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Abstract

In this thesis, various subspace array processing techniques for wireless source
localisation are presented and investigated in the following three aspects.

First, in the environment of indoor optical wireless communications, the paths
of different sources and/or from different reflectors may impinge on the receiver
from closely spaced directions with a high probability. In this case, the ranges of
the paths, together with their directions, are important especially for isolating the
desired source from the interferers. A blind multi-source localisation approach,
which can be used as a channel estimator in the receiver of a communication
system, is proposed for direction, range, and path gain estimation. Utilising the
above channel parameter estimates, two subspace multibeam beamformers are also
presented to achieve complete interference cancellation.

Second, in applications such as wireless sensor networks and ubiquitous com-
puting, both the location and orientation of an array are important parameters
of interest to be estimated. Hence, array localisation and orientation estimation
approaches are proposed for two cases. In the first case, a number of sources of
known locations are employed to estimate these parameters of a receiver array. In
the second case, a receiver array is utilised to estimate these parameters of multiple
sources with each one being a transmitter array.

Last, when sources operate in the near field of an array, the spherical wave
propagation model needs to be considered. A problem associated with such a
scenario is source localisation under the wideband assumption, where the wavefront
of a baseband signal varies when traversing through the sensors of the array. Two
novel approaches with the employment of the subcovariance of the received signal
and the rotation of the array reference point are proposed to localise multiple
sources under the wideband assumption.

Throughout the thesis, computer simulation studies are presented for evaluat-
ing the performance of the proposed approaches.
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Chapter 1

Introduction

An array is a collection of sensors spatially distributed in three-dimensional real

space with a common array reference point [1]. The signals received at the array

convey the spatial and temporal information of the signal environment, and array

processing is mainly concerned with extracting and exploiting this information to

solve problems of interest. In general, there exist three major problems in array

processing, which are the detection of the number of sources, estimation of their

parameters, and reception of desired signals. They have been extensively studied

in the literature for various applications such as wireless communications [2, 3],

sonars [4, 5], radars [6, 7], and wireless sensor networks [8–13].

A key concept in array processing is the array manifold vector, which represents

the complex array response to a source [1]. It maps the signal of the source to

a one-dimensional subspace embedded in a multidimensional complex observation

space. Such subspaces of all the sources in the environment constitute the signal

subspace, which is completely determined by their corresponding array manifold

vectors. Along with the concept of the array manifold vector is subspace array

processing techniques, which exploit the information of the signal subspace (or its

complementary noise subspace) to solve the detection, estimation, and reception
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problems.

In theory, the number of sources can be inferred from the multiplicity of the

minimum eigenvalue of the covariance matrix of the received signal vector, as these

eigenvalues correspond to the noise subspace. In practice, since the covariance ma-

trix is estimated from a finite number of samples, the smallest eigenvalues, which

are theoretically identical, generally differ. In this case, a subjunctive threshold can

be utilised to distinguish the most significant eigenvalues from the least significant

ones based on a sequence of hypothesis tests [14, 15]. Besides, objective detection

can be achieved by minimising information criteria such as the Akaike information

criterion (AIC) or minimum description length (MDL) principle [16–18].

In terms of parameter estimation, a widely employed subspace approach is the

multiple signal classification (MUSIC) algorithm, which searches over parameter

space the array manifold vectors that are orthogonal to the noise subspace [19].

This superresolution algorithm advantages over other estimation algorithms such

as maximum likelihood (ML) and maximum entropy in its high estimation pre-

cision. There are also many variants of the MUSIC algorithm. One of them is

the root-MUSIC algorithm, which transforms the cost function to a polynomial

and estimates the parameters by finding its roots closest to the complex unit cir-

cle [20–22]. Another widely used subspace estimation method is the estimation of

signal parameters via rotational invariance techniques (ESPRIT), which exploits

the rotational invariance of signal subspaces using an array of a translational in-

variance structure; i.e., sensor doublets [23].

In addition, with regards to the reception problem, various beamforming algo-

rithms are present in the literature, including the steering vector beamformer [24],

Wiener–Hopf beamformer [25], Capon’s beamformer [26,27], and subspace beam-

former [28]. In particular, the subspace beamformer steers nulls towards interferers

by projecting the received signal vector onto the subspace orthogonal to the inter-
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ference subspace to achieve complete interference cancellation.

Commonly, in many applications where the above approaches are utilised to

solve the detection, estimation, and reception problems, source ranges are not

taken into consideration in the signal model. By contrast, source localisation in-

volves both source directions and ranges, and is a problem of significant interest in

array processing. For instance, in array communications, localisation approaches

can be utilised as channel estimators for estimating source locations, which can

then be employed to design beamformers that better isolate desired signals from

interferers. Besides, when sources operate in the near field of an array, the spheri-

cal wave propagation model needs to be considered, which essentially incorporates

both source directions and ranges. To this end, various problems associated with

source localisation will be scrutinised in the thesis. Specifically, Chapter 2 is con-

cerning arrayed indoor optical wireless communications (OWC) where the envi-

ronment is heavily interfered, while Chapters 3 to 5 are regarding localisation and

orientation estimation problems (mainly) brought by spherical wave propagation.

The rest of this chapter is organised as follows. In Section 1.1, the state of

the art of the topics that will be studied in this thesis is detailed in four aspects.

In Section 1.2, the challenges and gaps posed in wireless source localisation are

presented. Last, in Section 1.3, the scope and structure of the thesis are given.

1.1 State of the Art

1.1.1 Optical Wireless Communications

An OWC system is generally an electrical–optical–electrical chain: Information

is first carried by electrical signals, which are then converted to electromagnetic

waves (optical signals) using photoemitters. The optical signals are radiated to

free space, received by photosensors, and converted back to electrical signals. The
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reception can be either incoherent by directly counting the number of photons,

or coherent by using beamsplitters and optical local oscillators. The received

electrical signals are further processed for information recovery [29].

The spectrum used in an OWC system has a broad range and includes both the

visible and invisible (i.e., infrared and ultraviolet) optical bands. Particularly, if

visible signals are utilised, such a system is referred to as a visible light communi-

cation system. In contrast to invisible signals that carry information only, visible

signals can provide illumination at the same time. Since optical signals cannot

penetrate opaque obstacles due to their high frequency, OWC is well suited for

indoor communications. However, optical access points (namely, photoemitters

and photosensors) can be connected to wired backbones for inter-room communi-

cations.

The configuration of an indoor OWC system is classified according to two

criteria as shown in Figure 1.1 [30]. The first criterion is the directionality of

the photoemitter and photosensor. If a directional photoemitter and photosensor

that are aimed towards each other are employed as in Figure 1.1(a) or 1.1(b),

then such a configuration is a directed system. Directed systems maximise signal

power efficiency as path loss is minimised; however, they are less flexible, especially

when mobile terminals are present in the environment, the directionality of which

cannot be easily controlled. On the other hand, if a wide-angle photoemitter and

photosensor that are not aimed towards each other are utilised as in Figure 1.1(e)

or 1.1(f), then it is a nondirected system. Nondirected systems suffer from the

loss in signal-to-noise ratio (SNR) but are more convenient for mobile terminals.

Moreover, a mix of directed and nondirected links can also be exploited as in

Figure 1.1(c) or 1.1(d); such a configuration is a hybrid system.

The second criterion is the existence of the line-of-sight (LOS) path between

the photoemitter and photosensor. If there exists the LOS path as in Figure 1.1(a),
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Figure 1.1: Classification of OWC configurations. The classification criteria are
the directionality of the photoemitter (red) and photosensor (blue) as well as the
existence of the LOS path. (a) Directed–LOS system. (b) Directed–NLOS system.
(c) Hybrid–LOS system. (d) Hybrid–NLOS system. (e) Nondirected–LOS system.
(f) Nondirected–NLOS system.
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1.1(c) or 1.1(e), then this configuration is an LOS system. Similarly, this configura-

tion maximises power efficiency due to the existence of the LOS path. Otherwise,

if there only exist non-line-of-sight (NLOS) paths due to the reflections from the

walls, ceiling, and floor of the indoor environment as in Figure 1.1(b), 1.1(d) or

1.1(f), then it is an NLOS system. This configuration advantages in the ease of

use at the cost of the loss in power efficiency. Based on the above criteria, six com-

mon configurations of an indoor OWC system can be formed, among which the

nondirected–LOS system as shown in Figure 1.1(e) will be studied in this thesis.

The above configurations are generally concerning single-input single-output

(SISO) systems, but can also be extended to single-input multiple-output (SIMO),

multiple-input single-output (MISO), and multiple-input multiple-output (MIMO)

systems. In SIMO systems, an array of photosensors is utilised at the receiver

and spatial diversity is achieved by efficiently combining (e.g., through equal gain

combining) the signals received at all the photosensors for the mitigation of channel

fading and the improvement in system performance [31–34]. Spatial diversity can

also be achieved at the transmitter in MISO systems by repetition coding or path

selection, for reducing the scintillation of optical signals [35–37]. In addition,

both transmit and receive diversity can be achieved in MIMO systems, which are

extensively studied in the literature [38–49]. In contrast to SISO systems that may

suffer from huge path loss, the systems involving photoemitter and/or photosensor

arrays advantage in the improvement in transmission rate and the reduction in

power loss.

Due to the signal confinement of the indoor OWC system, especially a multi-

source MIMO OWC system, the signal environment generally has huge interference

and the channel impulse response has a long delay spread [30, 50, 51]. Hence, a

major challenge posed in indoor OWC is the mitigation of interference, including

intersymbol interference (ISI) induced from multipaths and multiple access inter-
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ference (MAI) or co-channel interference (CCI) brought by multiple photoemitters.

There are two approaches to alleviating the effect of interference in OWC.

The first approach is to physically adjust the configuration of photoemitters and

photosensors. The positions of the photoemitters and photosensors can be carefully

chosen with respect to the reflectors to avoid multipaths to a certain degree [44,

52–54]. Further, the directionality of the photoemitters and photosensors can be

tuned to reduce misalignment between them, and, therefore, to mitigate MAI or

CCI [55,56]. However, the above physical adjustment approaches are inflexible for

mobile terminals and inapplicable to nondirected systems.

The second approach is to cancel interference using beamforming schemes (in

SIMO, MISO, and MIMO systems) with full awareness of channel knowledge. In

this case, channel information needs to be estimated at the receiver side. In a fixed

environment where there are no relative motions among the photoemitters, pho-

tosensors, and reflectors, the channel can be estimated using the known positions

and directionality of the above elements, together with their physical properties

such as the emission angle and field of view [44, 57, 58]. However, this method is

only applicable to a static environment with a limited number of multipaths. On

the other hand, known pilot signals are commonly utilised to estimate and up-

date channel information intermittently. Although pilot-aided channel estimation

schemes proposed for radio frequency (RF) systems may be suitable for the optical

field, novel estimation algorithms are also proposed and tailored for OWC systems.

In [59], channel information is estimated using either a least squares method that

minimises the distortion between the pilot and the received signal, or a correla-

tion bank based on the cross-correlation between the pilot and the received signal.

In [60], a minimum mean squared error (MMSE) estimator is presented, which

utilises the variable statistic window (i.e., a sliding window that incorporates past

channel information) to improve the robustness and stability of the estimation
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performance.

With the channel knowledge estimated, interference cancellation approaches

including zero forcing, MMSE, and ML sequence detection at the receiver [59,

61, 62], and spatial modulation at the transmitter [47, 55] can be employed to

improve the system performance. In addition, channel estimation and interference

cancellation can be jointly carried out as in [63], where pilot signals are used

to train an artificial neural network, and the mitigation of interference becomes

a classification problem. However, the above approaches depend on full channel

awareness estimated using pilot signals, at the cost of the loss in transmission rate.

Thus, novel blind channel estimation and reception algorithms that can address

the issue of heavy interference in OWC systems are much sought after.

1.1.2 Localisation

In applications such as ubiquitous computing [64] and wireless sensor networks [12],

which are not restricted in the optical band, a problem that has drawn extensive

attention is the localisation of wireless sources or targets. Generally, the locali-

sation procedure is executed in two phases: the association phase and the metric

fusion phase. In the association phase, the spatial relations between sources and

sensors are estimated using received signals. Subsequently, source locations are

inferred using these spatial relations (i.e., metrics) in the metric fusion phase.

Typically, the metrics employed in the localisation procedure can be either the

ranges or directions of sources [65]; consequently, localisation techniques can be

categorised into three groups: range-based, direction-based, and hybrid [11,66–69].

In range-based techniques as shown in Figure 1.2, multiple sensors are em-

ployed to measure source ranges individually, rather than collaboratively as an

array. With the estimates of the source ranges and the known sensor locations,

source locations can be estimated using, for example, the method of least squares.
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ρk

N -th sensor

ρN

Figure 1.2: Range-based localisation. Individual sensors are utilised to estimate
the ranges between the source and the sensors. The source location is then inferred
from the estimated ranges.

The ranges can be acquired via two common approaches. One is based on the

received signal strength (RSS), which is inversely proportional to (the power of)

the propagation distance [70–75]. However, the accuracy of RSS-based approaches

can be impaired due to the noise, fading, path loss, and shadowing effect in the

environment [76]. The other method is based on the times of arrival (TOAs) from

the sources to the sensors [77–79]. This approach requires the sources and sensors

to be synchronised. There also exists a variant of the TOA-based approaches that

relies on the measurement of the time differences of arrival (TDOAs) [77, 80–88].

By contrast, the TDOA-based approaches require the synchronisation among the

sensors only.

In addition, in direction-based techniques as shown in Figure 1.3, multiple

sensor arrays are used to estimate the directions of arrival (DOAs) of sources with

respect to a global direction reference [89–92]. Direction estimation can be achieved

using various aforementioned techniques such as the ML estimator, MUSIC, and

ESPRIT. Source locations can then be derived from the DOAs and the known

sensor array locations. Moreover, the performance of direction-based localisation
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x

y

Source

θ1

r̄

First array

θk
k-th array

θN

N -th array

Figure 1.3: Direction-based localisation. Multiple arrays are exploited to estimate
the source directions with respect to a common direction reference. The source
location is then calculated from the estimated directions.

approaches is restricted by that of the direction finding techniques, and is degraded

by low SNR, a finite number of observation snapshots, and a small number of array

elements [93].

Apart from these range- and direction-based techniques, hybrid DOA–TOA

localisation approaches can be found in the literature [85,94].

1.1.3 Orientation Estimation

Along with the above localisation problem, an interesting and important problem

is the estimation of the orientation of an array, especially in directional systems.

The orientation of an array is defined as the rotation from a global coordinate

system to the local coordinate system of the array. It is governed by three Euler

angles; thus, the objective of the orientation estimation process is finding these

Euler angles.

In the literature, there are two major approaches to estimating the orientation

of a receiver array. If the array consists of distributed sensors with a relatively

large aperture, then the ranges between a single source and the array elements can
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be utilised to estimate the Euler angles. The ranges can be inferred by tracking

the locations of the array elements [95] or by measuring the carrier phase difference

between array elements [96]. On the other hand, if the array is compact, then the

Euler angles can be estimated using the DOAs and ranges of multiple sources of

known locations. In this case, the ranges are commonly inferred from the TOAs

of the sources, which are estimated using decorrelation or matched filtering with

the transmitted waveforms known at the receiver array [97,98].

1.1.4 Wideband Assumption

An assumption that is commonly made in many applications of array process-

ing is the narrowband assumption (NBA), which means that the wavefront of a

baseband signal does not vary significantly when traversing through the sensors

of an array [99]. This assumption may not be valid with a high probability in a

distributed array of sensors as shown in Figure 1.4, since the ranges between the

source and all the sensors may differ hugely. In such a case, the wideband as-

sumption (WBA), where the baseband signal varies significantly when traversing

x

y

θ

Source

First sensor

ρ
r̄

k-th sensor

N -th sensor

τk

Figure 1.4: Distributed array of sensors and WBA. If the relative delay τk between
the first and the k-th sensors from the source becomes significant such that the
baseband signal varies significantly, then the signal model follows the WBA.
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through the sensors of the array, needs to be considered. When the WBA is valid,

subspace estimation algorithms proposed under the NBA such as MUSIC may fail

to operate and deliver correct results.

One approach to solving the estimation problem under the WBA is to exploit

the concept of the rotation of the array reference point [13]. When the array

reference point changes from one sensor to another, the array manifold vector is

scaled by a factor that is a function of the ranges between the source and the

two array reference points. This range information can then be recovered by

calculating the second order statistics of the signals received with different array

reference points. Therefore, the source location can be inferred using range-based

localisation approaches. Nevertheless, when this approach is applied to localise

multiple sources, orthogonality needs to be introduced among the sources, and the

estimation procedure needs to be performed for every source with all the interferers

suppressed.

1.2 Challenges and Gaps

There exist a number of challenges and gaps posed in wireless source localisation

problems. Following is a list of problems that have not been fully addressed in the

literature and are to be examined in the thesis.

Channel estimation and interference cancellation. In applications such as

indoor multi-source MIMO OWC systems, a key challenge is to estimate

channel information and eliminate interference from undesired sources. In

nonparametric OWC systems, this is usually achieved by physically adjust-

ing the positions of the sources and sensors with respect to the reflectors,

or by using beamforming algorithms at the transmitter and/or receiver with

full channel awareness through pilot signals. The first method is infeasi-
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ble to some system configurations like a nondirected–LOS system, while the

second method suffers from the loss in transmission rate. To this end, a para-

metric approach that achieves blind channel estimation using localisation ap-

proaches and complete interference cancellation using subspace beamforming

is needed.

Localisation problem. There exist a lot of multi-source localisation algorithms

using sensor arrays in the literature. However, they suffer from pseudo lo-

cation estimates when fusing the source ranges and/or directions estimated

from multiple sensors and/or sensor arrays together. Localisation approaches

that can estimate the locations of multiple sources without the pseudo loca-

tion problem are desired to be investigated.

Orientation estimation problem. Alongside the localisation problem is the

orientation estimation problem. The existing approaches generally rely on

the TOA estimation using pilot signals, of which the receiver array needs to

have full knowledge. Additionally, the existing approaches are concerning the

estimation of the orientation of a receiver array using the signals of multiple

sources. There lack techniques that estimate the orientation of transmitter

arrays apart from localising all the array elements. Hence, the above two

problems will be researched in the thesis as well.

