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ABSTRACT 

 

Preferences are very important in research fields such as decision making, recommender 

systems and marketing. The focus of this thesis is on preferences over combinatorial 

domains, which are domains of objects configured with categorical attributes. For 

example, the domain of cars includes car objects that are constructed with values for 

attributes, such as ‘make’, ‘year’, ‘model’, ‘color’, ‘body type’ and ‘transmission’. 

Different values can instantiate an attribute. For instance, values for attribute ‘make’ can 

be Honda, Toyota, Tesla or BMW, and attribute ‘transmission’ can have automatic or 

manual.  To this end, this thesis studies problems on preference visualization and learning 

for lexicographic preference trees, graphical preference models that often are compact 

over complex domains of objects built of categorical attributes. Visualizing preferences is 

essential to provide users with insights into the process of decision making, while 

learning preferences from data is practically important, as it is ineffective to elicit 

preference models directly from users. 

 

The results obtained from this thesis are two parts: 1) for preference visualization, a web-

based system is created that visualizes various types of lexicographic preference tree 

models learned by a greedy learning algorithm; 2) for preference learning, a genetic 

algorithm is designed and implemented, called GA, that learns a restricted type of 

lexicographic preference tree, called unconditional importance and unconditional 



 xi 

preference tree, or UIUP trees for short. Experiments show that GA achieves higher 

accuracy compared to the greedy algorithm at the cost of more computational time. 

Moreover, a Dynamic Programming Algorithm (DPA) was devised and implemented that 

computes an optimal UIUP tree model in the sense that it satisfies as many examples as 

possible in the dataset. This novel exact algorithm (DPA), was used to evaluate the 

quality of models computed by GA, and it was found to reduce the factorial time 

complexity of the brute force algorithm to exponential. The major contribution to the 

field of machine learning and data mining in this thesis would be the novel learning 

algorithm (DPA) which is an exact algorithm. DPA learns and finds the best UIUP tree 

model in the huge search space which classifies accurately the most number of examples 

in the training dataset; such model is referred to as the optimal model in this thesis. 

Finally, using datasets produced from randomly generated UIUP trees, this thesis 

presents experimental results on the performances (e.g., accuracy and computational 

time) of GA compared to the existent greedy algorithm and DPA. 
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Chapter 1 

INTRODUCTION 

 

The area of preferences has recently gained broad attention from the artificial intelligence 

research community. For example, the Artificial Intelligence Journal (AIJ) published a 

special issue in 2011 devoted to preferences titled “Representing, Processing, and 

Learning Preferences: Theoretical and Practical Challenges” [Fürnkranz11]. The AI 

Magazine also devoted a special issue in 2008 to preferences [Fürnkranz11]. This 

demonstrates the importance of the field of preferences in AI. Many workshops on 

preference learning and ranking topics were organized by the machine learning 

researchers at NIPS 2004 and 2005, ECML/PKDD 2008 and 2009, SIGIR 2008 and 2009 

[Fürnkranz11].  

 

Various preference models have been proposed, including: numerical models, such as 

fuzzy constraint satisfaction problems; logics-based models, such as answer set 

optimization; and graphical models, such as conditional preference networks and 

lexicographic preference trees. This thesis focuses on the visualization and learning 

problems for lexicographic preference trees. 

 

One of the key components of the research on preferences is preference visualization, 

where preference models of an agent are visualized to help the agent gain insights into 

their decision-making process. Despite its clear importance, preference visualization has   
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received little attraction from the researchers. A web-based system that visualizes various 

types of lexicographic preference tree models learned by an existing greedy learning 

algorithm was developed. 

 

Another critical component is preference learning, referring to the problem of learning 

preference models of an agent or a group of agents from observations that explicitly or 

implicitly acquired of the agent(s). The typical goal of preference learning is to generalize 

the training data into a model to use it later for preference prediction, such as to predict 

the preferences of a new and similar person or the preferences of the same person but in a 

new situation. Learning to rank is a research area that utilizes preference learning 

methods with a goal of predicting preferences in a total order form over a set of 

alternatives which is useful in recommendations. The book “Preference Learning” by 

Darmstadt Marburg, Johannes Fürnkranz, Eyke Hüllermeier [Fürnkranz11] provides a 

comprehensive overview with many survey chapters that introduce subfields of 

preference learning and explain important applications in different areas. In addition, the 

book tried to structure the field via proposing a unified notation and categorization per 

each learning task and learning technique, which helps future research in the field.  Thus, 

this thesis explores genetic algorithms and dynamic programming in learning 

preferences. The below hierarchy in Figure 1 shows where this thesis fits. 
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Figure 1: Preference Learning Research Tasks and Approaches 

 

The focus of this thesis is on the preference learning problem for combinatorial domains.  

A combinatorial domain is given by a set of attributes 𝐴 = { 𝑋1 , 𝑋2 , … ,  𝑋𝑛 } with each 

attribute  𝑋𝑖  associated with a set of categorical values, the size of which is bounded by a 

constant. The combinatorial domain compactly represents the Cartesian product of 

attributes in A. We call an ordered pair (α, β) an example, indicating that the agent prefers 

object α to β, both objects from the combinatorial domain. The learning problem is 

framed as follows:  Given a set of examples (E), learn a UIUP preference tree model that 

satisfies as many examples in E as possible. 

 



 

 - 4 - 

Chapter 2 

RELATED WORK 

This section discusses the relevant work and information that this thesis is based on. 

There are major topics related to this research: preferences, genetic algorithms, voting 

theory, data mining, and graph theory. The key topic to this research is order theory in 

mathematics and all these topics are related. Related topics are discussed in details and an 

in-depth analysis is provided. Having a deep understanding of the major topics and 

concepts above is critical to this research. The shortcoming in techniques in these areas 

that relate to current problem of preference learning are explained too.   

 

2.1 Lexicographic Preference Trees 

 

Consider the below image that explains some preferences. In Figure 2, ordering all 

attributes in yellow and ordering all values within each attribute are required. 
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Figure 2: Preferences in Two Car Domain 

 

Challenges: 

• The edge weights on the above graph dynamically change and aren’t static.  

• The above figure is both directional and weighted graph. However, weights and 

edges change all the time based on what node is visited first. This is because 

visiting “MaintPrice” node first will remove weights of all dataset’s pairs that got 

correctly or incorrectly classified by assuming the user’s first importance / 

priority is “Maintenance Price” with “low > med > high > vhigh” as preferences.  

 

Assumptions: 

• Assume a combinatorial domain where choosing different values for a set of 

attributes can produce different products.  

• Assume the user’s preference relation is a linear order.  
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• Assume the users has a model in mind where the order of attributes matter and the 

order of values under each attribute is also important.  

 

Here is an example from the cars domain in Figure 2. Order attributes from most 

important to least important and order values under each attribute from most preferred to 

least. This car domain is considered a combinatorial domain where 256 different cars 

(products) could be instantiated. Different agents may order these 256 cars differently per 

their preferences. There is 256! = 8.6 × 10 506 different permutations.  

 

2.1.1 Object Ranking Based on Lexicographic Preferences 

 

Consider the problem of learning someone’s ordinal preferences in a certain 

combinatorial domain. Booth et al. authors of “Learning conditionally lexicographic 

preference relations” introduced Lexicographic Preferences-Trees (LP-tress) as a general 

graphical representation to model different classes of preference relations [Booth10]. 

However, there was one important assumption which is assuming “preferences are 

lexicographic”. If someone’s preferences are lexicographic then a tree structure can 

model such order like English words order in a dictionary.  Sometimes, preference 

relations captured from the user contains noise or inconsistency. Such inconsistency or 

noise is better to be identified and removed because these would not make preferences 

lexicographic. Assuming lexicographic preferences, LP-trees can capture many different 

preference relations classes. Different preference relations classes emerge depending on 
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the importance of the order of attributes marking out the nodes in the LP-tree and on the 

order of local preferences on each attribute / node which could be conditioned on a parent 

node’s value. The UIUP model is the focus of this research. Other classes of LP-trees are 

identified in the below Table 1. When LP-trees are pruned, they are called PLP-trees or 

Partial Lexicographic Preferences-Trees. 
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LP-Tree’s 
name 

Importance of 
Attribute 

Preference of 
Values 

Example 

 
Unconditional 
Importance 
Unconditional 
Preference 
 
(UIUP) 
 

 
Unconditioned 

 
Unconditioned 

 

 
 

 
Unconditional 
Importance 
Conditional 
Preference 
 
(UICP) 
 
 

 
Unconditioned 

 
Conditioned 
 

 

 
 

 
Conditional 
Importance 
Conditional 
Preference 
 
(CICP) 

 
Conditioned 

 
Conditioned 

 

 
 

Table 1: Example of LP-Trees: UIUP, UICP, CICP  
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Current algorithms to learn such preferences are greedy and brute-force. There are two 

greedy algorithms; one for learning LP-trees proposed by Richard Booth [Booth10] and 

one for learning PLP-trees proposed by Xudong Liu [Liu15]. Both are generic greedy 

algorithms able to generate LP-trees of various types. For example, the greedy algorithm 

for learning LP-trees takes a set E of examples, then constructs a tree that satisfies the 

examples by adding nodes from the root to the leaves. The nodes are added in a greedy 

approach by picking an attribute that maximizes a certain gain among the remaining E. 

