but the second attribute in importance, which is A, has value 2 in the first product which

is preferred over value 0. Many studies on human decision making experimentally

demonstrated that humans often make decisions using lexicographic reasoning [Yam10].

Humans tend not to use mathematically sophisticated methods like linear additive value

 - 44 -

maximization when facing or weighting alternatives [Yam10]. The next section explains

how the model was built and presents the problem formalization. Table 4 contains the

sample observations that will be used as the input training dataset.

Problem Statement: Given a pairwise preferential data records in the form of two

products per record where the user prefers first option over the second, find or learn

UIUP tree which is a Lexicographic Preference Model (LPM) that correctly classifies

maximum number of records from the training dataset.

X > Y Observations X:<ABC> Y:<ABC>
ob1 002 202
ob2 021 201
ob3 101 020
ob4 110 002
ob5 111 120
ob6 111 221
ob7 120 212
ob8 200 000
ob9 202 002
ob10 211 122

Table 4: Observations or the input training dataset

Implementation of the Greedy-Brute-force learning algorithm for noisy data gave

Greedy-Model: [A102 B12] with 70% accuracy meaning it failed to predict 3 out of 10.

For the DPA algorithm, the initial training dataset must be transformed into a summary

table. The Summary Table’s idea is simple. The dataset is processed once to place

observations into buckets. Observations are divide into buckets based on the deciding

attributes only. For example, if attribute A had different values for both options/products

 - 45 -

in one observation and all other attributes’ values were the same then add this observation

in the bucket of 100 meaning ‘A’ was only the deciding factor. Zero in a bit-mask means

that attribute at that index was useless attribute in decision making process or in other

words both products had the same exact value of that attribute. XOR-ing two outcomes

gives a Mask ID. Figure 18 shows mask ID in range [0 –7] when having three attributes.

Figure 18: Mask ID from the power set

Table 5 is an example for the summary table of the input training dataset. Data Pre-

processing from raw data into a summary table can happen offline or on-the-fly. For

example, My Learning Algorithm can read the summary table as input which would have

been stored in the database as in Table 6. Parallel machines may write preferential data

directly into a summary table in the database allowing for big data processing. The

normalized summary table in the database will look like Figure 18 below; we have 777

observations where Attribute ‘A’ was the deciding factor with value 1 preferred to 2. The

summary table provides a huge input reductions as one record in a summary table

represent 777 observations with same A preferences; value U = 1 is preferred to V = 2.

 - 46 -

Mask Observations A B C Total
011 ob5 {12:1} {10:1} 1
100 ob1, ob8, ob9 {20:2, 02:1} 3
101
110 ob2, ob6 {02:1, 12:1} {20:1, 12:1} 1
111 ob3, ob4, ob7, ob10 {10:2, 12:1, 21:1} {02:1, 10:1, 21:1, 12:1} {10:1,02:2,12:1} 5

Table 5: Summary Table

MaskID Attribute U V Count
100 A 1 2 777

Table 6: Storing Summary Table in a relational database

The DPA algorithm converts the training dataset into the above summary table and

produces an optimal UIUP model. It consists of two important algorithms. The core idea

of summary table is to record differences only. For example 001 > 000 would be added as

([001, C, 1, 0, +1]) where 001 is the mask, C is the attribute where both products have

different values, 1 & 0 are the values of the left & right product and +1 is the total count.

DB Memory Complexity is: (2N) * N * M * M where N = #attribute, M = max #values.

The Dynamic Programming algorithm breaks the learning into sub-problems. Each sub-

problem will have optimal memorized result so avoiding computing the same results

again. This complex problem has two properties which are overlapping sub-problems and

optimal substructures. Check Figure 19 and algorithms 1 & 2 for clarifications.

 - 47 -

reducing search space from N! to 2N is huge when finding optimal order.

if N = 10 then we explore 1,024 only instead of 3,628,800 states.
if N = 20 then we explore 1,048,576 only instead of 2.4e18 states.

Figure 19: Find Optimal Order Task

A- Algorithm 1: Find local preferences’ optimal order given a graph matrix:

Input: Matrix

Output: Optimal permutation for local preferences of graph nodes

Table 7 below shows current observations that depend on Attribute A’s values.