Wideband assumption. Subspace estimation techniques such as MUSIC enjoy

outstanding estimation accuracy. However, these algorithms may fail to esti-

mate source parameters under the WBA, where the wavefront of a baseband

signal varies when traversing through the sensors of an array. Therefore,

new subspace approaches that address the issues under the WBA are much

sought after.
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1.3 Thesis Scope and Organisation

The aim of the thesis is to analyse and address various localisation problems in

array processing. Subspace localisation techniques will be scrutinised in the thesis

to solve such problems in many communications and signal processing applications.

The rest of the thesis is organised as follows.

In Chapter 2, a novel parametric model is presented for indoor multi-source

MIMO OWC with the incorporation of the geometries of photoemitter and pho-

tosensor arrays. A localisation approach, which is employed as a blind channel

estimator for estimating the azimuth, elevation, range, and path gain, is proposed

as a three-step procedure, with the employment of cone angle parameterisation.

Moreover, two subspace multibeam beamformers are presented; they construc-

tively combine all the paths of the desired source and achieve complete interference

elimination, without the requirement of full channel awareness.

From Chapters 3 to 5, various wireless source localisation problems are studied

in a more general sense, without being limited to the optical band only. Particu-

larly, in Chapter 3, the localisation and orientation estimation of a receiver array

are examined. A sensor array is utilised to estimate the location and orientation

of its own with respect to a global coordinate system using the signals of multiple

sources of known locations. By using subspace direction finding techniques and

three systems of quadratic and linear equations, the location and orientation can

be accurately estimated.

In Chapter 4, the localisation and orientation estimation of multiple transmitter

arrays are investigated. A sensor array comprising distributed groups of small

aperture arrays is employed to estimate the locations and orientations of multiple

sources with each one being an emitter array. The source directions are estimated

using subspace techniques and the source ranges are estimated by solving a system
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of equations. Moreover, the orientations are estimated by making use of the source

beamforming weight vectors.

In Chapter 5, the localisation of wireless sources is studied under the WBA.

Specifically, two approaches are proposed for solving the localisation problem. The

first approach utilises the subcovariance matrix of the received signal vector and

its singular value decomposition to estimate the source locations. The second

approach employs the rotation/change of the array reference point to translate

the WBA problem into its NBA counterpart so that NBA subspace techniques

can be readily applied to solve the localisation problem.

In all technical chapters from Chapters 2 to 5, computer simulation studies

are carried out using MATLAB for evaluating the performance of the proposed

approaches.

Finally, in Chapter 6, the conclusions of the thesis are drawn, the list of con-

tributions is given, and the suggestions for further work are presented.
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Chapter 2

Parametric Indoor Optical

Wireless Communications

The study of OWC has given fresh impetus to the recent development of solid state

lighting technologies. Considered as a potential alternative to the conventional but

congested RF band, the optical band advantages in terms of its unlicensed spec-

trum, large bandwidth, low energy consumption, affordability, and high security.

It can be exploited in applications where RF signals are not accessible (e.g., in

basements or tunnels), or not permitted for private communications due to safety

regulations (e.g., in airplanes or hospitals). Owing to the above benefits, OWC

has become a complementary technique to the current RF communication systems

and a promising candidate for the future.

In this chapter, a parametric approach to indoor multi-source MIMO OWC

is presented, with the incorporation of the array geometries of photoemitters and

photosensors. In addition, a localisation approach is proposed as a blind chan-

nel estimator for estimating the source locations and path gains, which are then

employed to design beamformers that better isolate desired sources from inter-

ferers. With the employment of this parametric approach, complete interference
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cancellation in OWC systems can be outstandingly achieved.

The rest of this chapter is organised as follows. In Section 2.1, the signal

model of indoor MIMO OWC is presented. In Section 2.2, a blind subspace channel

estimator is proposed to estimate the parameters of interest including the azimuth,

elevation, range bin, and path gain in a three-step procedure. In addition, two

spatiotemporal multibeam beamformers are presented, which effectively receive all

the paths of the desired source and provide complete interference cancellation. In

Section 2.3, the performance of the proposed channel estimator and beamformers

is evaluated through computer simulation studies. Last, in Section 2.4, the chapter

is summarised.

2.1 Signal Model of Optical Wireless Communi-

cations

With reference to Figure 2.1, consider an array of N photosensors in the presence

of M sources with each source being an array of N̄ photoemitters. Hereafter, the

terms “sensor” and “emitter” are used in place of “photosensor” and “photoemit-

ter” unless otherwise noted. The sensor array geometry is described as

[r1, r2, . . . , rN ] =
[
rx, ry, rz

]T ∈ R3×N (2.1)

where rk ∈ R3×1 denotes the Cartesian coordinates of the k-th sensor while rx,

ry and rz ∈ RN×1 contain the coordinates of the x-, y-, and z-axis of all the

sensors, respectively. Without loss of generality, the array centroid (represented

as the dark blue element in Figure 2.1) is the origin of the coordinate system

and is selected as the array reference point. Besides, the photosensitive direction

of a sensor is defined as the direction along which the impinging signal can be
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θi

φi

x

y

z

Sensor array

i-th source array

ρi

v

v̄

Figure 2.1: Geometry of the sensor array and i-th source array. The elements of
the sensor array are represented by the blue spheres with the array reference point
denoted by the darker one. The elements of the i-th source array is represented
by the red cubes. The location of the source is parameterised by its azimuth θi,
elevation φi, and range ρi.

maximally detected. The photosensitive direction of all the sensors is assumed to

be in the direction of the positive z-axis for simplicity and is denoted as a unit

vector v ∈ R3×1. Similarly, the array geometry of the i-th source is described as

[r̄1, r̄2, . . . , r̄N̄ ] =
[
r̄x, r̄y, r̄z

]T ∈ R3×N̄ . (2.2)

The photoemissive direction is defined as the direction along which the transmitted

signal power is the maximum. The photoemissive direction of all the emitters is

assumed to be in the direction of the negative z-axis and is denoted as a unit

vector v̄ ∈ R3×1.

With reference to Figure 2.2, suppose that the i-th source transmits a sequence

of channel symbols with the channel symbol period Tcs. The q-th channel symbol

is denoted as ai[q] for q ∈ Z. The channel symbols are coded using a unique Gold

sequence of length Nc and chip period Tc = Tcs/Nc. The `-th element of the code

is denoted as ci[`] for ` = 0, 1, . . . , Nc − 1. The coded channel symbols are sent to
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ai[q]
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N × 1 N × 1

N × 1

Scalar
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Figure 2.2: Baseband representation of the MIMO OWC system. Each path of
the source is modelled using the sensor and source array geometries, path fading
coefficient, DOA, DOD, and range in terms of delay.

a digital-to-analogue converter (DAC) and the output continuous waveform is de-

noted asmi(t). The output waveform is then weighted using a source beamforming

weight vector w̄i ∈ CN̄×1 before being radiated to free space by N̄ emitters.

Assume that the signal of the i-th source arrives at the sensor array via Ki

paths. The baseband signal received at the sensor array can be modelled as [1,30,

44]

x(t) =
M∑

i=1

Ki∑

p=1
βipSipS̄

H

ipw̄imi(t− τip) + n(t) (2.3)

where, for the p-th path of the i-th source, βip is its complex path fading coefficient,

Sip ∈ CN×1 is its sensor array manifold vector, S̄ip ∈ CN̄×1 is its source array

manifold vector, and τip = ρip/c is its delay with ρip denoting the range of this

path and c being the speed of light. Note that the delay is assumed to be smaller

than a channel symbol period due to the short range of the indoor environment;
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i.e., 0 ≤ τip < Tcs. The vector n(t) denotes the complex additive white Gaussian

noise (AWGN) of zero mean and covariance σ2
nIN .

In particular, the sensor array manifold vector associated with this path is

given as

Sip , S(θip, φip) = g(θip, φip)� exp
(
−j2πFc

c

[
rx, ry, rz

]
uip

)
(2.4)

where g(θip, φip) ∈ RN×1 is the directional gain vector, Fc is the optical carrier

frequency, and uip ∈ R3×1 is a unit vector pointing from the sensor array reference

point towards the direction of this path; the unit vector is defined as

uip , u(θip, φip) = [cos θip cosφip, sin θip cosφip, sinφip]T (2.5)

with θip and φip being its azimuth and elevation, respectively. Additionally, all the

sensors are assumed to be identical; thus, the directional gain vector is simplified

to

g(θip, φip) = g(θip, φip) 1N = 1N
√

sinφip. (2.6)

Similarly, the source array manifold vector S̄ip is defined as

S̄ip , S̄
(
θ̄ip, φ̄ip

)
= ḡ

(
θ̄ip, φ̄ip

)
� exp

(
j2πFc

c

[
r̄x, r̄y, r̄z

]
ūip

)
(2.7)

with ḡ
(
θ̄ip, φ̄ip

)
∈ RN̄×1 being the directional gain vector and ūip ∈ R3×1 denoting

the direction of departure (DOD) of this path. The emission of the signal follows

Lambert’s cosine law. Assuming that the order of emission is one for simplicity,

the directional gain vector is given as

ḡ
(
θ̄ip, φ̄ip

)
= ḡ

(
θ̄ip, φ̄ip

)
1N̄ = 1N̄

√
sin φ̄ip. (2.8)
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The received signal is sampled at the sampling frequency 1/Tc and is collected

using N tapped delay lines (TDLs) of length 2Nc. The snapshots of the received

signal can be represented by a data cube as illustrated in Figure 2.3(a), where

the q-th page is denoted as X[q] ∈ CN×2Nc . The output of the TDLs is shown in

Figure 2.3(b), where the q-th column is a column-wise vectorisation of XT [q] and

can be modelled as

x[q] = vec
(
XT [q]

)

=
M∑

i=1

Ki∑

p=1
βipS̄

H

ipw̄i︸ ︷︷ ︸
=γip

[
h−ip, hip, h

+
ip

]




ai[q − 1]

ai[q]

ai[q + 1]




+ n[q]

2Nc

N

L

X[1]

X[q]

X[L]

(a)

Transpose
Vectorise

L

2N
N

c

x[1] x[L]x[q] = vec
(
XT [q]

)

(b)

Figure 2.3: Signal rearrangement. (a) Received data cube. The q-th page X[q]
consists of 2Nc snapshots received at N sensors. (b) Rearranged signal matrix.
The q-th column x[q] is the transposed and column-wise vectorised version of X[q].
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=
M∑

i=1

Ki∑

p=1
γip
[
h−ip, hip, h

+
ip

]




ai[q − 1]

ai[q]

ai[q + 1]




+ n[q] ∈ C2NNc×1. (2.9)

In Equ. (2.9), the spatiotemporal array (STAR) manifold vector associated with

the current channel symbol of the p-th path of the i-th source is defined as

hip , h(θip, φip, `ip) = Sip ⊗ J`ip

2Nc
ci ∈ C2NNc×1 (2.10)

where

J2Nc =




0T2Nc−1, 0

I2Nc−1, 02Nc−1


 ∈ Z2Nc×2Nc (2.11)

is the 2Nc-dimensional lower shift matrix,

0 ≤ `ip =
⌊
τip
Tc

⌋
=
⌊
ρip
cTc

⌋
≤ Nc − 1 (2.12)

denotes the index of the range bin, and

ci =
[
ci[0] , ci[1] , . . . , ci[Nc − 1] , 0TNc

]T ∈ Z2Nc×1 (2.13)

contains the Gold sequence of the i-th source padded with Nc zeros. The STAR

manifold vectors of the previous and next channel symbols are given as

h−ip =
(
IN ⊗

(
JT2Nc

)Nc
)
hip; (2.14a)

h+
ip =

(
IN ⊗ JNc

2Nc

)
hip. (2.14b)

Moreover, ai[q − 1], ai[q], and ai[q + 1] represent the previous, current, and next

channel symbols, respectively. The term γip incorporates both the path fading
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coefficient βip and the source array gain S̄Hipw̄i, and is referred to as the (overall)

path gain for the sake of simplicity unless otherwise noted.

Without loss of generality, assume that the first source is the desired source to

be estimated and recovered. Then, Equ. (2.9) can be rewritten as

x[q] = H1γ1a1[q]
︸ ︷︷ ︸

desired

+
[
H−1 γ1,H

+
1 γ1

]



a1[q − 1]

a1[q + 1]




︸ ︷︷ ︸
ISI

+
M∑

i=2

[
H−i γi,Hiγi,H

+
i γi

]




ai[q − 1]

ai[q]

ai[q + 1]




︸ ︷︷ ︸
MAI

+ n[q]︸︷︷︸
noise

(2.15)

where, for all the paths of the i-th source, H−i , Hi, and H+
i ∈ C2NNc×Ki contain the

STAR manifold vectors associated with the previous, current, and next channel

symbols, respectively, and γ
i

= [γi1, γi2, . . . , γiKi
]T ∈ CKi×1 comprises their path

gains. In Equ. (2.15), the first term is the current channel symbol from all the paths

of the desired source; the second term, referred to as the ISI, is the contribution

of the previous and next channel symbols from all the paths of the desired source;

the third term, referred to as the MAI, is the channel symbols from all the paths

of all the undesired sources (interferers); the fourth term is the noise.

Suppose that L snapshots of x[q] are collected; the spatiotemporally rearranged

snapshots (i.e., the output of the TDLs) can be written in a matrix format as

X = [x[1] , x[2] , . . . , x[L]] ∈ C2NNc×L. (2.16)
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The covariance matrix of X can be constructed as

Rxx = 1
L
XXH = Rdd + Rjj + Rnn ∈ C2NNc×2NNc (2.17)

where the three summands correspond to the covariance matrices of the desired

signal, interference (ISI and MAI), and noise, respectively.

2.2 Localisation and Beamforming

2.2.1 Location and Path Gain Estimation

There are four parameters of interest to be estimated: the azimuth θ, elevation φ,

range bin `, and path gain γ. The estimation procedure is divided into three steps:

the range bin estimation, joint azimuth and elevation estimation, and path gain

estimation.

Joint Cone Angle and Range Bin Estimation

The initial step is to jointly estimate the cone angles (which will be defined later)

and range bins of all the paths of the desired source.

Suppose that there exist NA sensors in the array that form a linear array as

shown in Figure 2.4. (Note that in an arbitrary array, a linear array can always

be formed by any two sensors at least.) For convenience, assume that they are the

first NA sensors and one of them is the array reference point. The coordinates of

the elements of the linear array can be expressed in a new x′-axis, which is rotated

from the original x-axis by Θ on the azimuth plane and then by Φ on the elevation

plane; namely,

r′k = [x′k, y′k, z′k]
T = Qrk ∈ R3×1 (2.18)
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x

y

θi

x′
Θ

i-th source reference point

Sensor array

Figure 2.4: Rotation angle of the linear array. The selected NA sensors are repre-
sented by the dark blue circles. Only the rotation Θ on the azimuth plane is shown
for simplicity. The rotation Φ on the elevation plane can be similarly defined and
is not shown here.

for k = 1, 2, . . . , NA where

Q = QΦQΘ ∈ R3×3 (2.19)

is the rotation matrix consisting of

QΘ =




cos Θ, sin Θ, 0

− sin Θ, cos Θ, 0

0, 0, 1



∈ R3×3; (2.20a)

QΦ =




cos Φ, 0, sin Φ

0, 1, 0

− sin Φ, 0, cos Φ



∈ R3×3. (2.20b)

Since the selected elements lie on the x′-axis only, their coordinates can be specified

by a vector r′xA =
[
x′1, x

′
2, . . . , x

′
NA

]T ∈ RNA×1.
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Moreover, define the cone angle αip for the p-th path of the i-th source using

its azimuth θip, elevation φip, and the rotation angles Θ and Φ as

αip = arccos(cos θip cosφip cos Θ cos Φ + sin θip cosφip sin Θ cos Φ + sinφip sin Φ)

(2.21)

such that the STAR manifold vector associated with the NA sensors can be rewrit-

ten as

hipA , hA(αip, `ip)

= SA(αip)⊗ J`ip

2Nc
ci

= exp
(
−j2πFc

c
r′xA cosαip

)
⊗ J`ip

2Nc
ci ∈ C2NANc×1, (2.22)

which is parameterised by the cone angle and range bin only [1, 100]. Therefore,

a two-dimensional search can be performed to jointly estimate the cone angle and

range bin, as described as follows.

Define a selection matrix that selects the subcovariance matrix associated with

the NA sensors from Equ. (2.17) as

FA =
[
INA

,ONA×(N−NA)
]
∈ ZNA×N . (2.23)

Note that all the paths of the same source are linearly combined by the path gains

after the spatiotemporal rearrangement. Therefore, a preprocessing matrix needs

to be applied to the covariance matrix Rxx to suppress all the paths except the

desired one to be estimated [101]. The preprocessing matrix of the desired source

corresponding to a path of range bin ` is defined as

P` = P⊥C1`
= I2Nc − C1`

(
CH

1`C1`
)−1

CH
1` ∈ R2Nc×2Nc . (2.24)
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It is the projection matrix onto the complementary subspace of the one spanned

by the columns of C1` ∈ R2Nc×(Nc−1), which contains the shifted versions of the

desired Gold sequence except for the range bin `; i.e.,

C1` =
[
J0

2Nc
c1, J1

2Nc
c1, . . . , J`−1

2Nc
c1, J`+1

2Nc
c1, J`+2

2Nc
c1, . . . , JNc−1

2Nc
c1

]
. (2.25)

Using the covariance matrix Rxx given in Equ. (2.17), construct the preprocessed

subcovariance matrix corresponding to the NA sensors as

RxA`xA`
= (FA ⊗ P`)Rxx (FA ⊗ P`)H ∈ C2NANc×2NANc . (2.26)

Subsequently, the cone angle and range bin of the path can be estimated by a

two-dimensional search of

ξ(α, `) = h̄
H

A (α, `) h̄A(α, `)
h̄
H

A (α, `)EnA`
EHnA`

h̄A(α, `)
(2.27)

where

h̄A(α, `) = (INA
⊗ P`)

(
SA(α)⊗ J`2Nc

c1

)
∈ C2NANc×1 (2.28)

is the preprocessed STAR manifold vector and EnA`
∈ C2NANc×(2NANc−3M) denotes

the noise subspace of RxA`xA`
.

Joint Azimuth and Elevation Estimation

On completion of the estimation of the cone angles α̂ and range bins ˆ̀ of all the

paths of the desired source, their azimuths θ and elevations φ are to be estimated.

