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Abstract

It is widely recognized that multicarrier systems such as orthogonal frequency division
multiplexing (OFDM) are suitable for severely time-dispersive channels. However, it is
also recognized that multicarrier signals have high envelope fluctuations which make them
especially sensitive to nonlinear distortion effects. In fact, it is almost unavoidable to have
nonlinear distortion effects in the transmission chain. For this reason, it is essential to have
a theoretical, accurate characterization of nonlinearly distorted signals not only to evaluate
the corresponding impact of these distortion effects on the system’s performance, but also
to develop mechanisms to combat them. One of the goals of this thesis is to address these
challenges and involves a theoretical characterization of nonlinearly distorted multicarrier
signals in a simple, accurate way.

The other goal of this thesis is to study the optimum detection of nonlinearly dis-
torted, multicarrier signals. Conventionally, nonlinear distortion is seen as a noise term
that degrades the system’s performance, leading even to irreducible error floors. Even
receivers that try to estimate and cancel it have a poor performance, comparatively to the
performance associated to a linear transmission, even with perfect cancellation of nonlin-
ear distortion effects. It is shown that the nonlinear distortion should not be considered
as a noise term, but instead as something that contains useful information for detection
purposes. The adequate receiver to take advantage of this information is the optimum
receiver, since it makes a block-by-block detection, allowing us to exploit the nonlinear
distortion which is spread along the signal’s band. Although the optimum receiver for
nonlinear multicarrier schemes is too complex, due to its necessity to compare the received
signal with all possible transmitted sequences, it is important to study its potential per-
formance gains. In this thesis, it is shown that the optimum receiver outperforms the
conventional detection, presenting gains not only relatively to conventional receivers that
deal with nonlinear multicarrier signals, but also relatively to conventional receivers that
deal with linear, multicarrier signals. We also present sub-optimum receivers which are
able to approach the performance gains associated to the optimum detection and that can
even outperform the conventional linear, multicarrier schemes.

Keywords: Multicarrier systems, nonlinear distortion, performance evaluation, spectral
characterization.
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Resumo

É amplamente reconhecido que os sistemas multiportadora, como o orthogonal frequency
division multiplexing (OFDM), são adequados para canais severamente dispersivos no
tempo. No entanto, é também reconhecido que os sinais multiportadora têm elevadas
flutuações de envolvente, o que os torna especialmente sensíveis aos efeitos de distorção
não-linear. De facto, é praticamente inevitável que este tipo de sinais sofra de distorção
não-linear na cadeia de transmissão. Assim, é essencial ter uma caracterização teórica e
precisa dos sinais não-linearmente distorcidos, não só para avaliar o impacto dos efeitos
de distorção no desempenho do sistema, mas também para desenvolver mecanismos que
permitam combatê-los. Um dos objetivos desta tese é abordar estes desafios e passa por
obter a caracterização teórica de sinais multiportadora não-linearmente distorcidos de uma
forma simples, mas com elevada precisão.

O outro objectivo desta tese é estudar a detecção ótima de sinais multiportadora não-
linearmente distorcidos. Convencionalmente, a distorção não-linear é vista como um termo
de ruído adicional que degrada o desempenho do sistema, levando mesmo à existência de
patamares de erro irredutíveis. De facto, os receptores que tentam estimar e cancelar a
distorção não-linear têm um mau desempenho comparativamente ao obtido numa trans-
missão linear, mesmo que os efeitos de distorção não-linear sejam perfeitamente cancelados.
Nesta tese mostra-se que a distorção não-linear não deve ser considerada como ruído, mas
como algo que contém informação útil para fins de detecção. O receptor adequado para
tirar proveito desta informação é o receptor ótimo, uma vez que faz uma detecção bloco
a bloco e permite explorar a distorção não-linear espalhada ao longo da banda do sinal.
Porém, o receptor ótimo apresenta uma elevada complexidade, uma vez que necessita de
comparar o sinal recebido com todas as possíveis sequências transmitidas. Contudo, é
importante estudar a magnitude dos ganhos apresentados por este tipo de detecção. Nesta
tese, é mostrado que quando a transmissão é não-linear, o receptor ótimo supera não só a
detecção convencional, mas também apresenta ganhos relativamente aos sistemas onde a
transmissão é linear. São também propostos receptores sub-ótimos que permitem obter ga-
nhos próximos aos obtidos pelo receptor ótimo, apresentando também melhor desempenho
que os receptores convencionais que trabalham em condições lineares.

Palavras-chave: Avaliação da performance, caracterização espectral, distorção não-linear,
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Introduction

1.1 Scope and Motivation

The evolution of wireless communications have been constant in the past decades, which
makes possible to achieve very high data rates, low latencies and considerable improvements
in the quality of service (QoS) experienced by each network user. However, more and more
users are starting to use connected devices and their needs may include very demanding
multimedia applications such as transmission of ultra high definition (4K) videos. This
means that a single user may be served with several tens of Mbit/s. In addition, concepts
such as internet of things [1], where everything is connected everywhere at anytime, are
starting to take place in the people’s life. Undoubtedly, this require large efforts to
increase the data rates, reliability, security, spectral efficiency and energy efficiency of
wireless communications.

As widely known, the transmission of very large data rates in wireless channels is a
challenging task, not only due to the severe inter-symbol interference (ISI) generated by
the multipath propagation, that includes signal copies whose the corresponding delays
can be many times larger than the symbol’s duration, but also due to the increasing
user’s mobility [2]. The multi carrier (MC) systems such as OFDM [3], appeared as
systems that are resilient to the ISI caused by the multipath propagation phenomena. In
fact, MC systems are widely used in wireless and wireline communication systems. This
choice is justified by their capability to mitigate the ISI by converting a frequency-selective
channel into a set of flat-fading channels, which can allow an ISI-free transmission. In
addition, MC systems such as OFDM are spectrally efficient due to the orthogonality
of the subcarriers and easy to implement digitally through fast Fourier transform (FFT)
algorithms [4]. Nevertheless, multicarrier signals have large envelope fluctuations and a
high peak-to-average power ratio (PAPR) that leads to amplification difficulties. In fact,
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it is very hard to perform a linear amplification of a multicarrier signal, since it requires
costly and inefficient power amplifiers - two unwanted things in a hand-held device - that
must operate with considerable back-offs. This is also extremely inefficient for the base
stations (BSs), where one of the main energy consumers is the power amplifier. Therefore,
the solution is to employ nonlinear power amplifiers that are cheaper and more efficient
[5]. However, such amplifiers can only be employed if the signal’s envelope fluctuations
are reduced to avoid significant nonlinear distortion levels. Among the so called PAPR-
reducing techniques proposed in the last years [6], it is consensual that the simpler and
more flexible ones are those involving a clipping operation [7]. As a nonlinear operation, the
clipping introduces nonlinear distortion effects that may not only distort the transmitted
signal, but also affect communication systems operating in adjacent bands, reducing the
performance and the spectral efficiency, respectively. For this reason, it becomes clear
that the amplification of multicarrier signals is a demanding task that includes a trade-off
between energy efficiency and spectral efficiency. Moreover, nonlinear distortion effects
resulting from low-resolution quantization processes [8] or nonlinear phase noise (NLPN) [9]
can take place. For this reason, it is very likely that multicarrier signals will be nonlinearly
distorted. Therefore, it is important to obtain the impact of the nonlinear distortion
effects on the performance of MC systems. This is usually done by taking advantage
of the Gaussian nature of multicarrier signals with a large number of subcarriers, which
allows to decompose the nonlinearly distorted signal in uncorrelated useful and distortion
components [10], and the spectral characterization of the distortion component usually
resorts to intermodulation product (IMP) tools [11], [12]. The complexity and accuracy
of those IMP tools are intimately related with the severeness of the nonlinearity. In fact,
they may present not only complexity problems, but also convergence problems especially
for non-smooth nonlinearities such as the ones associated to quantization operations.

In this work, we present the analytical characterization of nonlinearly distorted mul-
ticarrier signals. This analytical characterization is suitable for systems impaired by
different types of nonlinearity such as bandpass, Cartesian or real-valued nonlinearities.
We propose an efficient and simple theoretical method for obtaining an accurate spectral
characterization of nonlinearly distorted multicarrier signals that is suitable even for se-
vere nonlinearities. This method involves the creation of an equivalent nonlinearity that
can be used to substitute the conventional nonlinear characteristic, but that leads to the
same spectral characterization of the signals distorted by the original nonlinearity. The
theoretical spectral characterization of nonlinearly distorted multicarrier signals is then
employed to obtain the performance penalty associated to the nonlinear distortion. The
analytical tools proposed in this thesis can be used for the characterization of nonlinear
distortion effects associated not only to single antenna systems, but also to multiple-input,
multiple-output (MIMO)/massive MIMO multicarrier systems [13], [14].

Other subject studied in this thesis is the optimum detection of nonlinearly distorted
multicarrier signals. Conventionally regarded as a noise term, the nonlinear distortion
component can severely prejudice the performance leading to a substantial bit error rate
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(BER) increase and even error floors. To mitigate this performance penalty, receivers that
try to estimate and cancel the nonlinear distortion have been proposed [15]. However,
due to the difficulty of estimating the nonlinear distortion, even those receivers present
a poor performance, comparatively to the performance of linear, multicarrier systems.
Additionally, it have been shown that the nonlinear distortion component can be seen as
useful information and used to improve the performance of multicarrier systems, provided
that an optimum receiver is considered [16], [17]. This thesis includes a theoretical study on
the optimum detection of nonlinearly distorted, multicarrier schemes. It is demonstrated,
for several multicarrier systems, impaired by different nonlinearities and under different
channel types, that the optimum detection of nonlinearly distorted multicarrier signals
presents better performance than the conventional receivers and can even outperform
the performance associated to linear, multicarrier systems. These results are based on
the optimum asymptotic performance that is obtained theoretically through the squared
Euclidean distance between nonlinearly distorted, multicarrier signals. It is also shown that
even when a sub-optimum receiver is considered, substantial performance improvements
can be obtained. This means that besides the large complexity of optimum detection, low-
complex, sub-optimum receivers can be practically implemented to explore the potential
gains associated to the optimum detection. This thesis include a set of applications for
which both the analytical characterization and the optimum performance are studied.

1.2 Research Question and Hypothesis

In this thesis, the following research questions and hypothesis were considered:

Research Question
It is possible to accurately characterize nonlinearly distorted multicarrier signals with low
complexity methods?

Hypothesis
It is possible to accurately characterize nonlinearly distorted multicarrier signals if equiva-
lent nonlinearities to substitute the conventional nonlinear characteristics can be employed
and their IMPs lead to the same spectral characterization of the signals distorted by the
original nonlinearities.

Research Question
Can the performance of nonlinear multicarrier schemes be improved by considering the
nonlinear distortion as useful information for detection purposes?

Hypothesis
The performance of nonlinear multicarrier schemes can be improved using optimum or
optimum-based receivers that take advantage of both the energy and the diversity gains
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associated to the nonlinear distortion, instead of considering it as an additional noise term.

1.3 Outline

The outline of this thesis is as follows: chapter 2 is concerned with an introduction to
multicarrier systems. It includes a brief historical introduction of MC systems as well as
a theoretical characterization of OFDM signals. In addition, the problems associated to
transmission in frequency-selective channels as well as the amplification problems associ-
ated to the multicarrier signals are analyzed. The chapter ends with a brief characterization
of the most common PAPR reducing techniques employed to mitigate the amplification
issues of multicarrier signals.

Chapter 3 presents the theoretical basis for the results of the thesis. The chapter
starts with a characterization of memoryless nonlinearities that can have a baseband or
a bandpass nature. After that, common methods for the analytical characterization of
nonlinearly distorted Gaussian signals as well as the concept of equivalent nonlinearities
regarding different type nonlinearities are presented. In addition, the optimum performance
of nonlinearly distorted multicarrier signals is analyzed in the chapter. The optimum
receiver’s performance regarding linear and nonlinear multicarrier transmission is presented
and theoretical expressions for the optimum asymptotic performance considering different
systems, nonlinearities and channel conditions are given.

Chapter 4 is dedicated to different applications where the theory presented in chapter
3 can be employed. For all these applications, analytical results of the spectral characteri-
zation are presented. In addition, for the most part of applications, results regarding the
optimum detection are given.

Chapter 5 presents the conclusions of this thesis as well as some directions for future
work.
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Multicarrier Systems

2.1 Historical Perspective

MC systems result from the evolution of frequency division multiplexing (FDM) systems,
that were initially proposed for the transmission of multiple telegraph channels and for
analog voice in the first decades of the 20th century, becoming the main multiplexing
technique for telephony [18], [19]. In the 1970’s, with the advance of digital communications,
the FDM systems began to be replaced by time division multiplexing (TDM) systems.
However, as the speed of TDM lines increased, the corresponding larger channel bandwidths
brought problems such as severe ISI and frequency-selective fading. The solution to
these problems was to come back to FDM systems, where the subchannels with better
conditions were allocated with more data, i.e., the loading was adapted to the channel
characteristics. Nevertheless, FDM systems also had disadvantages such as the large
implementation complexity, that increases with the number of subchannels, and the low
bandwidth efficiency, due to the existence of guard bands between the subchannels. MC
systems such as OFDM were proposed to alleviate these problems.

The main idea behind MC systems, the parallel data transmission over several sub-
channels, was firstly introduced in the mid 1960’s [20]–[22]. However, this idea was only
further developed and investigated in the late 1980’s [3], when the MC systems were solidly
stated. The cause for the time-span between the introduction of the MC systems and their
effective development and implementation resided on the very high complexity associated
to their analog transceivers, that could not be handled by the existing technology in 1960’s,
making them not suitable to compete with the single carrier (SC) systems of that time.
However, the advance and improvement of signal processing techniques and electronics in
1990’s changed this scenario, allowing the implementation of MC systems, such as OFDM
systems, without the necessity of having independent modulators for each subcarrier, which
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drastically decreased its implementation complexity. In fact, OFDM systems had a big
growth in this decade [19]. This growth is explained by the introduction of digital signal
processing techniques that allows ease implementation of efficient FFT algorithms such as
the Cooley-Tukey algorithm [4] by computers or by low-cost, massively produced electronic
chips. This advancement significantly increased the role of multicarrier schemes in both
wireless and wireline systems.

The first major OFDM application with big commercial success was the discrete multi
tone (DMT), that was proposed for asymmetrical digital subscriber line (ADSL) systems
in 1990 [23]. In fact, an immense growth of OFDM continued over this decade and, from
the late 1990’s, OFDM and OFDM-based systems started to be employed in the physical
layer (PHY) of several wireless standards with application in different types of networks.
For instance, these systems were considered for ultra-wide band (UWB) [24], in personal
area networks (PANs) and for several variants of the standard institute of electrical and
electronic engineers (IEEE) 802.11 [25], in local area networks (LANs). They were also
considered in wide area networks (WANs) for worldwide interoperability for microwave
access (WiMAX) 802.16 [26], and in metropolitan area networks (MANs), for long term
evolution (LTE) [27], digital video broadcasting (DVB) [28] and digital audio broadcasting
(DAB) [29]. For this reason, MC systems such as OFDM systems have been extensively
studied over the past decade and many research have been done towards their continuous
evolution.

Nowadays, OFDM and single carrier with frequency domain equalization (SC-FDE)
systems are the two main contenders for wireless broadband systems. In fact, they do not
have considerable differences in achievable data-rate or bandwidth efficiency, and it can
be shown that the complexity of generating and detecting an OFDM signal is similar to
the complexity associated to the equalization of the SC-FDE systems [30]. The choice of
OFDM for some applications is justified by its larger flexibility, i.e., by its high capability to
adapt the loading by taking into account the signal-to-noise ratio (SNR) of each subcarrier.

2.2 OFDM

In this section, OFDM systems are characterized both in time and frequency domain and
the motivation behind their digital implementation is given. The main reasons that explain
the high resilience of OFDM systems to multipath propagation are also presented.

2.2.1 Time and Frequency-Domain Characterization

In contrast with SC systems, where a single carrier is modulated and transmitted within
a given symbol time duration, in MC systems such as OFDM, several carriers are used
for data transmission during the symbol period. Basically, the total available bandwidth
Bs is divided into N subchannels, on which N low rate data streams are transmitted in
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parallel. The center frequencies of these sub-channels, the so-called subcarriers, are spaced
by ∆f =Bs/N and are mutually orthogonal within the symbol duration Tu.