Attribute A can help classifying or deciding these observations ABC Format Total
{ob1, ob2, ob3, ob4, ob6, ob7, ob8, ob9, ob10}

A’s matrix

[A] 0 1 2

0 0 0 2
1 2 0 2
2 2 1 0

A’s graph

002 > 202
021 > 201
101 > 020
110 > 002
111 > 221
120 > 212
200 > 000
202 > 002
211 > 122

9

Table 7: Finding optimal order for attribute A’s values

Dynamic Programming Solution: Algorithm 1 of DPA has an optimization property

which is every sub-solution of the optimal solution/permutation is itself optimal to the

sub-problem. From the above matrix, the optimal order will be found using dynamic

programming. Like solving an asymmetric Traveling Salesman Problem, the problem at

 - 48 -

hand was converted into an integer linear programming formulation. Here are the

calculations in Table 8:

Table 8: DPA Calculations like Held–Karp algorithm for Traveling Salesman Problem

Optimal order is (102) = 2+2+2 = 6 or (120) = 2+2+2 = 6 out of 9. Results are presented

in Table 8. Let k be the size of the subset, so when k = 1, consider sets of one element:

F ({0}) = 0, F ({1}) = 0, F ({2}) = 0. When k = 2, consider sets of 2 elements:

F ({0, 1}) = max[r(01), r(10)] = max[0, 2] = 2 via order (10). r(10) = ray “10” score.

F ({0, 2}) = max[r(02), r(20)] = max[2, 2] = 2 via order (20) or order (02).

F ({1,2}) = max[r(12), r(21)] = max[2, 1] = 2 via order (12).

When k =3, F ({0, 1, 2}) = 𝑚𝑎𝑥[𝐹 ({0,1,2} – {𝑖}) + 𝑔(𝑖) ∶ 𝑖 = 0,1,2]

Where g(i) = sum of all incoming arc weights or simply i’s weighted incoming degree.

In summary, reduce a set to subsets of size k-1 before visiting each i last. Assume x is the

set of values, then here is the recursive function that the algorithm seeks to optimize:

 - 49 -

Brute-force Solution Characteristics:

1) Generates all (m)! permutations of m values.

2) Calculates cost of every permutation and store costs.

3) Returns the permutation with optimal cost.

4) Time Complexity: Θ(m!)

5) Advantage: Returns Optimal Solution.

6) Drawback: Computationally prohibitive.

7) Used in the greedy algorithm.

B- Algorithm 2: Learn UIUP Model:

Input: Examples set of pairwise comparisons and attributes set

Output: Optimal UIUP Model

Now, Algorithm 2 will call Algorithm 1 so many times with different matrices as input to

optimize the overall learning problem. It is like one big Traveling Salesman Problem of

so many smaller Traveling Salesman Problems. Figure 20 demonstrates the sub-problems

that the dynamic programming will memorize its optimal sub-solutions.

 - 50 -

Figure 20: Overlapping Sub-problems and their Optimal Substructures

Current greedy algorithms solving the same problem can find models that give 70%

accuracy. However, the Dynamic Programming Algorithm presented in this thesis

provides a model C102 B120 A20 with 90% accuracy. This model is the best found in the

whole search space and called optimal model. Optimal here means that the algorithm

builds the UIUP tree that satisfies the maximum number of examples in the training

dataset. It is optimal because any subtree S of the optimal tree is also optimal to the

examples in E, which is the set of examples with every object restricted to the attributes

in S. The optimal ordering of attributes A, B, and C is found using the calculations

demonstrated in Table 9.

 - 51 -

Table 9: Dynamic Programming Memorization Table

The number of calls to algorithm 1 done by algorithm 2 equals the sum of all subsets’

sizes in a power set, as presented in the below formula.

The advantages of the dynamic programming algorithm are: its robustness against noise,

hidden ties, and inconsistencies; it finds the most accurate UIUP models (optimal UIUP

models). However, it has the following disadvantages: it’s not feasible for learning UIUP

trees of depth more than 26 (#attributes). It is bounded like Held-Carp algorithm for

traveling salesman problem.