These current state-of-the-art greedy preference-learning approaches work analogously to 

the greedy decision tree induction algorithms like Hunt's algorithm, ID3, C4.5, CART, 

SPRINT in data mining. These greedy algorithms make a series of locally optimum 

greedy decisions to pick an attribute to partition the remaining data and grow a decision 

tree. Current greedy approaches aren’t optimal and don’t perform well especially when 

there is noise in the dataset. The assumed performance evaluation of a preference model 

is the number of test records correctly predicted by the model. Traditional classification 

techniques including Support Vector Machines, fail dramatically even with small datasets 

of size 10 pairs of objects because an object data point can appear both positive and 

negative relative to the other object data point. Also, preference-learning greedy approach 

can’t handle noise well. This thesis contributes and proposes more accurate algorithms.  
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2.2 Preference Learning 

 

The preference learning field is about inducing a predictive model from available data. 

The model learning technique could be supervised or unsupervised. There are important 

points to clarify about human preferences. Human preferences are vulnerable to 

inconsistency which makes the learning problem complex. For example, someone may 

prefer food A over food B today, but this same person may change preference tomorrow. 

Inconsistency may appear to reflect real user preferences over time or the user may 

present insincere preferences either by mistake or intentionally. Inconsistency is a big 

challenge because there is no model that can predict a conflicting preference. For 

example, if a user said his preferences are A > B and B > A, then this is like a loop and 

there is no useful information to learn here. In this section, an overview of preference 

learning field is provided with the objective of establishing a unified terminology. The 

focus of this thesis is on learning to rank, which is extensively studied preference 

learning problem. Genetic algorithms will be introduced to this type of problem and will 

be used to solve such preference problem in this thesis. Ranking problems can be 

categorized as follows: label ranking, instance ranking, and object ranking 

[Fürnkranz11]. 

 

Preference elicitation isn’t always simple, particularly in complex realistic applications. 

Hence, preference modeling and representation languages are introduced in literature. 

However, new learning algorithms for the automatic preference discovery are needed. 
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Such algorithms are very useful for discovering individual preferences in e-commerce 

since personalization of products and services are starting to trend nowadays. This was a 

recent research topic in machine learning, knowledge discovery, and recommender 

systems. Some of the approaches studied were approximating the utility function and 

collaborative filtering that estimate a user’s preferences from other customers’ 

preferences. Indeed, there are many formalizations for the problems of preference 

learning based on various settings such as the underlying preference model type or the 

empirical data type used as an input. In decision theory literature, researchers used two 

approaches for preference modeling such as utility functions and preference relations; 

both approaches differ like classification and regression. The later approach predicts 

complex structures, such as rankings rather than single values [Fürnkranz11]. Like any 

research field in knowledge representation and reasoning in AI, reasoning with 

preferences has been recognized as a particularly promising research direction for 

artificial intelligence (AI). A preference-based problem has the advantage of increased 

flexibility like preferences are considered relaxed constraint that could be violated.  

 

2.2.1 Preference Learning Tasks 

 

“Learning to rank” problem gained the most attention in the machine learning literature 

in recent years among many problems in the realm of preference learning.  Commonly 

accepted terminology has not yet been established. The book “preference learning” by 

Johannes Fürnkranz and Eyke Hüllermeier proposed a unifying and clarifying 

terminology for the most important types of ranking problems [Fürnkranz11]. Generally, 
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preference learning tasks involve learning a function to predict preferences over pairs of 

items from a set while the required relation form total order. This is relation or function is 

learned from a training set of items for which preferences are given. This problem type is 

typically called a ranking problem. The term “ranking” is used frequently in different 

domains and is used in preference learning too to categorize different problems.  

 

In the field of operations research, the term “ranking” is used for arranging a set of 

objects in a total order; which has similarities. The common terminology of supervised 

learning tasks such as classification will be used in this thesis. A data object typically 

consists of the input and the output or an instance and a class label; also, called predictive 

and target or independent variable and dependent variable in statistics. One instance 

normally is represented by a vector of features. Prediction process receives two instances 

as input and output binary class that indicate whether first instance is ranked higher than 

the second or not. Some binary class labels could be yes/no higher/lower or even 1/0. 

Some problem types allow incomparability which means both instances can’t be 

compared or equally preferred. In this thesis, the focus is on total order so there will 

always be a binary preference relation. This total-order restriction is used because of the 

assumption in this thesis that the customer or the user must pick one instance only such as 

when buying a car or a house from e-commerce websites or even when deciding to marry 

in which choosing one item only is a necessity and the user can’t afford picking, choosing 

or buying two items. Different types of ranking problems are examined and discussed in 

the following paragraphs. There are three types of ranking problems which are label 

ranking, instance ranking, and object ranking [Fürnkranz11]. 
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2.2.1.1 Label Ranking 

 

The goal in this type of problems is to learn a “label ranker” which assigns labels to an 

instance from most preferred to least. Such ordering of labels is picked from all 

permutations of the set of labels. Conventional classification in data mining could be 

treated as a label ranking problem when instance x maps to only one single class label 

which is the top. The input to the label ranker will be a training data T in the form of 

pairwise preferences such as Xi > Xj which means label i is preferred to label j for 

instance X. Such observations simply consist of an instance and two ordered labels. For 

example, a picture and two labels suggesting this picture is more likely a dog than a cat or 

a mammal than a bird or a mammal than a fish. Johannes Fürnkranz and Eyke 

Hüllermeier formalized the label ranking problem in [Fürnkranz11] as the following:  

 

 
Figure 3: Label Ranking Problem [Fürnkranz11] 

 

Boutilier et al. used Conditional Preference Networks (CP-nets), which is a qualitative 

graphical representation capturing preferences with conditional dependence and 

independence, for the label ranking problem [Boutilier04]. They explained in their paper 

“CP-nets: A tool for representing and reasoning with conditional ceteris paribus 
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preference statements” that every statement in the well-known CP-nets approach is 

formally equivalent to a label ranking [Boutilier04]. Also, many other research papers 

such as [Dekel04, Fürnkranz03, Har-Peled02] noticed that conventional learning 

problems such as classification and multiclass classification could be solved or 

formalized using label preferences in a label ranking problem. Har-Peled formulated and 

explained this in the paper titled “Constraint classification: A new approach to multiclass 

classification” [Har-Peled02]. For example, classification assigns a single class label to 

each example. Classification implicitly creates preferences among the set of labels with 

top 1 label is assigned. Also, multi-label classification assigns a sub-set of possible labels 

to each example. Multi-label classification implicitly creates preferences among the set of 

labels with top k labels are assigned. In both scenarios, a ranking model is needed and 

learned from a subset of all available preferences data in pairwise format.  

 

Finally, there are different approaches to measure the performance of a label ranker. 

Normally, a loss function on rankings is used to report the predictive performance of the 

ranker. The loss function can be any correlation or distance measure on rankings or 

permutations such as   the number of incorrectly ordered pairs of labels. Some 

researchers improved predictions and minimized a ranking loss function’s value by using 

a semi-supervised learning technique that reduces the disagreement of several ranking 

functions. There were some efforts in tackling label ranking learning problems using 

decision-tree learning algorithms such as CART. For example, some authors explained 

modifying CART to solve label ranking problems by extending the purity concept to 

label ranking data and learning by pairwise comparison [Fürnkranz11]. 
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2.2.1.2 Instance Ranking 

 

This problem is like the previous label ranking problem but the labels or classes 

themselves exhibit a natural order. For example, the papers submitted to a conference 

could be labeled as accept, weak accept, weak reject, and reject. These labels represent 

categories with ‘accept’ is ranked higher or is more preferred than weak accept and so on.  