The complex envelope of an OFDM signal is composed by consecutive OFDM “blocks”
spaced by Tu seconds. Let sbb(t) be the complex envelope of a given OFDM signal composed
by N subcarriers, i.e.,

sbb(t) =
+∞∑

m=−∞
s(m)(t−mTu), (2.1)

with s(m)(t) denoting the waveform of the mth OFDM block. Without loss of generality,
let us consider the OFDM signal associated to the 0th block (m= 0)(1), that is given by

s(t) =
N
2 −1∑

k=−N2

Sk exp
(
j2πk t

Tu

)
w(t), (2.2)

where Sk is the data symbol transmitted on the kth subcarrier and

w(t) = rect(t/Tu), (2.3)

is a rectangular window function with duration Tu. Each data symbol Sk is selected from a
given quadrature amplitude modulation (QAM) constellation withM points. For instance,
when quadrature phase shift keying (QPSK) constellations are employed, we have M = 4
and Sk =±σS±jσS , where σS is the amplitude of the real and imaginary parts of each data
symbol. Thorough this work, it is assumed zero mean (i.e., E[Sk] = 0) and uncorrelated
data symbols, since

E [SkS∗k′ ] =
{

E
[
|Sk|2

]
= 2σ2

S , k = k′

0, k , k′,
(2.4)

which means that power is uniformly distributed along the N subcarriers and equal to
2σ2

S .
As aforementioned, one of the most important particularities of OFDM relatively to

conventional FDM schemes is the orthogonality of the subcarriers. Indeed, by defining the
waveform associated to the kth subcarrier as

φk(t) = exp
(
j2π kt

Tu

)
, (2.5)

one can note that the subcarriers are mutually orthogonal during the block duration Tu,
since

〈φk(t),φk′(t)〉= 1
Tu

∫ Tu

0
φk(t)φk′(t)dt

= 1
Tu

∫ Tu

0
exp

(
j2πk t

Tu

)
exp

(
−j2πk′ t

Tu

)
dt

= 1
Tu

∫ Tu

0
exp

(
j2π (k− k′)t

Tu

)
dt

=
{

1, k = k′

0, k , k′,
(2.6)

(1)For the sake of notation simplicity, the subscript m is omitted when there is no risk of ambiguity.
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where 〈·, ·〉 represents the dot product. Let us consider the signal sP (t), which is a periodic
signal composed by the subcarriers associated to a given OFDM signal

sP (t) =
N
2 −1∑

k=−N2

Sk exp
(
j2πk t

Tu

)
. (2.7)

Indeed, equation (2.2) can be rewritten as the multiplication between the periodic signal
sP (t) and the window function represented in (2.3), i.e.,

s(t) = sP (t)w(t). (2.8)

The frequency-domain version of the signal represented in (2.7) is

SP (f) = F{sP (t)}=
N
2 −1∑

k=−N2

Skδ

(
f − k

Tu

)
, (2.9)

where F{·} represents the Fourier transform and δ(·) is the Dirac delta function. The
corresponding power spectral density (PSD) associated to (2.7) can be obtained as

GsP (f) = 1
Tu

E
[∣∣∣SP (f)

∣∣∣2]

= 1
Tu

N
2 −1∑

k=−N2

E
[
|Sk|2

] ∣∣∣∣δ(f − k

Tu

)∣∣∣∣2

= 2σ2
S

Tu

N
2 −1∑

k=−N2

∣∣∣∣δ(f − k

Tu

)∣∣∣∣2 . (2.10)

Fig. 2.2 shows the normalized PSD associated to sP (t), considering N = 16 subcarriers.
In fact, from (2.9), it can be noted that Sk are the complex Fourier coefficients associated
to the Fourier series of (2.7). Let us now focus on the frequency-domain version of (2.2),
that is

S(f) = F{s(t)}=
N
2 −1∑

k=−N2

SkW

(
f − k

Tu

)
. (2.11)

where
W (f) = Tusinc(fTu), (2.12)

is the Fourier transform of the window function w(t). Using (2.11), the PSD associated
to (2.2) can be obtained as

Gs(f) = 1
Tu

E[|S(f)|2]

=
N
2 −1∑

k=−N2

E
[
|Sk|2

] ∣∣∣∣W (
f − k

Tu

)∣∣∣∣2

= 2σ2
S

N
2 −1∑

k=−N2

|sinc(fTu− k)|2 . (2.13)
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Figure 2.1: Normalized PSD associated to sP (t) considering N = 16 subcarriers.

From (2.13), it can be seen that PSD is composed by the summation of shifted “sinc-like”
functions, each one corresponding to a given subcarrier. Fig. 2.2 represents the normalized
PSD of a given OFDM block with N = 8 subcarriers. From the figure it can be noted that
even with a moderate number of subcarriers, the PSD of an OFDM signal is approximately
rectangular.

As the digital implementation of OFDM is based on the discrete Fourier transform
(DFT), one can make use of the periodicity associated to the frequency-domain samples
and consider the following relation between the transmitted symbols,

Sk =
{
Sk, 0≤ k ≤ N

2 − 1
Sk−N ,

N
2 ≤ k < N − 1.

(2.14)

This relation allows the subcarrier indexes to run from k = 0 to k = N − 1 and, in these
conditions, group the symbols to be transmitted in the block(2) S = [S0 S1 S2 ... SN−1]T ∈
CN . Further, considering (2.14) in (2.2), we may write

s(t) =
N−1∑
k=0

Sk exp
(
j2πk t

Tu

)
w(t). (2.15)

By sampling the above equation at the time instants spaced by Ts = Tu/N , i.e., considering

(2)In this work the matrices and arrays start with the index 0.
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Figure 2.2: Normalized PSD associated to an OFDM signal with N = 8 subcarriers.

a sampling rate Fs =N/Tu =N∆f , the nth time-domain sample of (2.15) is given by

sn = s

(
n
Tu
N

)

=
N−1∑
k=0

Sk exp
(
j2πkn

N

)
w

(
n
Tu
N

)

=
N−1∑
k=0

Sk exp
(
j2πkn

N

)
, (2.16)

since w
(
nTuN

)
= 1. On the other hand, the nth output of the inverse discrete Fourier

transform (IDFT) of the block S = [S0 S1 S2 ... SN−1]T ∈ CN is

sn = 1
N

N−1∑
k=0

Sk exp
(
j2πkn

N

)
. (2.17)

From the comparison between (2.16) and (2.17) it can be noted that, apart from the scale
factor 1/N , equation (2.16) represents the nth output of the IDFT of S = [S0 S1 S2 ... SN−1]T ∈
CN . In fact, by considering the IDFT to generate the time-domain samples of an OFDM
signal, the use of a large number of modulators and oscillators (which is as high as N)
implicit in (2.7) can be avoided. Instead, the complex envelope of an OFDM symbol can be
generated in a much easier way by means of efficient FFT algorithms, which constitutes a
very important advantage and allows to greatly simplify the transceivers. In what follows,
the procedures associated to the DFT-based, digital implementation of OFDM are briefly
described.
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The first task is performed by the serial-to-parallel converter (SPC), that gathers a set
of data symbols from a given modulator to be transmitted onto the N subcarriers. These
data symbols form the block S = [S0 S1 S2 ... SN−1]T ∈ CN . In this work, the DFT of the
block a = [a0 a1 a2 ... aN−1]T ∈ CN is represented as A = Fa = [A0 A1 A2 ... AN−1]T ∈ CN ,
where F denotes the DFT matrix, that is an N ×N matrix defined by(3)

F =



1 1 1 1 · · · 1
1 ω ω2 ω3 · · · ωN−1

1 ω2 ω4 ω6 · · · ω2(N−1)

1 ω3 ω6 ω9 · · · ω3(N−1)

...
...

...
...

. . .
...

1 ωN−1 ω2(N−1) ω3(N−1) · · · ω(N−1)2
,


, (2.18)

where ω = exp(−j2π/N). Therefore, the time-domain samples of a given OFDM block
s = [s0 s1 s2 ... sN−1]T ∈ CN are obtained as

s = F−1S, (2.19)

where

F−1 = 1
N

F∗, (2.20)

denotes the inverse DFT matrix and (·)∗ is the complex conjugate operator.
It is important to point out that if the IDFT is applied directly to the block of data

symbols to be transmitted, it yields time-domain samples obtained at Fs =N/Tu. In fact,
this sampling rate is adequate to perfectly recover (2.7) from its samples, since it is its
“Nyquist” rate. However, it is not sufficient to perfectly recover the signal in (2.8), since
this signal is not bandlimited. For this reason, even when Fs > N/Tu, there is always
some aliasing effects since the sampling theorem does not hold. However, to mitigate
such aliasing effects and reduce the order of the reconstruction filter after the digital-to-
analogue converter (DAC), it is common to consider an oversampling operation. To obtain
an oversampling factor of O, Ng = Nu(O− 1) out of N = ONu subcarriers are left idle,
i.e., with Sk = 0. Indeed, as Nu/Tu is the highest frequency component, this is equivalent
of having an increased sampling rate given by Fs = N/Tu = ONu/Tu, where Nu is the
number of subcarriers that are effectively used to transmit data(4). In these conditions, if
QPSK constellations are considered, the subcarriers are mapped in the following way

Sk =


0, 0≤ k ≤ N−Nu

2 − 1
±σS ± jσS , N−Nu

2 ≤ k ≤ N+Nu
2 − 1

0, N+Nu
2 ≤ k ≤N − 1,

(2.21)

(3)In this work, the conventional, non-normalized DFT definition is adopted.
(4)For instance, in IEEE 802.11a wireless LAN standard, we have B = 20 MHz and N = 64. However,

only Nu = 52 out of N = 64 subcarriers are used for data transmission.
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which means that the IDFT of S = [S0 S1 S2 ... SN−1]T ∈ CN yields oversampled samples
of the underlying continuous-time OFDM signal. The nth IDFT output sample can be
written as

sn =
N−1∑
k=0

Sk exp
(
j2πkn

N

)
=

N+Nu
2 −1∑

k=N−Nu
2

Sk exp
(
j2πkn

N

)
. (2.22)

Fig. 2.3 illustrates the arrangement of the OFDM block when Nu(O− 1) subcarriers are
left idle for oversampling purposes (see (2.21)). It should also be noted that due to the

0 N − 1

Sk

Active subcarriers︸ ︷︷ ︸ Idle subcarriers︸ ︷︷ ︸

N+Nu

2 − 1N−Nu

2

Idle subcarriers︸ ︷︷ ︸

Figure 2.3: Format of a general OFDM block with idle subcarriers for oversampling
purposes.

periodicity associated to the DFT, the time-domain samples s = [s0 s1 s2 ... sN−1]T ∈ CN

are periodic with period N , since

sn+N =
N+Nu

2 −1∑
k=N−Nu

2

Sk exp
(
j2πkn

N

)
exp(j2πk)

= sn. (2.23)

Fig. 2.4 shows the real parts of time-domain samples of an OFDM signal with Nu = 64
useful subcarriers and oversampling factor O = 4. Clearly, the amplitude of the samples
varies considerably along the block. In fact, even for relatively low values of Nu, these
samples present an approximate Gaussian distribution. This is a consequence of the central
limit theorem (CLT), since each sample is composed by the sum of several independent
complex symbols [31]. Fig. 2.5 shows the probability density function (PDF) of the real
part of time-domain samples of an OFDM signal with oversampling factor O = 4 and
different values of Nu. From the figure one can note that the real part of the samples of an
OFDM signal has Gaussian nature (the same conclusion applies for the imaginary part).
This Gaussian approximation is tight even for a moderate number of subcarriers, i.e., when
Nu = 32, the theoretical results are almost equal to the simulated results. For Nu = 64,
the differences between the simulation and the theory are negligible. Let us decompose sn
as

sn = sn,I + jsn,Q, (2.24)

where sn,I and sn,Q denote the real and imaginary parts of the nth time-domain sample of
a given OFDM signal, respectively. In fact, sn,I and sn,Q can be modeled by the random
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Figure 2.4: Real part of time-domain samples of an OFDM signal with Nu = 64 useful
subcarriers and oversampling factor O = 4.
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Figure 2.5: Distribution of the real part of time-domain samples associated to OFDM
signals with O = 4 and different values of Nu.

variable s∼N (0,σ2). According to the DFT definition presented in (2.18), the variance
of this Gaussian random variable can be defined as

σ2 = σ2
S

NuO2 . (2.25)

13



CHAPTER 2. MULTICARRIER SYSTEMS

Therefore, the theoretical PDF of the real (and imaginary) part of sn is

p(s) = 1√
2πσ2

exp
(
− s2

2σ2

)
. (2.26)

The continuous-time envelope of an OFDM signal is constructed from the time-domain
samples s = [s0 s1 s2 ... sN−1]T ∈ CN generated by the IDFT using a DAC followed
by a low-pass reconstruction filter, that is characterized by the impulse response hrec(t).
The OFDM transmitter structure associated to the digital implementation of OFDM is
depicted in Fig. 2.6. Note that the output of the reconstruction filter can be written as

IDFT
bits

S/PQAM

Mod.

S

F−1

P/S DAC R. Filter

hrec(t)

srec(t)

s

Sk sn

Digital Domain Analog Domain

RF

Mod.
PA

Figure 2.6: OFDM transmitter structure.

srec(t) =




+∞∑

n=−∞
snδ

(
t− nTu

N

)
︸                        ︷︷                        ︸

sPδ,n(t)

w(t)

 ∗hrec(t)

=
(
sPδ,n(t)w(t)

)
∗hrec(t), (2.27)

where ∗ denotes the convolution operator and sPδ,n(t) is a periodic signal formed by the
periodic samples sn that has period Tu, i.e.,

sPδ,n(t) =
+∞∑

n=−∞
snδ

(
t−nTu

N

)
=

+∞∑
l=−∞

sδ,n(t− lTu), (2.28)

where

sδ,n(t) =
N−1∑
n=0

snδ

(
t−nTu

N

)
. (2.29)

Naturally, even when an oversampling operation is considered, the continuous-time signal
srec(t) does not constitute an exact representation of the “ideal” OFDM signal of (2.15).
As mentioned before, this is due to the fact that s(t) is not a bandlimited signal, which
means that the sampling theorem does not hold and the reconstructed signal exhibits
aliasing effects, whatever is the sampling frequency. In the following, through an analysis
regarding the frequency-domain, it is shown what is the impact of these aliasing effects on
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the reconstructed signal. The PSD associated to the reconstructed OFDM signals can be
obtained as

Gsrec(f) = E
[
|Srec(f)|2

]
Tsymb

, (2.30)

where Tsymb is the total duration of a given OFDM signal (including the guard interval
that will be discussed later) and Srec(f), the Fourier transform of srec(t) represented in
(2.27), is defined as

Srec(f) = 1
Tu

(
SPδ,n(f) ∗W (f)

)
Hrec(f), (2.31)

where Sδ,n(f) and Hrec(f) are the Fourier transform of (2.28) and of hrec(t), respectively.
In fact, Sδ,n(f) can be written as

SPδ,n(f) = 1
Tu

+∞∑
k=−∞

Sδ,n

(
k

Tu

)
δ

(
f − k

Tu

)
. (2.32)

As

Sδ,n(f) =
N−1∑
n=0

sn exp
(
j2πfnTu

N

)
, (2.33)

we have that

Sδ,n

(
k

Tu

)
=
N−1∑
n=0

sn exp
(
j2πn k

N

)
= Sk, (2.34)

and

Srec(f) = 1
Tu

 +∞∑
k=−∞

Skδ

(
f − k

Tu

) ∗W (f)

Hrec(f)

= 1
Tu

 +∞∑
k=−∞

SkW

(
f − k

Tu

)Hrec(f)

= 1
Tu

 N/2−1∑
k=−N/2

SkW
a
(
f − k

Tu

)Hrec(f), (2.35)

where

W a (f) =
+∞∑
l=−∞

W

(
f − lN

Tu

)

=
+∞∑
l=−∞

W (f − lFs) , (2.36)

is the Fourier transform of an “equivalent window function”. In fact, W a (f) includes the
aliasing effects inherent to the digital generation of the OFDM signal, since it accounts for
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the impact of the replicas of W (f) that are centered at multiples of Fs (see (2.36)). Note
also that by replacing (2.35) in (2.30) and considering (2.4), we obtain

Gsrec(f) = E [Srec(f)S∗rec(f)]
Tsymb

= |Hrec(f)|2

T 2
uTsymb

E

 N/2−1∑
k=−N/2

SkW
a
(
f − k

Tu

) N/2−1∑
k=−N/2

S∗k′W
a∗
(
f − k

Tu

) .
(2.37)

In addition, taking into account (2.4), we have

Gsrec(f) = |Hrec(f)|2

T 2
uTsymb

N/2−1∑
k=−N/2

E
[
|Sk|2

] ∣∣∣∣W a
(
f − k

Tu

)∣∣∣∣2

= 2σ2
S |Hrec(f)|2

T 2
uTsymb

Nu/2−1∑
k=−Nu/2

∣∣∣∣W a
(
f − k

Tu

)∣∣∣∣2 . (2.38)

Naturally, the aliasing effects decrease when the oversampling factor increases. Indeed,
when N is large and/or O ≥ 2, it can be shown that [32]

W a
(
f − k

Tu

)
≈W

(
f − k

Tu

)
. (2.39)

In these conditions, the aliasing effects can be considered negligible and the differences
between srec(t) and s(t) are small. Moreover, if the frequency response of the reconstruction
filter is flat over the signal band (i.e., Hrec(f) = 1), we have that |Hrec(f)|2 = 1 and

Gsrec(f)≈ 2σ2
S

T 2
uTsymb

Nu/2−1∑
k=−Nu/2

∣∣∣∣sinc(f − k

Tu

)∣∣∣∣2 . (2.40)

From (2.40), one can conclude that the PSD associated to reconstructed OFDM signals
represented in (2.27) is approximately proportional to the PSD in (2.13), i.e., to the PSD
of the continuous-time “perfect” OFDM signal s(t).