The pseudocode of the DPA algorithm is shown in Figure 21. It returns a model with the

highest accuracy score. DPA requires the use of a helper function that generates a

 - 52 -

summary table from a given dataset. In Figure 21, tsp represents Algorithm 1 which is a

modified function but similar implementation of Held-Karp algorithm for solving

traveling salesman problem. Function 𝑀(𝑠𝑇, 𝑎, 𝑡) is the function that prepares the graph

matrix to tsp function and takes the summary table, one attribute, and seen examples to

avoid then it returns a graph matrix. Figure 21 below presents the pseudocode of

Algorithm 2.

Figure 21: Pseudocode for Algorithm 2

 - 53 -

4.2.1 Complexity Analysis

DPA is optimal in terms of the accuracy of the found model. Accuracy is normally the

main concern in data mining and machine learning fields because it translates into correct

predictions and good decisions. DPA finds the optimal model in the search space like any

brute-force algorithm would do, but it is much faster than brute-force because it is

enhanced by its inherent memorization technique that dramatically prunes the search

space without losing states. DPA breaks the decision problem into smaller sub-problems

with optimal solutions. Proof of its optimality follows from Bellman's principle of

optimality; Any tree T` that is a subtree of an optimal tree T will make T` optimal to the

same dataset per the principle of optimality.

Function tsp can be changed later to any faster algorithm that solves the Traveling

Salesman problem. Hence, DPA algorithm complexity depends on tsp/algorithm 1

complexity. Let’s assume n is the number of attributes, then DPA/Algorithm 2 will call

tsp/algorithm 1:

𝑛

2
∗ 2𝑛 = 𝑛 ∗ 2{𝑛−1} times and the proof was provided in the previous session. Assume

using Held-Karp Algorithm to implement tsp/algorithm 1 with 𝑂(2𝑚 𝑚2) for m nodes

where m is the maximum number of values found in an attribute. Assume E is the set of

examples in the training dataset. DPA’s Time complexity = time to generate the summary

table / Data Transformation + (complexity of Algorithm 1) * (#calls to Algorithm 1)

= Data Transformation time + (2m m2 ∗ n 2{n−1}) = (n|E| + (2m m2)(n 2{n−1})) =

 - 54 -

(𝑛 ∗ |𝐸|) + (2(𝑛+𝑚−1) ∗ 𝑛 ∗ 𝑚2)

If |E| is extremely large, then it will dominate the time complexity leading the time

complexity to be linear in |E|. |E| size can be extremely large, up to 𝐶2
#𝑂𝑢𝑡𝑐𝑜𝑚𝑒 .

The space complexity for creating a global summary table once is 𝑂(2𝑛 ∗ 𝑛 ∗ 𝑚2) of

memory then queries about graph matrixes can be obtained in 0(1). Here is an example

for how this DPA algorithm can handle big data and what are its limits. If n=20 and

m=10, then: a) #products = 10^20, b) 1000 Exabyte space will be required for products

list, c) summary table space = 2.1GB captures any subset of 5 * 10^39 examples (10^20

Zettabytes), and d) the size of the UIUP model would be: 20 + 20*10 = 220 characters

which can be used later to predict or classify any example of the 5 * 10^39 examples.

It is important to note that the DPA can be boosted by adding two important features.

First, it could be implemented to run on parallel machines like Google Reduce Map. DPA

is parallel-friendly because it is a dynamic programming algorithm so it can

independently solve sub-problems and store their optimal-solutions. Second, DPA’s

algorithm 1 depends on the Traveling Salesman Problem (TSP) which currently has 30

nodes as upper bound. Any advancement or more efficient algorithms solving TSP would

simply mean an advancement to DPA. If DPA uses any approximation-based algorithm

for algorithm 1 that runs in polynomial time like voting, this will mean the DPA will

increase its limit to handling thousands of attribute values instead of tens.

 - 55 -

The real challenge facing future researchers solving the same problem will remain the

same: what are the minimum number of states to explore before finding the optimal

solution. The way to improve DPA could be via finding a better recursive formula for the

dynamic programming algorithm to optimize. These improvements are left for future

research.