Normally, training data consists of labeled instances and these labels represent 

preferential ranks for these instances. The goal is not to learn a classifier like in 

classification, but a ranking function to rank instances into ordered classes. It could be 

multi-classification in terms of assigning the instances to classes but these classes 

represent order or preferences too. Given training data composed of some instances as an 

input, the output would be a function that ranks and possibly assigns score to instances. 

Voting rules could be used in such problem and they will be discussed further more. 

Instance ranking problem is the same as the multipartite or k-partite ranking problem 

with special case of k=2 is known as bipartite ranking problem. An example of instance 

ranking problem would be ranking conference papers per quality by the conference chair 

who maybe assigns scores. The goal of instance ranking which is the proposed term by 

Fürnkranz is to rank instances where higher classes instances are more preferred than 

those from lower classes [Fürnkranz11]. Fürnkranz formalized this task as below: 
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Figure 4: Instance Ranking Problem [Fürnkranz11] 

 

There are different accuracy measures for predictions in this type of problem. One 

example is the number of ranking errors which counts the pairs that got ranked wrong by 

predicting a lower class for one instance over the other while the opposite is correct.  

Decision-tree learning and rule learning algorithms have been used for learning such 

rankings and literature examined aggregating estimates into a single probability estimate. 

One important distinction or uniqueness to this type of problem is that instances are not 

in feature vector representation so a total order based on instances is needed such which 

isn’t based on attributes rather on instances themselves [Fürnkranz11]. 

 

2.2.1.3 Object Ranking 

 

The last preference learning task in object ranking which doesn’t output any class labels 

to objects or instances. The goal of the object ranking problem is to learn a ranking 

function that receive a training data as input and outputs a ranking of these objects. It is 

important to notice that training data will be in the form of object x is preferred to object 

y like x > y. Also, such training data would be only a subset of all possible comparisons. 
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If we know all possible comparisons in advance, then there would be no need for 

prediction and putting these objects in total order would be accomplished by normal 

sorting algorithms such as bubble sort or quick sort. However, new algorithms are needed 

to find a model out of many possible models to fit training data because training data is 

only a subset of all possible comparisons. In literature, some approaches used by 

typically assigning a score to each instance and then sorting by scores. One way is to use 

voting rules to assign scores which will be discussed in details later. Other approaches 

use certain models such as trees such as LP-trees where LP means lexicographic 

preferences or graphs such as CP-nets where CP stands for conditional preferences. There 

are many types for LP-trees and one that concerns this research most is UIUP model 

which stands for unconditional importance and unconditional preferences. 

LP-trees will be discussed later in this document.  

 

In object ranking problems, objects are commonly represented in terms of an attribute-

value representation. Training data typically represents exemplary rankings in the form of 

pairwise preferences in the form x > y suggesting that x should be ranked higher than y. 

For example, [Joachims02, Radlinski05] discussed the learning problem to rank query 

results of a search engine as object ranking. They explained training information can be 

implicitly elicited when the user clicks on some certain links in the query result than 

others which can be turned into binary preferences in the form selected pages are 

preferred over nearby pages. This object ranking problem is also known as “learning to 

order things” and it is summarized as: 
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Figure 5: Object Ranking Problem [Fürnkranz11]  

 

Many learning approaches for object ranking tasks exist such as dimensionality reduction 

methods that try to retain the preference information while reducing the data dimension. 

Such methods’ goal is to predict a total ordering of the full set of objects given supervised 

total orders for certain subsets of objects. This thesis fall under this category with an extra 

assumption that training data objects are from a combinatorial domain and that 

preferences form consistent tree model. While, the number of items to be ordered in 

object ranking is much larger, the performance measure can be a distance function or the 

number of ranking errors [Fürnkranz11]. 

 

2.2.2 Techniques and Approaches for Preference Learning  

 

Different preference learning approaches proposed in the literature that solve the three 

core learning tasks discussed before. Each learning task can be tackled by similar basic 

techniques that would be discussed in the next paragraphs. In literature, two approaches 

got proposed as general to preference learning which are evaluating instances based on a 

utility function and learning binary preference predicate after comparing pairs of 

instances. An important note is that researchers in literatures normally set sufficiently 
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restrictive model assumptions about the preference relation structure. In this thesis, a tree 

structure is assumed and the training data would be used for identifying this structure. 

 

2.2.2.1 Learning Utility Function 

 

A well-established approach for modeling preferences is the approach of learning a utility 

function that gives a utility score to each alternative. The utility scale can be numeric or 

ordinal and this is discussed as regression learning or ordered classification in the 

literature of machine learning. In the case of label ranking problem, the utility function is 

learned for each label. In the instance and object ranking problems, the utility function 

becomes a mapping from a utility degree to each instance or object which can produce a 

total order. When learning a utility function, it is important to modify the conventional 

learning algorithms since the goal becomes maximizing ranking performance and not 

classification accuracy and the learner challenge becomes finding a function that agrees 

with as much preference data as possible. For example, [Tesauro89] was the first to 

formalize comparison training which is the alternative name used for object ranking. In 

[Tesauro89], a symmetric neural network architecture is trained with two states and a 

training signal for preferable state. Replacing the network’s two symmetric components 

with a single network’s state would allow the utility function to provide a real-valued 

evaluation. Learning the utility function for label ranking has been approached 

algorithmically as optimization problem by iteratively minimizing a loss function based 

on a least-squares approximation of the ranking error. One disadvantage of this approach 

is that models can not be easily explained to people. However, decision trees and LP-
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trees are much easier to explain which gives insight to decision-makers about the 

decision process which is favored in some domains like healthcare [Tesauro89, 

Fürnkranz11, Dunn18]. 

 

2.2.2.2 Binary Preference Relation Models 

 

The second approach’s idea is to learn a model in the form of binary preference relation 

which says if one alternative is better than another without using a utility function. 

Converting such binary preference relations into a ranking is an optimization problem 

because the goal is finding a ranking maximally consistent with the pairwise preferences. 

Normally, the objective of minimizing the number of pairs’ ranks in conflict with their 

pairwise preference is NP-hard problem. There exist efficient techniques to deliver good 

provable approximations including simple voting such as Borda count of social choice 

theory. More complex preference structures can be derived from the preference relation 

to provide weak relaxed orders instead of strict linear orders. For example, Ukkonen 

proposed a method of leaning a bucket order which is a linear order with ties to allow 

indifference between two alternatives [Ukkonen09]. For label ranking problems, one 

predicate is learned for each pair of labels and an instance then a label ranking is 

calculated by weighted voting such as Borda counting using the previous pairwise 

predicate preferences. Different pairwise learning techniques got proposed for instance 

ranking problem; For object ranking problem, the relational approach has been further 

explored by learning a binary preference predicate then a ranking maximally consistent 
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with these predictions generates the final ordering [Cohen99, Coppersmith06, 

Ukkonen09, Fürnkranz11]. 

 

2.2.2.3 Structure-based Models 

 

The third approach is the model-based approach in which preference learning starts from 

specific model assumptions with an assumption such as the structure of the preference 

relations. Such assumption is an inductive bias that restricts the hypothesis space. If such 

bias is correct for the problem at hand, then the advantage would be a simplified learning 

problem. One disadvantage of this approach is that it is less generic since it strongly 

depends on the assumptions made. For example, an assumption can be that the target 

ranking of a set of objects is representable as a lexicographic order when these objects are 

represented in terms of multiple attributes. Some researchers in literature addressed 

learning of lexicographic orders for the object ranking problem using different 

algorithms. For example, a complete ranking of all objects is uniquely identified by a 

total order of the attributes plus a total order of each of the attribute’s values. Suppose 

objects are made of four binary attributes then, there are 2^4 = 16 objects and 16! = 

2*(10^13) rankings in total or around 2e13 which is huge. However, only 24 * 4! = 384 

of these rankings can be expressed in terms of a lexicographic order. Such model in 

literature is called UIUP model type or unconditional importance unconditional 

preference tree model as discussed in [Booth10, Liu15]. Sometimes, preferences on an 

attribute’s values depend on another attribute’s values. In this case, some models like CP-

nets were discussed in literature like in [Boutilier04]. CP-nets or Conditional Preference 
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Networks provide a graphical representation for modeling dependencies when expressing 

preferences among a single attribute’s values like Bayesian networks. The CP-net is 

analogous to Bayesian networks that use conditional independence among random 

variables to reduce complexity of probability models. CP-net represents (in)dependencies 

among attributes drawn as nodes while assigning a preference relation over an attribute’s 

values for each combination of the parent attributes’ values. Some papers in literature 

discussed CP-networks’ learning algorithms in a passive and an active setting. This CP-

net model is also a quite restrictive model assumption same as the case of lexicographic 

orders models [Booth10, Liu15, Fürnkranz11, Boutilier04]. 