Likewise, based on the estimated range bins ˆ̀, the preprocessed covariance matrix

can be obtained as

Rxˆ̀xˆ̀ = (IN ⊗ Pˆ̀)Rxx (IN ⊗ Pˆ̀)
H ∈ C2NNc×2NNc (2.29)
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and its noise subspace is denoted as Enˆ̀ ∈ C2NNc×(2NNc−3M). By employing the

estimated cone angles α̂ as well, the azimuth and elevation can then be jointly

estimated by a one-dimensional search of

ξ(θ, φ) =
h̄
H
(
φ, α̂, ˆ̀

)
h̄
(
φ, α̂, ˆ̀

)

h̄
H
(
φ, α̂, ˆ̀

)
Enˆ̀EHnˆ̀

h̄
(
φ, α̂, ˆ̀

) (2.30)

where

h̄
(
φ, α̂, ˆ̀

)
= (IN ⊗ Pˆ̀)

(
S(φ, α̂)⊗ Jˆ̀

2Nc
c1

)
∈ C2NNc×1. (2.31)

Note that for a particular combination of φ and α̂, there exist two possible values

of the azimuth θ, which are

θ = ±
(

arccos
(

cos α̂− sinφ sin Φ
cosφ cos Φ

)
+ Θ

)
mod 360◦. (2.32)

Thus, the cost function needs to be executed twice at the two azimuths to resolve

ambiguity. Since θ is a derived parameter of φ and α̂, this algorithm merely

requires a one-dimensional search over the elevation.

Path Gain Estimation

In order to constructively combine all the paths of the desired source for recovering

the desired information, their path gains need to be estimated. Assume that the

transmitted information is encoded as the phase difference between consecutive

channel symbols. Therefore, one only needs to estimate a vector that is collinear

with the path gain vector γ1 (i.e., the relative path gains for the sake of combining

all the paths), rather than all of its actual elements, for information recovery.

From Equ. (2.17), it is easy to know that the rank of Rxx − Rnn contains the

contribution of the desired signal of rank one and interference of rank 3M − 1.
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Define a covariance matrix as

Rjj

(
γ
)

= Rxx − R̂nn −H1γ γ
HHH

1 (2.33)

where R̂nn denotes the estimate of the noise covariance matrix, which can be

constructed from the least significant eigenvalues of Rxx. The rank of Rjj

(
γ
)
will

be lowered by one if the argument γ and the path gain γ1 are collinear. Hence,

define a cost function as [102]

ξ
(
γ
)

=
2NNc∑

b=1
eigb>0

(
1 + eigb

(
Rjj

(
γ
)))

+ 10 log10




2NNc∑

b=1
eigb<0

∣∣∣eigb
(
Rjj

(
γ
))∣∣∣


, (2.34)

the minimisation of which lowers the rank of Rjj

(
γ
)

by one and delivers the

estimate of γ1.

In conclusion, the proposed source location and path gain estimation algorithm

can be summarised as the following steps.

Step 1: Construct the covariance matrix of the spatiotemporally rearranged sig-

nal matrix using Equ. (2.17).

Step 2: Preprocess a subcovariance matrix of the signal that corresponds to a

linear array using Equ. (2.26). Jointly estimate the cone angles and

range bins of all the paths of the desired source by a two-dimensional

search of Equ. (2.27).

Step 3: Preprocess the covariance matrix of the signal using Equ. (2.29). Based

on the estimated cone angles and range bins from Step 2, jointly estimate

the azimuths and elevations by a one-dimensional search of Equ. (2.31)

over the elevation. Derive the azimuth from the estimated elevation using

Equ. (2.32).
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Step 4: Construct the desired signal subspace using all the estimated parameters.

Estimate the path gain vector by minimising Equ. (2.34).

2.2.2 Subspace Multibeam Beamforming

After estimating the source locations and path gains, beamforming techniques are

applied to recover the transmitted signals. Since the enclosed signal environment

with multiple sources contains huge interference, there is a high probability that

some paths are closely located in space (directions). Thus, the source locations,

which involve both directions and ranges, are utilised to design beamformers to

isolate the desired signal from the interferers.

Two subspace beamformers are provided to resolve all the paths of the desired

source, combine them using the path gains and suppress the interference [103].

With reference to Equ. (2.15), the weight vectors of the beamformers are given as

wA = P⊥Ej
H1

(
HH

1 P⊥Ej
H1
)−1

γ1; (2.35)

wB = P⊥Ej
H1γ1 (2.36)

where Ej spans the interference (ISI and MAI) subspace and P⊥Ej
denotes the pro-

jection matrix onto the complementary subspace of the interference subspace. In

order to construct the weight vector, the matrices H1 and Ej need to be con-

structed. The matrix H1 can be directly recovered from the channel parameter

estimates in the previous steps, while Ej can be estimated by taking the eigenvec-

tors of

Rjj = Rxx −H1γ1γ
H
1 HH

1 (2.37)

associated with its most significant eigenvalues. Note that these subspace beam-

formers require the channel knowledge of the desired source only.
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2.3 Computer Simulation Studies

In this section, the performance of the localisation approach and beamformers

for the indoor multi-source MIMO OWC system is assessed through computer

simulation studies. In the simulations, a nine-element grid array of half-wavelength

intersensor spacing is utilised at the receiver side. The sensor array operates in

the presence of three sources with each one being a nine-element grid array of

half-wavelength intersensor spacing. The first source is the desired source while

the rest are the interferers. The signal of each source arrives at the array along

three paths; their parameters are listed in Table 2.1. Additionally, other simulation

parameters are listed in Table 2.2.

2.3.1 Evaluation of the Localisation Approach

First, the joint cone angle and range bin estimation is shown in Figure 2.5, where

three peaks at the cone angles and range bins (74◦, 10), (87◦, 12), and (115◦, 8)

can be observed, indicating a correct estimation of the range bins. With the

Table 2.1: Simulation Parameters

Path gain γ
Source Path Azimuth

θ
Elevation

φ
Range
ρ

Bin
` Magnitude Phase

1 297◦ 53◦ 6.9 m 10 8.63 198.35◦

2 80◦ 73◦ 8.5 m 12 3.30 86.17◦1
3 143◦ 58◦ 5.6 m 8 7.21 302.87◦

1 296◦ 48◦ 5.3 m 7 1.91 63.75◦

2 127◦ 50◦ 6.2 m 9 5.44 149.08◦2
3 61◦ 79◦ 9.4 m 14 1.42 289.49◦

1 45◦ 33◦ 5.9 m 8 7.30 226.92◦

2 9◦ 37◦ 8.7 m 13 7.42 180.75◦3
3 288◦ 39◦ 5.1 m 7 0.62 220.11◦

47 of 150



Imperial College London Chapter 2. Parametric Indoor Optical Wireless Communications

Table 2.2: Array System Parameters

Parameter Value

Carrier frequency 600 THz
Channel symbol frequency 30 MHz
Code length 15
Number of snapshots 200
SNR 20 dB
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Figure 2.5: Cone angle and range bin estimation.

knowledge of the cone angle and range bin estimates, the azimuths and elevations

are jointly estimated. The estimation result is shown in Figure 2.6, where three

peaks at the azimuths and elevations (297◦, 53◦), (80◦, 73◦), and (143◦, 58◦) can

be observed; this means that the azimuths and elevations are correctly estimated

as well. In addition, the path gains of the three paths of the desired source are

estimated as 25.02 exp(j189.65◦), 9.19 exp(j77.49◦) and 21.00 exp(j294.08◦). Note

that they are different from the true path gains; however, the vector consisting of

the true path gains and that consisting of the estimated path gains are collinear,
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Figure 2.6: Azimuth and elevation estimation.

with a projection residual of 1.29× 10−4. Therefore, the channel parameters (i.e.,

azimuths, elevations, range bins, and path gains) of all the paths of the desired

source are correctly estimated.

The performance of the estimators is also analysed in terms of the estimation

root mean squared error (RMSE) using Monte Carlo simulations. The RMSEs of

the azimuth, elevation, and path gain estimates with respect to the product of

the SNR and number of snapshots1 are shown in Figure 2.7. As can be observed,

even at low SNR or with a small number of snapshots, the RMSEs of the three

estimates are small, with the azimuth and elevation below (1× 10−3)◦ and the path

gain below 1× 10−2. This indicates that the channel parameters can be estimated

with excellent precision using the proposed localisation approach. In addition, the

RMSEs decline as SNR× L increases. This is the expected result of the subspace

estimators: the noise subspace can be more accurately estimated in practice with

either higher SNR or more number of snapshots.
1Note that the RMSE Cramér–Rao bound is inversely proportional to SNR × L [1].
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Figure 2.7: Estimation RMSE versus SNR and number of snapshots. The RMSEs
of the azimuth θ, elevation φ, and path gain γ decrease as SNR×L increases. The
results are averaged over 10 000 simulations.

2.3.2 Evaluation of the Beamformer

The performance of the two subspace beamformers are compared with the beam-

former using the strongest and weakest paths, decorrelating receiver, and MMSE

equaliser. The latter two are commonly employed in nonparametric OWC systems

and their weight vectors are given, respectively, as [101,104]

wD = col2
(
HH

(
HHH

)−1
)
; (2.38)

wM = col2
(
HH

(
HHH + σ2

nI3M
)−1

)
(2.39)

where

H =
[
H−1 γ1,H1γ1,H

+
1 γ1,H

−
2 γ2,H2γ2,H

+
2 γ2, . . . ,H

−
MγM ,HMγM ,H

+
MγM

]
(2.40)
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denotes the full channel knowledge these two receivers require.

The performance of the beamformers/receivers is investigated in terms of the

output signal-to-noise-plus-interference ratio (SNIR), which is given as

SNIR = wHRddw

wHRuuw
(2.41)

where Rdd and Ruu are the covariance matrices of the desired signal and undesired

signal (interference and noise). The output SNIR with respect to the increasing

input SNR is shown in Figure 2.8. All the beamformers/receivers have proportional

increment in the output SNIR. This is the expected performance of the subspace

beamformers since the interference is completely eliminated and the output SNIR

only depends on the desired signal power and noise power. It can also be clearly

observed that the two subspace beamformers maintain a comparable performance

with the decorrelating receiver and MMSE multiuser receiver, and outperforms the
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Figure 2.8: Output SNIR versus SNR. The results are averaged over 10 000 simu-
lations.
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other two beamformers. In addition, the output SNIR with respect to increasing

number of sources is shown in Figure 2.9, with the input SNR fixed at 20 dB. All

the beamformers/receivers have a constant output SNIR. From Figures 2.8 and

2.9, it can be concluded that, unlike the optimal decorrelating receiver and MMSE

equaliser that require the channel knowledge of all signals (i.e., both the desired

signal and the interferers), the two subspace beamformers only require that of the

desired signal. However, they achieve comparable performance in terms of the

output SNIR with the decorrelating receiver and MMSE, which are multiuser and

thus very complex receivers.

2.4 Summary

In this chapter, a novel parametric model that incorporates the geometry of the

photosensor and photoemitter arrays is studied for the indoor multi-source MIMO
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Figure 2.9: Output SNIR versus number of sources. The results are averaged over
10 000 simulations.
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OWC system. A localisation approach, which is utilised as a blind spatiotempo-

ral channel estimator to estimate the azimuth, elevation, range, and path gain,

is presented as a three-step procedure, with the employment of the cone angle

parameterisation. In addition, two multibeam beamformers that effectively com-

bine all the paths of the desired source and completely eliminate ISI and MAI are

presented. In contrast to the traditional OWC system where the interference is

generally reduced by adjusting the locations and directions of the photoemitters

and photosensors, the beamformers presented in this chapter achieve complete

interference cancellation without the requirement of a precise physical configura-

tion. Its system performance is comparable to the optimal decorrelating receiver

in terms of the output SNIR, without full channel awareness.
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Chapter 3

Localisation and Orientation

Estimation of Receiver Arrays

The estimation of the location and orientation of an array of a known geometry has

gained increasing interest in various research areas where the spatial information

of the array plays a significant role for performance enhancement. For instance,

in a large number of military and civil applications, wireless sensor networks are

deployed to detect and track targets in their neighbourhood [105]. However, in

many cases, the locations and orientations of the sensor arrays in the networks

are not accurately known, which degrades the detection and tracking performance.

Hence, localising and orienting the sensor arrays precisely are the essentials leading

to better performance of the sensor networks [98].

In this chapter, the localisation and orientation estimation of a receiver array

is studied. A sensor array of a known array geometry is utilised to estimate its

own location and orientation with respect to a global coordinate system based on

the signals transmitted from multiple sources of known locations. The estimation

approach proposed in this chapter is carried out in a four-phase procedure: The

DOAs of the sources are estimated first using subspace techniques. Based on the
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DOA estimates, the ranges of the sources can be directly derived by solve a system

of quadratic equations, without knowing the transmitted signals. Finally, the

location and orientation of the sensor array are estimated by solving two systems

of linear equations in the last two steps. Hereafter, the term “receiver estimation”

is used to refer to this scenario unless otherwise noted.

The rest of this chapter is organised as follows. In Section 3.1, the signal model

of the receiver estimation scenario is explained. In Section 3.2 the receiver estima-

tion approach is detailed as a four-step procedure. In Section 3.3, the performance

of the proposed approaches is evaluated using computer simulation studies. Last,

in Section 3.4, the chapter is summarised.

3.1 Signal Model of Receiver Estimation

Consider an array of N sensors of a known array geometry. The array receives

the signals from M sources with M < N via the LOS paths only. Note that

each source can consist of multiple emitters; however, it is assumed that each

source is a single emitter for the sake of simplicity. (The generalisation to multi-

emitter sources is fairly straightforward and is not explained in this chapter.) The

geometry of the sensor array and sources is shown in Figure 3.1, where the sensors

are represented by the blue spheres and the sources are represented by the red

cubes. With reference to Figure 3.1, the locations of the sensors and sources can

be specified in two distinct Cartesian coordinate systems: the local coordinate

system (blue and lower case) and the global coordinate system (red and upper

case). Hereafter, the terms “local system” and “global system” are used to refer

to the local and global coordinate systems, respectively, for convenience unless

otherwise noted.

55 of 150



Imperial College London Chapter 3. Localisation and Orientation Estimation of Rx Arrays

x

y

z

Sensor array

X

Y

Z

First source

i-th source

M -th source

r̄i

R̄1

R̄i

R̄M

R

Figure 3.1: Geometry of the sensor array and sources. The sensors of the array
are represented by the blue spheres with the array reference point denoted by the
darker one. The sources are represented by the red cubes. Their locations can be
specified in both the local (blue and lower case) and global (red and upper case)
coordinate systems.

Specifically, in the local system, the known array geometry is described as

[r1, r2, . . . , rN ] =
[
rx, ry, rz

]T ∈ R3×N (3.1)

where rk = [xk, yk, zk]T ∈ R3×1 is the Cartesian coordinates of the k-th sensor

while rx, ry, and rz ∈ RN×1 contain the coordinates of the x-, y-, and z-axis of

all the sensors, respectively. Without loss of generality, assume that the array

centroid r = [x, y, z]T ∈ R3×1 is the origin of the local system and the array

reference point. It is also defined as the location of the array in the local system.

Further, the unknown location of the i-th source is parameterised by its unknown

azimuth θi, elevation φi, and range ρi as

r̄i , r̄(θi, φi, ρi) = ρiui = [x̄i, ȳi, z̄i]T ∈ R3×1 (3.2)

where

ui , u(θi, φi) = [cos θi cosφi, sin θi cosφi, sinφi]T ∈ R3×1 (3.3)
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is the unit vector pointing from the array reference point towards the i-th source.

In addition, note that ρi = ‖r̄i‖.

On the other hand, in the global system, the unknown location of the sensor

array (i.e., the array reference point) is denoted as R = [X, Y, Z]T ∈ R3×1. In

addition, the known location of the i-th source in the global system is denoted as

R̄i =
[
X̄i, Ȳi, Z̄i

]T ∈ R3×1.

Furthermore, the unknown mapping from the local system to its global coun-

terpart is governed by a transformation matrix defined as

T =



Q, R

0T3 , 1


 (3.4)

where Q ∈ R3×3 is the orthogonal rotation matrix and R, the location of the

sensor array in the global system, also serves as the translation vector. Using this

transformation matrix T and its inverse T−1, a vector v ∈ R3×1 in the local system

can be mapped to and from its global counterpart V ∈ R3×1 as

[
V T , 1

]T
= T

[
vT , 1

]T
; (3.5a)

[
vT , 1

]T
= T−1

[
V T , 1

]T
(3.5b)

or, equivalently, as

V = Qv +R; (3.6a)

v = Q−1V −Q−1R. (3.6b)

In particular, the rotation matrix Q can be written in terms of the product of

three rotation matrices as

Q = QxQyQz (3.7)
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where

Qx =




1, 0, 0

0, cosα, sinα

0, − sinα, cosα



∈ R3×3; (3.8a)

Qy =




cos β, 0, − sin β

0, 1, 0

sin β, 0, cos β



∈ R3×3; (3.8b)

Qz =




cos γ, sin γ, 0

− sin γ, cos γ, 0

0, 0, 1



∈ R3×3 (3.8c)

are the rotation matrices about the x-, y-, and z-axis with the respective unknown

Euler angles α (a.k.a., roll), β (a.k.a., pitch), and γ (a.k.a., yaw), as shown in

Figure 3.2. By convention, 0◦ ≤ α ≤ 360◦, 0◦ ≤ β ≤ 180◦, and 0◦ ≤ γ ≤ 360◦.

In summary, only the array geometry in the local system and the locations of

the sources in the global system are known. The rest are unknown, including the

location of the sensor array in the global system R and the orientation Q (or the

Euler angles α, β, and γ), which are to be estimated. The knowns and unknowns

are also summarised in Table 3.1.