4.3 Results

This section presents an empirical analysis of the two algorithms: the dynamic

programming based algorithm (DPA), and the genetic algorithm (GA). To evaluate DPA

and GA, the greedy algorithm is used as a baseline and an empirical analysis is performed

on sets of examples given by hidden randomly generated LP-Tree. Synthetic data was

used; the examples are produced from a specific hidden model and a percentage of

examples were flipped to create inconsistent examples to emulate practical settings of

noise, ties, and inconsistencies in real-world datasets. The greedy algorithm, used as a

baseline, was developed by Liu [Liu15]. Time and accuracy were measured for different

dataset sizes with different noise levels. Experiments were conducted on an processor

“Apple MacBook Air Mid-2013 Model” computer with a 1.7 GHz Intel Core i7 and 8 GB

of memory.

 - 56 -

A domain of 10 attributes, each of 5 values, was used for the experiments. Thus, the

universe contained 510 objects, giving 5 × 1013 possible examples. At first, a random

UIUP model of these attributes with random orderings as their local preferences, and a

set D of random examples for training and testing, were generated. Then, set D was

processed based on a noise percentage N where N · |D| examples are randomly selected

and flipped. A dataset split of 80% for training and 20% for testing.

Experiment 1 tested the accuracy and time for domain of ten attributes and five values

each, for N 15%, and for D of sizes 103, 104, ..., and 106. The instance for every D was

repeated for five times and the averages were reported in the following figures.

Figure 22: Accuracy Using Training Dataset

 - 57 -

Figure 23: Accuracy Using Test Dataset

From Figure 22 and Figure 23, it is obvious that DPA obtained the highest accuracy on

the training and testing examples. GA finished very close second, within 1% compared to

DPA, while the greedy algorithm finished last. Figure 24 shows the total execution time,

including both training and testing, for various training data sizes. Clearly, DPA, despite

of exponential time complexity, outperforms GA on all datasets. This is because the

computational time of GA accumulates over generations. Greedy takes the least amount

of time until the size of the training set picks up to very large. This is attributed to the

much larger constant in the asymptotic notion of Greedy than that of DPA. GA takes the

most time as it goes through many generations.

 - 58 -

Figure 24: Time in Seconds to learn a model

Experiment 2 tested the effect of the training dataset size on accuracy. A domain of four

attributes and four values each is used. Dataset sizes were percentages of the whole

possible comparisons/strict examples such as 0%, 10%, 20%, and up to 100%. Two level

of noises were tested for N of value 5% and 50%. The experiment was repeated 10 times

and the averages were reported in Figure 25 and Figure 26. The generated noisy

examples grew when the dataset size was increased. These figures clearly show that DPA

was always able to reach to the most accurate model. For this reason, DPA is thought to

give the optimal UIUP model followed by the GA, which gives a near-optimal UIUP

model.

 - 59 -

Figure 25: Noise in training dataset is 5 %

Figure 26: Noise in training dataset is 50 %

 - 60 -

Other experiments were also performed. For example, one experiment was performed to

test the effect of noise on the accuracy on a domain of four attributes and four values. It

was intuitively concluded that accuracy decreases as the level of noise in the training

dataset increases. However, the accuracy of DPA was always higher than both GA and

Greedy. One last experiment was performed to test the effect of noise on the learning

time and a domain of four attributes and four values was used. That experiment gave

similar results to these of experiment two; GA was the slowest to learn a UIUP model

which means DPA and Greedy would be fast regardless of the noise level in the dataset.

One more advantage of DPA besides being fast, it always provides the most accurate

UIUP model.

All experiments show that DPA is better than the genetic algorithm and better than the

greedy one too in terms of accuracy and total execution time. DPA showed best accuracy

results for preference learning while learning UIUP tree models from noiseless and noisy

data. This algorithm is optimal in terms of accuracy but it has an upper bound limit. The

computational complexity of DPA is exponential in terms of number of attributes and

values. Ten attributes and ten values have been used and tested which can represent 10

billion different products. This can lead to 5e19 pairwise comparisons and any subset of

these comparisons could be presented as a training dataset. Hence, the DPA can learn

1.4e72 different UIUP preference models given a domain of ten attributes and ten values.

The DPA found the optimal models within less than one minute for ten attributes and ten

values domains for a training dataset sizes of up to 10k.

 - 61 -

Chapter 5

CONCLUSION

Making good decisions is sometimes critical, especially when bad decisions are costly.