 

2.2.2.4 Aggregation and Estimation 

 

The forth approach is local aggregation of preferences which is analogous to the idea of 

local estimation techniques such as the nearest neighbor estimation principle for example.  

In nearest neighbor estimation, a problem ranking is predicted by estimation based on 

“neighbored” rankings observed in input dataset then obtaining a final ranking using 

averaging-like aggregation operator on these “neighbored” rankings. While this approach 

is flexible and doesn’t impose a specific model assumption, it implicitly assumes  

consistency underlying the nearest neighbor inference principle. For label ranking 

problem, the nearest neighbor approach gets the query’s k nearest neighbors then applies 

any aggregation technique like voting theory or the average to combine the different 

rankings into a prediction. For other types of preference learning problems like object 

ranking, aggregation techniques got used also to combine separate rankings into a 
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complete ranking of all objects. One practical application is information retrieval when 

different rankings of different search engines would be combined into an overall ranking. 

Another example is ranking sports players in a certain game when judges have different 

rankings that must be aggregated into an overall competition ranking. Voting theory play 

a vital role in such scenarios and different voting rules have been proposed that will be 

examined further in this thesis [Fürnkranz11]. 

 

2.2.3 Preference Learning Applications 

 

Preference learning problems and ranking problems appear naturally in various domains. 

In the previous section, the different preference learning problems got discussed and 

categorized per the learning task (label, instance, or object ranking) [Fürnkranz11]. Also, 

different approaches or learning technique found in literature got explained such as 

(learning utility functions, learning binary preference relations, learning preference 

models having a specific structure, or using local estimation and preference aggregating 

methods) [Fürnkranz11]. It is important to notice that any combination of a task and a 

technique from above can be found in literature. Sometimes one research paper can be 

about several categories since learning a utility function or a binary preference relation 

commonly used with other techniques. Preference learning is important for many 

application areas such as recommender systems and search engines. For example, search 

results can be ranked per a user’s preferences and new product recommendations such as 

cars can be ranked per a customer’s preferences based on the features of different car 

models. When ranking search results, an unknown preference relation would be learned 
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from user feedback implicitly collected via their clicking behavior on past queries’ results 

rankings. Many research on information retrieval literature used LETOR or ‘LEarning 

TO Rank’ package that contains queries with user feedback datasets [Fürnkranz11]. 

Preference learning is also important for recommender systems which online stores use to 

recommend products to customers. There are other approaches for recommender systems 

like collaborative filtering systems that provide recommendations based on user 

similarity, and other systems that provide recommendations based on item similarities. 

Some preference learning approaches learn decision trees or models to recognize 

recommendation features to predict preference ranking [Fürnkranz11]. 

 

2.3 Genetic Algorithms  

 

The idea of the genetic algorithm is inspired by the natural selection theory in biology. In 

that theory, natural selection ensures the population’s survival for the fittest 

[Dewdney93]. The same idea is applicable to the genetic algorithm where it will move 

from among generations of possible solutions. Generally, the population’s fitness will 

increase until a steady state. In such steady state, no improvement can be done once the 

population has reached this stable state. This state could contain a global or local optimal 

solution. However, the steady state does not always mean that no improvement can be 

done since there is a chance that the fitness measure get stuck for long time at a local 

optimum. Assume a function F is used as a fitness measure for a problem. If F has many 

local maxima, then the genetic algorithm will run longer to find the true maximum.  
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Early computer science pioneers were interested in biology and psychology beside 

computers too and were inspired by natural systems. From the earliest days, computers 

were used to model the human brain, mimic human learning, and simulate evolution in 

biology. Since 1980s, biologically motivated computer research grown into separate 

fields such as neural networks, machine learning, evolutionary computation that includes 

genetic algorithms [Mitchell99]. 

 

Many researchers started to examine evolutionary systems in 1950s as inspiration to 

optimize engineering problems. The idea was to develop a population of candidate 

solutions to a certain problem using operations such as natural selection and variation. 

Evolutionary computation consists of evolution strategies, evolutionary programming, 

and genetic algorithms [Mitchell99]. Later, many algorithms were inspired by evolution 

and developed for optimization and machine learning. John Holland invented and 

developed Genetic algorithms (GAs) in the 1960s at the University of Michigan 

[Mitchell99]. Hollands paved the theoretical foundation for adaptation using genetic 

algorithms by publishing his book: Adaptation in Natural and Artificial Systems. 

Holland’s method was moving from one population of solutions to another using 

selection and genetic-inspired operators such as crossover, mutation, and inversion.  

Solutions were called chromosomes and each chromosome was encoded as a string.  

Each chromosome composed of many traits, features, attributes, or simply "genes" with 

each gene being one value or “allele”. The selection process picks the fittest 

chromosomes in the populations to reproduce children. This is proportional to one’s 

fitness so the fittest chromosomes will produce more children on average. The crossover 
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process will recombine subparts of two chromosomes to produce a new chromosome. 

Mutation process, which mimic genetic error while copying, will modify the allele value 

of any location in the chromosome randomly. Inversion process simply reverses the order 

of values in a section in the chromosome [Mitchell99]. 

  

The evolution mechanisms are suited for some computational problems that require 

searching a massive number of candidate solutions. Protein engineering is an inspiring 

example of such problems that search among the vast number of possible sequences for a 

protein. This relates somehow to the preference mining problem. These search problems 

benefit and make use of parallelism since different solutions are explored simultaneously 

[Mitchell99]. 

 

Multiple processors could measure the fitness of chromosomes simultaneously providing 

computational parallelism plus an intelligent strategy could provide a boost like smart 

heuristics that help prone search space in A* algorithm. In evolutionary computation, 

natural selection theory is the rule that guarantee variation due to crossover or mutation; 

which lead to emergent behavior of designing high−quality solutions to problems with 

ability to adapt if environment evolves. An evolutionary-based learning algorithm could 

better adapt to feedback or new information because of the adaptability feature of 

evolutionary computation. Biological Evolution is an inspiration because it is a searching 

technique that look up for a solution among many possibilities. Evolution is a method of 

finding innovative solutions to complex problems. Sometimes, the fitness function is not 

fixed and can be continually changing as population evolve, so evolution will be 
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searching a constantly changing candidate solutions. This can happen in preference 

mining problem when you learn a new preference relation and add it to the old 

preferential data or old requirements. Searching for solutions with changing conditions is 

requires adaptive programs. Therefore, evolution is a huge parallel search program rather 

than exploring one solution or path at a time. Evolution evaluate and changes millions of 

solutions in parallel [Mitchell99]. At the end, evolution rules are not difficult and the 

population evolve by random variation via crossover, mutation, and other operators; then 

natural selection guarantees the fittest to survive and reproduce propagating their fit or 

good genetic features to future generations.  

 

Searching in a “search space” is a famous problem type in computer science in which a 

computer tries to find a goal solution among a huge collection of candidate solutions. The 

term "search space" means the collection of candidate solutions to a problem and there is 

sometimes some notion of distance between them. Genetic algorithms assume that good 

parent candidate solutions in the space can be combined by crossover produce 

high−quality offspring candidate solutions. Fitness values can form a landscape with 

hills, peaks, or valleys like physical landscapes. Under Wright's formulation, evolution 

move populations along landscapes, and "adaptation" guide the movement toward local 

peaks or local optimum. Crossover and mutation in genetic algorithms lead population 

while moving around on the fitness function landscape. It important to say an individual 

fitness must be relative to current population. Candidate solutions are assigned a fitness 

value relative the other solutions in the population [Mitchell99]. 
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Chapter 3 

PREFERENCE VISUALIZATION 

 

A framework was developed for preference visualization.  The functional product could 

be tested in real world in the future to understand and quantify its potential impact. This 

framework is helpful and applies my new technique to let people understand their own 

preferences. This framework is useful to industry and companies in predicting their 

customers’ preferences and purchasing behavior. This chapter outlines the design aspects 

of the visualization framework. The framework is web-based with the objective of 

learning user preference models (e.g., LP-trees and CP-nets) through interacting with the 

user. Python and Django version 1.11 were used for developing the framework.   