As the sensors form a compact array, the plane wave propagation model is con-

sidered. In addition, the NBA is generally valid under this circumstance. There-

fore, the signal received at the sensor array can be modelled as

x(t) =
M∑

i=1
Simi(t) + n(t) ∈ CN×1 (3.9)

where, for the i-th source, Si ∈ CN×1 is the plane wave array manifold vector given
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Figure 3.2: Transformation from the local system to the global system. (a) Yaw γ.
The local coordinate system xyz is rotated around the z-axis for γ to the coordi-
nate system x′y′z′. (b) Pitch β. The coordinate system x′y′z′ is rotated around
the y′-axis for β to the coordinate system x′′y′′z′′. (c) Roll α. The coordinate
system x′′y′′z′′ is rotated around the x′′-axis for α to the global coordinate sys-
temXY Z. (d) Euler angles α, β, and γ. The coordinate transformation is dictated
by the three Euler angles.
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Table 3.1: Summary of the Knowns and Unknowns

Local system Global system
Parameter

Symbol Status Symbol Status

Sensor array geometry rk known —
Sensor array location r known R unknown∗

Source locations r̄i unknown R̄i known
Source parameters θi, φi, and ρi unknown —
Transformation matrix T unknown —
Rotation matrices Qx, Qy, and Qz unknown —
Euler angles α, β, and γ unknown∗ —
∗These unknowns are to be estimated.

as

Si , S(θi, φi) = exp
(
−j2πFc

c

[
rx, ry, rz

]
ui

)
, (3.10)

mi(t) is the message signal, and n(t) ∈ CN×1 is the complex AWGN of zero mean

and covariance σ2
nIN . The received signal vector can be rewritten in a matrix

format as

x(t) = Sm(t) + n(t) (3.11)

where

S = [S1, S2, . . . , SM ] ∈ CN×M ; (3.12)

m(t) = [m1(t) ,m2(t) , . . . ,mM(t)]T ∈ CN×1. (3.13)

3.2 Design of the Estimation Approach

The objective of the estimation problem is to find the location of the array reference

point of the receiver array in the global system as well as the orientation of the local

system with respect to the global system. The estimation procedure is carried out
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in the following four phases: First, the azimuths and elevations (i.e., directions) of

all the sources are estimated in the local system using subspace techniques. Next,

based on the direction estimates, the ranges of the sources in the local system

are estimated by solving a system of quadratic equations. Subsequently, with the

range estimates available, the sensor array location in the global system as well as

its orientation can be estimated by solving two systems of linear equations in the

final two phases. The four-phase estimation procedure is detailed as follows.

3.2.1 Direction Estimation

Initially, the directions of the sources are estimated based on the second order

statistics of the received signal vector given in Equ. (3.11) in the local system. In

particular, the covariance matrix of the received signal vector is

Rxx = E
{
x(t)xH(t)

}

= S E
{
m(t)mH(t)

}

︸ ︷︷ ︸
=Rmm

SH + E
{
x(t)xH(t)

}

︸ ︷︷ ︸
=Rnn

= SRmmSH + Rnn ∈ CN×N (3.14)

where Rmm ∈ CM×M and Rnn = σ2
nIN ∈ RN×N are the covariance matrices of

the messages and noise, respectively. Using subspace techniques like MUSIC, the

azimuths and elevations of the sources can be estimated by a two-dimensional

search of

ξ(θ, φ) = SH(θ, φ)S(θ, φ)
SH(θ, φ)EnEHn S(θ, φ)

(3.15)

where En ∈ CN×(N−M) represents the noise subspace of Rxx.
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3.2.2 Range Estimation

After estimating the azimuths θi and elevations φi of all the sources, their direc-

tional unit vectors ui can be derived. Define the matrix containing the estimates

of the directional unit vectors of all the sources as

U = [û1, û2, . . . , ûM ] ∈ R3×M (3.16)

where ûi is the estimate of the i-th directional unit vector. In addition, a vector

comprising the unknown ranges of all the sources can be defined as

ρ = [ρ1, ρ2, . . . , ρM ]T ∈ RM×1. (3.17)

Recall that the location of the i-th source in the local system is given as r̄i = ρiui.

This location vector r̄i is variant with respect to the change of the coordinate

system; i.e., its global counterpart R̄i, given as

R̄i = Qr̄i +R, (3.18)

is not equal to r̄i in general. Nevertheless, the distance between any two location

vectors r̄i and r̄j (assume that i < j) is invariant with respect to the coordinate

transformation. Specifically, the difference between r̄i and r̄j is given as

R̄i − R̄j = (Qr̄i +R)−
(
Qr̄j +R

)
= Q

(
r̄i − r̄j

)
(3.19)

and the squares of the Euclidean norms of its both sides can be expressed as

∥∥∥R̄i − R̄j

∥∥∥
2

=
(
r̄i − r̄j

)T
QTQ

(
r̄i − r̄j

)
. (3.20)
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Since Q is an orthogonal matrix, QTQ = I3. Hence,

∥∥∥R̄i − R̄j

∥∥∥
2

=
(
r̄i − r̄j

)T (
r̄i − r̄j

)

= ‖r̄i‖2 − 2r̄Ti r̄j +
∥∥∥r̄j
∥∥∥

2

= ρ2
i − 2ūTi ūjρiρj + ρ2

j . (3.21)

This is a bivariate quadratic equation and can be rewritten as

∥∥∥R̄i − R̄j

∥∥∥
2

= ρTFijUTUFijρ (3.22)

where Fij ∈ ZM×M is the selection matrix of the i-th and j-th sources defined as

Fij = diag
([

0Ti−1, 1, 0Tj−i−1,−1, 0TM−j
]T)

. (3.23)

Equation (3.22) expresses the invariance of the distance between a pair of sources.

Taking all the J =
(
M
2

)
pairs into account, the invariance can be represented as

(
IJ ⊗ ρ

)T
Aρρ = Bρ (3.24)

where

Aρ =




F12UTUF12

F13UTUF13

...

F(M−1)MUTUF(M−1)M




∈ RJM×M ; (3.25a)
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Bρ =




∥∥∥R̄1 − R̄2

∥∥∥
2

∥∥∥R̄1 − R̄3

∥∥∥
2

...
∥∥∥R̄M−1 − R̄M

∥∥∥
2




∈ RJ×1. (3.25b)

Equation (3.24) is a system of multivariate quadratic equations of M unknowns

and J equations. The ranges ρ can then be estimated by solving Equ. (3.24) if

J ≥M ; i.e., M > 2 [106].

3.2.3 Location Estimation

After estimating the directions and ranges of the sources in the local system, the

location of the receiver array in the global system should be estimated next. Based

on Equ. (3.18) and [13], the location R can be estimated by solving the following

system of linear equations

ARR = BR ⇒ R̂ = A#
RBR (3.26)

where

AR =




2
(
R̄1 − R̄2

)

2
(
R̄1 − R̄3

)

...

2
(
R̄1 − R̄M

)




∈ R(M−1)×3; (3.27a)

BR =




(∥∥∥R̄1

∥∥∥
2 −

∥∥∥R̄2

∥∥∥
2
)
− (ρ̂2

1 − ρ̂2
2)

(∥∥∥R̄1

∥∥∥
2 −

∥∥∥R̄3

∥∥∥
2
)
− (ρ̂2

1 − ρ̂2
3)

...
(∥∥∥R̄1

∥∥∥
2 −

∥∥∥R̄M

∥∥∥
2
)
− (ρ̂2

1 − ρ̂2
M)




∈ R(M−1)×1 (3.27b)
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with M − 1 ≥ 3; i.e., M > 3.

3.2.4 Orientation Estimation

The final step is to estimate the orientation of the receiver array. Equation (3.18)

can be rewritten as

(r̄i ⊗ I3)T vec(Q) = R̄i − R̂ (3.28)

where vec(Q) is the only unknown to be estimated. Likewise, vec(Q) can also be

determined by solving the following system of linear equations

AQ vec(Q) = BQ ⇒ vec
(
Q̂
)

= A#
QBQ (3.29)

where

AQ = [r̄1, r̄2, . . . , r̄M ]T ⊗ I3 ∈ R3M×9; (3.30a)

BQ =
[
R̄
T

1 , R̄
T

2 , . . . , R̄
T

M

]T
− 1M ⊗R ∈ R3M×1 (3.30b)

with 3M ≥ 9; i.e., M > 2 [106]. Further, the Euler angles α, β, and γ can be

derived from Q̂ as

α̂ = arctan
(
F T

2 Q̂F 3

F T
3 Q̂F 3

)
; (3.31a)

β̂ = − arcsin
(
F T

1 Q̂F 3

)
; (3.31b)

γ̂ = arctan
(
F T

1 Q̂F 2

F T
1 Q̂F 1

)
(3.31c)

where F p =
[
0Tp−1, 1, 0T3−p

]T ∈ Z3×1 for p = 1, 2, 3. Furthermore, it is clear that at

least four sources are needed to successfully estimate the location and orientation

of the receiver array.
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In conclusion, the proposed localisation and orientation estimation algorithm

is summarised as the following steps.

Step 1: Construct the covariance matrix of the received signal vector and estimate

the azimuths and elevations of all the sources in the local system by a

two-dimensional search of Equ. (3.15).

Step 2: Based on the estimated directions from Step 1, estimate the ranges of

the sources by solving a system of equations given in Equ. (3.24).

Step 3: Based on the estimated ranges from Step 2, estimate the location of the

sensor array in the global system by solving a system of equations using

Equ. (3.26).

Step 4: Estimate the orientation of the sensor array by solving a system of equa-

tions using Equ. (3.29). Subsequently, derive the Euler angles from the

rotation matrix using Equs. (3.31a) to (3.31c).

In addition, note that if the source elevations are negligible, the range estima-

tion step can be circumvented; i.e., the location and orientation of the receiver

array can be estimated without solving the system of quadratic equations. This

simplified approach is detailed in Appendix 3.A.

Besides, if NLOS paths are in existence in addition to the LOS paths, then the

received signal is firstly preprocessed to remove the NLOS paths before any LOS

localisation algorithm is employed [107]. Nevertheless, for the sake of simplicity,

the NLOS paths are not considered in this chapter.

3.3 Computer Simulation Studies

In this section, the performance of the location and orientation estimators of the

receiver array in the three- and two-dimensional scenarios is assessed through
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computer simulation studies.

In the simulations, a nine-element grid array of 0.05 m (half-wavelength) in-

tersensor spacing is utilised. First, the three-dimensional scenario is investigated.

In this case, the array operates in the presence of four sources; their parameters

in the local system are listed in Table 3.2. The parameters of the sensor array

in the global system, together with the Euler angles, are also listed in Table 3.2.

Additionally, other array system parameters are listed in Table 3.3.

The joint azimuth and elevation estimation result in the three-dimensional

scenario is shown in Figure 3.3, where four peaks at the azimuths and eleva-

tions (58◦, 39◦), (331◦, 28◦), (110◦, 22◦), and (273◦, 64◦) can be observed, indicat-

ing a successful estimation of the source directions. Based on the source direction

estimates, the source ranges and the sensor array location and orientation in the

global system can be estimated. The estimation errors of the four phases are listed

Table 3.2: Simulation Parameters of Three-Dimensional Receiver Estimation

Item Azimuth
θ

Elevation
φ

Range
ρ

Roll
α

Pitch
β

Yaw
γ

Source 1 58◦ 39◦ 810 m

60◦ 77◦ 20◦
Source 2 331◦ 28◦ 773 m
Source 3 110◦ 22◦ 537 m

Local

Source 4 273◦ 64◦ 377 m
Global Sensor array 40◦ 38◦ 900 m

Table 3.3: Array System Parameters

Parameter Value

Carrier frequency 3 GHz
Sampling frequency 30 MHz
Number of snapshots 200
SNR 20 dB
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Figure 3.3: Three-dimensional receiver azimuth and elevation estimation.

in Table 3.4. The estimation errors of the azimuths and elevations are in the order

of (1× 10−2)◦, which is as expected since MUSIC is a superresolution algorithm.

Based on these estimation errors, the errors of the ranges and the location of the

sensor array are in the order of 1× 10−1 m, and those of the Euler angles are in

the order of (1× 10−1)◦, which suggests that the location and orientation of the

sensor array are very accurately estimated.

Furthermore, the performance of the estimators in the three-dimensional sce-

nario is assessed in terms of the estimation RMSE. As shown in Figure 3.4, the

RMSE curves of the sensor array location and Euler angles decline as SNR × L

increases for the proposed approach. Moreover, the RMSE reaches the order of

magnitude of 1 m for the location displacement and 1◦ for the Euler angles even

at low SNR or with a small number of snapshots.

Another common localisation approach is based on the TOA of sources. The

comparison of the DOA- and TOA-based approaches can be found in [13]. Note

that the performance of the TOA-based approach is dependent on the bandwidth
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Table 3.4: Estimation Errors of Three-Dimensional Receiver Estimation

Source Azimuth θ Elevation φ Range ρ

1 (0.77× 10−2)◦ (1.76× 10−2)◦ 2.01× 10−1 m
2 (1.29× 10−2)◦ (0.65× 10−2)◦ 1.28× 10−1 m
3 (2.05× 10−2)◦ (0.70× 10−2)◦ 3.11× 10−1 m
4 (1.19× 10−2)◦ (1.82× 10−2)◦ 5.94× 10−1 m

X Y Z
Sensor array

7.52× 10−1 m 7.04× 10−1 m 1.94× 10−1 m

Roll α Pitch β Yaw γ
Euler angle

(1.30× 10−1)◦ (0.40× 10−1)◦ (0.83× 10−1)◦

30 35 40 45 5010−2

10−1

100

101

102

Displacement d

Roll α

Pitch β

Yaw γ

SNR × L (dB)

R
M

SE
(◦

or
m

)

Figure 3.4: Three-dimensional receiver estimation RMSE versus SNR and number
of snapshots. The RMSEs of the displacement d and Euler angles α, β, and γ
decrease as SNR × L increases. The results are averaged over 10 000 simulations.
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of the signal: the estimation is erroneous if the bandwidth is too narrow, in spite

of the increase in the SNR or the number of snapshots.

In addition, similar simulations are carried out in the two-dimensional scenario

using the simplified approach explained in Appendix 3.A. The parameters that

are different from the three-dimensional case are listed in Table 3.5. The azimuth

estimation result is shown in Figure 3.5, where three peaks at the azimuths 154◦,

253◦, and 82◦ can be observed, indicating a successful estimation of the azimuths.

Based on the azimuth estimates, the sensor array location and orientation in the

global system can be directly estimated, without the estimation of the source

Table 3.5: Simulation Parameters of Two-Dimensional Receiver Estimation

Item Azimuth θ Range ρ Yaw γ

Source 1 154◦ 580 m

−16◦Source 2 253◦ 22 mLocal
Source 3 82◦ 993 m

Global Sensor array 125◦ 782 m

0 90 180 270 3600

15

30

45

60

154◦ 253◦
82◦

Azimuth (◦)

C
os

t
fu

nc
tio

n
(d

B)

Figure 3.5: Two-dimensional receiver azimuth estimation.
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ranges. The estimation errors of the source directions and sensor array location

and orientation are listed in Table 3.6. On top, the estimation RMSE is shown

in Figure 3.6. Similar conclusions to the three-dimensional scenario can be drawn

from the estimation results.

Table 3.6: Estimation Errors of Two-Dimensional Receiver Estimation

Source Azimuth θ

1 (4.87× 10−2)◦

2 (4.67× 10−2)◦

3 (0.14× 10−2)◦

X Y
Sensor array

0.09× 10−1 m 5.26× 10−1 m

Yaw γ
Euler angle

(3.46× 10−2)◦

30 35 40 45 5010−2

10−1

100

101

102

Displacement d

Yaw γ

SNR × L (dB)

R
M

SE
(◦

or
m

)

Figure 3.6: Two-dimensional receiver estimation RMSE versus SNR and number
of snapshots. The RMSEs of the displacement d and yaw γ decrease as SNR × L
increases. The results are averaged over 10 000 simulations.
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3.4 Summary

In this chapter, the approach to the estimation the location and orientation of a

receiver array is proposed. A sensor array is utilised to estimate the location and

orientation of its own in a global coordinate system based on the signals trans-

mitted from multiple sources. First, the directions of the sources are estimated

using subspace techniques like MUSIC. Subsequently, with the estimated direc-

tions, the location and orientation of the receiver array are estimated by solving

three systems of equations, without the knowledge of the transmitted signals. In

addition, a simplified approach is proposed for the two-dimensional case. From the

computer simulation results, the approaches presented in this chapter are shown

to estimate the location and orientation with exceeding accuracy, compared to the

DOA–TOA estimation approach.

Appendix 3.A Simplification with Negligible El-

evations

The receiver location and orientation estimation approach described in Section 3.2

can be hugely simplified when the elevations of the sources are negligible.

In two-dimensional space, the elevations of all the sources are zeros; i.e., φi = 0◦

for i = 1, 2, . . . ,M . This implies that the z-coordinates of all the sources are

zeros in both the local and global systems; i.e., r̄z = R̄z = 0M . In addition,

the Euler angles α = β = 0◦ since the global system is simply a rotated (and

displaced) version of the local system about the z-axis only; this indicates that

Q = Qz. Under this circumstance, the estimation approach can be carried out as

the following three-phase procedure.

The first phase is the same as the approach in three-dimensional space. Using
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subspace techniques like MUSIC, the azimuths of the sources can be estimated by

a one-dimensional search of

ξ(θ) = SH(θ)S(θ)
SH(θ)EnEHn S(θ)

(3.32)

where En ∈ CN×(N−M) denotes the noise subspace.

The location of the receiver array is estimated upon completion of the direction

estimation. Recall that the location of the i-th source in the local system can be

mapped to its global counterpart using Equ. (3.18), which can be rewritten as




X̄i

Ȳi

0




=




cos γ, sin γ, 0

− sin γ, cos γ, 0

0, 0, 1







x̄i

ȳi

0




+




X

Y

0




=




cos γ, sin γ, 0

− sin γ, cos γ, 0

0, 0, 1



ρi




cos θi

sin θi

0




+




X

Y

0




= ρi




cos γ cos θi + sin γ sin θi

− sin γ cos θi + cos γ sin θi

0




+




X

Y

0




(3.33)

in a two-dimensional scenario. This implies that

Ȳi − Y
X̄i −X

= − sin γ cos θi + cos γ sin θi
cos γ cos θi + sin γ sin θi

= − tan γ + tan θi
1 + tan γ tan θi

. (3.34)

Rearranging the above equation yields

tan γ =

(
X̄i −X

)
tan θi −

(
Ȳi − Y

)

(
X̄i −X

)
+
(
Ȳi − Y

)
tan θi

. (3.35)
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Note that the above equality holds for any source. Therefore, with a pair of distinct

sources (e.g., the i-th and j-th sources), the following equation can be constructed

(
X̄i −X

)
tan θi −

(
Ȳi − Y

)

(
X̄i −X

)
+
(
Ȳi − Y

)
tan θi

=

(
X̄j −X

)
tan θj −

(
Ȳj − Y

)

(
X̄j −X

)
+
(
Ȳj − Y

)
tan θj

. (3.36)

Rearranging the above equation yields

X2 + Y 2 +
((
−X̄i − X̄j

)
+
(
Ȳi − Ȳj

)
cot(θi − θj)

)
X

+
((
−X̄i + X̄j

)
cot(θi − θj) +

(
−Ȳi − Ȳj

))
Y

+
((
X̄iX̄j + ȲiȲj

)
+
(
X̄iȲj + X̄jȲi

))
cot(θi − θj) = 0, (3.37)

which can be rewritten as

1T3R2 + ATijR +Bij = 0 (3.38)

where

Aij = −
[
G
(
R̄i + GR̄j

)
,F
(
R̄i −GR̄j

)
, 03

]T
Kij ∈ R3×1; (3.39a)

Bij =
[
R̄
T

i R̄j,−R̄
T

i FGR̄j, 0
]
Kij (3.39b)

with

F =




0, 1, 0

1, 0, 0

0, 0, 0



∈ Z3×3; (3.40a)

G =




1, 0, 0

0, −1, 0

0, 0, 0



∈ Z3×3; (3.40b)
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Kij = [1, cot(θi − θj) , 0]T ∈ R3×1. (3.40c)

Note that the terms Aij and Bij are determined by the known locations of the

i-th and j-th sources in the global system and their estimated directions in the

local system. In addition, there exist J =
(
M
2

)
distinct pairs from the M sources.