Understanding hidden preferences of one agent or a whole society can better guide

humans or artificial decision makers. Better decision making is favored by managers or

government officials and is also needed by systems such as recommendation agents or

customizable e-commerce websites like Amazon. The preference problem is an important

problem faced by decision makers. Therefore, preference understanding, visualization

and learning are crucial research areas.

This research introduced a framework that helps agents visualize and understand

preferences. Moreover, this research introduced two preference learning algorithms (GA

and DPA) for the NP-hard problem named “MAXLEARN” by Liu [Liu15]. The space of

this search problem is extremely huge and finding a good UIUP decision tree is

challenging because the number of candidate solutions grows exponentially depending on

the number of attributes, values, and products. The current best known algorithms are

mixture of greedy and brute-force such as in [Boo10, Liu15]. Developing efficient, new

algorithm for this type of problem is very useful and could lead to advances across

disciplines.

 - 62 -

For the contributions to the field of computer science, two new learning algorithms

named GA and DPA were devised and introduced besides developing a framework that

enable researchers and agents understand and visualize the field of preferences. The GA

algorithm is a local-search learning algorithm that use genetic algorithms techniques

while DPA uses dynamic programming. The framework would allow agents to

experiment over identified domains such as cars to demonstrate an algorithm’s

effectiveness and the different preference trees. The framework gives agents the option to

choose between XML, JSON, Outline, or Graphical representations.

To conclude, when users can only pick one product, and afford buying only one car for

example, e-commerce faces uncertainty as of which products to recommend. Hence, new

machine learning algorithms are needed for preference learning to advance decision

making and smart targeted marketing. Decision makers from many industries such as

retail, financial services, healthcare, e-commerce, and social media may benefit from

these new algorithms. It is typical for decision makers to favor the more accurate

algorithms because they reduce the number and hence cost of bad decisions.

 - 63 -

REFERENCES

[Allen17]
Allen, Thomas E., Cory Siler, and Judy Goldsmith. "Learning tree-structured cp-nets
 with local search." Proceedings of the... International Florida Artificial
 Intelligence Research Society Conference. 2017.

[Booth10]
Booth, Richard, et al. "Learning conditionally lexicographic preference relations." ECAI.
 2010.

[Boutilier04]
C. Boutilier, R. Brafman, C. Domshlak, H. Hoos, D. Poole, CP-nets: A tool for
 representing and reasoning with conditional ceteris paribus preference statements.
 J. Artif. Intell. Res. 21, 135–191 (2004)

[Brandt16]
Brandt, Felix, et al., eds. Handbook of computational social choice. Cambridge
 University Press, 2016.

[Cohen99]
W.W. Cohen, R.E. Schapire, Y. Singer, Learning to order things. J. Artif. Intell. Res. 10,
 243– 270 (1999)

[Coppersmith06]
D. Coppersmith, L. Fleischer, A. Rudra, Ordering by weighted number of wins gives a
 good ranking for weighted tournaments, in Proceedings of the 17th ACM-SIAM
 Symposium on Discrete Algorithms (SODA-06) (2006), pp. 776–782

[Dunn18]
Dunn, Jack. Optimal Trees for Prediction and Prescription. Diss. PhD thesis,
Massachusetts Institute of Technology, 2018. http://jack. dunn. nz/papers/Thesis. pdf,
2018.

[Dekel04]
O. Dekel, C.D. Manning, Y. Singer, Log-linear models for label ranking, in Advances in
 Neural Information Processing Systems (NIPS-03), ed. by S. Thrun, L.K. Saul, B.
 Schölkopf (MIT, Cambridge, MA, 2004), pp. 497–504

 - 64 -

[Dewdney93]
A. K. Dewdney. “The New Turing Omnibus: Sixty-Six Excursions in Computer
 Science”, (July 1993)

[Feng15]
Feng, Tie, et al. "A compromise-negotiation framework based on Game theory for
 eliminating requirements inconsistency." Tehnički vjesnik 22.5 (2015): 1085-
 1092.