 

The web-based framework visualizes various types of LP-Tree models (UIUP, UICP, 

CICP) learned by an existing greedy learning algorithm developed by Liu in C++ 

[Liu15]. The system consists of three parts or phases to: (1) elicit user preferences, (2) 

learn graphical preference models (UIUP, UICP, CICP), and (3) visualize these models to 

the user in different representations (Outline, GUI, JSON, XML). Different modules are 

built for the elicitation of user preferences and for visualization of learnt models. The 

existing greedy learning algorithm.  In summary, the framework gives these options to 

the users: 
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1. Play games as a way for preference elicitation to generate a training dataset 

2. Learn different types of trees (UIUP, UICP, CICP) 

3. Visualize the different trees in different formats (Outline, GUI, JSON, XML). D3 

library is used to create the GUI representation. 

 

3.1 Elicitation Phase 

 

Preference elicitation is done via a game playing approach where the user can play as 

many games as possible. On each game, the framework shows two options and the user 

must pick the one s/he prefers most. Text is currently used to describe the two options 

like in Figure 6: 

 

 
Figure 6: Page to capture user preferences via playing games 
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The framework may use images beside text to show the two products as above. A lot of 

dataset in different domains are gathered. Datasets with images (car domain, watches 

domain, houses) got collected too. The framework typically use one dataset of products. 

In each game, it picks two products and show them to the user. Then the user must pick 

the one that he/she prefers most. Text description of outcomes is only implemented like 

in the figure 6. First, the user logins to the framework and then plays as many games as 

possible. On each game, the framework shows the user two options and the user must 

pick one. If a user picks option one over option two, then this implies the user prefers 

option 1 over two. Each option has different values for each attribute. As an example, the 

above image show 6 attributes in the car domain which are “Buying Price”, 

“Maintenance Price”, “Number of Doors”, “Number of Persons”, “Luggage Size”, and 

“Safety Level”. This is a combinatorial domain and each attribute has different values 

that can be combined to reach different outcomes. A random combination is used to reach 

a random option. However, there was a need for real-life datasets to make this framework 

useful for real-life applications. Many different datasets were gathered including images 

that represent the outcome from different domains such as Cars domains, Houses domain, 

Watches domain, and People Talents domain. Each domain has its own attribute names 

and each attribute has its values. It is a good idea to use pictures and ask the user to 

compare two pictures. This is a better approach since each picture visualizes the attribute 

values. For example, if a car has an attribute called Color and the value is red in outcome 

1 and black in outcome 2 then the two pictures will show such contrast easily. Showing 

pictures combined with textual descriptions is planned since users generally prefer 

pictures over text. Below is an overview of the architecture diagram of the framework: 
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Figure 7: Architecture Diagram 

 

3.2 Learning Phase 

  

In this phase, the framework provides the user with the option to pick one LP-Tree model 

to learn and how to present this learnt model like in Figure 8. Then, the framework would 

send the set of examples gathered during the elicitation phase to the greedy algorithm as 

the training dataset along with domain description files. The greedy algorithm learns the 

selected tree model like UIUP from the dataset and returns a pointer to a tree object in 

C++. Hence, more development needed and implemented during this thesis to bring this 

C++ tree object from a computer memory to a usable visualized model. The following 

sections discuss the details of such development’s implementation.   
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Figure 8: Page to learn a certain type of preference tree 

 

Django framework was used to create a poll app that ask users for polls. These polls are a 

way to capture user preferences directly. Django is integrated with the C++ preference 

learning libraries developed using pybind11 [Liu15]. A web form was created to read in 

three files (Domain Descriptor File, Outcomes File, Examples File) and the number of 

examples to learn. Then, these data were used for learning a preference model.  

 

A function named treeToString was developed to convert or serialize a tree structure to a 

string representation. This can be helpful in encoding trees into chromosomes for 

genetics algorithms. A tree traversal function was implemented in python to be used 

directly in Django Web App. JS library called D3 was used to represent the C++ 

preference tree structure into a graphical tree that the user can interact with by expanding 

nodes and collapsing nodes.  
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A function was implemented to convert the preference tree structure into XML format. A 

Drop Menu control is added that allows the user to select the way to present the learned 

preference model. Some of these visualization options are Outline, XML, JSON, GUI. 

The GUI improves understandability and readability by adding labels to the edges, by 

appending local preference information to nodes, by using colors to mark parents through 

a path, and by using greater than symbol among local preferences.  

  

A page was developed to capture the user input over two options and store them in a 

database for later usage by the learning algorithm. Support was added to save the learned 

model into a JSON file format. Then, a web page was created where the user can play 

games where he picks his preference among two options. The Car Domain was used to 

generate two car objects with random attributes and value pairs presented in a table. 

Then, the game results were saved into the database as one example with the two options 

and the user preference.  

 

The framework was enhanced by adding an authentication system to allow multiple users 

use the framework. The users can independently report their preferences. This was done 

by enforcing a login page to authorize the user before playing the games unlimited 

number of times until the user logs out.  

 

The database was used to dynamically generate a strict_examples file for each user then 

fed these data to the algorithm to learn a model.  
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Amazon Mechanical Turk was used to create surveys that integrate with the web 

framework. Also, one example of hits on Amazon Turks was implemented to compare 

two images with the attached image descriptions. The amazon survey results were 

exported into a key-value pairs.   

 

3.3 Modeling Phase 

 

In this phase, the framework presented a certain model to the user. There are different 

visualization formats such as: Collapsible List/Accordion, Graph, GUI (using D3 lib), 

JSON, and XML. Visualization support were added to all the different tree types such as 

UIUP, UICP, and CICP. While, JSON and XML representation formats are well known,  

Figure 9 shows the other different visualization formats of different models; UIUP model 

in collapsible list format is shown on the left, UICP model in graph format is in the 

middle, and CICP model in GUI format on the right. 
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       Collapsible List                                     Graph                                                GUI 

 
Figure 9: Different Visualizations of Different Models 

 

The framework was deployed on a Linux server using Apache and WSGI. The use of 

graphs improved understanding of the UIUP and UICP models since big circles 

represented attributes order and tables used to describe conditions and/or preferences as 

in Figure 10 and Figure 11.  
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Figure 10: UIUP Using Graph 

 
Figure 11: UICP Using Graph Presentation 

 

The framework was improved to allow the user easily switch among different tree types 

(UIUP, UICP, CICP) and different visualizations formats like Outline, Accordion, GUI, 

Graph, JSON, XML). D3 library was used to visualize the trees in the GUI format as 

shown with CICP model in Figure 9. 

 

It is important to notice that LP-Trees are different than other trees in two aspects. The 

first one is that the order of nodes in the tree from the root to the leaf has a useful 

meaning which is the importance of the attribute. The second one is that the order of 

outgoing edges from a certain node to all its children matters and has another meaning 

which is local preferences for values of this specific attribute with first left most edge is 

the most preferred.  
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Chapter 4 

PREFERENCE LEARNING 

 

4.1 Genetic Algorithm (GA) 

 

 A genetic algorithm was implemented to learn UIUP models from preferential data. The 

genetic algorithm performs the following steps while repeating last three steps repeatedly 

for 100 generations: 

 

0. Initialization: randomly create 100 chromosomes like (B201 A210 C012). These 

100 chromosomes are called the seed. 

1. Fitness Function: evaluate each chromosome based on the number of examples 

(#examples) it can correctly classify. This is called the accuracy of a 

chromosome.  

2. Selection: select the best/top 100 chromosomes overall as a current population. 

This technique is called elitism selection as explained in chapter 2. These 100 

chromosomes are referred to as the elite in this thesis.  

3. Reproduction: produce new variants from the elite. These variants are called 

children. This is done via crossover and mutation operations that are the source of 

exploitation and exploration of the search space. The mutation operation shuffles 
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the order of attributes and values of one randomly selected attribute. The crossover 

operation keeps the longest common prefix (agreement) between two parent 

chromosomes then shuffle the remaining; one of the two parent chromosomes is the 

best chromosome found over all generations. 