Define a group as a set of two distinct pairs; i.e., the first pair consists of the i-th

and j-th sources with i < j, the second pair consists of the p-th and q-th sources

with p < q, and i 6= p ∨ j 6= q. Therefore, there exist G =
(
J
2

)
distinct groups

from the J pairs. Taking the difference between Equ. (3.38) of two distinct groups

yields
(
Aij − Apq

)T
R + (Bij −Bpq) = 0. (3.41)

Utilising all the groups, the location of the receiver array R can be estimated by

solving the following system of linear equations

ARR = BR ⇒ R̂ = A#
RBR (3.42)

where

AR =
[
A12 − A13, A12 − A14, . . . , A(M−2)M − A(M−1)M

]T ∈ RG×3; (3.43a)

BR =
[
B13 −B12, B14 −B12, . . . , B(M−1)M −B(M−2)M

]T ∈ RG×1 (3.43b)

with G ≥ 2 (as there are only two unknowns X and Y ); i.e., M > 2.

Next, the orientation of the receiver array is estimated. Equation (3.35) can

be rewritten as

tan γ =

(
X̄i −X

)
sin θi −

(
Ȳi − Y

)
cos θi(

X̄i −X
)

cos θi +
(
Ȳi − Y

)
sin θi

=

(
R̄i −R

)T
GFui

(
R̄i −R

)T
ui

. (3.44)
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Therefore, the receiver array orientation, or the yaw γ, can be estimated subse-

quently with the location estimate R̂ as

γ̂ = 1
M

1TM arctan
(
diag

(
R̄GFU

)
� diag

(
R̄U

))
(3.45)

where

R̄ =
[
R̄1, R̄2, . . . , R̄M

]T − 1M R̂
T ∈ RM×3. (3.46)

Furthermore, it is clear that at least three sources are required in order to

successfully estimate the location and orientation of the receiver array in two-

dimensional space. Additionally, the procedure of solving the system of quadratic

equations is circumvented in this case, which considerably simplifies the estimation

algorithm.

In conclusion, the proposed estimation algorithm for two-dimensional space is

summarised as the following steps.

Step 1: Construct the covariance matrix of the received signal vector and estimate

the azimuths and elevations of all the sources in the local system by a

one-dimensional search of Equ. (3.32).

Step 2: Based on the estimated directions from Step 1, estimate the location of

the sensor array in the global system by solving a system of equations

using Equ. (3.42).

Step 3: Based on the estimated location from Step 2, estimate the Euler angle

(yaw) using Equ. (3.45).
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Chapter 4

Localisation and Orientation

Estimation of Transmitter Arrays

The previous chapter is concerning the localisation and orientation estimation of

receiver arrays. On the contrary, localising and orienting arrayed sources/targets

using distributed sensor arrays have seen many applications in ubiquitous comput-

ing [64], personal communications [108], and military missions [109]. Localisation

is generally achieved using range- or direction-based methods, while orientation is

estimated based on the location estimates of all the elements of the transmitter

arrays. However, these algorithms suffer from pseudo locations when applied to

multi-source scenarios.

In this chapter, a distributed receiver array consisting of groups of small aper-

ture sensor arrays is employed to estimate the locations and orientations of multiple

sources with each source being a transmitter array of a known geometry. The es-

timation is carried out in a three-phase procedure: The DOAs of the sources are

estimated using subspace techniques in the first step. The ranges are estimated

by solving a system of equations. Subsequently, two subspace approaches are

proposed to estimate their orientations with the exploitation of the beamforming
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weight vectors of the sources. Hereafter, the term “transmitter estimation” is used

to refer to this scenario unless otherwise noted.

The rest of this chapter is organised as follows. In Section 4.1, the signal model

of the transmitter estimation scenario is explained. In Section 4.2, the transmitter

estimation approach is detailed as a three-step procedure. In Section 4.3, the

performance of the proposed approaches is evaluated using computer simulation

studies. Last, in Section 4.4, the chapter is summarised.

4.1 Signal Model of Transmitter Estimation

With reference to Figure 4.1, consider an array of N distributed sensors of a

known array geometry. The array can be divided into B groups where the b-th

x

y

z

First group of
the sensor array

b-th group of
the sensor array

B-th group of
the sensor array

X̄i

Ȳi

Z̄i

i-th source array

r̄i

Figure 4.1: Geometry of the sensor array and i-th source. The sensors of the sensor
array are represented by the blue spheres with the primary and secondary array
reference points denoted by the darker ones. The emitters of the i-th source array
are represented by the red cubes with the array reference point denoted by the
darker one. Their locations can be specified in both the sensor (blue and lower
case) and i-th source (red and upper case) coordinate systems.
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one comprises Nb sensors of small intersensor spacing for b = 1, 2, . . . , B with

B∑

b=1
Nb = N . (4.1)

For simplicity, a two-dimensional representative geometry of the first and the b-th

groups is shown in Figure 4.2. With reference to Figure 4.2, the array geometry

of the b-th group is described as

rb1TNb
+
[
rb1, rb2, . . . , rbNb

]
=
[
rxb, ryb, rzb

]T ∈ R3×Nb (4.2)

where rb = [xb, yb, zb]T ∈ R3×1 denotes the Cartesian coordinates of the array

reference point of this group in the sensor coordinate system (blue and lower case

in Figure 4.1), and rbk ∈ R3×1 represents the location of the k-th sensor of the

x

y

First group of
the sensor array

k-th sensor of
the b-th group

b-th group of
the sensor array

rb

rbk

Figure 4.2: Two-dimensional representation of the array geometry. The vector rb
represents location of the array reference point of the b-th group (i.e., the b-th
secondary array reference point) with respect to the primary array reference point.
The vector rbk represents the location of the k-th sensor of the b-th group with
respect to the b-th secondary array reference point.
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b-th group with respect to its own array reference point. The array geometry of

the overall system is the concatenation of those of all the groups and is given as

[
rx, ry, rz

]
=




rx1, ry1, rz1

rx2, ry2, rz2
... ... ...

rxB, ryB, rzB




∈ RN×3. (4.3)

In addition, define the array reference point of the first group as the primary array

reference point and that of the b-th group as the b-th secondary array reference

point.

The sensor array receives signals fromM sources via LOS paths only, where the

i-th source is an array of N̄ emitters. With reference to Figure 4.1, the unknown

location of the i-th source (i.e., the location of its array reference point) in the

sensor coordinate system is parameterised by its unknown azimuth θi, elevation φi,

and range ρi as

r̄i , r̄(θi, φi, ρi) = ρiui ∈ R3×1 (4.4)

where

ui , u(θi, φi) = [cos θi cosφi, sin θi cosφi, sinφi]T ∈ R3×1 (4.5)

is the unit vector pointing from the sensor primary array reference point towards

the i-th source array reference point. In addition, the known array geometry of

the i-th source can be described as

[
R̄i1, R̄i2, . . . , R̄iN̄

]
=
[
R̄Xi, R̄Y i, R̄Zi

]T ∈ R3×N̄ (4.6)

with respect to a coordinate system associated with the source itself; that is, the

i-th source coordinate system (red and upper case in Figure 4.1). The DOD of
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the i-th source is denoted as θ̄i and φ̄i in the i-th source coordinate system. Its

corresponding directional unit vector pointing from the source array reference point

towards the sensor primary array reference point is given as

ūi , ū
(
θ̄i, φ̄i

)
=
[
cos θ̄i cos φ̄i, sin θ̄i cos φ̄i, sin φ̄i

]T ∈ R3×1. (4.7)

Hereafter, the terms “sensor system” and “i-th source system” are used to refer

to the sensor and i-th source coordinate systems, respectively, unless otherwise

noted.

Moreover, the unknown mapping from the sensor system to the i-th source

system is dictated by a transformation matrix given as

Ti =



Qi, −Qir̄i

0T3 , 1


 (4.8)

where Qi ∈ R3×3 is the orthogonal rotation matrix and −Qir̄i is the translation

vector. The rotation matrix Qi can be written as the product of three rotation

matrices as

Qi = QxiQyiQzi (4.9)

where

Qxi =




1, 0, 0

0, cosαi, sinαi

0, − sinαi, cosαi



∈ R3×3; (4.10a)

Qyi =




cos βi, 0, − sin βi

0, 1, 0

sin βi, 0, cos βi



∈ R3×3; (4.10b)
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Qzi =




cos γi, sin γi, 0

− sin γi, cos γi, 0

0, 0, 1



∈ R3×3 (4.10c)

are the rotation matrices about the x-, y-, and z-axis with the unknown Euler

angles αi, βi, and γi, respectively. More information about the Euler angles can

be found in Chapter 3.

In summary, only the receiver array geometry in the sensor system and the

transmitter array geometries in the source systems are known. The rest are un-

known, including the locations r̄i and the orientations Qi (or the Euler angles αi,

βi, and γi) of all the sources, which are to be estimated. The knowns and unknowns

are also summarised in Table 4.1.

Now, consider the received signal model of the sensor array. Suppose that the

i-th source transmits a sequence of channel symbols with the channel symbol pe-

riod Tcs. The q-th channel symbol is denoted as ai[q] for q ∈ Z. The channel

symbol period Tcs is segmented into N̄ chip periods with each chip period having

the duration of T̄ = Tcs/N̄ . Within the `-th chip period for ` = 0, 1, . . . , N̄ − 1,

Table 4.1: Summary of the Knowns and Unknowns

Sensor system Source system
Parameter

Symbol Status Symbol Status

Sensor array geometry rbk known —
Source array geometries — R̄ik̄ known
Source locations r̄i unknown† —
Source parameters θi, φi, and ρi unknown —
Transformation matrices Ti unknown —
Rotation matrices Qxi, Qyi, and Qzi unknown —
Euler angles αi, βi, and γi unknown† —
†These unknowns are to be estimated.
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the channel symbol ai[q] is weighted using a transmit beamforming weight vec-

tor w̄i[`] ∈ CN̄×1 as w̄i[`] ai[q]. Furthermore, the concatenation of all the weight

vectors during a channel symbol period, which is given as

W̄i =
[
w̄i[0] , w̄i[1] , . . . , w̄i

[
N̄ − 1

]]
∈ CN̄×N̄ , (4.11)

is designed to form a distinct unitary matrix; i.e., W̄i and W̄j are randomly chosen

for the i-th and j-th source where i 6= j such that W̄iW̄H
i = IN̄ and W̄iW̄H

j 6= ±IN̄ .

The weighted channel symbols are sent to a DAC and the output continuous

waveform of the N̄ emitters is denoted as mi(t) ∈ CN̄×1.

Since the sensors form a distributed array, the spherical wave propagation

model needs to be considered and the source can follow either the NBA or WBA.

(Localisation under the WBA will be scrutinised in Chapter 5 as well.) Never-

theless, since the aperture of the sensors inside a group is small, spherical wave

propagation can be approximated as plane wave propagation and the NBA is gen-

erally valid.

Based on the above assumptions, the received signal vector can be modelled as

x(t) =
M∑

i=1




S̊i1Si1S̄
H

i1mi(t− τi1)

S̊i2Si2S̄
H

i2mi(t− τi2)
...

S̊iBSiBS̄
H

iBmi(t− τiB)




+ n(t) (4.12)

where, for the i-th source and the b-th group (namely, the b-th subvector in the

bracket), Sib ∈ CNb×1 represents the corresponding plane wave array manifold

vector of the array of sensors in the group, and is given as

Sib , S(θib, φib) = exp
(
−j2πFc

c

[
rxb, ryb, rzb

]
uib

)
(4.13)
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with θib and φib denoting the azimuth and elevation with respect to the b-th sec-

ondary array reference point (see Figure 4.3 for reference). Likewise, S̄ib ∈ CN̄×1

represents the plane wave array manifold vector of the transmitter array and is

given as

S̄ib , S̄
(
θ̄ib, φ̄ib

)
= exp

(
j2πFc

c

[
R̄Xi, R̄Y i, R̄Zi

]
ūib

)
(4.14)

with θ̄ib and φ̄ib denoting the corresponding DODs. The term τib represents the

relative delay between the primary array reference point and the b-th secondary

array reference point. Note that τi1 = 0 for i = 1, 2, . . . ,M as it is associated with

the primary array reference point.

Finally, the subvectors of all the groups are glued together by the spherical

wave array manifold vector S̊i ∈ CB×1 associated with all the secondary reference

x

y

xb

yb

First group of
the sensor array

b-th group of
the sensor array

i-th source array

θi

θib

Figure 4.3: DOA with respect to a secondary array reference point. It is measured
under the coordinate system xbyb, which is the translated version of the sensor
coordinate system xy from its origin to the b-th secondary reference point.
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points with respect to the primary reference point; it is defined as [13]

S̊i =
[
S̊i1, S̊i2, . . . , S̊iB

]T

, S̊(θi, φi, ρi)

= ρai ρ
−a(θi, φi, ρi)� exp

(
−j2πFc

c

(
ρi1B − ρ(θi, φi, ρi)

))
(4.15)

with

ρ(θi, φi, ρi) =
√
ρ2
i 1B + r̊2

x + r̊2
y + r̊2

z − 2ρi
[
r̊x, r̊y, r̊z

]
ui ∈ RB×1 (4.16)

[
r̊x, r̊y, r̊z

]
= [r1, r2, . . . , rB]T ∈ RB×3 (4.17)

where a is the known path loss exponent. Furthermore, n(t) ∈ CN×1 is the complex

AWGN of zero mean and covariance σ2
nIN .

The received signal vector is sampled at the sampling frequency 1/T̄ using

TDLs of length 2N̄ . The received data can be represented as a cube as shown in

Figure 4.4(a), where the q-th page X[q] denotes the samples associated with two

consecutive channel symbol periods starting from the q-th channel symbol period.

4.2 Design of the Estimation Approach

The objective of the estimation problem is to find the location and orientation

of the sources. Initially, the location of all the sources are estimated in terms

of their directions and ranges. Thereafter, their orientations are estimated using

two different approaches with the employment of the source beamforming weight

vectors. The estimation procedure is carried out in the following three phases.
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2N̄

N

L

X[1]
X[q]

X[L]

(a)

Hermitian
transpose

N

2N̄

L

XH [1]
XH [q]

XH [L]

(b)

Figure 4.4: Signal rearrangement. (a) Received data cube. The q-th page X[q]
consists of 2N̄ snapshots received at N sensors. (b) Rearranged signal matrix.
The q-th interval XH [q] is the Hermitian transposed version of X[q].

4.2.1 Direction Estimation

The covariance matrix of the received signal is

Rxx = E
{
X[q]XH [q]

}
∈ CN×N . (4.18)

Define a selection matrix Fb ∈ ZNb×N that extracts the subcovariance matrix

associated with the b-th group as

Fb =
[
ONb×(N1+N2+···+Nb−1), INb

,ONb×(Nb+1+Nb+2+···+NB)
]
. (4.19)

Using the selection matrix of the first group, the corresponding subcovariance

matrix is obtained as

Rx1x1 = F1RxxFT1 . (4.20)
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The azimuth and elevation can be estimated by a two-dimensional search of

ξ(θ, φ) = SH1 (θ, φ)S1(θ, φ)
SH1 (θ, φ)En1EHn1S1(θ, φ)

(4.21)

where S1(θ, φ) ∈ CN1×1 is the array manifold vector associated with the first group

and En1 ∈ CN1×(N1−M) denotes the noise subspace of Rx1x1 .

4.2.2 Range Estimation

Subsequently, the range ρ is estimated upon completion of the estimation of the

azimuth θ̂ and elevation φ̂. In order to estimate the range, the received signal

vector of all the groups is to be employed.

With reference to Equ. (4.12), if the sources are assumed to be uncorrelated,

it can be derived that the trace of the subcovariance matrix associated with the

b-th group is given as

tr
(
FbRxxFTb

)
= Nb

((
K2a
b

)T
P + σ2

n

)
. (4.22)

In Equ. (4.22), the vector Kb ∈ RM×1 is a vector of the ranges of all the sources

associated with the first group and the b-th group, and is given as

Kb =
[
ρ11

ρ1b
,
ρ21

ρ2b
, . . . ,

ρM1

ρMb

]T
(4.23)

with ρib denoting the range between the i-th source and the b-th secondary array

reference point. Moreover, P = [P1, P2, . . . , PM ]T ∈ RM×1 with Pi denoting the

signal power of the i-th source impinging on the primary array reference point.

Note that in Equ. (4.22), the trace is measured from the received signal, the signal

power can be estimated using the subspace beamformer presented in Chapter 2,

and the noise power can be estimated by averaging the least significant eigenvalues
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of the covariance matrix. Therefore, the only unknown is the vector Kb associated

with the ranges.

Furthermore, let λb = tr
(
FbRxxFTb

)
/Nb − σ2

n. By stacking Equ. (4.22) for all

the groups, a system of equations can be formed as

K�2aP = λ (4.24)

where

K = [K1, K2, . . . , KB]T =




ρ11
ρ11
, ρ21

ρ21
, · · · ρM1

ρM1

ρ11
ρ12
, ρ21

ρ22
, · · · ρM1

ρM2
... ... . . . ...