Even with a quasi-perfect reconstruction of OFDM signals through the samples gener-
ated by the IDFT block, it should be noted that the use of rectangular windows lead to
large side lobes outside the “useful band”, which may compromise the commitment to the
spectral mask of the system, leading to high adjacent channel interference (ACI) levels that
prejudice the communication systems that operate in adjacent bands. In order to reduce
this out-of-band radiation, different windows should be considered. A common window
employed in several OFDM systems is the square-root raised-cosine (SRRC) window [33],
since it can greatly compact the PSD of OFDM signals and reduce the ACI [32], [34].

After the DAC, the baseband OFDM signal s(t) passes through a radio frequency
(RF) modulator to be up converted and translated to a given carrier frequency fc(5). The
resultant bandpass OFDM signal is

sbp(t) = Re(s(t)exp(j2πfct)) . (2.41)

(5)As an example, the carrier frequency in the IEEE 802.11ac wireless LAN standard is fc = 5 GHz.

16



2.2. OFDM

After the up conversion to the RF band, the signal is amplified and transmitted through
the channel.

2.2.2 Transmission over Frequency-Selective Channels

Due to the multipath phenomena in wireless propagation scenarios, to the receiver may
arrive not only the transmitted signal, but also several copies of it. These copies may have
different gains and delays and add destructively or constructively, causing fading and ISI,
which can severely degrade the system’s performance.

Regarding the channel characteristics, the fading can be classified as [2]: (i) slow or fast,
according to the time-variation of the channel and (ii) frequency-selective or frequency-non
selective (flat), according to the channel delay spread. In this thesis, time-invariant (slow-
fading), frequency-selective channels are considered. These channels can be generically
characterized by a linear, time-invariant filter. The impulse response of this filter is
conventionally termed channel impulsive response (CIR) and can be expressed as

h(t) =
L−1∑
l=0

αlδ(t− τl), (2.42)

where L is the number of multipath components and αl and delay τl are the complex am-
plitude and the delay associated to the lth ray, respectively. In the following, it is assumed
that the delays of the multipath components are equally-spaced by Tu/N . Therefore, (2.42)
can be rewritten as

h(t) =
L−1∑
l=0

αlδ

(
t− lTu

N

)
. (2.43)

At the frequency-selective channel output, we have

z(t) = s(t) ∗h(t). (2.44)

Naturally, the complex amplitude and the delay associated to the lth multipath component
are random quantities due to the constant changes in the multipath environment (a
consequence of the users’ mobility). The power delay profile (PDP) associated to the CIR
represented in (2.43) is defined as

v(t) =
L−1∑
l=0
|αl|2δ

(
t− lTu

N

)
. (2.45)

On the other hand, regarding the frequency-domain, the Fourier transform of h(t) is

H(f) =
L−1∑
l=0

αl exp(j2πfτl). (2.46)

As the performance analysis of OFDM systems presented in this section is based on
discrete-time and discrete-frequency samples, we considered the discrete version of the
frequency-selective channel. Therefore, it is firstly shown what information is contained
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in the channel samples regarding both the time and the frequency domains. Let us start
by considering a frequency-domain signal composed by periodic repetitions of the channel
frequency response H(f). If these repetitions are spaced by Fs = 1/Ts, we may define the
periodic frequency-domain signal

HP (f) =
+∞∑

m=−∞
H(f −mFs). (2.47)

Note that taking into account its periodicity, we can expand HP (f) in a Fourier series,
namely

HP (f) =
+∞∑

n=−∞
βn exp(j2πfnTs), (2.48)

where βn represents the Fourier coefficient associated to the nth complex sinusoid. This
coefficient can be obtained as

βn = 1
Fs

+Fs/2∫
−Fs/2

HP (f)exp(−j2πnfTs)df

≈ 1
Fs

+Fs/2∫
−Fs/2

H(f)exp(−j2πnfTs)df, (2.49)

where the previous approximation is made under the condition of negligible aliasing effects
(the separation between the different replicas, given by Fs, is large enough to neglect their
overlap). In fact, it should be noted that this definition of the Fourier coefficients is strictly
related with the inverse Fourier transform of H(f) (see (2.43)), that is

h(t) =
+Fs/2∫
−Fs/2

H(f)exp(j2πft)df. (2.50)

In fact, βn is given by
βn = 1

Fs
h(−nTs) = Tsh(−nTs). (2.51)

Therefore, (2.48) can be rewritten as

HP (f) =
+∞∑

n=−∞
Tsh(nTs)exp(−j2πfnTs). (2.52)

Let us now define
Hk

∆= FsH
P (k/Tu). (2.53)

As h(nTs) is only defined for 0≤ n≤ L− 1, we have

Hk =
N−1∑
n=0

h(nTs)exp
(
−j2π k

Tu
nTs

)

=
L−1∑
n=0

h(nTs)exp
(
−j2π k

N
n

)
. (2.54)
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Moreover, by defining
hn

∆= hP (nTs), (2.55)

where

hP (t) =
+∞∑
i=−∞

h(t− iTu), (2.56)

consists in periodic repetitions of h(t) spaced by Tu, it can be noted that

h = F−1H, (2.57)

i.e., the block of time-domain channel samples h = [h0 h1 h2 ... hN−1]T ∈ CN is the IDFT
of H = [H0 H1 H2 ... HN−1]T ∈ CN . Moreover, if the different replicas of H(f) for m , 0
in HP (f) are removed through filtering operations, then

Hk ≈ FsH(k/Tu), (2.58)

which means that apart from a scale factor Fs, Hk are samples of the channel frequency
response represented in (2.46). Clearly, the kth sample of the channel frequency response,
Hk, is random, since it depends on the random amplitude of the different multipath
components. In this work, the channel frequency responses are characterized through
a statistical model. More concretely, we consider Rayleigh multipath fading, which is a
special case of the Nakagami-m fading [35], where there is not a line of sight component
between the transmitter and the receiver. In these conditions, the complex amplitude
associated to the lth multipath component of the channel CIR has a complex Gaussian
distribution, i.e.,

αl ∼ CN (0,σ2
l ). (2.59)

As in average we want that each subcarrier experiences a unitary “channel gain”, i.e., we
aim that E[|Hk|2] = 1, the variance associated to the lth multipath component, σ2

l , is
defined as

σ2
l = 1

L
, 0≤ l ≤ L− 1, (2.60)

which means that the average power of the different multipath components is equal. There-
fore, considering (2.54), one can note that the real and imaginary parts of Hk have approx-
imately a Gaussian distribution with zero mean and variance 1/2, i.e., Re(Hk)∼N (0,1/2)
and Im(Hk)∼N (0,1/2). On the other hand, the absolute value of the channel frequency
responses has a Rayleigh distribution, i.e., |Hk| ∼ Rayleigh(1/

√
2), which means that

|Hk|2 ∼ Γ (1,1), i.e., the squared absolute value of the channel frequency responses has a
Gamma distribution with unitary shape and scale parameters. Fig. 2.7 shows the simu-
lated and theoretical distributions associated to the real part, absolute value and squared
absolute value of Hk, for frequency-selective channels with L= 64 uncorrelated multipath
components. From the results depicted in the figure, it can be seen that the Gaussian
approximation for the channel frequency responses is very tight and, even with a moderate
number of L, it can be verified that the squared absolute value of the channel frequency
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Figure 2.7: PDF associated to the real part, absolute value and squared absolute value of
the channel frequency responses for L= 64 multipath components.

responses has indeed a Gamma distribution. Therefore, by defining the average power of
the multipath rays as in (2.60), we do have a unitary channel gain for each subcarrier, i.e.,
E[|Hk|2] = 1, which means that the average power of the received signals is the same of
the transmitted signals. Fig. 2.8 shows the evolution of the squared absolute value of the
channel frequency responses |Hk|2 considering Nu = 256, O = 4 and different values of L.
From the figure, it can be noted that the average value of the |Hk|2 is unitary, regardless
of L, which is expected since the distribution of |Hk|2 does not depend on L. However,
as L increases, the fluctuations also increase, i.e., the channel presents a more dynamic
behavior.

In time-dispersive channels, the data detection can be severely affected, leading to
poor performances and considerable BER degradations. This is specially important in SC
systems, where the symbol time is very small and the ISI is severe. Thus, to compensate the
large ISI in such systems, very high complex equalization techniques have to be employed.
In OFDM, although, the higher duration of the symbols greatly reduces the ISI comparably
to that of SC systems and this is the one of its main advantages. However, even with a
symbol duration that is many times larger, there is always some residual ISI between two
consecutive OFDM blocks. In fact, the ISI in OFDM is typically constrained to one OFDM
block, i.e., it does not spread over several symbols as typically occurs in SC systems, where
the symbol time is smaller than the delay spread of the channel. For this reason, it is also
known as inter-block interference (IBI).
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Figure 2.8: Evolution of |Hk|2 considering channels with a different number of multipath
components.

Another important problem associated to frequency-selective channels is that delayed
replicas of the transmitted signal may destroy the orthogonality between the subcarriers
and cause inter-channel interference (ICI), which can severely degrade the BER of the
OFDM system. For these reasons, it is common to consider a guard interval between
OFDM blocks to guarantee both an IBI and an ICI-free transmission in a multipath
propagation environment.

In the so-called cyclic prefix (CP)-OFDM [36], the guard interval is composed by a
repetition of the last part of the OFDM block, i.e., it consists in a cyclic extension. The
CP has mainly two purposes: (i) increase the resilience/robustness to IBI by extending
the OFDM block in such a way that the interference caused by the previous block falls
into the CP and (ii) reduce the complexity of the equalization process, allowing the use of
simple one-tap equalizers that simplify the detection. While the former goal is achieved
by discarding the CP samples at the receiver, the latter is attained through the cyclic
extension of the subcarriers. With that cyclic extension, their delayed versions have
an integer number of cycles during the detection interval, which allows to maintain the
orthogonality. However, the advantages of the CP come at a cost of power and spectral
efficiencies. In fact, there is power spent in the transmission of redundant information as
well as a loss in the symbol rate, which means that both the energy and the bandwidth
efficiency decrease. Thus, when choosing the duration of the CP, the system designer
faces a trade off between the robustness to IBI and ICI and the deterioration of the
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power/bandwidth efficiencies. Commonly, the number of samples that compose the CP,
Ncp, and its corresponding duration, Tg = NcpTs, is dictated by the CIR length. Ideally,
to completely eliminate the IBI, the CP should be, at least, equal to the CIR length.
Nevertheless, in order to avoid a significant overhead, the CP duration Tg is typically
chosen to be no longer than one fourth of the symbol duration, which means that in terms
of samples, we have Ncp ≤ N/4(6). After the CP addition, the duration of the OFDM
symbol is

Tsymb =NtTs = (N +Ncp)Ts = Tg +Tu. (2.61)

Note also that due to the CP transmission, there is a degradation in the transmission
efficiency given by

ηCP = N

Nt
= N

N +Ncp
. (2.62)

Fig. 2.9 depicts the composition of a time-domain OFDM block after the CP addition.
An alternative for CP-OFDM is the zero padded (ZP)-OFDM. In ZP-OFDM schemes,

Tsymb

Tg Tu = 1
∆f

CP

Figure 2.9: Composition of the OFDM block after the CP addition.

no power is wasted in the prefix samples since the guard interval is composed by zeros.
However, this technique requires more complex receivers, although the complexity can
be alleviated at the expense of some degradation in the power efficiency [37]. In fact,
the simplicity and elegance of CP-OFDM makes it the most common implementation of
OFDM in practical systems. In this thesis, CP-OFDM systems are considered and it is
always assumed that the duration of the CP is larger enough to compensate the adverse
effects of the channel length and, thus, to avoid IBI and ICI. In the following, it is shown
how the CP can remove the IBI and the ICI.

In the signal processing chain considered here, the CP addition is modeled as a multipli-
cation between the time-domain samples of a given OFDM block s = [s0 s1 s2 ... sN−1]T ∈
CN and the Nt×N “CP addition” matrix Ga, that is defined as

Ga =
[

[0 INcp ]T INt−Ncp
]T
, (2.63)

(6)For instance, in LTE, the subcarrier spacing is ∆f = 15 kHz and the symbol duration is Tsymb = 66.7µs.
For the normal CP, where Tg = 5.2µs, we have Tg/Tsymb ≈ 0.08≤ 0.25. For the extended CP, used to deal
with larger delay spreads, we have Tg = 17µs and Tg/Tsymb ≈ 0.25.
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with Ip denoting the p× p identity matrix. After the CP addition, we have

x = Gas

= GaF−1S, (2.64)

where x = [x0 x1 x2 ... xNt−1]T ∈ CNt denotes the augmented set of time-domain samples
that results from the concatenation of s = [s0 s1 s2 ... sN−1]T ∈ CN with the CP samples.
Note that the nth element of x = [x0 x1 x2 ... xNt−1]T ∈ CNt is given by

xn =
{
sN−Ncp+n, 0≤ n≤Ncp− 1
sn−Ncp , Ncp ≤ n≤Nt− 1.

(2.65)

Let us consider the discrete-time version of the time-dispersive channel represented in (2.42).
Having in mind (2.44), the output of the discrete-time channel is the discrete convolution
between the time-domain samples of the OFDM signal x = [x0 x1 x2 ... xNt−1]T ∈ CNt

and time-domain channel samples h = [h0 h1 h2 ... hN−1]T ∈ CN , i.e.,

z = h ∗x. (2.66)

Therefore, the nth time-domain sample at the channel output is

zn =
+∞∑
j=−∞

xjhn−j

=
n∑

j=n−L+1
xjhn−j . (2.67)

From (2.67), one can note that the nth sample at the channel output is not only a function
of the nth data sample xn, but also of the L−1 previous samples. For instance, regarding
the 0th sample of the mth block, z(m)

0 , we have

z
(m)
0 = x

(m−1)
−L+1 hL−1 +x

(m−1)
−L+2 hL−2︸                                ︷︷                                ︸

interference from (m− 1)th block

+ · · ·+ x
(m)
0 h0︸     ︷︷     ︸

useful part

, (2.68)

where it is clear that samples of the (m−1)th block interfere with samples of the mth block,
leading to the so-called IBI. However, as the receiver discards all the CP samples, the IBI
can be completely eliminated provided that Ncp is larger than L. In the signal processing
scheme considered in this thesis, the CP removal is modeled by the multiplication between
z = [z0 z1 z2 ... zN−1]T ∈ CN and the CP removal matrix Gr, which is an Nt×Nt diagonal
matrix defined as

Gr = diag

[0 0 ... 0︸      ︷︷      ︸
Ncp

1 1 ... 1︸      ︷︷      ︸
N

]

 . (2.69)

Therefore, also considering the additive white Gaussian noise (AWGN), the signal for
detection purposes is given by

r = Grz +ν, (2.70)
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where r = [r0 r1 r2 ... rN−1]T ∈ CN denotes the time-domain received samples without the
CP and ν = [ν0 ν1 ν2 ... νN−1]T ∈ CN represents the array of time-domain AWGN samples.
The real and the imaginary parts of these noise samples are modeled by a Gaussian random
variable with zero mean and variance σ2

ν , i.e., νn ∼N (0,σ2
ν). Thus, the power of the noise

samples is E[|νn|2] = 2σ2
ν .

