3 research outputs found

    Nonlinear receivers for DS-CDMA

    Get PDF
    The growing demand for capacity in wireless communications is the driving force behind improving established networks and the deployment of a new worldwide mobile standard. Capacity calculations show that the direct sequence code division multiple access (DS-CDMA) technique has more capacity than the time division multiple access technique. Therefore, most 3rd generation mobile systems will incorporate some sort of DS-CDMA. In this thesis DS-CDMA receiver structures are investigated from the view point of pattern recognition which leads to new DS-CDMA receiver structures. It is known that the optimum DS-CDMA receiver has a nonlinear structure with prohibitive complexity for practical implementation. It is also known that the currently implemented receiver in 2nd generation DSCDMA mobile handsets has poor performance, because it suffers from multiuser interference. Consequently, this work focuses on sub-optimum nonlinear receivers for DS-CDMA in the downlink scenario. First, the thesis reviews DS-CDMA, established equalisers, DS-CDMA receivers and pattern recognition techniques. Then the new receivers are proposed. It is shown that DS-CDMA can be considered as a pattern recognition problem and hence, pattern recognition techniques can be exploited in order to develop DS-CDMA receivers. Another approach is to apply known equaliser structures for DS-CDMA. One proposed receiver is based on the Volterra series expansion and processes the received signal at the chip rate. Another receiver is a symbol rate radial basis function network (RBFN) receiver with reduced complexity. Subsequently, a receiver is proposed based on linear programming (LP) which is especially tailored for nonlinearly separable scenarios. The LP based receiver performance is equivalent to the known decorrelating detector in linearly separable scenarios. Finally, a hybrid receiver is proposed which combines LP and RBFN and which exploits knowledge gained from pattern recognition. This structure has lower complexity than the full RBF and good performance, and has a large potential for further improvements. Monte-Carlo simulations compare the proposed DS-CDMA receivers against established linear and nonlinear receivers. It is shown that all proposed receivers outperform the known linear receivers. The Volterra receiver’s complexity is relatively high for the performance gain achieved and might not suit practical implementation. The other receiver’s complexity was greatly reduced but it performs nearly as well as an optimum symbol by symbol detector. This thesis shows that DS-CDMA is a pattern recognition problem and that pattern recognition techniques can simplify DS-CDMA receiver structures. Knowledge is gained from the DSCDMA signal patterns which help to understand the problem of a DS-CDMA receiver. It should be noted that from the large number of known techniques, only a few pattern recognition techniques are considered in this work, and any further work should look at other techniques. Pattern recognition techniques can reduce the complexity of existing DS-CDMA receivers while maintaining performance, leading to novel receiver structures

    Analytical Characterization and Optimum Detection of Nonlinear Multicarrier Schemes

    Get PDF
    It is widely recognized that multicarrier systems such as orthogonal frequency division multiplexing (OFDM) are suitable for severely time-dispersive channels. However, it is also recognized that multicarrier signals have high envelope fluctuations which make them especially sensitive to nonlinear distortion effects. In fact, it is almost unavoidable to have nonlinear distortion effects in the transmission chain. For this reason, it is essential to have a theoretical, accurate characterization of nonlinearly distorted signals not only to evaluate the corresponding impact of these distortion effects on the system’s performance, but also to develop mechanisms to combat them. One of the goals of this thesis is to address these challenges and involves a theoretical characterization of nonlinearly distorted multicarrier signals in a simple, accurate way. The other goal of this thesis is to study the optimum detection of nonlinearly distorted, multicarrier signals. Conventionally, nonlinear distortion is seen as a noise term that degrades the system’s performance, leading even to irreducible error floors. Even receivers that try to estimate and cancel it have a poor performance, comparatively to the performance associated to a linear transmission, even with perfect cancellation of nonlinear distortion effects. It is shown that the nonlinear distortion should not be considered as a noise term, but instead as something that contains useful information for detection purposes. The adequate receiver to take advantage of this information is the optimum receiver, since it makes a block-by-block detection, allowing us to exploit the nonlinear distortion which is spread along the signal’s band. Although the optimum receiver for nonlinear multicarrier schemes is too complex, due to its necessity to compare the received signal with all possible transmitted sequences, it is important to study its potential performance gains. In this thesis, it is shown that the optimum receiver outperforms the conventional detection, presenting gains not only relatively to conventional receivers that deal with nonlinear multicarrier signals, but also relatively to conventional receivers that deal with linear, multicarrier signals. We also present sub-optimum receivers which are able to approach the performance gains associated to the optimum detection and that can even outperform the conventional linear, multicarrier schemes

    Sensor array processing: localisation of wireless sources

    Get PDF
    In this thesis, various subspace array processing techniques for wireless source localisation are presented and investigated in the following three aspects. First, in the environment of indoor optical wireless communications, the paths of different sources and/or from different reflectors may impinge on the receiver from closely spaced directions with a high probability. In this case, the ranges of the paths, together with their directions, are important especially for isolating the desired source from the interferers. A blind multi-source localisation approach, which can be used as a channel estimator in the receiver of a communication system, is proposed for direction, range, and path gain estimation. Utilising the above channel parameter estimates, two subspace multibeam beamformers are also presented to achieve complete interference cancellation. Second, in applications such as wireless sensor networks and ubiquitous computing, both the location and orientation of an array are important parameters of interest to be estimated. Hence, array localisation and orientation estimation approaches are proposed for two cases. In the first case, a number of sources of known locations are employed to estimate these parameters of a receiver array. In the second case, a receiver array is utilised to estimate these parameters of multiple sources with each one being a transmitter array. Last, when sources operate in the near field of an array, the spherical wave propagation model needs to be considered. A problem associated with such a scenario is source localisation under the wideband assumption, where the wavefront of a baseband signal varies when traversing through the sensors of the array. Two novel approaches with the employment of the subcovariance of the received signal and the rotation of the array reference point are proposed to localise multiple sources under the wideband assumption. Throughout the thesis, computer simulation studies are presented for evaluating the performance of the proposed approaches.Open Acces
    corecore