ρ11
ρ1B

, ρ21
ρ2B

, · · · ρMB

ρMb




∈ RB×M (4.25)

and λ = [λ1, λ2, . . . , λB]T ∈ RB×1. The i-th column of K is the a-th root of the

magnitude of the array manifold vector associated with all the secondary array ref-

erence points given in Equ. (4.15). It can be written as a function of the unknown

range ρi of the i-th source as

ρiρ
−1(θi, φi, ρi) = ρi

(
ρ2
i 1B + r̊2

x + r̊2
y + r̊2

z − 2ρi
[
r̊x, r̊y, r̊z

]
ui
)− 1

2

=
(
1B + ρ−1

i Ai + ρ−2
i B

)− 1
2

=
(
Gi

[
1, ρ−1

i , ρ−2
i

]T)− 1
2

(4.26)

where

Ai = −2
[
r̊x, r̊y, r̊z

]
ui ∈ RB×1; (4.27a)

B = r̊2
x + r̊2

y + r̊2
z ∈ RB×1; (4.27b)

Gi = [1B, Ai, B] ∈ RB×3. (4.27c)
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Note that Gi can be constructed from the known array geometry of the secondary

array reference points and the estimated direction of the i-th source. Therefore,

the vector ρiρ−1(θi, φi, ρi) is a function of ρi only. By using Equ. (4.26) of all the

sources, Equ. (4.24) can then be rewritten as

(
[G1,G2, . . . ,GM ]

(
IM �

[
1M , ρ−1, ρ−2

]T))�(−a)
P = λ (4.28)

where ρ = [ρ1, ρ2, . . . , ρM ]T ∈ RM×1 is a vector containing the unknown ranges

of all the sources. By solving Equ. (4.28), the source ranges can be uniquely

identified.

4.2.3 Orientation Estimation Using Two Approaches

In addition to the location estimation, the orientations of all the sources can be

estimated from their DOAs and DODs associated with all the B groups of the

receiver array. The DOAs can be obtained from the estimated source locations

and the known sensor array geometry, while the DODs can be estimated with

the employment of the source beamforming weight vectors. Two approaches are

proposed to estimate the DODs as follows.

Approach without Interference Cancellation

In this approach, the DODs are estimated in the presence of the interference of the

other sources. The signal matrix X[q] can be rearranged (Hermitian transposed)

as shown in Figure 4.4(b). The rearranged matrix XH [q] can be partitioned into

B submatrices as

XH [q] =
[
XH

1 [q] ,XH
2 [q] , . . . ,XH

B [q]
]

(4.29)

where XH
b [q] ∈ C2N̄×Nb for b = 1, 2, . . . , B corresponds to the b-th group. Without

loss of generality, assume that the DODs of the first source are to be estimated.
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Define the preprocessing matrix for the first source associated with a range bin `

as

P` = C1
(
JT2N̄

)` ∈ CN̄×2N̄ (4.30)

where C1 =
[
W̄1,ON̄×N̄

]
∈ CN̄×2N̄ . Since the location of the desired source has

been estimated in the previous phase, all the range bins `1b for b = 1, 2, . . . , B

associated with the desired source can be calculated from the estimated source

location and the known receiver array geometry. Using the estimated range bins,

apply the preprocessing matrices onto the rearranged signal matrix as

X̄[q] =
[
P`11XH

1 [q] ,P`12XH
2 [q] , . . . ,P`1B

XH
B [q]

]
∈ CN̄×N . (4.31)

The eigenspace of the covariance matrix Rx̄x̄ of X̄[q] associated with its most

significant eigenvalues is spanned by the source array manifold vectors S̄1b for

b = 1, 2, . . . , B, together with the transformed versions of the source array manifold

vectors S̄ib for i = 2, 3, . . . ,M and b = 1, 2, . . . , B (this transformation is governed

by the preprocessing matrix). Since, in general, the transformed array manifold

vectors do not lie on the original array manifold, the DODs of the desired source

can then be estimated by a two-dimensional search of

ξ
(
θ̄, φ̄

)
=

S̄
H

1

(
θ̄, φ̄

)
S̄1

(
θ̄, φ̄

)

S̄
H

1

(
θ̄, φ̄

)
En̄1EHn̄1S̄1

(
θ̄, φ̄

) (4.32)

where S̄1

(
θ̄, φ̄

)
∈ CN̄×1 denotes the array manifold vector associated with the

desired source and En̄1 denotes the noise subspace of Rx̄x̄.

Approach with Interference Cancellation

In an alternative approach, interference from all the other sources is eliminated

prior to the DOD estimation of the desired source.
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With the utilisation of the subspace beamforming techniques, the receiver

beamforming weight vector for the desired source can be defined as

w1 = P⊥Ej
S1 ∈ CN×1 (4.33)

where P⊥Ej
∈ CN×N is the projection matrix onto the complementary subspace of

the one spanned by the columns of Ej ∈ CN×B(M−1), which is defined as

Ej = [E2,E3, . . . ,EM ] (4.34)

where

Ei =




Si1, 0N1 , · · · 0N1

0N2 , Si2, · · · 0N2

... ... . . . ...

0NB
, 0NB

, · · · SiB




∈ CN×B; (4.35)

i.e., Ej is the concatenation of all Ei except for i = 1. The weight vector w1 is

(right) applied onto the preprocessed signal matrix as

x̄[q] = X̄[q]w1. (4.36)

Using the noise subspace of the covariance matrix of x̄[q], the DODs of the desired

source can be estimated using a cost function similar to Equ. (4.32), except that

the dimension of the noise subspace is increased to N̄ −B.

Both approaches elaborated above have their respective advantages and dis-

advantages. The approach without interference cancellation can deliver successful

estimates even when the sources follow the NBA among different groups of sensors,

as the signals of different groups are processed individually; however, it requires

a much higher dimensional observation space. By contrast, in the approach with
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interference cancellation, the number of emitters required for each source is hugely

reduced since the dimension of the signal subspace is reduced; nonetheless, this

approach fails when (some of) the sources follow the NBA among (some of) the

groups. (Potentially, spatial smoothing can be applied to solve this problem [110].)

Upon completion of the estimation of the DODs of the desired source, the

rotation matrices from the sensor system to the source system can be estimated.

With the DOD estimates ˆ̄θ1b and ˆ̄φ1b available, the DOD directional vectors ˆ̄u1b can

be derived. Similarly, from the DOA estimate θ̂1 and φ̂1, range estimate ρ̂1, and

the known array geometry, the DOA directional vectors û1b can be constructed.

In addition, the mapping from a DOA directional vector to its DOD counterpart

is dictated by the rotation matrix Q1 as

ˆ̄u1b = −Q1û1b (4.37)

since the LOS paths are considered only. Thus, the rotation matrix can be esti-

mated as

Q̂1 = −Ū1U#
1 (4.38)

where U1 ∈ R3×B and Ū1 ∈ R3×B are the matrices containing the estimated DOA

and DOD directional vectors, respectively. Furthermore, the Euler angles α1, β1

and γ1 can be derived from Q̂1 as

α̂1 = arctan
(
F T

2 Q̂1F 3

F T
3 Q̂1F 3

)
; (4.39a)

β̂1 = − arcsin
(
F T

1 Q̂1F 3

)
; (4.39b)

γ̂1 = arctan
(
F T

1 Q̂1F 2

F T
1 Q̂1F 1

)
(4.39c)

where F p =
[
0Tp−1, 1, 0T3−p

]T ∈ Z3×1 for p = 1, 2, 3.
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In conclusion, the localisation and orientation estimation approach proposed

for the transmitter arrays is summarised as the following steps.

Step 1: Construct the covariance matrix of the received signal vector of all the

groups using Equ. (4.18). Obtain the subcovariance matrix associated

with the first group using Equ. (4.20). Estimate the azimuth and eleva-

tion of all the sources by a two-dimensional search of Equ. (4.21).

Step 2: Obtain the subcovariance matrices associated with all the groups and

compute their traces. Using the traces and the estimated source direc-

tions from Step 1, form a system of equations using Equ. (4.28). Estimate

the source ranges by solving this system of equations.

Step 3: Rearrange the received signal matrix using Equ. (4.29). Preprocess the

rearranged signal matrix using Equ. (4.31). If the approach with interfer-

ence cancellation is utilised, eliminate the interference using Equ. (4.36)

as an additional substep. Estimate the DODs by a two-dimensional

search of Equ. (4.32). Derive the Euler angles from the estimated DOAs

and DODs using Equs. (4.39a) to (4.39c).

Note that, similar to Chapter 3, if NLOS paths are in existence, then sequences

can be employed to distinguish different sources and the LOS paths can be selected

using the signal power.

4.3 Computer Simulation Studies

In this section, the performance of the location and orientation estimators of the

transmitter arrays is assessed through computer simulation studies.

In the simulations, a 20-element receiver array of array aperture 707.18 m is

utilised. It can be partitioned into four groups where each group is a five-element
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cross array of 0.05 m (half-wavelength) intersensor spacing. The sensor array op-

erates in the presence of two sources where each source is a 13-element transmitter

cross array of 0.05 m (half-wavelength) intersensor spacing. Assume that the first

source is the desired source to be estimated. In addition, the array geometries are

given in Table 4.2. The geometry of the sources and the sensor arrays projected

onto the xy-plane are also shown in Figure 4.5. Other array system parameters

are given in Table 4.3. Furthermore, the parameters and derived parameters of

the sources are listed in Tables 4.4 and 4.5.

Prior to the assessment of the proposed localisation and orientation estimation

Table 4.2: Array Geometries of Transmitter Estimation

Sensor x y z Sensor x y z

1 −0.05 m 0.00 m 0.00 m 11 499.95 m 0.00 m 0.00 m
2 0.00 m −0.05 m 0.00 m 12 500.00 m −0.05 m 0.00 m
3 0.00 m 0.00 m 0.00 m 13 500.00 m 0.00 m 0.00 m
4 0.00 m 0.05 m 0.00 m 14 500.00 m 0.05 m 0.00 m
5 0.05 m 0.00 m 0.00 m 15 500.05 m 0.00 m 0.00 m
6 −0.05 m 500.00 m 0.00 m 16 499.95 m 500.00 m 0.00 m
7 0.00 m 499.95 m 0.00 m 17 500.00 m 499.95 m 0.00 m
8 0.00 m 500.00 m 0.00 m 18 500.00 m 500.00 m 0.00 m
9 0.00 m 500.05 m 0.00 m 19 500.00 m 500.05 m 0.00 m
10 0.05 m 500.00 m 0.00 m 20 500.05 m 500.00 m 0.00 m

Emitter x y z Emitter x y z

1 −0.10 m 0.00 m 0.00 m 8 0.00 m 0.00 m 0.05 m
2 −0.05 m 0.00 m 0.00 m 9 0.00 m 0.00 m 0.10 m
3 0.00 m −0.10 m 0.00 m 10 0.00 m 0.05 m 0.00 m
4 0.00 m −0.05 m 0.00 m 11 0.00 m 0.10 m 0.00 m
5 0.00 m 0.00 m −0.10 m 12 0.05 m 0.00 m 0.00 m
6 0.00 m 0.00 m −0.05 m 13 0.10 m 0.00 m 0.00 m
7 0.00 m 0.00 m 0.00 m
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Figure 4.5: Source and sensor array geometry. The geometry is projected onto the
xy-plane and the z-coordinates are not shown. Note that there are five sensors in
each group; however, they seem to overlap in the figure as the intersensor spacing
is relatively small compared with the array aperture.

Table 4.3: Array System Parameters

Parameter Value

Carrier frequency 3 GHz
Sampling frequency 30 MHz
Number of snapshots 200
SNR 20 dB

Table 4.4: Simulation Parameters of Transmitter Estimation

Source Azimuth
θ

Elevation
φ

Range
ρ

Roll
α

Pitch
β

Yaw
γ

1 57◦ 9◦ 532 m −156◦ 22◦ 26◦

2 240◦ 31◦ 505 m 17◦ 3◦ 171◦
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Table 4.5: Derived Parameters of the Desired Source

DOA DOD
Group

Azimuth θ Elevation φ Azimuth θ̄ Elevation φ̄

1 57.00◦ 9.00◦ 91.45◦ −22.42◦

2 −11.71◦ 15.89◦ 157.84◦ −2.71◦

3 115.88◦ 9.64◦ 35.50◦ −1.80◦

4 −164.49◦ 20.56◦ 326.79◦ 46.87◦

approaches, the direction-based localisation approach explained in [89] is evaluated

first. It estimates the DOAs of all the sources from all the groups of the arrays with

reference to a common direction reference. With the DOA estimates θ̂ib and φ̂ib

available, the source locations can be estimated by solving a system of equations

given as 


(r̄i − r1)− ‖r̄i − r1‖u
(
θ̂i1, φ̂i1

)

(r̄i − r2)− ‖r̄i − r2‖u
(
θ̂i2, φ̂i2

)

...

(r̄i − rB)− ‖r̄i − rB‖u
(
θ̂iB, φ̂iB

)




= 0B. (4.40)

The estimated source locations projected onto the xy-plane are shown in Figure 4.6

for simplicity. The algorithm delivers multiple location estimates, two of which

are in the vicinity of the source locations, while the rest are pseudo locations. All

the estimated locations need to be evaluated with a geometry constraint in order

to remove the pseudo locations.

Now, the proposed approaches are evaluated. The joint DOA azimuth and el-

evation estimation result is shown in Figure 4.7, where two peaks at the azimuths

and elevations (57◦, 9◦) and (240◦, 31◦) can be observed, indicating a successful

estimation of the azimuths and elevations. Based on the above direction esti-

mates, by solving the system of equations given in Equ. (4.28), the ranges are

estimated as 531.94 m and 507.11 m, with estimation errors of 6.50× 10−2 m and

96 of 150



Imperial College London Chapter 4. Localisation and Orientation Estimation of Tx Arrays

−600 −400 −200 0 200 400 600

−400

−200

0

200

400

First source

Second source

x (m)

y
(m

)

Figure 4.6: Pseudo locations of direction-based localisation. The estimation results
(blue circles) are projected onto the xy-plane for simplicity. Only two of them are in
the vicinity of the true locations (red pluses) while the others are pseudo locations.
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Figure 4.7: DOA azimuth and elevation estimation.
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2.11 m, respectively. Thus, the source locations can be inferred from the azimuth,

elevation, and range estimates. Subsequently, the orientation of the desired source

is estimated. The joint DOD azimuth and elevation estimation results using the

approaches without and with interference cancellation are shown in Figures 4.8

and 4.9, respectively, where four peaks at the azimuths and elevations (91◦,−22◦),

(158◦,−3◦), (36◦,−2◦), and (327◦, 47◦) can be observed, indicating a successful

estimation of the DODs. Note that there are estimation errors due to the search

step size of 1◦. The estimation errors can be further reduced by contracting the

search space and decreasing the search step size. Based on the estimated DOAs

and DODs, the Euler angles can be derived. The estimated Euler angles are −156◦,

22◦, and 26◦, respectively, compliant with the parameters given in Table 4.4.

Furthermore, the performance of the estimators is assessed in terms of the esti-

mation RMSE, which is shown in Figures 4.10 and 4.11. As shown, the estimator

delivers very accurate estimation of the location and orientation of the sources.
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Figure 4.8: DOD azimuth and elevation estimation without interference cancella-
tion.
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Figure 4.9: DOD azimuth and elevation estimation with interference cancellation.
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Figure 4.10: Transmitter localisation RMSE versus SNR and number of snapshots.
The RMSEs of the displacement d, azimuth θ, elevation φ, and range ρ decrease
as SNR × L increases. The results are averaged over 10 000 simulations.
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Figure 4.11: Transmitter orientation estimation RMSE versus SNR and number
of snapshots. The RMSEs of the Euler angles α, β, and γ using the approaches
without and with interference cancellation decrease as SNR × L increases. The
results are averaged over 10 000 simulations.

Even at low SNR or small number of snapshots, the estimation errors are less than

1 m for the location and (almost) less than 1◦ for the Euler angles. Additionally,

the two approaches to the orientation estimation deliver similar estimation errors

of the Euler angles.

4.4 Summary

In this chapter, the approach to the estimation of the location and orientation of

multiple sources is proposed. A distributed receiver array consisting of groups of

small aperture sensor arrays is employed to estimate the location and orientation

of multiple sources with each one being a transmitter array. The directions of the

sources are estimated using subspace techniques like MUSIC first. Then, based

on the direction estimates, the ranges are estimated by solving a system of equa-
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tions. Thereafter, two approaches can be utilised to estimate the orientations with

the employment of the source beamforming weight vectors. The approach with-

out interference cancellation can correctly estimate source orientations even when

the sources follow the NBA among all the groups of the receiver array; however,

it generally requires more number of transmitter elements of each source as the

dimension of the signal subspace, which contains interference, is higher. On the

contrary, the approach with interference cancellation requires much less number

of transmitter elements since the interference is eliminated; nonetheless, it fails to

estimate source orientations when the sources follow the NBA. From the computer

simulation results, the approaches proposed in this chapter are shown to estimate

the source location and orientation with exceeding accuracy.
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Chapter 5

Localisation under the Wideband

Assumption

In array processing, subspace techniques like MUSIC are widely employed to solve

the estimation problem. Despite the extensive researches of these algorithms in

the literature, most of them assume that the wavefront of the impinging signal

does not vary significantly when traversing through the sensors of the array, which

is known as the NBA as shown in Figures 5.1(a) and 5.1(c) [1]. However, in a

distributed array of sensors, the NBA may not be valid with a high probability

due to the difference in the ranges between the source and the sensors, and the

WBA, where the wavefront does vary significantly as shown in Figures 5.1(b)

and 5.1(d), needs to be considered. Under the WBA, it is highly likely that

the above subspace estimation algorithms fail to deliver correct estimates of the

source parameters. Note that the concept of the NBA/WBA, where the overall

geometry of the source and array plays a role, should not be confused with the

narrowband/wideband signal,1 as contrasted in Figure 5.1.
1A wideband source (large bandwidth) may be under the NBA for a particular location of

the source and a given array geometry; however, if the source moves to another position in space
and the array geometry remains the same, it may be under the WBA.
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Figure 5.1: Wideband/narrowband assumption and wideband/narrowband signal.
The density of the curves propagating from the source to the sensors represents the
bandwidth of the baseband signal; i.e., the denser the curves are, the higher the
bandwidth is. (a) Narrowband signal under narrowband assumption. (b) Narrow-
band signal under wideband assumption. (c) Wideband signal under narrowband
assumption. (d) Wideband signal under wideband assumption.