The OFDM receiver structure is shown in Fig. 2.10. After the CP elimination, all

Analog Domain

z(t)
RF

Demod
ADC

zn
S/P

r

DFT

F

R

CP Rem.
rn

Digital Domain

Figure 2.10: OFDM receiver structure.

received signal samples r = [r0 r1 r2 ... rN−1]T ∈ CN associated to the mth block are only
a function of the data samples associated to that block, appearing that there is no channel
memory, i.e., no ISI. For this reason, in matrix notation, we can write


r0

r1
...

rN−1

=



h0 0 · · · 0 hL−1 · · · h2 h1

h1 h0 0 · · · 0 hL−1 · · · h2
...

. . .
. . .

. . .
. . .

...

0 . . . 0 hL−1 · · · h0 · · · 0
. . .

. . .
. . .

0 · · · 0 hL−1 · · · h1 h0 0
0 · · · 0 hL−1 · · · h1 h0


︸                                                                    ︷︷                                                                    ︸

hc


s1

s2
...

sN−1

+


ν1

ν2
...

νN−1

 .

(2.71)

Clearly, from (2.71) one can note that hc is a circulant matrix. Recalling the fact that
these type of matrices can be diagonalized with the DFT matrix represented in (2.18), we
may decompose hc as(7)

hc = F−1HF. (2.72)

Therefore,

r = F−1HFs +ν. (2.73)

(7)Here, a slight abuse in the notation is committed since, for simplicity, we are denoting the diagonal
matrix composed by the elements of H also as H.
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By applying the DFT to both sides of (2.73), we obtain

R = HFs + Fν

= HS + N, (2.74)

where H is a diagonal matrix whose the diagonal elements are composed by the DFT of
the channel coefficients h = [h0 h1 h2 ... hN−1]T ∈ CN (the DFT of the first column of
hc), i.e.,

H =



H0 0 0 · · · 0
0 H1 0 · · · 0
0 0 H2 · · · 0

0 0 · · · . . .
...

0 0 0 0 HN−1


, (2.75)

and N = [N0 N1 N2 ... NN−1]T ∈ CN represents the noise samples in the frequency domain,
i.e., the DFT of the block ν = [ν0 ν1 ν2 ... νN−1]T ∈ CN . After the DFT operation, the
noise samples still have a Gaussian distribution, however, their real and imaginary parts
have variance

σ2
N = σ2

νNuO
2. (2.76)

and E[|Nk|2] = 2σ2
N . From (2.74), the received signal for the kth subcarrier can be written

as

Rk = SkHk +Nk, (2.77)

where Hk and Nk represent the channel frequency response (see (2.58)) and the noise
component associated to the kth subcarrier, respectively. In fact, from (2.77), one can
note that the existence of a CP larger than the delay spread and the invariability of the
channel during the symbol time, allows the elimination of the IBI and ICI. Put in other
words, this means that the frequency-selective channel is converted into a set of N parallel,
flat-fading channels. The equivalent, subcarrier-level model for an OFDM system in these
conditions is shown in Fig. 2.11(8).

The next task done by the receiver is the equalization. It is worth to mention that as
each subcarrier only experiences a complex “gain” Hk, there is no need to perform heavy
and complex equalization procedures and simple one tap equalizers can be employed before
the detection. In conventional OFDM schemes, these blocks work individually on each
subcarrier as can be seen in Fig. 2.12, that shows the equalization and detection blocks.
Denoting the equalization factor for a given subcarrier as Fk, the data estimated on the
kth subcarrier is

Ŝk = FkRk. (2.78)

(8)Thorough this thesis we will denote this model as the “linear OFDM model”.
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Figure 2.11: Equivalent, subcarrier-level model for an OFDM system without IBI and ICI.
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Figure 2.12: Equalization and detection in conventional OFDM.

The simplest equalization procedure involves a single channel inversion and is known as
zero forcing (ZF) technique. In that technique, the equalization factor is

Fk = 1
Hk

= H∗k
|Hk|2

, (2.79)

and the equalized symbol associated to the kth subcarrier is hence

Ŝk =RkFk

= Sk + Nk
Hk

. (2.80)

Although very simple, this equalization procedure may lead to poor results due to the
undesired noise enhancement associated to the subcarriers with the deepest fades. Note
that in those subcarriers, the noise is severely amplified by the factor 1/Hk, not to mention
the problems that may arise in situations where Hk ≈ 0, since in those situations is very
difficult to invert the channel and obtain the corresponding equalization factor.
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Regarding ZP-OFDM schemes, more complex equalization methods such as minimum
mean square error (MMSE) techniques can be employed. In these techniques, the subcar-
rier’s SNR is taken into account for the computation of the equalization factor [38].

After the equalization process, the symbol associated to the kth subcarrier, Ŝk, is sent
to the decision device that outputs the estimated data symbol S̃k. In conventional OFDM
systems, the detection is also made on a subcarrier basis. This means that the detection of
the kth data symbol is made only with information of the kth subcarrier. For instance, the
typical detection procedure is based on an hard-decision on each subcarrier. Contrarily to
the conventional detection (see Fig. 2.12), the optimum detection, that will be introduced
in the next chapter, involves the information of the entire block (i.e., of all subcarriers),
since it is a block-by-block detection [35]. In the following, a set of BER performance results
regarding conventional OFDM transmissions under different scenarios is presented. In all
those scenarios, perfect channel knowledge and perfect time and frequency synchronization
are assumed.

As a consequence of (2.77), the BER of a given OFDM system can be obtained by
averaging the BER of all subcarriers. Having in mind that only Nu out of N subcarriers
are used for data transmission and denoting the BER associated to the kth subcarrier as
Pb,k, we have

Pb = 1
Nu

Nu∑
k=1

Pb,k. (2.81)

Note that for the case of ideal AWGN channels, Pb,k does not change with k, which means
that Pb = Pb,k. Under these conditions, it can be shown that the BER of an OFDM system
employing M -QAM constellations and a Gray mapping rule is given by [35]

Pb ≈
2

log2(
√
M)

(
1− 1√

M

)
Q

(√
3log2(M)Eb
(M − 1)N0

)
, (2.82)

where Q(x) represents the well known Q-function, that gives the tail probability of the
standard normal distribution and can be computed as [39]

Q(x) = 1√
2π

∫ ∞
x

exp
(
−u

2

2

)
du, (2.83)

and Eb denotes the average bit energy. Note that for the particular case of QPSK constel-
lations, where two bits are transmitted per subcarrier, the average bit energy is

Eb = 1
2Nu

N−1∑
k=0

E
[
|Sk|2

]
= 2Nuσ2

S

2Nu
= σ2

S . (2.84)

This means that, when normalized QPSK constellations (i.e., M = 4) are employed, we
have σS = 1 and Eb = 1. Under these conditions, from (2.82), the approximate BER is
given by

Pb ≈Q
(√

2Eb
N0

)
. (2.85)
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Fig. 2.13 shows the simulated and theoretical BER (obtained with (2.82)) associated to
an OFDM transmission in ideal AWGN channels, considering Nu = 256, O = 4 and for
different constellations. From the results depicted in the figure it can be pointed out that
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Figure 2.13: Simulated and theoretical BER of an OFDM system for ideal AWGN channels
and different constellations.

(2.82) is a very tight approximation for the BER, especially, for large values of Eb/N0.
As expected, the BER is higher when larger constellations are employed. For a target
BER of Pb = 10−4, an Eb/N0 of approximately 8.3 dB is required if QPSK constellations
are employed. However, the required value of Eb/N0 to achieve that BER increases
to approximately 12.2 dB and 14.3 dB when 16-QAM and 32-QAM constellations are
considered, respectively. It should also be mentioned that this BER represents the “ideal”
performance, i.e., the performance that could be obtained in ideal conditions, i.e., in a
channel does not present impairments such as fading and/or ICI.

As can be observed from (2.77), for frequency-selective channels with uncorrelated
Rayleigh fading, the received signal for the kth subcarrier is dependent on the channel
frequency response of that subcarrier. Therefore, due to the random nature ofHk, the SNR
experienced on the kth subcarrier is a random quantity that depends on the channel gain
|Hk|2, which means that the BER associated to the kth subcarrier is also a random quantity,
i.e., Pb,k(|Hk|2). As seen before in this section, the channel gain for each subcarrier can
be modeled by Gamma distribution with unitary average value (see Fig. 2.7). Thus, its
distribution is given by

p
(
|Hk|2

)
= exp

(
−|Hk|2

)
, |Hk|2 > 0. (2.86)
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Under these conditions, the average BER for a given subcarrier can be obtained as

Pb,k = E
[
Pb,k

(
|Hk|2

)]
=

+∞∫
0

Pb,k
(
|Hk|2

)
p
(
|Hk|2

)
d|Hk|2. (2.87)

where Pb,k
(
|Hk|2

)
represents the BER for the kth subcarrier, associated to a given channel

realization H. As the distribution of the channel gain is independent of k, the average
BER is the same for all subcarriers, i.e., Pb = Pb,k. After straightforward but lengthy
manipulations, it can be shown that the BER for OFDM transmissions in frequency-
selective channels is given by [35]

Pb ≈
2

log2
(√

M
) (1− 1√

M

)(
1−

√
KM

1 +KM

)
, (2.88)

where KM = 3log2(M)Eb
2(M−1)N0

. Since the channel has an average unitary gain, it was considered
that the average bit energy averaged over several channel realizations is still Eb. Thorough
this work, both (2.82) and (2.88) are used as BER references for uncoded OFDM scenarios,
regarding both ideal AWGN and frequency-selective channels, respectively. Fig. 2.14
shows the average BER of an OFDM system considering frequency-selective channels with
L = 32 multipath components and different QAM constellations. From this figure one
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Figure 2.14: Average BER of an OFDM system considering frequency-selective channels
with L= 32 and different constellations.

can note that (2.88) is very accurate, especially, in the asymptotic region (i.e., for large
values of Eb/N0) and/or when small constellations are employed. As expected, the BER
in frequency-selective channels is considerably higher than in ideal AWGN channels. Even
with QPSK constellations, to obtain a target BER of Pb = 10−3, we need approximately
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Eb/N0 = 23.8 dB, and this value increases to around Eb/N0 = 26.8 dB and Eb/N0 = 28.9
dB when 16-QAM and 32-QAM constellations are employed, respectively.

In practice, to avoid this very large BER, OFDM is typically used in conjugation with
some process of channel coding, which results in the so-called coded OFDM (COFDM)
[40], [41]. The use of channel coding allows to substantially improve the performance
of OFDM systems in strongly frequency-selective channels. One of the most popular
channel codes for OFDM is the 64-state convolutional code with rate Cr = 1/2(9). The
wide use of convolutional codes can be justified by the possibility that they offer to realize
the decoding operation in real-time through the use of the Viterbi algorithm [42]. Fig.
2.15 presents the BER of both an OFDM and a COFDM system, considering both ideal
AWGN and frequency-selective channels with L = 32. The channel coding is made with
a 64-state convolutional code with rate Cr = 1/2 and the signals have Nu = 128 and
O = 4. From the results shown in the figure, one can clearly note the use of a channel
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Figure 2.15: BER for both coded and uncoded OFDM systems considering both ideal
AWGN and frequency-selective channels.

code can substantially improve the performance of OFDM systems. This is specially
important in scenarios where the channel presents a frequency-selective behavior since, in
these cases, the BER is highly conditioned by the subcarriers that are in deep fade, which
can considerably reduce system’s performance. In fact, for a target BER of Pb = 10−3, the
use of channel coding gives rise to a gain of about 19 dB relatively to the uncoded OFDM
transmission. Regarding ideal AWGN channels and a target BER of Pb = 10−4, there is a
gain of approximately 7 dB relatively to the uncoded OFDM scenario.

(9)In the IEEE 802.11a wireless LAN standard, a 64-state convolutional code is used. The rate of this
code can be Cr = 1/2, Cr = 2/3 or Cr = 3/4.
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2.3 PAPR Problem

One of the major problems associated to multicarrier modulations is the very large envelope
fluctuations of their waveforms, that are constituted by the summation of several modulated
subcarriers (see (2.2)). Therefore, very high power peaks can be produced at the IDFT
output, leading to signals with large dynamic range. Signals with such characteristics lead
to difficulties in the amplification, quantization and other operations that are done in the
transmission chain of MC systems, since the devices associated to such operations should
present a large linear dynamic range.

There are different metrics to quantify the high power peaks and large envelope fluctu-
ations of multicarrier signals, but the most consensual is the so-called PAPR. The PAPR
is defined as the ratio between the maximum instantaneous power (peak power), Pin,max,
and the average power of a given OFDM block s = [s0 s1 s2 ... sN−1]T ∈ CN , Pin,avg, i.e.,

PAPR = Pin,max
Pin,avg

= max
(
|sn|2

)
2σ2 . (2.89)

Fig. 2.16 shows both the instantaneous power and the average power associated to the
samples of an OFDM signal with Nu = 256 useful subcarriers and O = 1. From the figure,
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Figure 2.16: Instantaneous power and average power associated to the samples of a given
OFDM signal.

it is clear that very large peaks can occur within a block. However, it should be mentioned
that the peaks associated to the discrete-time version of the OFDM signal may not coincide
with the peaks of the continuous-time signal, since we can have peaks between the sampling
times. In fact, the PAPR associated to the discrete time-domain samples is a lower bound
of the true PAPR, that cannot be obtained with the OFDM samples taken at the Nyquist
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rate. However, it can be shown that the accurate PAPR values can be obtained with the
discrete-time OFDM samples at the IDFT output, provided that the oversampling factor
is at least O = 4 [43].

The peak power that yields the maximum PAPR value is related to the adopted
constellation and it is proportional to the number of subcarriers, i.e., it can be substantially
deviated from the average power, though it can be shown that its occurrence is a extremely
rare event since it requires that all the subcarriers are phase aligned. For instance, regarding
QPSK constellations (M = 4), there are M2 sequences that can generate the maximum
peak power. As the total number of possible sequences isMNu , the occurrence of this peak
power has a very low probability. In fact, it can be shown that the probability of having
the maximum peak power decays exponentially with the number of subcarriers [44].

As mentioned before, as the number of subcarriers increases, the corresponding OFDM
signals become approximately Gaussian. Under these conditions, the PAPR metric can be
seen as a random variable with a given statistical characterization. Therefore, to evaluate
and measure the envelope fluctuations of a given OFDM system, it is better to analyze
the distribution of the PAPR, rather than just compute its maximum value, since the
distribution gives more information about the probability of having a given PAPR.

One of the most common ways to measure the PAPR is to analyze its complementary
cumulative density function (CCDF). The CCDF of the PAPR tells us what is the
probability of having a PAPR higher than a given threshold, and can be obtained through
the cumulative density function (CDF) as

CCDF(γ) = P (γ > X)

= 1−P (γ ≤X)

= 1−CDF(γ), (2.90)

with P (·) representing the probability associated to a given event, γ denoting the random
variable that models the PAPR and

CDF(γ) = P (γ ≤X). (2.91)

Note also that as Nu increases, the Gaussian approximation for the real and imaginary
parts of sn holds (see (2.26)). Therefore, the amplitude of the nth time-domain sample,
|sn|, has a Rayleigh distribution. Moreover, the instantaneous power associated with
the nth sample has Chi squared distribution with two degrees of freedom. Under these
conditions, the CCDF of the PAPR can be bounded as [45]

CCDF(γ)bound = 1− (1− exp(−γ))βNu , (2.92)

with β = 1 when the time-domain samples sn are uncorrelated. However, it should be
referred that when there is oversampling and the time-domain samples are correlated, β is
chosen to be higher than 1, but lower than the oversampling factor. Fig. 2.17 shows the
simulated and theoretical CCDF (obtained with (2.92)) of the PAPR of OFDM signals
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Figure 2.17: Simulated CCDF of the PAPR of an OFDM system with QPSK constellations,
O = 4 and different values of Nu.

with QPSK constellations, O = 4 and different values of Nu. From the figure, it can be
concluded that the bound of (2.92) is precise, presenting an error of approximately 1 dB
in the worst case. Additionally, it can be noted that regardless of Nu, the PAPR is always
higher than 5 dB, which demonstrates how accentuated the envelope fluctuations can be,
even for a low to moderate number of subcarriers. As expected, the PAPR increases with
the number of subcarriers. For instance, although the PAPR can be lower than 6.5 dB
when Nu = 64, it is impossible to have those PAPR values when much higher values of Nu
are considered. In addition, the probability of exceeding a PAPR of 10 dB is only 0.3%
when Nu = 64, but increases to 0.7% when Nu = 128 and can even reach approximately
7.1% when Nu = 1024. In fact, although a rare event, the PAPR can exceed 12.5 dB when
Nu = 1024. This means that even though the event of having the maximum PAPR is very
unlikely, there are always considerable differences between the peak power and the average
power, which means that OFDM signals present very large envelope fluctuations, which
undoubtedly constitutes one of its major drawbacks.