 

Attribute Values 

BuyingPrice:  vhigh, high, med, low 
MaintPrice: vhigh, high, med, low 
Doors: 2, 3, 4, 5more 
Persons: 2, 4, more 
Luggage: small, med, big 
Safety: low, med, high 

Table 2: The Cars Domain Used 

 

Extensive experimentations were performed on the genetic algorithm to test out different 

implementations and techniques for selection, mutation, crossover, population size, and 

number of generations. The genetic algorithm showed promising results, but it was 

trapped in local optima in some cases. The genetic algorithm was compared against the 

greedy implementation. The genetic algorithm outperformed the greedy approach in 

accuracy. However, when the training dataset size was huge, the genetic algorithms 

started to take longer time to evaluate candidate solutions. Cars Domain is used as shown 

in Table 2. Figure 12 shows the output of the genetic algorithm program during the 

learning process. The program prints some information about the input dataset and the 

accuracy of the model learned by the greedy algorithms. The program starts performing 

the genetic algorithm steps while reporting best accuracy found and the average accuracy 

of the population. At the end, the program reports the fittest model and it accuracy.  
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Figure 12: GA Program 

 

Many experiments were conducted using the cars domain in Table 2 to compare the 

genetic algorithm against the greedy algorithm in terms of accuracy (Figure 13) and 

execution time (Figure 14). Different training dataset sizes were used from 100 to 1000 

examples. Dataset sizes are plotted on the x-axis below in Figure 13 and Figure 14. Each 

experiment was run for ten times per each dataset size and the average accuracy and 

execution time of both the genetic algorithm and the greedy algorithm were recorded. 

Figure 13 is a plot comparing the accuracy of the genetic algorithm vs the greedy 

algorithm. Figure 14 is a plot comparing the time needed in seconds to learn a UIUP 

model using the genetic algorithm and the greedy algorithm. There is a clear tradeoff 

between accuracy and time; the genetic algorithm is more accurate while the greedy 

algorithm is faster.  
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Figure 13: Accuracy 

 
Figure 14: Time in seconds 

 

 

After testing both the accuracy and the time using the input training dataset, further 

testing was done to check the prediction performance on unseen dataset for the models 

generated from both algorithms. The unseen dataset size contained 10k examples. Figure 

15 and Figure 16 show the prediction accuracy of both the genetic and greedy algorithms. 

The genetic algorithm was around 10% more accurate on average than the greedy 

algorithm.  

 

500 89.25 98.22

500 89.97 97.69

600 86.49 99.11

600 87.26 100

600 86.25 97.91

600 90.57 99.26

600 88.83 98.63

700 86.64 99.17

700 94.92 98.64

700 88.11 99.64

700 92.96 98.88

700 93.89 99.03

700 88.05 98.54

799 87.35 99.13

799 93.34 99.14

800 87.12 99.11

800 86.88 98.7

800 91.9 98.45

800 87.36 100

800 91.04 98.26

800 88.97 98.6

900 91.34 98.7

900 90.98 99.13

900 93.91 100

900 91.86 99.06

999 87.56 98.73

999 89.65 98.35

999 85.95 100

999 88.75 99.31

999 88.03 99.04

0

10

20

30

40

50

60

70

80

90

100

100 200 300 400 500 600 700 800 900 1000

Accuracy

greedy_avg genetic_avg

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200

Accuracy

greedy_avg genetic_avg

Accuracy



 

 - 41 - 

 
Figure 15: Prediction Accuracy Scores 

 
Figure 16: Testing Accuracy on unseen dataset 

Using the voting theory of the computational social choice field was tested. The program 

implemented many voting rules to make two parent reproduce better children or to reach 

to an ordering based on a voting profile of two solutions. Such fast algorithms based on 

voting do not necessarily yield an acceptable agreement. To conclude, voting-based 

heuristics did not help much in guiding the genetic algorithm into the right path of 

finding an optimal solution. Two main operations were performed which are mutations 

and crossover. These two operations were performed twice for importance of attributes 

and for local preference ordering of one attribute’s values. These operations helped in 

finding optimal models because crossover always kept the better solutions in the pool of 

elite chromosomes leading to better chromosomes evolution across generations.  
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4.2 Dynamic Programming Algorithm (DPA) 

 

An exact algorithm to learn optimal UIUP tree models from noiseless and noisy data is 

introduced in this thesis. The algorithm was devised after discovering a way to speed up 

the genetic algorithm evaluations which represented a bottleneck via transforming the 

initial dataset into a summary table. This phase is called data preprocessing and 

transforms data from one format to another. For this summary table, all information that 

are useless for decision making such as similar attribute’s values are removed. 

Understanding Held–Karp algorithm is important since its idea is relatively close 

[Held62]. The DPA algorithm is explained below. First, assume Table 3 is the domain 

with attributes A, B, C: 

 

A [PRICE] B [COLOR] C [MODEL] 
0 (cheap) 0 (white) 0 (honda) 
1 (average) 1 (black) 1 (toyota) 
2 (expensive) 2 (green) 2 (nissan) 

Table 3: Cars Domain 

 

In other words, attributes are alphabets like A, B, C and values are indices like 0, 1, 2. 

From the above combinatorial domain, there are 27 different objects, combinations of 

values of the three attributes.  Now we need to build a model from a training dataset to 

learn the user preferences or total order over these products. For example, when buying a 

car, you may consider the most important attribute of a car to be the price. The second 

most important attribute is the color. Finally, the least important property is the model. 

Besides having order for the importance of attributes, you also might have preferences 
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over the values within each attribute like prefer red color over white color.  This is called 

UIUP model. Another example, when choosing between two same-price flights, one may 

prefer a nonstop flight to a flight with stops. A UIUP model can capture such preferences 

and it can be either represented graphically or textually as demonstrated below in Figure 

17. 

 

 
Figure 17: Different representations for the same UIUP Model 

 

Given two products such as ([A2 B0 C0], [A0 B0 C2]) or simply ([200], [002]), the 

above model can predict and entail that product [A2 B0 C0] or [200] will be preferred by 

the user over the other one. This is because the value for attribute B is the same for both 

but the second attribute in importance, which is A, has value 2 in the first product which 

is preferred over value 0. Many studies on human decision making experimentally 

demonstrated that humans often make decisions using lexicographic reasoning [Yam10]. 

Humans tend not to use mathematically sophisticated methods like linear additive value 
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maximization when facing or weighting alternatives [Yam10]. The next section explains 

how the model was built and presents the problem formalization. Table 4 contains the 

sample observations that will be used as the input training dataset.  

 

Problem Statement: Given a pairwise preferential data records in the form of two 

products per record where the user prefers first option over the second, find or learn 

UIUP tree which is a Lexicographic Preference Model (LPM) that correctly classifies 

maximum number of records from the training dataset.  

 

X > Y Observations   X:<ABC> Y:<ABC> 
ob1 002 202 
ob2 021  201 
ob3 101  020 
ob4 110  002 
ob5 111  120 
ob6 111  221 
ob7 120 212 
ob8 200 000 
ob9 202 002 
ob10 211  122 

Table 4: Observations or the input training dataset 

 

Implementation of the Greedy-Brute-force learning algorithm for noisy data gave  

Greedy-Model: [A102 B12] with 70% accuracy meaning it failed to predict 3 out of 10. 

For the DPA algorithm, the initial training dataset must be transformed into a summary 

table. The Summary Table’s idea is simple. The dataset is processed once to place 

observations into buckets. Observations are divide into buckets based on the deciding 

attributes only. For example, if attribute A had different values for both options/products 
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in one observation and all other attributes’ values were the same then add this observation 

in the bucket of 100 meaning ‘A’ was only the deciding factor. Zero in a bit-mask means 

that attribute at that index was useless attribute in decision making process or in other 

words both products had the same exact value of that attribute. XOR-ing two outcomes 

gives a Mask ID. Figure 18 shows mask ID in range [0 –7] when having three attributes. 

 

  
Figure 18: Mask ID from the power set 

 

Table 5 is an example for the summary table of the input training dataset. Data Pre-

processing from raw data into a summary table can happen offline or on-the-fly. For 

example, My Learning Algorithm can read the summary table as input which would have 

been stored in the database as in Table 6. Parallel machines may write preferential data 

directly into a summary table in the database allowing for big data processing. The 

normalized summary table in the database will look like Figure 18 below; we have 777 

observations where Attribute ‘A’ was the deciding factor with value 1 preferred to 2. The 

summary table provides a huge input reductions as one record in a summary table 

represent 777 observations with same A preferences; value U = 1 is preferred to V = 2. 