In this chapter, two approaches are proposed to address the localisation prob-

lems under the WBA. In the first subcovariance-based (SCB) approach, the subco-

variance of the received signal vector is utilised to estimate the source locations. In

the second reference-rotation-based (RRB) approach, the rotation of the array ref-

erence point is employed to transform the WBA problem to its NBA counterpart so

that localisation algorithms under the NBA are readily applicable. Through com-

puter simulation studies, these two approaches are shown to estimate the source

locations with outstanding accuracy.

The rest of this chapter is organised as follows. In Section 5.1, the signal

model under the WBA is presented. In Sections 5.2 and 5.3, the SCB and RRB
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approaches to the localisation problem are explained, respectively. In Section 5.4,

computer simulation studies are carried out to investigate the performance of the

SCB and RRB approaches in various scenarios. Last, in Section 5.5, the chapter

is summarised.

5.1 Signal Model under the Wideband Assump-

tion

Consider an array of N widely distributed sensors of a known array geometry. The

array receives the signals from M sources via the LOS paths only with M < N .

The geometry of the array and i-th source is shown in Figure 5.2, where the sensors

are represented by the blue circles and the i-th source is represented by the red

x

y

θi

i-th source

First sensor

ρi

r̄i

k-th sensor

N -th sensor

τik

Figure 5.2: Spherical wave propagation from the i-th source to an array of sensors.
The sensors of the array are represented by the blue circles with the array reference
point denoted by the darker one. The source is represented by the red square. The
location of the source is parameterised by its azimuth θi and range ρi. The delay τik
is the relative delay of the i-th source between the array reference point and the
k-th sensor.
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square. The array geometry can be described as

[r1, r2, . . . , rN ] =
[
rx, ry, rz

]T ∈ R3×N (5.1)

where rk = [xk, yk, zk]T ∈ R3×1 is the Cartesian coordinates of the k-th sensor and

rx, ry, and rz ∈ RN×1 contain the coordinates of the x-, y-, and z-axis of all the

sensors, respectively. Without loss of generality, the first sensor is located at the

origin of the coordinate system and is selected as the array reference point. In

addition, assume that the elevation φi = 0◦ for all the sources. Hence, the location

of the i-th source can be expressed in terms of its azimuth θi and range ρi as

r̄i , r̄(θi, ρi) = ρiui ∈ R3×1 (5.2)

with

ui , u(θi) = [cos θi, sin θi, 0]T ∈ R3×1 (5.3)

being a unit vector pointing from the array reference point towards the i-th source.

Since the array aperture is considerably larger than the carrier wavelength,

spherical wave propagation needs to be considered. The spherical wave array

manifold vector of the i-th source is given as [13]

Si , S(θi, ρi) = ρai ρ
−a(θi, ρi)� exp

(
−j2πFc

c

(
ρi1N − ρ(θi, ρi)

))
∈ CN×1 (5.4)

with

ρ(θi, ρi) =
√
ρ2
i 1N + r2

x + r2
y + r2

z − 2ρi
[
rx, ry, rz

]
ui ∈ RN×1 (5.5)

where a is the known path loss exponent.

If the messages mi(t) of all the sources follow the NBA, then the baseband
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signal vector received at the array is

x(t) = [x1(t) , x2(t) , . . . , xN(t)]T =
M∑

i=1
Simi(t) + n(t) ∈ CN×1 (5.6)

where n(t) represents the complex AWGN of zero mean and covariance σ2
nIN .

Equation (5.6) can be rewritten in a more compact matrix format as

x(t) = Sm(t) + n(t) (5.7)

where

S = [S1, S2, . . . , SM ] ∈ CN×M ; (5.8)

m(t) = [m1(t) ,m2(t) , . . . ,mM(t)] ∈ CM×1. (5.9)

Since the messages and noise are assumed to be uncorrelated, the covariance

matrix of the received signal vector x(t) is

Rxx = E
{
x(t)xH(t)

}

= E
{
Sm(t)mH(t)SH

}
+ E

{
n(t)nH(t)

}

= S E
{
m(t)mH(t)

}

︸ ︷︷ ︸
=Rmm

SH + E
{
n(t)nH(t)

}

︸ ︷︷ ︸
=Rnn

= SRmmSH + Rnn ∈ CN×N (5.10)

where Rmm ∈ CM×M and Rnn = σ2
nIN ∈ RN×N are the covariance matrices of the

messages and noise, respectively.

According to the structure of Rxx given in Equ. (5.10), the number of its most

significant eigenvalues is determined by rank(Rmm), which is equal to the number

of sources M . Equivalently, its minimum eigenvalue is σ2
n and its multiplicity is
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N−M , which can then be utilised to infer the number of sources as N−(N −M).

Furthermore, the subspace spanned by the eigenvectors corresponding to the min-

imum eigenvalues is known as the noise subspace, which is complementary to the

signal subspace spanned by the manifold vectors of the sources. Therefore, by

using projection operators, the manifold vectors orthogonal to the noise subspace

as well as their parameters (i.e., locations in terms of azimuths and ranges) can

be estimated.

In contrast to the NBA, if at least one message follows the WBA, the received

signal vector needs to be modelled as

x(t) =
M∑

i=1
Si �mi(t) + n(t) ∈ CN×1 (5.11)

where mi(t) ∈ CN×1 contains the delayed copies of the i-th message given as

mi(t) = [mi(t− τi1) ,mi(t− τi2) , . . . ,mi(t− τiN)]T (5.12)

with τik denoting the relative delay of the i-th source between the array reference

point and the k-th sensor. Equation (5.11) can also be rewritten in a matrix format

as

x(t) = (S�M(t)) 1M + n(t) (5.13)

where

S = [S1, S2, . . . , SM ] ∈ CN×M ; (5.14)

M(t) = [m1(t) ,m2(t) , . . . ,mM(t)] ∈ CN×M . (5.15)

In a similar fashion, since the messages and noise are uncorrelated, the covari-
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ance matrix of the received signal vector is

Rxx = E
{
x(t)xH(t)

}

= E
{

(S�M(t)) 1M1TM (S�M(t))H
}

+ E
{
n(t)nH(t)

}

= S̄ E
{

vec(M(t)) vecH(M(t))
}

︸ ︷︷ ︸
=Rmm

S̄H + E
{
n(t)nH(t)

}

︸ ︷︷ ︸
=Rnn

= S̄RmmS̄H + Rnn ∈ CN×N (5.16)

where S̄ = [diag(S1) , diag(S2) , . . . , diag(SM)] ∈ CN×MN and Rmm ∈ CMN×MN

denotes the covariance matrix of the delayed messages. Note that the number of

the most significant eigenvalues of Rxx is determined by rank(Rmm) but bounded

from above by N . In addition,M < rank(Rmm) ≤MN if the messages of different

sources are incoherent and at least one source follows the WBA. Therefore, the

number of the most significant eigenvalues is between M + 1 and N , inclusively.

If rank(Rmm) ≥ N , then the signal subspace of Rxx spans the entire observation

space and the dimension of the noise subspace is zero. In this case, subspace

estimation techniques like MUSIC fail to estimate the source parameters.

In order to address this issue, two approaches to source localisation under the

WBA are proposed in the following sections.

5.2 Subcovariance-Based Approach

In this section, the SCB approach under the WBA is explained. It uses the subco-

variance matrix of the received signal vector and its singular value decomposition

to estimate the source locations.

Note that for some location (θ, ρ), its corresponding relative delay vector can
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be derived from the known array geometry as

τ(θ, ρ) = [τ1(θ, ρ) , τ2(θ, ρ) , . . . , τN(θ, ρ)]T = 1
c

(
ρ1N − ρ(θ, ρ)

)
. (5.17)

Hereafter, the arguments θ and ρ of τ(θ, ρ) and its elements are omitted for sim-

plicity unless otherwise noted. The received signal vector x(t) can be reversely

delayed using τ as

x̄(t) = [x1(t+ τ1) , x2(t+ τ2) , . . . , xN(t+ τN)]T ∈ CN×1 (5.18)

and, consequently, the corresponding reversely delayed message vector of the i-th

source is

m̄i(t) = [mi(t− τi1 + τ1) ,mi(t− τi2 + τ2) , . . . ,mi(t− τiN + τN)]T ∈ CN×1.

(5.19)

There are the following two cases with regards to the reversely delayed i-th message

vector.

• If there exists exactly one i such that θi = θ and ρi = ρ, then τik = τk

for k = 1, 2, . . . , N and all the elements of m̄i(t) are aligned at delay zero;

i.e., m̄i(t) = mi(t) 1N . Furthermore, it is assumed that different sources do

not share the same relative delay at the same sensor other than the array

reference point; thus, τjk 6= τk for j 6= i and k = 2, 3, . . . , N . This implies

that the reversely delayed i-th message follows the NBA, whereas the other

sources still remain under the WBA.

• Otherwise, if θi 6= θ and ρi 6= ρ ∀i, then all the sources still remain under

the WBA.

Hold that thought and now examine the subcovariance matrix of the reversely
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delayed received signal vector given in Equ. (5.18). Define two selection matrices

associated with two nonoverlapping (but possibly interlacing) subvectors of x̄(t).

Without loss of generality, assume that the two subvectors contain the first NA and

last NB elements, respectively, with N = NA + NB. Thus, the selection matrices

can be defined as

FA = [INA
,ONA×NB

] ∈ ZNA×N ; (5.20a)

FB = [ONB×NA
, INB

] ∈ ZNB×N . (5.20b)

Using the selection matrices, the corresponding subcovariance matrix can be re-

trieved from the covariance matrix of x̄(t) as

Rx̄Ax̄B
= FAE

{
x̄(t) x̄H(t)

}
FTB

=
M∑

i=1
FASiSHi FTB � FAE

{
m̄i(t) m̄H

i (t)
}
FTB + FAE

{
n̄(t) n̄H(t)

}
FTB

=
M∑

i=1
SiAS

H
iB � E

{
m̄iA(t) m̄H

iB(t)
}

︸ ︷︷ ︸
=Rm̄iAm̄iB

+ E
{
n̄A(t) n̄HB (t)

}

︸ ︷︷ ︸
=Rn̄An̄B

=
M∑

i=1
SiAS

H
iB � Rm̄iAm̄iB

+ Rn̄An̄B
∈ CNA×NB (5.21)

where the associated subvectors of the array manifold vector Si, reversely delayed

i-th message vector m̄i(t), and reversely delayed noise vector n̄(t) are denoted by

the subscripts A and B, respectively.

If the reversely delayed i-th message vector follows the NBA, the associated

message subvectors are simplified to m̄iA(t) = mi(t) 1NA
and m̄iB(t) = mi(t) 1NB

,

which suggests that

Rm̄iAm̄iB
= E

{
mi(t) 1NA

m∗i (t) 1TNB

}

= E{mi(t)m∗i (t)} 1NA
1TNB
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= Pi1NA
1TNB

. (5.22)

Otherwise, if it follows the WBA, then its elements are uncorrelated since they are

not aligned at delay zero, and the transmitted message is assumed to have a sharp

autocovariance. Therefore, the subcovariance matrix of the reversely delayed i-th

message vector is Rm̄iAm̄iB
= ONA×NB

. In summary, this matrix has the following

format

Rm̄iAm̄iB
=





Pi1NA
1TNB

, θi = θ ∧ ρi = ρ; (5.23a)

ONA×NB
, θi 6= θ ∨ ρi 6= ρ. (5.23b)

In a similar fashion, the subcovariance matrix of the reversely delayed noise vector

is Rn̄An̄B
= ONA×NB

.

Based on the above analysis as well as the two cases explained before, the

subcovariance matrix of the reversely delayed received signal is

Rx̄Ax̄B
=





PiSiAS
H
iB, ∃i : θi = θ ∧ ρi = ρ; (5.24a)

ONA×NB
, ∀i : θi 6= θ ∨ ρi 6= ρ. (5.24b)

In the first case, Rx̄Ax̄B
is a rank one matrix and is completely determined by the

subvectors of the array manifold vector Si. Its singular value decomposition can

be written as

Rx̄Ax̄B
= Ux̄A

Dx̄Ax̄B
VH
x̄B

(5.25)

where Ux̄A
∈ CNA×NA is a unitary matrix containing the left singular vectors,

Dx̄Ax̄B
∈ RNA×NB is a rectangular diagonal matrix containing the singular values

on its diagonal, and Vx̄B
∈ CNB×NB is a unitary matrix containing the right singular
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vectors. Besides, the structure of the matrix containing the singular values is

Dx̄Ax̄B
=



Pi ‖SiA‖ ‖SiB‖ , 0TNB−1

0NA−1, O(NA−1)×(NB−1)


. (5.26)

In other words, among the min(NA, NB) singular values, there is only one nonzero

singular value, which is referred to as the most significant singular value. Further,

the left singular vector corresponding to this most singular value spans the same

subspace as SiA and, similarly, this applies to the right singular vector and SiB.

Moreover, in the second case, Rx̄Ax̄B
is a zero matrix and its “most significant”

singular vector does not span the same subspace as the array manifold vector of any

source. Therefore, the parameters of (the subvectors of) the array manifold vectors

can be estimated using the most significant singular vector of Rx̄Ax̄B
, regardless of

the assumption the sources follow before the received signal is reversely delayed.

According to the theory explained above, the localisation algorithm in practice

is designed as follows. Suppose that the received signal is collected at the sampling

frequency Fs and sampling period Ts = 1/Fs. It is also assumed that the sampling

frequency is high enough so that the autocovariance properties of the message

signals of all the sources can be recovered. Suppose that L snapshots are collected

at the array, which can be written in a matrix format as

X = [x(t1) , x(t2) , . . . , x(tL)] = [x1, x2, . . . , xN ]T ∈ CN×L (5.27)

where t` = `Ts is the `-th time instance and xk ∈ CL×1 contains all the L snapshots

collected at the k-th sensor starting from the first time instance. In order to

estimate the source locations in terms of their parameters θ and ρ, a cost function

of these two parameters is to be maximised by a two-dimensional search of them

over the parameter space. Note that, in contrast to the MUSIC algorithm in [19],
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the null subspace in the SCB approach is parameter dependent. Based on the

received signal matrix given in Equ. (5.27), the estimation procedure is described

as follows [111].

First, for a particular (θ, ρ), calculate the discrete relative delay vector based

on Equ. (5.17) as

`(θ, ρ) = [`1(θ, ρ) , `2(θ, ρ) , . . . , `N(θ, ρ)]T = bFsτ(θ, ρ)c ∈ ZN×1 (5.28)

where `k(θ, ρ) denotes its k-th element. Then, reversely delay the signal received

at the k-th sensor (i.e., the k-th row of X, in the format of a column vector) using

`k(θ, ρ) as

x̄k(θ, ρ) = J−`k(θ,ρ)+L
L x̄k ∈ CL×1 (5.29)

where

JL =




0TL−1, 0

IL−1, 0L−1


 ∈ ZL×L (5.30)

is the L-dimensional lower shift matrix. By repeating this reversely delaying step

for k = 1, 2, . . . , N (i.e., all the rows of X), the reversely delayed received signal

matrix associated with this (θ, ρ) can be formed as

X̄(θ, ρ) = [x̄1(θ, ρ) , x̄2(θ, ρ) , . . . , x̄N(θ, ρ)]T ∈ CN×L. (5.31)

In addition, the subcovariance matrix of X̄(θ, ρ) associated with the NA and NB

sensors can be obtained as

Rx̄Ax̄B
(θ, ρ) = 1

L
FAX̄(θ, ρ) X̄H(θ, ρ)FB ∈ CNA×NB . (5.32)

Subsequently, estimate the null subspace of Rx̄Ax̄B
(θ, ρ) using its singular value

decomposition. Take its left singular vectors as an example; its null subspace,

113 of 150



Imperial College London Chapter 5. Localisation under the Wideband Assumption

which is denoted as En(θ, ρ) ∈ CNA×(NA−1), consists of its left singular vectors

corresponding to its NA−1 least significant singular values. With the employment

of the null subspace, evaluate the following cost function

ξ(θ, ρ) = SHA (θ, ρ)SA(θ, ρ)
SHA (θ, ρ)En(θ, ρ)EHn (θ, ρ)SA(θ, ρ)

(5.33)

where SA(θ, ρ) contains the first NA elements of the array manifold vector param-

eterised by θ and ρ.

The above procedure from Equs. (5.28) to (5.33) is repeated for all θ and ρ

in the parameter space to find the source locations (θ, ρ) at which Equ. (5.33) is

maximised.

In conclusion, the proposed SCB localisation approach is summarised as the

following steps.

Step 1: For a particular (θ, ρ) calculate the discrete relative delay vector using

Equ. (5.28).

Step 2: Reversely delay the signals received at all the sensors using Equ. (5.29).

Form the reversely delayed signal matrix using Equ. (5.31).

Step 3: Calculate the subcovariance matrix using Equ. (5.32).

Step 4: Find the null subspace of the subcovariance matrix as its left or right

singular vectors corresponding to its least significant singular values.

Step 5: Evaluate the cost function Equ. (5.33).

Step 6: Repeat Steps 1 to 5 for all θ and ρ in the parameter space to estimate

the source locations.
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5.3 Reference-Rotation-Based Approach

On top of the SCB approach described in Section 5.2, the source locations can be

estimated under the WBA by exploiting the concept of the rotation of the array

reference point.

As explained in Section 5.1, the first sensor is selected as the array reference

point without loss of generality. This is defined as the primary reference point,

utilising which the manifold vector associated with the i-th source is Si. Now,

consider that the array reference point changes to the k-th sensor. In this case,

the new reference point is rk and the array geometry together with the azimuths

and ranges of all the sources is measured with respect to rk. Furthermore, the

manifold vector of the i-th source under the new reference point is S−1
ik Si where

Sik is the k-th element of Si [12, 13].