2.3.1 Amplification Issues

The main consequence of the very large PAPR of OFDM signals is the existence of severe
amplification issues that lead to a high sensitivity to nonlinear distortions. In fact, the
linearity requirements of a power amplifier designed for multicarrier signals are very high.
These high linearity requirements preclude the use of highly efficient, low-cost nonlinear
power amplifiers such as the ones of class D, E and F, that have a theoretical maximum
efficiency of 100% [46]. For a linear amplification of signals with large dynamic ranges,
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linear power amplifiers such as the ones of class A or B should be used. However, these
power amplifiers have a maximum theoretical efficiency of 50% and 75%, respectively [46].
In addition, their effective efficiency may be considerably lower, since they may incur in
a large power penalty to accommodate the very large PAPR of multicarrier signals and
assure a linear amplification. This effect is illustrated in Fig. 2.18, which shows a nonlinear
amplification curve as well as different operation points of the amplifier. As can be seen in

Pin,avg Pin,sat

Pin

Pout

IBO

Nonlinear RegionLinear Region

Optimal Efficiency Point

Dynamic Range

Ideal Amplification Curve

OBO

Pout,avg

Pout,sat

Figure 2.18: Amplification curve of a nonlinear amplifier.

the figure, the ideal amplification curve is linear, i.e., the signal at the amplifier output is a
scaled version of its input. However, in practice, linear power amplifiers only present this
behavior for a limited range of inputs, usually denoted as the linear region. On the other
hand, in the nonlinear region, the input signal saturates the amplifier and the amplified
signal becomes a nonlinear function of the input, which leads to the existence of nonlinear
distortion effects.

There are several ways to measure the efficiency of an amplifier. One of the most
common measures is the power added efficiency, that is computed by the ratio between
the difference between the RF output and input powers to the DC input power. However,
for amplifiers with large gains, the drain efficiency yields a good approximation of the
amplification efficiency. The drain efficiency is computed as the ratio between the output
power and the power consumed by the amplifier. For commercial linear power amplifiers,
the maximum drain efficiency typically ranges from 20% to 30% [47] and is obtained when
the amplifier is driven to work near the saturation region. However, it decreases sharply as
the input power decreases, i.e., as the operation point is deviated from the optimal efficiency
point. For constant or quasi-constant envelope signals this is not a severe limitation, since
the amplifier can work in the nonlinear region of the amplification curve without distort
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the output signals. However, for non-constant envelope signals such as OFDM signals, this
constitutes a severe problem since, to prevent nonlinear distortion effects, the amplifier
cannot work on its maximal efficiency point, which means that the amplification efficiency
may decrease substantially.

It is widely known that the nonlinear distortion effects can significantly impair the
amplified signals. Due to the intermodulation, these distortion effects take place both in
the in-band region and in the out-of-band region. The distortion in the in-band region
leads to BER degradations and even to high irreducible error floors. On the other hand, the
distortion that appears in the out-of-band region leads to large ACI levels, that are usually
regulated by the maximum allowed adjacent channel power ratio (ACPR). Therefore, to
avoid the problems created by the nonlinear distortion, the amplifier should be driven to
work within its linear region, which means that an output back-off (OBO) should take
place. The OBO is defined as the ratio between the output saturation power and the
average power of the output signal, i.e.,

OBO = Pout,sat
Pout,avg

. (2.93)

Its counterpart, regarding the input power, is the input back-off (IBO). The IBO is
defined as the ratio between the input power that leads to the amplifier’s saturation and
the average power of the input signal, i.e.,

IBO = Pin,sat
Pin,avg

. (2.94)

It should be mentioned that if no ACPR is allowed, then the power amplifier should be
fully backed off, which means that the IBO should be at least equal to the PAPR. This
means that the back-off may assume very large values, drastically reducing the effective
amplification efficiency. Indeed, for an amplifier with a given theoretical maximum drain
efficiency of ηa,max, the average effective efficiency is given by

ηa = ηa,max
1

OBO , (2.95)

i.e., the effective amplification efficiency is inversely proportional to the adopted OBO.
Therefore, the larger the required IBO and, consequently, the adopted OBO, the larger
the deviation relatively to the optimal efficiency point, i.e., the lower the energy efficiency
of the power amplifier. For instance, considering an OFDM signal with a PAPR around
10 dB and a class A amplifier, whose ηa,max = 50%, the effective efficiency may be lower
than 5%, which is a prohibitively low value. Additionally, it is important to note that
as the power amplifier is one of the major energy consumers of wireless networks(10), an
inefficient amplification process can substantially compromise the energy efficiency of the
entire system. This problem is specially serious in mobile devices such as cellular phones,

(10)In cellular networks, for instance, a large fraction of the energy is consumed at the BS, from which
50% to 80% can be spent in the amplification process.
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since in these battery-powered devices the power efficiency is crucial to increase the battery
lifetime.

For a signal with a given PAPR, better amplification efficiency can only be achieved
if stronger nonlinear distortion effects are tolerated [47]. Essentially, there is a trade-off
between robustness to nonlinear distortion effects and power efficiency, which makes the
amplification of multicarrier signals a very challenging task. Commonly, to maximize the
amplification efficiency, the PAPR of OFDM signals is reduced prior to the amplification
process. In these conditions, the required IBOs are lower which also means that lower
OBOs can be considered. It should be stressed that a PAPR reduction also allows us
work with quantizers with lower resolutions as well as to reduce the sensibility to phase
noise in multicarrier optical signals, which means that, in general, a lower PAPR leads to
a lower sensitivity to nonlinear distortion effects. In the next subsection, some techniques
to mitigate the large PAPR of multicarrier signals are presented.

2.3.2 PAPR Reducing Techniques

With the wide deployment of OFDM modulations in many wireless communications sys-
tems, the need to solve their amplification problems become a very important subject. In
fact, this challenge aroused the interest of many researchers and led to the development
of several techniques that aim to mitigate the very large PAPR of signals associated to
both single-input, single-output (SISO) and MIMO-OFDM systems [48]. Without a con-
siderable PAPR reduction in the baseband signal, the amplification efficiency of an OFDM
system becomes very low. However, when the PAPR is lower, the linearity requirements
are lower too, which means that the amplification efficiency can be higher. Therefore, due
to the important role of the amplification efficiency in the system, the overall system’s
energy efficiency may increase.

Although the PAPR-reduction techniques share a common goal, they act very differ-
ently. According to [6], that presents a taxonomy of the PAPR-reduction techniques, they
can be divided into three main categories: signal distortion techniques, multiple signaling
and probabilistic techniques and coding techniques. Their capability to reduce the envelope
fluctuations can be measured in several ways but it is usually evaluated by the CCDF
of the PAPR of the resultant signal [6]. Depending on their nature, the PAPR-reducing
techniques may bring disadvantages such as: increased complexity of the transceivers,
introduction of redundant information that leads to lower useful bit-rates, reduction of
transmitted signal power, BER degradation and spectral spreading of the transmitted
signals. Therefore, trade-offs between capability of PAPR reduction and one (or more) of
the drawbacks aforementioned may arise, challenging the system designer.

Signal Distortion Techniques

Signal distortion techniques are employed before the amplification process. They allow
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an effective PAPR reduction and, consequently, the use of highly efficient, nonlinear power
amplifiers, such as the ones of classe D or E. However, these techniques introduce both
in-band and out-of-band nonlinear distortion in the transmitted signals. As a consequence,
both the BER and the spectral efficiency can be degraded, respectively. The signal
distortion techniques can be divided into four types: clipping and filtering techniques
[49], peak windowing techniques [50], peak cancellation techniques [51] and companding
techniques [52].

In the clipping techniques, that are considered the most simple and effective techniques
to reduce the PAPR of multicarrier signals, the amplitude peaks higher than a certain
threshold are clipped to that threshold. To allow for higher PAPR reduction, the OFDM
signal may be oversampled before the clipping operation [53]. When the clipping operation
is applied to the envelope of an OFDM signal, these techniques are known as envelope
clipping techniques [53], [54]. On the other hand, when the clipping operation is applied
separately regarding the real and imaginary parts of an OFDM signal, we have Cartesian
or I-Q clipping techniques [7]. To maintain the original bandwidth of the signal, the out-of-
band distortion can be eliminated with a post-filtering operation leading to the well known
clipping and filtering techniques [55]. Fig. 2.19 shows the CCDF of the PAPR associated to
a clipped and filtered OFDM signal for Nu = 512, O = 4 and different clipping levels. From
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Figure 2.19: CCDF of the PAPR associated to a clipped and filtered OFDM signal con-
sidering different clipping levels.

the results depicted in this figure it can be noted that the clipping and filtering technique
can substantially reduce the PAPR of OFDM signals. As expected, the capability to
reduce the PAPR increases when the clipping level decreases. However, it should be noted
that the filtering operation may cause some regrowth of envelope fluctuations, that can be
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higher when the OFDM signal is not oversampled. An alternative is to perform the clipping
and filtering several times in an iterative way, leading to the so-called iterative clipping
and filtering technique [56]. In iterative clipping and filtering techniques, the signal is
clipped and filtered several times, till the corresponding PAPR decreases to the desired
value. As shown in the previous section, the occurrence of a very high power peak (that
leads to the maximum PAPR value) is a rare event and, for this reason, these techniques
can be designed in such a way that the resulting nonlinear distortion do not compromise
significantly the performance [57]. However, the impact of the nonlinear distortion effects
on the performance is not negligible and must be evaluated carefully.

Instead of being clipped, when the peak windowing techniques are employed, the high
amplitude peaks are attenuated by a window function, which leads to signals with lower
nonlinear distortions when compared to the ones that are clipped. The window is built
in such a way that its minimum values are aligned with the high amplitude peaks of the
OFDM signal. The multiplication of the OFDM signal by the generated window results
in a signal with a lower PAPR [50]. Commonly, Hamming or Kaiser-Bessel windows are
used due to their good spectral properties.

In peak cancellation techniques, a peak cancellation window is generated, scaled and
subtracted from the original OFDM signal. To generate such a window, a peak detector
must analyze the OFDM signal to find the positions of the high amplitude peaks. This is
made by comparing the OFDM signal with predetermined thresholds, and must be made
in a symbol by symbol basis [51]. It should be noted that the peak cancellation technique
can be seen as a particular case of the clipping and filtering techniques as demonstrated
in [58], [59].

Regarding the companding transform PAPR-reducing methods, the original OFDM
signal is companded using specific functions that can be classified regarding their linearity
and symmetry properties. A common transform function (that is nonlinear and asym-
metric) is the µ-law. In the µ-law transform function, the high peaks of the signal are
maintained but the lower ones are enhanced. Thus, although the average power increases,
the PAPR reduces too [52].

Multiple Signaling Techniques

The main idea associated to multiple signaling techniques is to create several repre-
sentations of the same OFDM signal. Between these replicas of the same signal, the one
that presents the lowest PAPR is chosen for amplification and transmission. The main
drawbacks associated to multiple signaling techniques are the increased complexity to
generate the different symbols that represent the same information as well as the need to
transmit side information to the receiver, which reduces the useful data rate.

In selective mapping [60], different OFDM symbols are obtained through the multipli-
cation of the original signal by different phase sequences. Between the generated symbols,
the one with lower PAPR is then transmitted. It should be mentioned that the receiver
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must know what is the phase sequence that leads to the OFDM symbol with lower PAPR.
In interleaved OFDM [61], multiple OFDM symbols are generated by permuting and

reordering the elements of the original OFDM symbol. Once again, side information must
must be transmitted, since the receiver needs to know what was the interleaver considered
in the transmitter.

In partial transmit sequences (PTS), the OFDM block is divided up into several sub-
blocks, transformed to the time-domain through an IDFT and weighted by a phase factor.
The goal is to find the set of phase-factors that minimize the PAPR of the combined block
[62]. In MIMO-OFDM systems, the PTS technique is applied for each stream and the
sets of phases factors are equal to all antennas, which allows to reduce the maximum
PAPR among the T antennas and to reduce the amount of side information that must be
transmitted per stream.

The tone injection technique allows the mitigation of the high PAPR by mapping
the constellation points onto a set of different points in an expanded constellation and
hence the “best” point between them can be chosen before the IDFT, to reduce the
PAPR of the transmitted signal [63]. In [63], it is also proposed a technique named tone
reservation, where a set of tones is reserved to reduce the PAPR. The reserved subcarriers
are determined with a convex optimization. The capability to reduce the PAPR depends
on the number of reserved tones as well as on their location in the frequency-domain. The
tone reservation technique can be easily extended to MIMO-OFDM systems [48].

In [64], the constellation shapping technique is proposed. The main idea of this tech-
nique is to reduce the PAPR by dynamically change the constellation without significantly
degrade the BER.

Coding Techniques

In addition to the capability of correcting and detecting errors, coding schemes can
reduce the high PAPR of OFDM signals without significantly increase their complexity.

Differently from the conventional linear block coding schemes, where the redundant
bits are dedicated to error correction to achieve BER improvements, these bits can be
allocated to reduce the PAPR of OFDM signals [65]. For instance, large PAPR values can
be avoided if the sequences that lead to those PAPR values are avoided too. This can be
done by block coding techniques where the original data words are transformed into a set
of code words with lower PAPR values. Due to the existence of redundant bits, however,
this approach involves lower useful data rates and exhaustive searches to find the best
codes, which also means more complexity.

There are schemes that combine block coding techniques with Golay complementary
sequences and have good capabilities of error correction and PAPR reduction [66]. However,
due to their very high complexity, their use is limited to OFDM systems that use a small
number of subcarriers. In [67], a turbo coding scheme that can also reduce the PAPR of
OFDM signals is proposed.
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Nonlinear Distortion in Multicarrier Systems

Nonlinear distortion is one of the main impairments that can be encountered in multicarrier
communications. This distortion arises from hardware limitations of electronic devices that
compose the transceivers that might not be able to linearly handle all signals at their input
without a substantial increase in the complexity and/or considerable energy inefficiencies.
An example of such devices is the power amplifier.

In fact, depending on the specific system, nonlinear distortion can be specially severe
and very difficult (or impossible) to avoid, contributing substantially to performance
degradation. As seen in the previous chapter, multicarrier systems are very sensitive
to nonlinearities due to their large envelope fluctuations. For this reason, it is very
likely that they face nonlinear distortion effects. This distortion typically results from a
nonlinear amplification or from the use of the most simple and promising PAPR reducing
techniques (see subsection (2.3.2)) - the clipping techniques - that are employed prior
to the amplification process. For this reason, study the impact of nonlinear distortion
effects on the performance of multicarrier systems is of extreme importance, not only to
quantify the corresponding performance penalty, but also to aid the development of ways
to mitigate it.

In the following section, the main analytical models to characterize memoryless nonlin-
earities are presented. These results are then employed in section 3.2, where the analytical
characterization of nonlinearly distorted Gaussian signals is made regarding both the time-
domain and the frequency-domain. In section 3.3 an efficient, low-complexity method for
characterizing nonlinearly distorted multicarrier signals is presented. Section 3.4 concerns
with the optimum detection of nonlinear multicarrier schemes. Besides the motivation
for the optimum detection of nonlinearly distorted signals, that includes an introduction
for this type of detection, it presents an analytical method for obtaining the asymptotic
optimum performance for different nonlinearities and different transmission scenarios. It
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is shown that the optimum detection present potential asymptotic gains relatively to the
conventional detection not only when nonlinear multicarrier schemes are considered, but
also in comparison with linear, multicarrier schemes.

3.1 Memoryless Nonlinearities

In order to quantify and predict the unwanted effects caused by the existence of nonlinear-
ities in a given system, it is important to have tools that allow to capture their behavior.
These tools help to solve the trade-offs faced by the system designer, as for instance
the trade-off between linearity and energy efficiency that arises in the amplification of
multicarrier signals explained in the previous chapter. Moreover, if the system designers
can accurately characterize nonlinear systems, they can develop mechanisms that might
mitigate the impact of nonlinear distortion on the system’s performance [68]. Examples
of such mechanisms are the so-called linearization techniques. The main idea of these
techniques is to submit the signal to a nonlinear operation before the amplification process.
This may allow to cancel the nonlinear distortion effects by the compound effect of the
two nonlinearities [69], [70].