[Fürnkranz03]
J. Fürnkranz, E. Hüllermeier, Pairwise preference learning and ranking, in Proceedings of
 the 14th European Conference on Machine Learning (ECML-03), vol. 2837,
 Lecture Notes in Arti- ficial Intelligence, ed. by N. Lavracˇ, D. Gamberger, H.
 Blockeel, L. Todorovski (Springer, Cavtat, Croatia, 2003), pp. 145–156

[Fürnkranz10]
Fürnkranz, Johannes, and Eyke Hüllermeier. 2010. Preference Learning (1st ed.).
 Springer-Verlag, Berlin, Heidelberg.

[Fürnkranz11]
Fürnkranz, Johannes, and Eyke Hüllermeier. "Preference learning." Encyclopedia of
 Machine Learning. Springer, Boston, MA, 2011.

[Gansner93]
Gansner, Emden R., et al. "A technique for drawing directed graphs." IEEE Transactions
 on Software Engineering 19.3 (1993): 214-230.

[Gordon08]
S. Gordon, M. Truchon, Social choice, optimal inference and figure skating. Soc. Choice
 Welfare 30(2), 265–284 (2008)

[Haddawy03]
P. Haddawy, V. Ha, A. Restificar, B. Geisler, J. Miyamoto, Preference elicitation via
 theory refinement. J. Mach. Learn. Res. 4, 317–337 (2003)

[Har-Peled02]
S. Har-Peled, D. Roth, D. Zimak, Constraint classification: A new approach to multiclass
 classification, in Proceedings of the 13th International Conference on Algorithmic
 Learning Theory (ALT-02), ed. by N. Cesa-Bianchi, M. Numao, R. Reischuk
 (Springer, Lübeck, Germany, 2002), pp. 365–379

[Held62]
Held, Michael, and Richard M. Karp. "A dynamic programming approach to sequencing
 problems." Journal of the Society for Industrial and Applied Mathematics 10.1
 (1962): 196-210.

 - 65 -

[Joachims02]
T. Joachims, Optimizing search engines using clickthrough data, in Proceedings of the
 8th ACM SIGKDD International Conference on Knowledge Discovery and Data
 Mining (KDD-02) (ACM, 2002), pp. 133–142

[Kaci11]
Kaci, Souhila. Working with preferences: Less is more. Springer Science & Business
 Media, 2011.

[Laukkanen02]
Laukkanen, Sanna, Annika Kangas, and Jyrki Kangas. "Applying voting theory in natural
 resource management: a case of multiple-criteria group decision support." Journal
 of Environmental Management 64.2 (2002): 127-137.

[Lewis-Beck11]
Lewis-Beck, Michael Steven, and Richard Nadeau. "Economic voting theory: Testing
 new dimensions." Electoral Studies 30.2 (2011): 288-294.

[Li12]
Li, Xinyu et al. “An active learning genetic algorithm for integrated process planning and
 scheduling.” Expert Syst. Appl. 39 (2012): 6683-6691.

[Liu15]
Liu, Xudong, and Miroslaw Truszczynski. "Learning Partial Lexicographic Preference
 Trees over Combinatorial Domains." AAAI. Vol. 15. 2015.

[Liu18]
Liu, Xudong, and Miroslaw Truszczynski. "Preference Learning and Optimization for
 Partial Lexicographic Preference Forests over Combinatorial
 Domains." International Symposium on Foundations of Information and
 Knowledge Systems. Springer, Cham, 2018.

[Medioni00]
Medioni, Gérard, Chi-Keung Tang, and Mi-Suen Lee. "Tensor voting: Theory and
 applications." Proceedings of RFIA. Vol. 2000. 2000.

[Mitchell99]
Mitchell, Melanie. An introduction to genetic algorithms. MIT press, 1998.

[Pigozzi16]
Pigozzi, Gabriella, Alexis Tsoukias, and Paolo Viappiani. "Preferences in artificial
 intelligence." Annals of Mathematics and Artificial Intelligence 77.3-4 (2016):
 361-401.

 - 66 -

[Procaccia13]
Procaccia, Ariel D. "How is voting theory really useful in multiagent systems." available
 online, URL: http://www. cs. cmu. edu/arielpro/papers/vote4mas. pdf (DOA:
 15.01. 2013).

[Radlinski05]
F. Radlinski, T. Joachims, Learning to rank from implicit feedback, in Proceedings of the
 ACM Conference on Knowledge Discovery and Data Mining (KDD-05) (2005),
 pp. 239–248

[Russell03]
Russell, Stuart J, Peter Norvig, and John Canny. “Artificial Intelligence: A Modern
 Approach”, 2003. Print.