In the presence of M sources, the received signal vector at the array with the

k-th sensor being the array reference point can be expressed as

xk(t) =
M∑

i=1
S−1
ik Si �mi(t) + n(t) ∈ CN×1. (5.34)

Poll the reference point from the first sensor to the last and preprocess (concatenate

and average) all the received signal vectors as

x̄(t) = 1√
N

(IN ⊗ 1N)T
[
xT1 (t) , xT2 (t) , . . . , xTN(t)

]T

= 1√
N

(IN ⊗ 1N)T (((1N1M � S)� (S�M(t))) 1N + 1N ⊗ n(t))

= 1√
N

((
(1N1M � S)� 1TN (S�M(t))

)
1N + 1N ⊗ 1TNn(t)

)

= 1√
N

(
(1N1M � S) diag

(
(S�M(t))T 1N

)
1N + 1N1TNn(t)

)

= 1√
N

(
(1N1M � S) (S�M(t))T 1N + 1N1TNn(t)

)
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= (1N1M � S)︸ ︷︷ ︸
=A

1√
N

(S�M(t))T 1N
︸ ︷︷ ︸

=m̄(t)

+ 1√
N

1N1TNn(t)
︸ ︷︷ ︸

=n̄(t)

= Am̄(t) + n̄(t) (5.35)

where A, m̄(t), and n̄(t) are the preprocessed versions of the array manifold vec-

tors, messages, and noise, respectively. (Recall that S and M(t) are the matrices

containing the array manifold vectors and message vectors of all the sources, re-

spectively.) The preprocessed signal model given in Equ. (5.35) has a similar

format to the signal model given in Equ. (5.7) under the NBA, except that the

manifold vectors are element-wise inverted. Therefore, the covariance matrix of

the preprocessed signal vector x̄(t) is given as

Rx̄x̄ = E
{
x̄(t) x̄H(t)

}

= A E
{
m̄(t) m̄H(t)

}

︸ ︷︷ ︸
=Rm̄m̄

AH + E
{
n̄(t) n̄H(t)

}

︸ ︷︷ ︸
=Rn̄n̄

= ARm̄m̄AH + Rn̄n̄ ∈ CN×N (5.36)

where Rm̄m̄ and Rn̄n̄ are the covariance matrices of the preprocessed messages and

noise, respectively. The covariance matrix of the preprocessed messages is

Rm̄m̄ = E
{

1√
N

(S�M(t))T 1N1TN (S�M(t))∗ 1√
N

}
∈ CM×M , (5.37)

which has a similar structure as Equ. (5.16). Also, its rank is assumed to beM ; this

is because for two incoherent signals, it is highly unlikely that the superposition

of the delayed versions of one signal is coherent with such a superposition of the

delayed versions of the other signal. In addition, the covariance matrix of the
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preprocessed noise is

Rn̄n̄ = E
{

1√
N

1N1TNn(t)nH(t) 1N1TN
1√
N

}

= 1
N

1N1TNE
{
n(t)nH(t)

}
1N1TN

= 1
N

1N1TNσ2
nIN1N1TN

= σ2
n1N1TN ∈ RN×N , (5.38)

which is a rank one matrix. Thus, according to the structure of Rx̄x̄, it has M + 1

most significant eigenvalues associated with the preprocessed messages and noise,

and the multiplicity of the zero eigenvalue is N −M − 1. Further, the subspace

spanned by the eigenvectors of Rx̄x̄ corresponding to its most significant eigenvalues

is (M + 1)-dimensional. This subspace is known as the signal subspace and the

related eigenvectors are denoted as Es ∈ CN×(M+1). The subspace spanned by the

element-wise inverted manifold vectors is always a subspace of the signal subspace;

i.e., L[A] ⊂ L[Es]. Meanwhile, the complementary subspace of the signal subspace

is associated with the zero eigenvalues and is (N −M − 1)-dimensional. This

subspace is known as the null subspace and the related eigenvectors are denoted as

En ∈ CN×(N−M−1). The subspace spanned by the columns of A is always orthogonal

to the null subspace; that is, L[A] ⊥ L[En]. Thus, the null subspace can be used

to estimate the source locations, using the subspace estimation techniques under

the NBA.

In practice, the L snapshots collected at the array with the k-th sensor being

the reference point can be denoted in a matrix format as Xk ∈ CN×L. Besides, the

preprocessed signal matrix is formed as

X̄ = 1√
N

(IN ⊗ 1N)T
[
XT

1 ,XT
2 , . . . ,XT

N

]T ∈ CN×L (5.39)
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and its covariance matrix is constructed as

Rx̄x̄ = 1
L
X̄X̄H ∈ CN×N . (5.40)

The null subspace is constructed from the eigendecomposition of Rx̄x̄. Then the

azimuths and ranges (i.e., source locations) can be estimated by a two-dimensional

search of the following cost function

ξ(θ, ρ) = AH(θ, ρ)A(θ, ρ)
AH(θ, ρ)EnEHn A(θ, ρ)

(5.41)

where A(θ, ρ) = S−1(θ, ρ). Note that, in contrast to the SCB approach, the null

subspace in the RRB approach is parameter independent. On top of that, since

L[1N ] ⊥ L[En], there is a risk of maximising the cost function at a wrong (θ, ρ)

where the associated inverted manifold vector is A(θ, ρ) = 1N . However, this can

be circumvented by using an array of at least four sensors of a noncircular array

geometry such that a location that is equidistant from all the sensors cannot be

found.

In conclusion, the proposed RRB approach is summarised as the following

steps.

Step 1: Poll the array reference point from the first sensor to the last and pre-

process (concatenate and average) the received signal matrices using

Equ. (5.39).

Step 2: Form the covariance matrix of the preprocessed signal using Equ. (5.40).

Step 3: Find the null subspace of the covariance matrix as its eigenvectors corre-

sponding to its least significant eigenvalues.

Step 4: Estimate the source locations by evaluating Equ. (5.41).
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5.4 Computer Simulation Studies

In this section, the performance of the proposed localisation algorithm using both

the SCB and RRB approaches is assessed through computer simulation studies. In

the simulations, a 10-element array of 300 m array aperture is utilised; the array

geometry is given in Table 5.1. The array operates in the presence of three sources;

their parameters are listed in Table 5.2. Note that their elevations are 0◦ and are

not listed. The geometry of the sources and the array is also shown in Figure 5.3.

Additionally, other array system parameters are listed in Table 5.3.

The joint azimuth and range (i.e., location) estimation results of the SCB,

RRB, and NBA approaches are shown between Figures 5.4 and 5.6. In the SCB

approach, the subvectors are chosen as two five-element vectors comprising alter-

nating elements of the original received signal vector. The estimation result is

shown in Figure 5.4, where three peaks at the azimuths and ranges (122◦, 560 m),

(53◦, 549 m), and (73◦, 593 m) can be observed, indicating a successful estimation

Table 5.1: Array Geometry

Sensor x y Sensor x y

1 0 m 0 m 6 0 m 300 m
2 88 m 29 m 7 −88 m 271 m
3 143 m 104 m 8 −143 m 196 m
4 143 m 196 m 9 −143 m 104 m
5 88 m 271 m 10 −88 m 29 m

Table 5.2: Simulation Parameters

Source Azimuth θ Range ρ

1 122◦ 560 m
2 53◦ 549 m
3 73◦ 593 m
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Figure 5.3: Sources and array geometry. The sensors are represented by the blue
circles and the sources are represented by the red squares.

Table 5.3: Array System Parameters

Parameter Value

Carrier frequency 3 GHz
Sampling frequency 30 MHz
Number of snapshots 200
SNR 20 dB

of the source locations. The same conclusion can be made for the RRB approach,

which is shown in Figure 5.5. By contrast, no clear peaks can be observed in

Figure 5.6 when the NBA approach is applied to the signals under the WBA; i.e.,

it fails to deliver correct estimates of the source locations.

Furthermore, the performance of the SCB and RRB approaches is compared

to that of the eigenvalue-based (EVB) approach proposed in [13] in terms of the

estimation RMSE using two different array geometries as listed in Table 5.4 and

shown in Figure 5.7.
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Figure 5.4: Azimuth and range estimation using the SCB approach.
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Figure 5.5: Azimuth and range estimation using the RRB approach.
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Figure 5.6: Azimuth and range estimation using the NBA approach.

Table 5.4: “Good” and “Bad” Array Geometries

“Good” “Bad”
Sensor

x y x y

1 0 m 0 m 0 m 0 m
2 100 m 150 m 150 m 150 m
3 0 m 300 m 0 m 300 m
4 −75 m 135 m −150 m 150 m

First, the “good” geometry is examined. The azimuth and range of the source

are 81◦ and 145 m, respectively. This configuration is similar to the “good” geome-

try in [13]. On top of that, the angles between the focusing vectors (the definition

and computation of the focusing vectors can be found in [13]) are 120.47◦, 117.05◦,

and 122.48◦, respectively. Since the three angles are approximately 120◦, this is

a “good” geometry in the metric fusion phase and leads to good estimation accu-

racy [13]. The RMSE curves of the azimuth, range, and location estimates using

the SCB, RRB, and EVB approaches are shown in Figure 5.8. The RMSE curves

of the EVB and SCB approaches decline as SNR × L grows. For the SCB ap-
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Figure 5.7: Source and “good” and “bad” array geometries. The sensors are
represented by the blue circles and the source is represented by the red square.
(a) “Good” array geometry. (b) “Bad” array geometry.
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Figure 5.8: Estimation RMSE versus SNR and number of snapshots with the
“good” array geometry. The RMSEs of the azimuth θ, range ρ and displacement d
of the SCB and EVB approaches decrease as SNR×L increases while those of the
RRB approach remains constant. The results are averaged over 10 000 simulations.

proach, the reason is that the noise effect cannot be perfectly eliminated using

its subcovariance property in practice with a finite number of snapshots. Conse-

quently, the signal subspace can be more accurately estimated with either higher

SNR or more number of snapshots. Furthermore, the RRB approach enjoys very

small and constant RMSE curves regardless of SNR × L. The reason is that the

preprocessed noise does not contribute to the null subspace, which can then be

perfectly estimated irrespective of the SNR or number of snapshots. In addition,

the performance of the SCB approach is worse than the RRB approach due to the

residual of the noise in the subcovariance matrix in a practical scenario. However,

both the proposed SCB and RRB approaches perform much better than the EVB

approach.

Second, the “bad” geometry is examined. The azimuth and range of the source

are 122◦ and 560 m, respectively. Besides, the angles between the three focusing
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vectors are 39.49◦, 119.67◦, and 80.18◦. This is a “bad” geometry in the metric

fusion phase as the first angle is too small [13]. The RMSE curves of the azimuth,

range and location estimates using the three approaches are shown in Figure 5.9.

The RMSE of the EVB approach is huge and stays constant with a “bad” geometry,

reaching the order of magnitude of 1× 102. This indicates that the source location

cannot be correctly estimated using the EVB approach when a “bad” geometry is

employed, even with higher SNR or more number of snapshots. Quite the contrary,

the RMSE curves of the SCB and RRB approaches remain similar to the “good”

geometry case. This implies that they are robust to “bad” geometries with small

angles between focusing vectors as the metric fusion phase is circumvented.
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Figure 5.9: Estimation RMSE versus SNR and number of snapshots with the “bad”
array geometry. The RMSEs of the SCB and RRB approaches are similar to the
“good” array geometry case while those of the EVB approach are significantly big.
The results are averaged over 10 000 simulations.
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5.5 Summary

In this chapter, the localisation of multiple sources are examined under the WBA,

where the wavefront of an impinging signal varies significantly when traversing

through the sensors of an array. In the first SCB approach, the subcovariance

matrix of the received signal vector, together with its singular value decomposition,

is exploited to reconstruct a parameter-dependent signal subspace and estimate

the source locations. In the second RRB approach, the concept of the rotation of

the array reference point is employed to transform the WBA problem to its NBA

counterpart so that the NBA subspace approaches are readily applicable. Through

computer simulation studies, these two approaches are shown to deliver accurate

estimates of source locations under the WBA. Moreover, they are robust to “bad”

array geometries as the metric fusion phase is avoided.
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Chapter 6

Conclusions and Further Work

In this thesis, the localisation problem in array processing is studied and the main

technical chapters are summarised as follows.

In Chapter 2, multi-source indoor MIMO OWC is studied in a parametric

approach. A major task in such an environment is the elimination of the interfer-

ence. In order to achieve this, a parametric model that employs the geometries of

the source and sensor arrays is presented for indoor MIMO OWC. Based on this

model, a localisation approach, which is employed as a blind channel estimator,

is proposed. It estimates parameters including the DOAs, range bins, and path

gains of all the paths of the desired source in a three-step procedure, with the

incorporation of cone angle parameterisation. Furthermore, two subspace multi-

beam beamformers that exploit the STAR manifold vectors are presented, which

effectively combine all the paths of the desired source based on the channel param-

eter estimates. In contrast to the traditional OWC system where the ISI and MAI

are generally alleviated by adjusting the position and directivity of the sources and

sensors, the beamformers presented in this chapter achieve complete interference

cancellation without any restrictions on the physical configuration of the system.

Their performance amounts to the optimal decorrelating receiver in terms of the
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output SNIR, without the requirement of full channel knowledge.

In Chapter 3, the estimation of the locations and orientations of the receiver

arrays is studied. A sensor array is exploited to estimate the location and orien-

tation of its own with respect to a global coordinate system based on the signals

transmitted from multiple sources of known locations. First, the DOAs of the

sources are estimated using subspace estimation techniques. Subsequently, based

on the DOA estimates and the known locations of the sources, the ranges of the

sources are estimated by solving a system of quadratic equations. Finally, based

on the estimates from the above steps, the location and orientation (in terms of

the Euler angles) of the sensor array are estimated by solving two systems of linear

equations. Moreover, a simplified approach for two-dimensional space where the

elevations of the sources are negligible is proposed. It directly estimates the sensor

array location and orientation from the DOA estimates without the estimation of

the source ranges. As the range estimation is either derived from DOA estimates

or completely discarded, the proposed approaches do not require the knowledge of

the transmitted waveforms at the receiver side for estimating source ranges.

In Chapter 4, the estimation of the locations and orientations of the transmitter

arrays is studied. A distributed receiver array comprising multiple compact sensor

arrays is employed to estimate the locations and orientations of multiple sources

with each one being a transmitter array of a known array geometry. First, the

DOAs of the sources are estimated using subspace techniques based on the signals

received at the primary group of the receiver array. Then, the ranges are esti-

mated using the signals received at all the groups of the receiver array by solving

a system of equations. Subsequently, two approaches without and with interfer-

ence cancellation can be utilised to estimate the DODs of the sources, from which

their orientations can be derived. The DOD estimation approaches make use of

the format of the source beamforming weight vectors to extract the information
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conveyed in the transmitter array manifold vectors. In particular, the approach

without interference cancellation can handle messages under the NBA across all

the groups of the sensor array; however, it requires a higher dimension of the ob-

servation space and, hence, more number of elements of each source. By contrast,

the approach with interference cancellation requires a much lower dimension of

the observation space; nevertheless, since the spatial information has been used

for interference cancellation at the receiver, only the sources under the WBA are

distinguishable among the groups of the sensor array.

In Chapter 5, the WBA, where the wavefront of a baseband signal varies signif-

icantly when traversing through the sensors of an array, is studied in distributed

arrays, with the incorporation of the spherical wave propagation model. Under

this assumption, NBA subspace approaches to the estimation of source locations

fail to deliver correct estimation results. Two novel approaches are proposed to

solve the localisation problem under the WBA. The first SCB approach employs

the subcovariance of the received signal vector to estimate the source locations.

Specifically, when examining a particular location in the parameter space, the rela-

tive delays associated with this location are utilised to reversely delay the received

signal vector so that the source at this location follows the NBA, while others re-

main under the WBA. The subcovariance of the reversely delayed received signal

vector is evaluated to mitigate the contribution of the sources under the WBA, and

its singular value decomposition is employed to estimate the source location. In

addition, the second RRB approach is based on the rotation of the array reference

point. By concatenating and averaging the signal vectors received with different

sensors being the array reference point, an NBA-like signal model can be obtained

under the WBA. Hence, NBA localisation algorithms can be readily applied to

estimate the source locations.
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6.1 List of Contributions

The contributions presented in this thesis is summarised as the following list.

• Development of the localisation approach that is exploited as a blind chan-

nel estimator for location and path gain estimation for multi-source indoor

MIMO OWC systems.

• Development of subspace multibeam beamformers that effectively use all the

paths of the desired source.

• Development of the localisation and orientation estimation approach for a

receiver array using multiple sources of known locations for both three- and

two-dimensional space.

• Development of the localisation and orientation estimation approach for

transmitter arrays using a distributed sensor array comprising small aperture

arrays and the source beamforming weight vectors.

• Investigation of the structure of the covariance matrix of the received signal

vector under the WBA.

• Development of the SCB approach to source localisation under the WBA

using the subcovariance matrix of the received signal vector.

• Development of the RRB approach to source localisation under the WBA

with the employment of the rotation of the array reference point.

6.2 Suggestions for Further Work

The work presented in this thesis addresses the challenges posed in the localisation

problem in array processing. In this section, possible tasks incentivised by this
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work are outlined.

Quantum effect. The OWC signal model presented in this thesis is developed

under classic physics. However, when the size of photoemitters and photo-

sensors becomes significantly small (e.g., on the nanoscale), quantum effects

that cannot be explained by classic physics comes into play. For example,

quantum noise expresses the uncertainty in transmitted and received signals

due to the quantum origin of photoemitters and photosensors. A type of

quantum noise is shot noise, which is brought by the discrete nature of elec-

tric charge and can be modelled by a Poisson process. Such quantum effects

can be considered to further enhance the OWC signal model.

Diffuse reflection. In the OWC signal model presented in this thesis, only spec-

ular reflection of multipaths is considered. Diffuse reflection from the walls,

ceiling, and floor of indoor environments can also be incorporated to extend

the signal model. Diffuse multipaths are a cluster of rays that are insepara-

ble in space and time [112]. In array processing, the array manifold vector

of diffuse multipaths can be modelled using the first order Taylor series ap-

proximation about the nominal DOA of the paths [113].

Array ambiguity. An array of large intersensor spacing generally suffers from

array ambiguity, which is the collinearity of the array manifold vectors as-

sociated with a set of distinct parameters. When such a distributed array

is utilised to estimate the source locations under the WBA using subspace

techniques, pseudo peaks are expected to appear due to the collinearity. This

degrades the accuracy of the subspace estimator. Array ambiguities can be

resolved by associating two sets of MUSIC estimates [114], by estimating sig-

nal power of true and ambiguous directions [115], or by observing the array

pattern of beamformers [116]
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Detection under WBA. Source detection under the WBA is an interesting

problem to be investigated, apart from source localisation. Since the snap-

shots are not independent under the WBA, source detection algorithms such

as AIC and MDL, based on maximising the likelihood of sample noise being

a multivariate Gaussian, cannot be directly applied to infer the number of

sources [18]. This could be potentially solved using hypothesis testing in

combination with the autocorrelation and cross-correlation properties of the

signals.
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