The study of nonlinear devices, in general, can be carried out through circuit-level
models or physical models that provide large accuracy. Regarding high power amplifiers, for
instance, these models can be too complex since they involve a full characterization of the
amplifier’s internal composition, which may lead to the use of complicated analytical tools
such as nonlinear differential equations, which may be intractable from a practical point of
view. Moreover, the simulation time of these physical models may be very large for a system
level simulation. For this reason, empirical models, also known as “black-box” models have
been largely considered to capture the effect of nonlinearities associated to high power
amplifiers, although these models are built with no knowledge of the amplifiers structure
[71]. Due to their simplicity, these models can be putted into the simulation environment
without significantly augment its complexity, i.e., they can be used to predict and simulate
the nonlinear distortion effects, giving rise to a good trade-off between complexity and
accuracy [68].

In this section, we present the main mathematical tools and models that are usually
employed to characterize the common nonlinear devices that can be encountered in mul-
ticarrier communication systems. This comprises “black-box” models for both baseband
and bandpass memoryless nonlinearities, i.e., nonlinearities whose the output signals do
not depend on the bandwidth of the input signal. Put differently, their output at a given
time instant depend only on their input at that time instant. These frequency-independent
nonlinearities are also known as zero-memory nonlinearities.
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3.1.1 Baseband Nonlinearities

The memoryless baseband nonlinearities are memoryless nonlinearities that operate in
baseband signals. In this chapter, we consider that these baseband signals can be both
real-valued or complex-valued multicarrier signals. In the latter case, the nonlinearities
operate separately on the real and imaginary parts of the signal and are denoted through-
out this document as Cartesian nonlinearities.

Real-valued Nonlinearities

Let us consider a baseband, real-valued multicarrier signal s(t). When a memoryless
nonlinearity described by the function f(·) has at its input s(t), it yields

y(t) = f(s(t)). (3.1)

Under some conditions, the nonlinearity output y(t) can be characterized by a Taylor series
[72], resulting

y(t) = a0 + a1s(t) + a2s
2(t) + a3s

3(t) + · · ·+ ans
n(t) =

∞∑
n=0

ans
n(t), (3.2)

where the coefficients an can be obtained by fitting a polynomial function to a given
nonlinear characteristic. Commonly, as long as the input signal does not present a large
dynamic range and the nonlinearity is relatively “smooth”, the power series in (3.2) can
be truncated considering a relatively low number of terms without lead to a significant
loss of accuracy.

Cartesian Nonlinearities

In Cartesian nonlinearities, also known as “I-Q” nonlinearities, the real and imaginary
parts of a complex signal are submitted to memoryless nonlinearities. Therefore, for a
given complex-valued, multicarrier signal defined as

s̃(t) = sI(t) + jsQ(t), (3.3)

the nonlinearity yields

ỹ(t) = fbb(s̃(t))

= fbb,I(sI(t)) + jfbb,Q(sQ(t)), (3.4)

where fbb,I(·) and fbb,Q(·) denote the nonlinearities operating on the real and imaginary
parts of s̃(t), respectively. The model of this nonlinearity is depicted in Fig. 3.1. An
example of a Cartesian nonlinearity is the one associated to baseband clipping techniques
for PAPR reduction of multicarrier signals. In that case, the nonlinearities operating in
the real and imaginary parts are equal, i.e., fbb,I(·) = fbb,Q(·) = f(·). Fig. 3.2 shows the
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Re(·)

j

sI(t)

sQ(t)

s̃(t)

Im(·)

fbb,I(·)

fbb,Q(·)

ỹ(t)

Figure 3.1: Model of a Cartesian nonlinearity.

nonlinear function that represents the aforementioned clipping operation considering a
normalized clipping level of sM = 1.0, as well as its polynomial approximations obtained
by the least-squares method and considering different degrees. As expected, the accuracy
increases with the order of the polynomial approximation. In addition, due to the quasi-
linear behavior of f(s) for low values of s, it can be seen that the nonlinearity can be
approximated by a polynomial function with low degree in that zone.

s
-3 -2 -1 0 1 2 3

f
(s
)

-1.5
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-0.5

0

0.5

1

1.5

· · · · · · : Taylor Approx.
: Clipping

7th degree

3rd degree

Figure 3.2: Nonlinear function associated to a clipping operation and its polynomial
approximations considering polynomials with different degrees.

3.1.2 Bandpass Nonlinearities

Although accurate to model baseband, memoryless nonlinearities, provided that the num-
ber of polynomial terms is adequate, the power series represented in (3.2) cannot, however,
capture the memory effects of a baseband nonlinearity. In addition, besides of the im-
portance of characterizing baseband nonlinearities, it is also of extreme importance to
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characterize the output of nonlinear systems excited by bandpass signals, such as RF and
microwave power amplifiers. Due to electrical and electro-thermal effects, these power
amplifiers might present memory effects, since the output at a given time instant depends
not only on current but also on past inputs.

In order to capture memory effects, the nonlinearities with memory are usually char-
acterized by behavioral models. These behavioral models are commonly Volterra models
since they are based on the Volterra series [5], which is a powerful mathematical formu-
lation proposed by Wiener in the 1940s for the characterization of nonlinear systems [73].
The Volterra series is based on the previous work of Volterra on functional series expansion
[74], and constitutes the most embracing tool to characterize the input-output relation
of nonlinear systems, being adequate to model nonlinearities with and without memory,
regardless the nature of their input signals, that can be either baseband or bandpass [68],
[75], [76]. In the following, it is shown how these behavioral, high-level models can be
obtained through the Volterra series.

The Volterra series is defined as an infinite sum of multidimensional integrals and can
be expressed as

y(t) =
∞∑
m=0

∫ ∞
−∞
· · ·
∫ ∞
−∞

um(τ1, · · · , τm)×
m∏
j=1

s(t− τj)dτ1dτ2 · · ·dτm , (3.5)

where um(τ1, . . , τm) is the mth dimensional impulse response of the system (also known
as Volterra kernel of order m).

It should be noted that when (3.5) is truncated to m = 1, it yields (omitting the
subscript m and assuming a null 0th order Volterra kernel, i.e., a null DC component)

y(t) =
∫ ∞
−∞

u(τ)s(t− τ)dτ, (3.6)

i.e., the input-output relation of linear systems with memory, that is given by the convolu-
tion of the input signal and the impulse response of the system (see for instance (2.44), that
describes the output of a frequency-selective channel modeled as a linear, time-invariant
system). However, to obtain the nonlinear behavior of a given system, higher order ker-
nels (with m > 1) should be taken into account. Nevertheless, it is clear that when m

increases, the complexity associated to Volterra series becomes very high, not to mention
the difficulty to obtain those high order kernels. For this reason, it is not common to
obtain the output of a nonlinear system through the Volterra series at least, in its original
form. Usually, resorting to some assumptions, the Volterra series can degenerate in the
aforementioned high-level, behavioral models, that can be used to characterize bandpass
nonlinearities.

Let us start by defining a general bandpass, multicarrier signal (this signal can be, for
instance, the bandpass OFDM signal of (2.41)) as

s(t) = Re(s̃(t)exp(j2πfct)), (3.7)
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where fc is the carrier frequency and s̃(t) is the corresponding complex envelope associated
to the bandpass signal. This complex envelope has bandwidth Bs� fc, and is defined as

s̃(t) = r(t)exp(jθ(t)), (3.8)

where r(t) = |s̃(t)| represents the absolute value of s̃(t) and θ(t) = arg(s̃(t)) denotes its
argument. A possible spectrum of (3.8) and (3.9) is depicted in Fig. 3.3. Note that, by
replacing (3.8) in (3.7), we may also express the bandpass signal as

s(t) = Re(r(t)exp(jθ(t))exp(j2πfct))

= r(t)cos(2πfct+ θ(t)︸           ︷︷           ︸
ψ(t)

)

= r(t)cos(ψ(t)), (3.9)

where ψ(t) is the argument associated to the bandpass multicarrier signal. Let us consider

fBs

2
−Bs

2

|S̃(f)|

ffc +
Bs

2fc − Bs

2

|S(f)|

−fc + Bs

2
−fc − Bs

2
fc−fc

0

0

Figure 3.3: Amplitude spectrum of a given baseband signal s̃(t) and the spectrum of its
bandpass version s(t).

that the bandpass signal represented in (3.9) is submitted to a bandpass nonlinearity. At
the nonlinearity output, the nonlinearly distorted signal is formed by several harmonics
that are centered along multiples of the carrier frequency. However, by making use of the
fact that the carrier frequency fc is much higher than the bandwidth of the baseband signal
(i.e., Bs � fc), the spectral components created along multiples of fc can be neglected,
since they almost do not contribute for the spectrum of interest that is located around
the carrier frequency. This can be thought as if we could have a zonal filter that removes
those harmonics centered at DC, ±2fc, ±3fc and so forth. Under these conditions, the
bandpass nonlinearity output can be written as

y(t) = Re(ỹ(t)exp(j2πfct)). (3.10)
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In fact, this means that the Volterra series can be formulated to express the relation
between the complex envelopes of the signals at the input and at the output of the
bandpass nonlinearity [75]–[77], since this relation is enough to characterize the bandpass
output signal of (3.10). This equivalence is clearly depicted in Fig. 3.4, which shows how
the bandpass signals s(t) and y(t) can be characterized through a baseband nonlinearity.

s(t)

Nonlinearity

y(t)
Zonal Filter

fc

Bandpass

s̃(t)

Nonlinearity

Basebands(t) Down

Conver.

Up

Conver.

ỹ(t) y(t)

Figure 3.4: Characterization of a bandpass nonlinearity considering only its input and
output complex envelopes.

The equivalent baseband Volterra series is given by [75], [77]

ỹ(t) =
∞∑
m=0

∫ ∞
−∞
· · ·
∫ ∞
−∞

ũ2m+1(τ1, · · · , τ2m+1)

×
m+1∏
j=1

s̃(t− τj)
2m+1∏
j=m+2

s̃∗(t− τj)dτ1 · · ·dτ2m+1 , (3.11)

where ũ2m+1(τ1, · · · , τ2m+1) represents the baseband equivalent of the Volterra kernel of
order 2m+ 1, defined as

ũ2m+1(τ1, · · · , τ2m+1) = 1
22m

(
2m+ 1
m

)
u2m+1(τ1, · · · , τ2m+1)×

exp

−j2πfc
m+1∑
i=1

τi−
2m+1∑
i=m+2

τi

 , (3.12)

with the binomial coefficient given by(
a

b

)
= a!
b!(a− b)! . (3.13)

Note that due to the bandpass nature of the nonlinearity, only the odd power terms
appear in (3.11), since the even-order terms fall outside the band of interest centered

47



CHAPTER 3. NONLINEAR DISTORTION IN MULTICARRIER
SYSTEMS

around fc. This equation is usually named complex baseband representation of a bandpass
nonlinearity, since the nonlinearity is completely described in the baseband.

Let us define the multidimensional Fourier transform of the Volterra kernel of order m,
um(τ1, · · · , τm), as

Um(f1, · · · ,fm) =
∫ ∞
−∞
· · ·
∫ ∞
−∞

um(τ1, · · · , τm)exp(−j2π (f1τ1 + f2τ2 + · · ·fmτm))

dτ1dτ2 · · ·dτm . (3.14)

Additionally, let us define a tuple T2m+1 = (t0, · · · , t2m+1), where the ith element ti is given
by the ith element of the sum

m+1∑
i=1

1−
2m+1∑
i=m+2

1

= t1 + t2 + · · ·+ t2m+1, (3.15)

which means that

T2m+1 =



(−1), m= 0
(1,1,−1) m= 1
(1,1,1,−1,−1) m= 2
...

...

(1,1, ....,1︸       ︷︷       ︸
k+1

,−1,−1, ...,−1︸              ︷︷              ︸
k

) m= k,

(3.16)

i.e., in a tuple of dimension 2m+1, the firstm+1 points have the value 1 and the remaining
m points have the value −1. Under these conditions, by making use of the delay property
of the multidimensional Fourier transform, one can write the frequency-domain version of
ũ2m+1(τ1, · · · , τ2m+1) as

Ũ2m+1(f1, · · · ,f2m+1) = 1
22m

(
2m+ 1
m

)
U2m+1 ((f1, · · · ,fm) + fcT2m+1) . (3.17)

As mentioned before, real electronic devices such as high power amplifiers have a frequency-
dependent behavior, i.e., present memory effects. In fact, although the frequency-dependent
behavior associated to the existence of memory cannot be physically removed, if the circuit’s
time constants are much smaller than the inverse of the maximum frequency of the input
signal, then they can be considered almost negligible. Therefore, if the input signal of
a given high power amplifier is narrow comparatively to the frequency response of the
Volterra kernels, then the memory effects might be considered as “short-term” memory
effects. Under these conditions, the following approximation can be taken into account

s̃(t− τi)≈ s̃(t). (3.18)
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By considering this approximation, the baseband Volterra series represented in (3.11) can
be rewritten as

ỹ(t)≈
∞∑
m=0

∫ ∞
−∞
· · ·
∫ ∞
−∞

ũ2m+1(τ1, · · · , τ2m+1)dτ1dτ2 · · ·dτ2m+1 |s̃(t)|2ms̃(t)

=
∞∑
m=0

∫ ∞
−∞
· · ·
∫ ∞
−∞

ũ2m+1(τ1, · · · , τ2m+1)exp(−j2π (0τ1 + 0τ2 + · · ·0τ2m+1))

dτ1dτ2 · · ·dτ2m+1 |s̃(t)|2ms̃(t)

=
∞∑
m=0

Ũ2m+1 (0,0, · · · ,0)︸          ︷︷          ︸
2m+1

|s̃(t)|2ms̃(t)

=
∞∑
m=0

1
22m

(
2m+ 1
m

)
U2m+1 (fcT2m+1) |s̃(t)|2ms̃(t). (3.19)

From (3.19), it is clear that there is a polynomial relation between the output complex
envelope ỹ(t) and the input complex envelope s̃(t). Furthermore, since |s̃(t)| = r(t), we
may write

ỹ(t) =
( ∞∑
m=0

Kmr
2m(t)

)
s̃(t) (3.20)

=
( ∞∑
m=0

Kmr
2m(t)

)
r(t)exp(jθ(t)), (3.21)

where

Km = 1
22m

(
2m+ 1
m

)
U2m+1 (fcT2m+1) . (3.22)

Therefore,

ỹ(t) =
( ∞∑
m=0

Kmr
2m+1(t)

)
︸                       ︷︷                       ︸

fbp(r(t))

exp(jθ(t))

= fbp(r(t))exp(jθ(t)), (3.23)

where fbp(r(t)) is denoted as the bandpass nonlinear function, defined as (omitting the
dependence with t)

fbp(r) =A(r)exp(jΘ(r)), (3.24)

with A(r) and Θ(r) denoting the so-called amplitude modulation/amplitude modulation
(AM/AM) and amplitude modulation/phase modulation (AM/PM) conversion functions,
respectively. The AM/AM function A(r) describes the variation of the amplitude of the
output signal with the amplitude of the input signal, while the AM/PM function describes
the impact of the input amplitude on the phase of the output complex envelope. The
nonlinear complex function represented in (3.24) usually defines the behavioral, high-level
model of a bandpass nonlinearity.
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It is very important to note that, although the physical device presents short term
memory effects, its complex baseband representation is memoryless. For this reason,
these type of nonlinearities are commonly known as bandpass memoryless nonlinearities
throughout the literature [75], [76], [78].

Depending on the nature of the AM/PM conversion function Θ(r), two type of bandpass
memoryless nonlinearities can be identified. On one hand, we have strictly memoryless
bandpass nonlinearities when the device is physically memoryless and the Volterra kernels
are multidimensional Dirac delta functions, i.e.,

u2m+1(τ1, · · · , τ2m+1)∝ δ(τ1, · · · , τ2m+1). (3.25)

As a consequence, for this type of nonlinearity, the AM/PM conversion function is constant,
since the coefficients Km are real-valued and the phase of the output complex envelope
does not depend on the amplitude of the input complex envelope. On the other hand, if the
coefficients Km are complex-valued, the AM/PM conversion function is, in fact, a function
of r. Under these conditions, we have quasi-memoryless bandpass nonlinearities. These
nonlinearities can model amplifiers that present short-term memory effects, i.e., memory
effects small enough so that it is possible that the behavioral model of these devices can be
memoryless. Note also that systems with “long-term” memory effects (i.e., systems with
wideband inputs, where the memory effects are high) cannot be solely characterized by
AM/AM and AM/PM conversion functions, and the Volterra series should be considered
in its original form as represented in (3.11) [78].