 

 
 



 

 - 46 - 

Mask Observations A B C Total 
011 ob5  {12:1} {10:1} 1 
100 ob1, ob8, ob9 {20:2, 02:1}   3 
101      
110 ob2, ob6 {02:1, 12:1} {20:1, 12:1}  1 
111 ob3, ob4, ob7, ob10 {10:2, 12:1, 21:1} {02:1, 10:1, 21:1, 12:1} {10:1,02:2,12:1} 5 

Table 5: Summary Table 

 

MaskID Attribute U V Count 
100 A 1 2 777 

Table 6: Storing Summary Table in a relational database 

 

The DPA algorithm converts the training dataset into the above summary table and 

produces an optimal UIUP model. It consists of two important algorithms. The core idea 

of summary table is to record differences only. For example 001 > 000 would be added as 

( [001, C, 1, 0, +1] ) where 001 is the mask, C is the attribute where both products have 

different values, 1 & 0 are the values of the left & right product and +1 is the total count. 

DB Memory Complexity is: (2N) * N * M * M where N = #attribute, M = max #values.  

The Dynamic Programming algorithm breaks the learning into sub-problems. Each sub-

problem will have optimal memorized result so avoiding computing the same results 

again. This complex problem has two properties which are overlapping sub-problems and 

optimal substructures. Check Figure 19 and algorithms 1 & 2 for clarifications.  
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reducing search space from N! to 2N is huge when finding optimal order. 

 
if N = 10 then we explore 1,024 only instead of 3,628,800 states. 
if N = 20 then we explore 1,048,576 only instead of 2.4e18 states. 

Figure 19: Find Optimal Order Task 

 

A- Algorithm 1: Find local preferences’ optimal order given a graph matrix: 

Input: Matrix 

Output: Optimal permutation for local preferences of graph nodes 

Table 7 below shows current observations that depend on Attribute A’s values. 

 

Attribute A can help classifying or deciding these observations ABC Format Total 
{ob1, ob2, ob3, ob4, ob6, ob7, ob8, ob9, ob10} 
 

A’s matrix  
 

[A] 0 1 2 

0 0 0 2 
1 2 0 2 
2 2 1 0 

A’s graph 
 

002 > 202 
021 > 201 
101 > 020 
110 > 002 
111 > 221 
120 > 212 
200 > 000 
202 > 002  
211 > 122 

9 

Table 7: Finding optimal order for attribute A’s values 

 

Dynamic Programming Solution: Algorithm 1 of DPA has an optimization property 

which is every sub-solution of the optimal solution/permutation is itself optimal to the 

sub-problem. From the above matrix, the optimal order will be found using dynamic 

programming. Like solving an asymmetric Traveling Salesman Problem, the problem at 
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hand was converted into an integer linear programming formulation. Here are the 

calculations in Table 8:  

 

  
Table 8: DPA Calculations like Held–Karp algorithm for Traveling Salesman Problem 

 

Optimal order is (102) = 2+2+2 = 6 or (120) = 2+2+2 = 6 out of 9. Results are presented 

in Table 8. Let k be the size of the subset, so when k = 1, consider sets of one element: 

 

F ({0}) = 0, F ({1}) = 0, F ({2}) = 0. When k = 2, consider sets of 2 elements: 

F ({0, 1}) = max[ r(01), r(10) ] = max[0, 2] = 2 via order (10). r(10) = ray “10” score. 

F ({0, 2}) = max[ r(02), r(20) ] = max[2, 2] = 2 via order (20) or order (02).  

F ({1,2}) = max[ r(12), r(21) ] = max[2, 1] = 2 via order (12). 

 

When k =3, F ({0, 1, 2}) = 𝑚𝑎𝑥[ 𝐹 ( {0,1,2} – {𝑖} )  +  𝑔(𝑖)  ∶  𝑖 = 0,1,2]  

Where g(i) = sum of all incoming arc weights or simply i’s weighted incoming degree. 

In summary, reduce a set to subsets of size k-1 before visiting each i last. Assume x is the 

set of values, then here is the recursive function that the algorithm seeks to optimize: 
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Brute-force Solution Characteristics:  

1) Generates all (m)! permutations of m values. 

2) Calculates cost of every permutation and store costs. 

3) Returns the permutation with optimal cost. 

4) Time Complexity: Θ(m!) 

5) Advantage: Returns Optimal Solution.  

6) Drawback: Computationally prohibitive. 

7) Used in the greedy algorithm. 

 

 
B- Algorithm 2: Learn UIUP Model: 

Input: Examples set of pairwise comparisons and attributes set 

Output: Optimal UIUP Model 

 

Now, Algorithm 2 will call Algorithm 1 so many times with different matrices as input to 

optimize the overall learning problem. It is like one big Traveling Salesman Problem of 

so many smaller Traveling Salesman Problems. Figure 20 demonstrates the sub-problems 

that the dynamic programming will memorize its optimal sub-solutions.  
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Figure 20: Overlapping Sub-problems and their Optimal Substructures 

 

Current greedy algorithms solving the same problem can find models that give 70% 

accuracy. However, the Dynamic Programming Algorithm presented in this thesis 

provides a model C102 B120 A20 with 90% accuracy. This model is the best found in the 

whole search space and called optimal model. Optimal here means that the algorithm 

builds the UIUP tree that satisfies the maximum number of examples in the training 

dataset. It is optimal because any subtree S of the optimal tree is also optimal to the 

examples in E, which is the set of examples with every object restricted to the attributes 

in S. The optimal ordering of attributes A, B, and C is found using the calculations 

demonstrated in Table 9. 
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Table 9: Dynamic Programming Memorization Table 

 

The number of calls to algorithm 1 done by algorithm 2 equals the sum of all subsets’ 

sizes in a power set, as presented in the below formula.  

 

 

 

The advantages of the dynamic programming algorithm are: its robustness against noise, 

hidden ties, and inconsistencies; it finds the most accurate UIUP models (optimal UIUP 

models). However, it has the following disadvantages: it’s not feasible for learning UIUP 

trees of depth more than 26 (#attributes). It is bounded like Held-Carp algorithm for 

traveling salesman problem.  

 

The pseudocode of the DPA algorithm is shown in Figure 21. It returns a model with the 

highest accuracy score. DPA requires the use of a helper function that generates a 
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summary table from a given dataset. In Figure 21, tsp represents Algorithm 1 which is a 

modified function but similar implementation of Held-Karp algorithm for solving 

traveling salesman problem. Function 𝑀(𝑠𝑇, 𝑎, 𝑡)  is the function that prepares the graph 

matrix to tsp function and takes the summary table, one attribute, and seen examples to 

avoid then it returns a graph matrix. Figure 21 below presents the pseudocode of 

Algorithm 2.  

 

 
Figure 21: Pseudocode for Algorithm 2 



 

 - 53 - 

4.2.1 Complexity Analysis 

 

DPA is optimal in terms of the accuracy of the found model. Accuracy is normally the 

main concern in data mining and machine learning fields because it translates into correct 

predictions and good decisions. DPA finds the optimal model in the search space like any 

brute-force algorithm would do, but it is much faster than brute-force because it is 

enhanced by its inherent memorization technique that dramatically prunes the search 

space without losing states. DPA breaks the decision problem into smaller sub-problems 

with optimal solutions. Proof of its optimality follows from Bellman's principle of 

optimality; Any tree T` that is a subtree of an optimal tree T will make T` optimal to the 

same dataset per the principle of optimality. 

 

Function tsp can be changed later to any faster algorithm that solves the Traveling 

Salesman problem. Hence, DPA algorithm complexity depends on tsp/algorithm 1 

complexity. Let’s assume n is the number of attributes, then DPA/Algorithm 2 will call 

tsp/algorithm 1:  

𝑛

2
∗ 2𝑛 =   𝑛 ∗  2{𝑛−1} times and the proof was provided in the previous session. Assume 

using Held-Karp Algorithm to implement tsp/algorithm 1 with 𝑂(2𝑚 𝑚2) for m nodes 

where m is the maximum number of values found in an attribute. Assume E is the set of 

examples in the training dataset. DPA’s Time complexity = time to generate the summary 

table / Data Transformation + (complexity of Algorithm 1) * (#calls to Algorithm 1)  

= Data Transformation time + (  2m m2  ∗  n 2{n−1})  = (n|E| + ( 2m m2 )( n 2{n−1} )) =  
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( 𝑛 ∗ |𝐸|) + ( 2(𝑛+𝑚−1) ∗ 𝑛 ∗ 𝑚2)  

 

If |E| is extremely large, then it will dominate the time complexity leading the time 

complexity to be linear in |E|. |E| size can be extremely large, up to 𝐶2 
#𝑂𝑢𝑡𝑐𝑜𝑚𝑒 .                           