[Sobolevsky14]
Sobolevsky, Stanislav, et al. "General optimization technique for high-quality community
 detection in complex networks." Physical Review E 90.1 (2014): 012811.

[Tesauro89]
G. Tesauro, Connectionist learning of expert preferences by comparison training. in
 Advances in Neural Information Processing Systems 1 (NIPS-88), ed. by D.
 Touretzky (Morgan Kaufmann, 1989), pp. 99–106

[Ukkonen09]
A. Ukkonen, K. Puolamäki, A. Gionis, H. Mannila, A randomized approximation
 algorithm for computing bucket orders. Inf. Process. Lett. 109 (2009)

[Wang94]
J. Wang, Artificial neural networks versus natural neural networks: A connectionist
 paradigm for preference assessment. Decision Support Syst. 11, 415–429 (1994)

[Xia11]
Xia, Lirong, “Computational Voting Theory: Game-Theoretic and Combinatorial
 Aspects”. Duke University, 2011.

[Yaman10]
Yaman, Fusun, Thomas J. Walsh, and Michael L. Littman. "Learning lexicographic
 preference models." Preference learning. Springer, Berlin, Heidelberg, 2010.

 - 67 -

VITA

Ahmed Moussa expects to receive a Master of Science in Computer and Information

Sciences from the University of North Florida in April 2019. Dr. Xudong Liu of the

University of North Florida is serving as Ahmed’s thesis advisor. Ahmed is the recipient

of a software patent by USPTO and the recipient of Upsilon Pi Epsilon’s International

Computing Honor Society Award. Ahmed participated in the annual ACM/ICPC USA

southeast regional competitive programming contest, where over 80 colleges actively

competed against each other in teams of three. He and his team ranked third in division

II.

Ahmed has earned his B.S. in Computer Science from the American University in Cairo

in 2011. He was part of Leadership for Education and Development Program during his

undergraduate studies. In high school, Ahmed won a silver medal in the Egyptian

Mathematics Olympiad. Ahmed will work for Amazon in Silicon Valley as Software

Development Engineer upon graduation.

	UNF Digital Commons
	2019

	On learning and visualizing lexicographic preference trees
	Ahmed S. Moussa
	Suggested Citation

	Title Page
	Acknowledgement
	Contents
	Figures
	Tables
	Abstract
	Chapter 1: Introduction
	Figure 1

	Chapter 2: Related Work
	2.1 Lexicographic Preference Trees
	Figure 2
	2.1.1 Object Ranking Based on Lexicographic Preferences
	Table 1

	2.2 Preference Learning
	2.2.1 Preference Learning Tasks
	2.2.1.1 Label Ranking
	Figure 3

	2.2.1.2 Instance Ranking
	Figure 4

	2.2.1.3 Object Ranking
	Figure 5

	2.2.2 Techniques and Approaches for Preference Learning
	2.2.2.1 Learning Utility Function
	2.2.2.2 Binary Preference Relation Models
	2.2.2.3 Structure-based Models
	2.2.2.4 Aggregation and Estimation

	2.2.3 Preference Learning Applications

	2.3 Genetic Algorithms

	Chapter 3: Preference Visualization
	3.1 Elicitation Phase
	Figure 6
	Figure 7

	3.2 Learning Phase
	Figure 8

	3.3 Modeling Phase
	Figure 9
	Figure 10
	Figure 11

	Chapter 4: Preference Learning
	4.1 Genetic Algorithm
	Table 2
	Figure 12
	Figure 13
	Figure 14
	Figure 15
	Figure 16

	4.2 Dynamic Programming Algorithm (DPA)
	Table 3
	Figure 17
	Table 4
	Figure 18
	Table 5
	Table 6
	Figure 19
	Table 7
	Dynamic Programming Solution
	Table 8

	Brute-force Solution Characteristics
	Figure 20
	Table 9
	Figure 21

	4.2.1 Complexity Analysis

	4.3 Results
	Figure 22
	Figure 23
	Figure 24
	Figure 25
	Figure 26

	Chapter 5: Conclusion
	References
	VITA