Fig. 3.5 shows the “internal composition” of a baseband nonlinearity that models
bandpass devices (see also Fig. 3.4). The bandpass signal at the output of the nonlinearity
can hence be written by substituting (3.23) into (3.10), resulting

y(t) = Re(fbp(r(t))exp(jθ(t))exp(j2πfct))

= Re(fbp(r(t))exp(jψ(t))). (3.26)

As demonstrated in Appendix A, the baseband model for representing bandpass nonlin-
earities given in (3.26) can also be obtained by expanding the bandpass signal in a Fourier
series, provided that it is sufficiently narrow to be considered approximately periodic in the
short term (i.e., fc�Bs) [8], [32]. In the following, we show some models of the common
high power amplifiers employed in multicarrier systems.

In this thesis, two types of high power amplifiers are considered: the solid state power
amplifiers (SSPAs) and the traveling wave tube amplifiers (TWTAs). Thorough the
literature, one can find different models to characterize these amplifiers. Among them,
there are polynomial based models that try to fit measured characteristics. However, more
general models are typically considered. For instance, the TWTAs are usually characterized
by the Saleh’s model [79], that defines the AM/AM conversion function of the bandpass
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Figure 3.5: Block model for a bandpass memoryless nonlinearity.

nonlinearity as

A(r) = 2

(
r
sM

)
1 +

(
r
sM

)2 , (3.27)

and the AM/PM conversion function as

Θ(r) = 2
θM

(
r
sM

)2

1 +
(
r
sM

)2 , (3.28)

where sM is maximum value of the input which agrees with the output envelope at satu-
ration and θM is the phase rotation when the input envelope is sM . For SSPAs modeling,
the Ghorbani’s model [80] can be employed. In that model, the AM/AM and AM/PM
conversion functions are given by

A(r) = a0ra1

1 + a2ra1
+ a3r (3.29)

and
Θ(r) = b0rb1

1 + b2rb1
+ b3r, (3.30)

where ai and bi (0≤ i≤ 3) are parameters obtained from physical measurements. Never-
theless, the Rapp’s model [81] is, however, more common to model SSPAs. This model
considers that the phase distortion is negligible so that the AM/PM conversion function
is approximately zero (Θ(r) ≈ 0). On the other hand, it considers that the AM/AM
conversion function is given by

A(r) = r

2p

√(
1 +

(
r
sM

)2p
) , (3.31)

where sM is the value of the output in the saturation region and the parameter p controls
the smoothness between the linear and the nonlinear regions. Fig. 3.6 shows the AM/AM
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conversion function of a TWTA obtained with the Saleh’s model, as well the AM/AM
conversion function of an SSPA obtained with the Rapp’s model considering different values
of p. In both cases, the saturation amplitude is sM = 1.0. From the results depicted in

r
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Figure 3.6: AM/AM conversion function of a TWTA and an SSPA considering sM = 1.0.

the figure, it can be clearly noted that, when p increases, the AM/AM conversion function
associated to the SSPA becomes more closer to an ideal envelope clipping function.

3.2 Characterization of Nonlinearly Distorted Gaussian Signals

It is widely known that the impact of nonlinearities on the performance of multicarrier
communication systems can be carried out by simulation, more concretely, by considering
Monte Carlo simulations. However, even when employing the low-complexity, high-level
models for nonlinearities characterization that were presented in the previous section, these
Monte Carlo simulations may require large computation times to achieve accurate results.

As mentioned in chapter 2, multicarrier signals such as OFDM signals present a Gaus-
sian nature due to the CLT, provided that the number of subcarriers is large. Taking
advantage of that Gaussian nature, all well known analytical tools to characterize Gaus-
sian signals submitted to nonlinear systems can be employed to statistically characterize
nonlinear distortion effects in multicarrier systems, regarding both the time-domain and
the frequency-domain. Therefore, the large computation times associated to Monte Carlo
simulations can be avoided with the use of such analytical tools.

In the following subsections, we use the aforementioned analytical tools for obtaining
closed-form expressions for both the autocorrelation and the for the PSD of nonlinearly
distorted multicarrier signals. The analytical expressions for the PSD are obtained based
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on what we will call the “truncated IMP” approach. The analysis of nonlinearly distorted,
baseband multicarrier signals is made in subsection 3.2.1. The autocorrelation of bandpass,
nonlinearly distorted multicarrier signals is presented in subsection 3.2.2. Although these
results are not entirely new, they are useful to introduce and motivate the concept of
“equivalent nonlinearities” presented in section 3.3.

3.2.1 Baseband Multicarrier Signals

Real-valued Nonlinearities

Here, we focus on the statistical characterization of baseband, real-valued multicarrier
signals that are submitted to memoryless nonlinearities. The multicarrier input signal
s(t) is modeled by a stationary, Gaussian random process with variance σ2. Due to
that stationarity, the autocorrelation of s(t) only depends on the time lag τ between two
observation moments and is defined as

Rs,bb(τ) = E[s(t)s(t− τ)]. (3.32)

Under these conditions, the average power of the signal can be obtained by fixing τ = 0,
i.e.,

Rs,bb(0) = E[s2(t)] = σ2. (3.33)

Naturally, the random variable that results from a given observation moment is Gaussian
distributed (see (2.26)). If s(t) is submitted to a nonlinearity such as those characterized
in subsection 3.1.1, the corresponding output is (see (3.1))

y(t) = f(s(t)). (3.34)

By taking advantage of the Gaussian nature of s(t), the Bussgang’s theorem [10], [82]
can be used for the characterization of the nonlinearity output. As is widely known, the
Bussgang’s theorem, that can also be obtained as a special case of the Price’s theorem
[83], can be employed to obtain the statistical characterization of a nonlinearly distorted
Gaussian signal. The theorem states that the output of a memoryless nonlinearity driven by
a Gaussian signal can be divided in two uncorrelated components: one that is proportional
to the input signal and another that concentrates the nonlinear distortion effects. Under
these conditions, in addition to (3.34), we can express the nonlinearly distorted version of
s(t) as

y(t) = αbbs(t) + d(t), (3.35)

where d(t) is the nonlinear distortion component uncorrelated with the input signal, i.e.,

E[s(t)d(t)] = 0, (3.36)

and αbb is a scale factor that relates the cross correlation between the input and output
signals and the autocorrelation of the input signal, being defined as

αbb = E[s(t)f(s(t))]
E[s2(t)] . (3.37)
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Due to the stationarity of the input signal, the dependence with t can be omitted, resulting

αbb = E[sf(s)]
E[s2] = E[sf(s)]

σ2 = 1
σ2

+∞∫
−∞

sf(s)p(s)ds. (3.38)

The average power at the nonlinearity output is

Pnl = E[f2(s)] =
+∞∫
−∞

f2(s)p(s)ds. (3.39)

Moreover, as the average power associated to the useful component of the nonlinearly
distorted signal is

Pnl,u = α2
bbσ

2, (3.40)

it is easy to note that the average power associated to the nonlinear distortion term is
hence

Pnl,d = Pnl−Pnl,u. (3.41)

In the following, an expression for the autocorrelation of nonlinearly distorted multicar-
rier signals is presented. Let us start by defining two Gaussian random variables, obtained
from the random process s(t) at two different time instants separated by τ . These random
variables are defined as s1 = s(t1) and s2 = s(t1− τ). Under these conditions, (3.32) can
be written as

Rs,bb(τ) = E[s1s2] =
+∞∫
−∞

+∞∫
−∞

s1s2p(s1,s2)ds1ds2, (3.42)

with p(s1,s2) denoting the joint PDF between s1 and s2, that can be expressed as

p(s1,s2) = 1
2πσ2

√
1− ρ2

bb(τ)
exp

(
−s

2
1 + s2

2− 2ρbb(τ)s1s2
2σ2(1− ρ2

bb(τ))

)
, (3.43)

where
ρbb = ρbb(τ) =

Rs,bb(τ)
Rs,bb(0) =

Rs,bb(τ)
σ2 , (3.44)

is the correlation factor between s1 and s2. On the other hand, the autocorrelation
associated to the nonlinearly distorted signal is given by

Ry,bb(τ) = E[f(s1)f(s2)] =
+∞∫
−∞

+∞∫
−∞

f(s1)f(s2)p(s1,s2)ds1ds2. (3.45)

However, by applying the so-called Mehler’s formula [84], the joint PDF of s1 and s2

represented in (3.43) can be expressed as a function of their marginal densities (p(s1) and
p(s2), respectively) and of the Hermite polynomials [32]. Therefore, we have

p(s1,s2) = p(s1)p(s2)
+∞∑
m=0

ρmbb(τ)
2mm!Hm

(
s1√
2σ

)
Hm

(
s2√
2σ

)
, (3.46)
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where

Hm(x) = (−1)m exp
(
x2
) dm

dxm

(
exp

(
−x2

))
, (3.47)

represents the Hermite polynomial of order m [85]. Note that, by fixing m = 0, we have
H0(x) = 1, for m = 1, we have H1(x) = 2x and so on. In fact, these polynomials are
orthogonal in respect to the Gaussian PDF represented in (2.26). Fig. 3.7 depicts the
first four Hermite polynomials, i.e., from H0(x) to H3(x). By replacing (3.46) in (3.45),

x
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Figure 3.7: Hermite polynomials Hm(x) for different values of m.

we obtain

Ry,bb(τ) =
+∞∑
m=0

ρmbb(τ)
2mm!

+∞∫
−∞

+∞∫
−∞

f(s1)f(s2)p(s1)p(s2)Hm

(
s1√
2σ

)
Hm

(
s2√
2σ

)
ds1ds2 (3.48)

=
+∞∑
m=0

ρmbb(τ)
2mm!

+∞∫
−∞

f(s1)p(s1)Hm

(
s1√
2σ

)
ds1

+∞∫
−∞

f(s2)p(s2)Hm

(
s2√
2σ

)
ds2.

This means that we can rewrite the output autocorrelation as

Ry,bb(τ) =
+∞∑
m=0

ρmbb(τ)
2mm!

 +∞∫
−∞

f(s)p(s)Hm

(
s√
2σ

)
ds

2

. (3.49)

By defining the power of the IMP of order m as

P bbm = 1
2mm!

 +∞∫
−∞

f(s)p(s)Hm

(
s√
2σ

)
ds

2

, (3.50)
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we can rewrite (3.49) as

Ry,bb(τ) =
+∞∑
m=0

ρmbb(τ)P bbm

=
+∞∑
m=0

(
Rs,bb(τ)
σ2

)m
P bbm . (3.51)

Having in mind that the nonlinearity output y(t) is separable into two uncorrelated com-
ponents (see (3.35)), we can also write

Ry,bb(τ) = |αbb|2Rs,bb(τ) +Rd,bb(τ), (3.52)

where Rd,bb(τ) is the autocorrelation of the nonlinear distortion component that is defined
as

Rd,bb(τ) = E[d(t)d(t− τ)] = P bb0 +
∞∑
m=2

(
Rs,bb(τ)
σ2

)m
P bbm . (3.53)

By taking into account the Wiener-Khinchin’s theorem [86], the PSD of the nonlinearly
distorted signal can be obtained as the Fourier transform Ry,bb(τ), i.e.,

Gy,bb(f) = F(Ry,bb(τ))

=
+∞∑
m=0

P bbm
σ2mF

(
Rms,bb(τ)

)

=
+∞∑
m=0

P bbm
σ2m

(
Gs,bb(f) ∗Gs,bb(f) ∗ · · · ∗Gs,bb(f)

)︸                                           ︷︷                                           ︸
m times

, (3.54)

where Gs,bb(f) = F(Rs,bb(τ)) is the PSD of the input signal s(t). Note that (3.54) can also
be written as

Gy,bb(f) = |αbb|2Gs,bb(f) +Gd,bb(f), (3.55)

where Gd,bb(f) is the PSD of the distortion component d(t), that is given by

Gd,bb(f) = F(Rd,bb(τ))

= P bb0 δ(f) +
+∞∑
m=2

P bbm
σ2m

(
Gs,bb(f) ∗Gs,bb(f) ∗ · · · ∗Gs,bb(f)

)︸                                           ︷︷                                           ︸
m times

. (3.56)

From (3.54) and (3.56), one can also note that Pnl = Ry,bb(0) and Pnl,d = Rd,bb(0). It
should also be mentioned that the Hermite polynomials are even for m even and odd for
m odd (see Fig. 3.7). Therefore, for odd nonlinearities such as the clipping represented in
Fig. 3.2, only the odd-order IMPs are used to characterize the corresponding nonlinearly
distorted Gaussian signal. Under those conditions, the autocorrelation of the nonlinearly
distorted signal is

Ry,bb(τ) =
+∞∑
γ=0

(
Rs,bb(τ)
σ2

)2γ+1
P bb2γ+1, (3.57)
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where, according to (3.50), we have

P bb2γ+1 = 1
22γ+1 (2γ+ 1)!

 +∞∫
−∞

f(s)p(s)H2γ+1

(
s√
2σ

)
ds

2

. (3.58)

Therefore, the PSD of the nonlinearly distorted signal can be written as

Gy,bb(f) =
+∞∑
γ=0

P bb2γ+1
σ2(2γ+1)

(
Gs,bb(f) ∗Gs,bb(f) ∗ · · · ∗Gs,bb(f)

)︸                                           ︷︷                                           ︸
2γ+1 times

, (3.59)

and the PSD of the nonlinear distortion component is

Gd,bb(f) =
+∞∑
γ=1

P bb2γ+1
σ2(2γ+1)

(
Gs,bb(f) ∗Gs,bb(f) ∗ · · · ∗Gs,bb(f)

)︸                                           ︷︷                                           ︸
2γ+1 times

. (3.60)

Complex-valued Nonlinearities

Here, we focus on the statistical characterization of complex signals submitted to
Cartesian nonlinearities. The input signal at the Cartesian nonlinearity is expressed as

s̃(t) = sI(t) + jsQ(t), (3.61)

where sI(t) = Re(s̃(t)) and sQ(t) = Im(s̃(t)) are the real and imaginary parts of s̃(t), respec-
tively. We assume that s̃(t) is modeled by a complex Gaussian random process, where sI(t)
and sQ(t) are stationary Gaussian random processes with the same statistical properties,
i.e., both Gaussian distributed with zero mean and variance σ2. The autocorrelation of
the input signal is

Rs̃,bb(τ) = E[s̃(t)s̃∗(t− τ)] (3.62)

= E[
(
sI(t) + jsQ(t)

)(
sI(t− τ)− jsQ(t− τ)

)
]

= E[sI(t)sI(t− τ)]− jE[sI(t)sQ(t− τ)] + jE[sQ(t)sI(t− τ)] +E[sQ(t)sQ(t− τ)]

= E[sI(t)sI(t− τ)] +E[sQ(t)sQ(t− τ)] + j
(
E[sQ(t)sI(t− τ)]−E[sI(t)sQ(t− τ)]

)
.

By noting that E[sI(t)sQ(t− τ)] = −E[sQ(t)sI(t− τ)] ∆= Rs̃,Q(τ) and E[sI(t)sI(t− τ)] =
E[sQ(t)sQ(t− τ)] ∆=Rs̃,I(τ), we can rewrite (3.62) as

Rs̃,bb(τ) = 2Rs̃,I(τ) + j2Rs̃,Q(τ). (3.63)

The average power of the signal is Rs̃,bb(0) = 2Rs̃,I(0) = 2σ2, since Rs̃,Q(0) = 0. Let us
consider that the complex signal s̃(t) is submitted to a Cartesian nonlinearity. Under
these conditions, both the real and the imaginary parts are submitted to a memoryless
nonlinearity as explained in subsection 3.1.1. As demonstrated in (3.4), at the Cartesian
nonlinearity output, we have

ỹ(t) = fbb(s̃(t))

= fbb,I(sI(t)) + jfbb,Q(sQ(t)). (3.64)

57



CHAPTER 3. NONLINEAR DISTORTION IN MULTICARRIER
SYSTEMS

For the sake of simplicity, we focus on Cartesian nonlinearities whose the nonlinearities
operate on the real and on the imaginary parts of the input signal are equal, i.e. fbb,I(·) =
fbb,Q(·) = f(·), with f(·) denoting an odd memoryless nonlinearity (the generalization for
other cases is straightforward). Having in mind the Bussgang’s theorem [10], one can
also decompose the nonlinearity output as a sum of uncorrelated useful and distortion
components, i.e.,

ỹ(t) = αbbs̃(t) + d̃(t), (3.65)

where αbb is given by (3.38) and d̃(t) represents the nonlinear distortion component. The
autocorrelation of the nonlinearly distorted signal is

Rỹ,bb(τ) = E[f(sI)(t)f(sI(t− τ))] +E[f(sQ(t))f(sQ(t− τ))]− jE[f(sI(t))f(sQ(t− τ))]

+ jE[f(sQ(t))f(sI(t− τ))]. (3.66)

This means that Rỹ,bb(τ) can be written as the sum of four autocorrelations. These
autocorrelations involve equally distributed Gaussian random variables submitted to the
same memoryless nonlinearity f(·). As previously seen, each one of these autocorrelations
can be written as in (3.57), where P bb2γ+1 is equal for all autocorrelations. After some
lenghty but straightforward manipulations, it can be shown that (3.66) can be written as
[8], [32]

Rỹ,bb(τ) = 2
+∞∑
γ=0

P bb2γ+1
(Re(Rs̃,bb(τ)))2γ+1 + j(Im(Rs̃,bb(τ)))2γ+1

(Rs̃,bb(0))2γ+1

=
+∞∑
γ=0

P bb2γ+1
22γσ2(2γ+1) (Re(Rs̃,bb(τ)))2γ+1 + j(Im(Rs̃,bb(τ)))2γ+1. (3.67)

Additionally, by taking use of the following relations

Re(Rs̃,bb(τ)) =
Rs̃,bb(τ) +R∗s̃,bb(τ)

2 , (3.68)

and

Im(Rs̃,bb(τ)) =
Rs̃,bb(τ)−R∗s̃,bb(τ)

2j , (3.69)

we can rewrite (3.67) as a function of the input signal autocorrelation, Rs̃,bb(τ), i.e.,

Rỹ,bb(τ) =
+∞∑
γ=0

P bb2γ+1
24γ+1σ2(2γ+1)

(
(Rs̃,bb(τ) +R∗s̃,bb(τ))2γ+1 + j

j2γ+1 (Rs̃,bb(τ)−R∗s̃,bb(τ))2γ+1
)

=
+∞∑
γ=0

P bb2γ+1
24γ+1σ2(2γ+1)

(
(Rs̃,bb(τ) +R∗s̃,bb(τ))2γ+1 + (−1)γ(Rs̃,bb(τ)−R∗s̃,bb(τ))2γ+1

)
.