The space complexity for creating a global summary table once is 𝑂( 2𝑛 ∗  𝑛 ∗ 𝑚2 ) of 

memory then queries about graph matrixes can be obtained in 0(1). Here is an example 

for how this DPA algorithm can handle big data and what are its limits. If n=20 and 

m=10, then: a) #products = 10^20, b) 1000 Exabyte space will be required for products 

list, c) summary table space = 2.1GB captures any subset of 5 * 10^39 examples (10^20 

Zettabytes), and d) the size of the UIUP model would be: 20 + 20*10 = 220 characters 

which can be used later to predict or classify any example of the 5 * 10^39 examples. 

  

It is important to note that the DPA can be boosted by adding two important features. 

First, it could be implemented to run on parallel machines like Google Reduce Map. DPA 

is parallel-friendly because it is a dynamic programming algorithm so it can 

independently solve sub-problems and store their optimal-solutions. Second, DPA’s 

algorithm 1 depends on the Traveling Salesman Problem (TSP) which currently has 30 

nodes as upper bound. Any advancement or more efficient algorithms solving TSP would 

simply mean an advancement to DPA. If DPA uses any approximation-based algorithm 

for algorithm 1 that runs in polynomial time like voting, this will mean the DPA will 

increase its limit to handling thousands of attribute values instead of tens.  
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The real challenge facing future researchers solving the same problem will remain the 

same: what are the minimum number of states to explore before finding the optimal 

solution. The way to improve DPA could be via finding a better recursive formula for the 

dynamic programming algorithm to optimize. These improvements are left for future 

research.  

 

4.3 Results  

 

This section presents an empirical analysis of the two algorithms: the dynamic 

programming based algorithm (DPA), and the genetic algorithm (GA). To evaluate DPA 

and GA, the greedy algorithm is used as a baseline and an empirical analysis is performed 

on sets of examples given by hidden randomly generated LP-Tree. Synthetic data was 

used; the examples are produced from a specific hidden model and a percentage of 

examples were flipped to create inconsistent examples to emulate practical settings of 

noise, ties, and inconsistencies in real-world datasets. The greedy algorithm, used as a 

baseline, was developed by Liu [Liu15]. Time and accuracy were measured for different 

dataset sizes with different noise levels. Experiments were conducted on an processor 

“Apple MacBook Air Mid-2013 Model” computer with a 1.7 GHz Intel Core i7 and 8 GB 

of memory.  
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A domain of 10 attributes, each of 5 values, was used for the experiments. Thus, the 

universe contained 510 objects, giving 5 ×  1013 possible examples. At first, a random 

UIUP model of these attributes with random orderings as their local preferences, and a 

set D of random examples for training and testing, were generated. Then, set D was 

processed based on a noise percentage N where N · |D| examples are randomly selected 

and flipped. A dataset split of 80% for training and 20% for testing. 

 

Experiment 1 tested the accuracy and time for domain of ten attributes and five values 

each, for N 15%, and for D of sizes 103, 104, ..., and 106. The instance for every D was 

repeated for five times and the averages were reported in the following figures.  

 

 
Figure 22: Accuracy Using Training Dataset 
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Figure 23: Accuracy Using Test Dataset 

 

From Figure 22 and Figure 23, it is obvious that DPA obtained the highest accuracy on 

the training and testing examples. GA finished very close second, within 1% compared to 

DPA, while the greedy algorithm finished last. Figure 24 shows the total execution time, 

including both training and testing, for various training data sizes. Clearly, DPA, despite 

of exponential time complexity, outperforms GA on all datasets. This is because the 

computational time of GA accumulates over generations. Greedy takes the least amount 

of time until the size of the training set picks up to very large. This is attributed to the 

much larger constant in the asymptotic notion of Greedy than that of DPA. GA takes the 

most time as it goes through many generations.  
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Figure 24: Time in Seconds to learn a model 

 

Experiment 2 tested the effect of the training dataset size on accuracy. A domain of four 

attributes and four values each is used. Dataset sizes were percentages of the whole 

possible comparisons/strict examples such as 0%, 10%, 20%, and up to 100%. Two level 

of noises were tested for N of value 5% and 50%. The experiment was repeated 10 times 

and the averages were reported in Figure 25 and Figure 26. The generated noisy 

examples grew when the dataset size was increased. These figures clearly show that DPA 

was always able to reach to the most accurate model. For this reason, DPA is thought to 

give the optimal UIUP model followed by the GA, which gives a near-optimal UIUP 

model. 
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Figure 25: Noise in training dataset is 5 % 

 
Figure 26: Noise in training dataset is 50 % 
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Other experiments were also performed. For example, one experiment was performed to 

test the effect of noise on the accuracy on a domain of four attributes and four values. It 

was intuitively concluded that accuracy decreases as the level of noise in the training 

dataset increases. However, the accuracy of DPA was always higher than both GA and 

Greedy. One last experiment was performed to test the effect of noise on the learning 

time and a domain of four attributes and four values was used. That experiment gave 

similar results to these of experiment two; GA was the slowest to learn a UIUP model 

which means DPA and Greedy would be fast regardless of the noise level in the dataset. 

One more advantage of DPA besides being fast, it always provides the most accurate 

UIUP model.  

 

All experiments show that DPA is better than the genetic algorithm and better than the 

greedy one too in terms of accuracy and total execution time.  DPA showed best accuracy 

results for preference learning while learning UIUP tree models from noiseless and noisy 

data. This algorithm is optimal in terms of accuracy but it has an upper bound limit. The 

computational complexity of DPA is exponential in terms of number of attributes and 

values. Ten attributes and ten values have been used and tested which can represent 10 

billion different products. This can lead to 5e19 pairwise comparisons and any subset of 

these comparisons could be presented as a training dataset. Hence, the DPA can learn 

1.4e72 different UIUP preference models given a domain of ten attributes and ten values. 

The DPA found the optimal models within less than one minute for ten attributes and ten 

values domains for a training dataset sizes of up to 10k.  

 



 

 - 61 - 

Chapter 5 

CONCLUSION 

 

Making good decisions is sometimes critical, especially when bad decisions are costly.  

Understanding hidden preferences of one agent or a whole society can better guide 

humans or artificial decision makers. Better decision making is favored by managers or 

government officials and is also needed by systems such as recommendation agents or 

customizable e-commerce websites like Amazon. The preference problem is an important 

problem faced by decision makers. Therefore, preference understanding, visualization 

and learning are crucial research areas.  

 

This research introduced a framework that helps agents visualize and understand 

preferences. Moreover, this research introduced two preference learning algorithms (GA 

and DPA) for the NP-hard problem named “MAXLEARN” by Liu [Liu15]. The space of 

this search problem is extremely huge and finding a good UIUP decision tree is 

challenging because the number of candidate solutions grows exponentially depending on 

the number of attributes, values, and products. The current best known algorithms are 

mixture of greedy and brute-force such as in [Boo10, Liu15]. Developing efficient, new 

algorithm for this type of problem is very useful and could lead to advances across 

disciplines.  
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For the contributions to the field of computer science, two new learning algorithms 

named GA and DPA were devised and introduced besides developing a framework that 

enable researchers and agents understand and visualize the field of preferences. The GA 

algorithm is a local-search learning algorithm that use genetic algorithms techniques 

while DPA uses dynamic programming. The framework would allow agents to 

experiment over identified domains such as cars to demonstrate an algorithm’s 

effectiveness and the different preference trees. The framework gives agents the option to 

choose between XML, JSON, Outline, or Graphical representations. 

 

To conclude, when users can only pick one product, and afford buying only one car for 

example, e-commerce faces uncertainty as of which products to recommend. Hence, new 

machine learning algorithms are needed for preference learning to advance decision 

making and smart targeted marketing. Decision makers from many industries such as 

retail, financial services, healthcare, e-commerce, and social media may benefit from 

these new algorithms. It is typical for decision makers to favor the more accurate 

algorithms because they reduce the number and hence cost of bad decisions. 
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