(3.70)

Once again, by considering the Wiener-Khinchin’s theorem [86], the PSD of the nonlinearly
distorted signal at the Cartesian nonlinearity output can be obtained by the Fourier
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transform of (3.70), i.e.,

Gỹ,bb(f) = F(Rỹ,bb(τ))

=
+∞∑
γ=0

P bb2γ+1
24γ+1σ2(2γ+1)F

(
(Rs̃,bb(τ) +R∗s̃,bb(τ))2γ+1 + (−1)γ(Rs̃,bb(τ)−R∗s̃,bb(τ))2γ+1

)

=
+∞∑
γ=0

P bb2γ+1
24γ+1σ2(2γ+1)

(
(Gs̃,bb(f) +Gs̃,bb(−f)) ∗ · · · ∗ (Gs̃,bb(f) +Gs̃,bb(−f))︸                                                                  ︷︷                                                                  ︸

2γ+1 times

+ (−1)γ (Gs̃,bb(f)−Gs̃,bb(−f)) ∗ · · · ∗ (Gs̃,bb(f)−Gs̃,bb(−f))︸                                                                  ︷︷                                                                  ︸
2γ+1 times

)
, (3.71)

where Gs̃,bb(f) denotes PSD of the input signal. Taking into account (3.65), we can also
write

Gỹ,bb(f) = |αbb|2Gs̃,bb(f) +Gd̃,bb(f), (3.72)

where Gd̃,bb(f) represents the PSD of the nonlinear distortion component, given by

Gd̃,bb(f) =
+∞∑
γ=1

P bb2γ+1
24γ+1σ2(2γ+1)

(
(Gs̃,bb(f) +Gs̃,bb(−f)) ∗ · · · ∗ (Gs̃,bb(f) +Gs̃,bb(−f))︸                                                                  ︷︷                                                                  ︸

2γ+1 times

+ (−1)γ (Gs̃,bb(f)−Gs̃,bb(−f)) ∗ · · · ∗ (Gs̃,bb(f)−Gs̃,bb(−f))︸                                                                  ︷︷                                                                  ︸
2γ+1 times

)
. (3.73)

3.2.2 Bandpass Multicarrier Signals

In this subsection, we focus on the statistical characterization of nonlinearly distorted
bandpass signals. Let us start by consider a bandpass signal represented in (3.7), whose
the complex envelope is given by

s̃(t) = r(t)exp(jθ(t))

= sI(t) + jsQ(t). (3.74)

We also consider that this complex envelope is modeled by a complex-valued, stationary
Gaussian random process. Therefore, its real and imaginary parts, sI(t) and sQ(t), re-
spectively, have the same statistical properties, i.e., they are Gaussian distributed with
zero mean and variance σ2 and their PDF is given by (2.26). The absolute value of the
complex envelope, r(t), is modeled by random variable with Rayleigh distribution, i.e.,
r ∼ Rayleigh(σ), that has the following PDF

p(r) = r

σ2 exp
(
−r2

2σ2

)
. (3.75)

It should be mentioned that the autocorrelation of the complex envelope of the input signal
s̃(t) can be computed as in (3.63). Additionally, as demonstrated in subsection 3.1.2, the
effect of a given bandpass nonlinearity can be completely described by the AM/AM and
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AM/PM conversion functions, that operate in the complex envelope of the bandpass signal.
Therefore, recalling (3.23), the complex envelope at the output of a bandpass nonlinearity
can be written as

ỹ(t) = fbp(r(t))exp(jθ(t))

=A(r(t))exp(j (Θ(r(t)) + θ(t)))

=A(r(t))exp(jϕ(t)), (3.76)

where ϕ(t) = Θ(r(t)) + θ(t) represents the argument associated to the complex envelope
of the nonlinearly distorted, bandpass signal. By considering the Bussgang’s theorem
[10], [82], we also can write the complex envelope represented in (3.76) as the sum of
uncorrelated useful and distortion components, resulting

ỹ(t) = αbps̃(t) + d̃(t), (3.77)

where the scale factor αbp is given by (due to the stationarity, the dependence with t can
be omitted)

αbp = E[s̃ỹ∗]
E[|s̃|2] =

E[r exp(jθ)f∗bp(r)exp(−jθ)]
E[r2]

=
E[rf∗bp(r)]

E[r2] = 1
2σ2

+∞∫
0

rf∗bp(r)p(r)dr. (3.78)

In the following, we define s̃1 = s̃(t) = s1,I+js1,Q and s̃2 = s̃(t−τ) = s2,I+js2,Q. Moreover,
the dependence with t is omitted, i.e., the input and output complex envelopes are expressed
as s̃= r exp(jθ) = sI + jsQ and ỹ =A(r)exp(jϕ), respectively. The autocorrelation of the
nonlinearly distorted signal is

Rỹ,bp(τ) = E[ỹ(t)ỹ∗(t− τ)] (3.79)

= E[fbp(s̃1)f∗bp(s̃2)]

= E[fbp(s1,I + js1,Q)fbp(s2,I − js2,Q)]

=
+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

fbp(s1,I + js1,Q)fbp(s2,I − js2,Q)

p(s1,I ,s1,Q,s2,I ,s2,Q)ds1,Ids1Qds2,Ids2,Q. (3.80)

Let us define an array composed by the real and imaginary parts of s̃1 and s̃2 as q =
[s1,I s1,Q s2,I s2,Q]T . Since we are assuming that E[s1,I ] = E[s1,Q] = E[s2,I ] = E[s2,Q] = 0,
the covariance of q can be defined as

Q = E[qqT ] (3.81)

=


E[s1,Is1,I ] E[s1,Is1,Q] E[s1Is2,I ] E[s1,Is2,Q]
E[s1,Qs1,I ] E[s1,Qs1,Q] E[s1Qs2,I ] E[s1,Qs2,Q]
E[s2,Is1,I ] E[s2,Is1,Q] E[s2Is2,I ] E[s2,Is2,Q]
E[s2,Qs1,I ] E[s2,Qs1,Q] E[s2Qs2,I ] E[s2,Qs2,Q]

 .
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After some lengthy but straightforward manipulations, it can be shown that the determi-
nant of the covariance matrix Q is [8]

det(Q) = σ8
(

1−
|Rs̃,bp(τ)|2

4σ4

)2

= σ8
(
1− ρ2

bp

)2
, (3.82)

where ρbp denotes the correlation coefficient (i.e., the normalized autocorrelation of the
complex Gaussian process s̃), defined as

ρbp =
|Rs̃,bp(τ)|
Rs̃,bp(0) =

|Rs̃,bp(τ)|
2σ2 . (3.83)

The joint PDF of array q is given by [87]

p(q) = 1
(2π)2√det(Q)

exp(−1
2qTQ−1q)

= 1

4π2σ4
(
1− ρ2

bp

)2 exp(A). (3.84)

Let us now consider polar coordinates and redefine s̃1 and s̃2 as s̃1 = r1 exp(jθ1) and
s̃2 = r2 exp(jθ2), respectively. In this case, the parameter A in (3.84) can be defined as
[88]

A=−
σ2 (r2

1 + r2
2
)
− |Rs̃,bp(τ)|r1r2 cos

(
θ1− θ2 + arg

(
Rs̃,bp(τ)

))
2σ4(1− ρ2

bp)

=−
r2

1 + r2
2 − 2ρbpr1r2 cos(θ1− θ2 +φ)

ρbp,0
, (3.85)

where φ = arg
(
Rs̃,bp(τ)

)
and ρbp,0 = 2σ2(1− ρ2

bp). Using (3.84) and (3.85) in (3.79) and
applying the considered polar coordinate transform, we have

Rỹ,bp(τ) = 1
2π2σ2ρbp,0

+∞∫
0

+∞∫
0

2π∫
0

2π∫
0

fbp(r1)f∗bp(r2) (3.86)

exp(j(θ1− θ2))exp
(
−
r2

1 + r2
2 − 2ρbpr1r2 cos(θ1− θ2 +φ)

ρbp,0

)
r1r2dr1dr2dθ1dθ2.

By defining θ′ = θ1− θ2 +φ, we may write

Rỹ,bp(τ) = 1
2π2σ2ρbp,0

+∞∫
0

+∞∫
0

fbp(r1)f∗bp(r2)r1r2 exp
(
−r

2
1 + r2

2
ρbp,0

)
 2π∫

0

2π∫
0

exp
(
j(θ′−φ)

)
exp

(
2ρbpr1r2 cos(θ′)

ρbp,0

)
dθ1dθ2

dr1dr2

= exp(−jφ)
2π2σ2ρbp,0

+∞∫
0

+∞∫
0

fbp(r1)f∗bp(r2)r1r2 exp
(
−r

2
1 + r2

2
ρbp,0

)
 2π∫

0

2π∫
0

exp(jθ′)exp
(

2ρbpr1r2 cos(θ′)
ρbp,0

)
dθ1dθ2

dr1dr2. (3.87)
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Let us now consider the modified Bessel function of first kind, In(z), that is defined as
(see [85], equation (9.6.19))

In(z) = 1
π

π∫
0

cos(nθ′)exp
(
z cos(θ′)

)
dθ′. (3.88)

By replacing n= 1 and z = 2ρbpr1r2
ρbp,0

in (3.88), we have

I1

(
2ρbpr1r2
ρbp,0

)
= 1
π

π∫
0

cos(θ′)exp
(

2ρbpr1r2
ρbp,0

cos(θ′)
)
dθ′. (3.89)

Moreover, since the integrand is a periodic function, we also may write

1
π

2π∫
0

exp(jθ′)exp(z cos(θ′))dθ′ = 1
π

2π∫
0

(
cos(θ′) + j sin(θ′)

)
exp

(
z cos(θ′)

)
dθ′. (3.90)

Under these conditions, the double integral in (3.87) can be written as

2π∫
0

2π∫
0

cos(θ1− θ2 +φ)exp
(

2ρbpr1r2 cos(θ1− θ2 +φ)
ρbp,0

)
dθ1dθ2

= 4π2I1

(
2ρbpr1r2
ρbp,0

)
. (3.91)

Therefore, (3.87) becomes

Rỹ,bp(τ) = 2exp(−jφ)
σ2ρbp,0

+∞∫
0

+∞∫
0

f(r1)f∗(r2)r1r2 exp
(
−r

2
1 + r2

2
ρbp,0

)
I1

(
2ρbpr1r2
ρbp,0

)
dr1dr2.

(3.92)
Using the Laguerre polynomial series expansion (see [89], equation (5.11.3.7)), we can
write

+∞∑
γ=0

γ

(α+ 1)γ
tγL

(α)
γ (x)L(α+n)

γ (y) = (3.93)

= Γ (α+ 1)(1− t)−n−1(txy)−
α
2 exp

(
x+ y

t− 1 t
) n∑
γ=0

(−1)γ
(
n

γ

)(
tx

y

) γ
2
Iγ+α

(
2
√
txy

1− t

)
,

where L(α)
γ (x) denotes the generalized Laguerre polynomial of order γ that is defined

through the Rodrigues formula as [84]

L
(α)
γ (x) = 1

γ!x
−α exp(x) d

γ

dxγ

(
exp(−x)xγ+α

)
. (3.94)

Considering n= 0, α= 1, and

(A)k = Γ (A+ k)
Γ (A) , (3.95)
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where, Γ (·) represents the Gamma function defined as

Γ (A) = (A− 1)!, (3.96)

we note that

(α+ 1)γ = 2γ = Γ (2 + γ)
Γ (2) = (γ+ 1)!

1! = (γ+ 1)!. (3.97)

Under these conditions, (3.93) becomes

+∞∑
γ=0

1
γ+ 1 t

γL
(1)
γ (x)L(1)

γ (y) = 1
(1− t)

√
txy

exp
(
x+ y

t− 1 t
)
I1

(
2
√
txy

1− t

)
. (3.98)

By replacing t= ρ2
bp, x= r2

1
2σ2 and y = r2

2
2σ2 , we can rewrite (3.98) as

+∞∑
γ=0

1
γ+ 1ρ

2γ
bpL

(1)
γ

(
r2

1
2σ2

)
L

(1)
γ

(
r2

2
2σ2

)
= 1

(1− ρ2
bp)
√
ρ2
bp

r2
1

2σ2
r2

2
2σ2

exp

 r2
1

2σ2 + r2
2

2σ2

ρ2− 1 ρ2
bp

 (3.99)

×I1

2
√
ρ2
bp

r2
1

2σ2
r2

2
2σ2

1− ρ2
bp


= 2σ2

(1− ρ2
bp)ρbpr1r2

exp
(
−r

2
1 + r2

2
ρbp,0

ρ2
bp

)
I1

(
2ρbpr1r2
ρbp,0

)
.

Fig. 3.8 shows the plot of the polynomials L(1)
γ (x) for different values of γ. By replacing
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Figure 3.8: Plot of Laguerre polynomials L(1)
γ (x) for different values of γ.
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(3.99) in (3.92), we obtain

Rỹ,bp(τ) = 2exp(−jφ)
σ2ρbp,0

ρ(1− ρ2
bp)

2σ2

+∞∫
0

+∞∫
0

fbp(r1)f∗bp(r2)r2
1r

2
2 exp

(
−r

2
1 + r2

2
ρbp,0

)
exp

(
−r

2
1 + r2

2
ρbp,0

ρ2
bp

)

× 2σ2

(1− ρ2
bp)ρbpr1r2

exp
(
−r

2
1 + r2

2
ρbp,0

ρ2
bp

)
I1

(
2ρbpr1r2
ρbp,0

)
dr1dr2

=
ρbp
2σ6 exp(−jφ)

+∞∫
0

+∞∫
0

fbp(r1)f∗bp(r2)r2
1r

2
2 exp

(
−

(1− ρ2
bp)(r2

1 + r2
2)

2σ2(1− ρ2
bp)

)

× 2σ2

(1− ρ2
bp)ρbpr1r2

exp
(
−r

2
1 + r2

2
ρbp,0

ρ2
bp

)
I1

(
2ρbpr1r2
ρbp,0

)
dr1dr2

= 1
2σ6 exp(−jφ)

+∞∫
0

+∞∫
0

fbp(r1)f∗bp(r2)r2
1r

2
2 exp

(
r2

1 + r2
2

2σ2

)

×

+∞∑
γ=0

1
γ+ 1ρ

2γ+1
bp L

(1)
γ

(
r2

1
2σ2

)
L

(1)
γ

(
r2

2
2σ2

)dr1dr2.

Since the double integral in (3.100) is separable in two equal integrals in respect to r1

and r2, we can write

Rỹ,bp(τ) = 1
2σ6 exp(−jφ)

+∞∑
γ=0

1
γ+ 1ρ

2γ+1
bp

∣∣∣∣∣∣
+∞∫
0

r2fbp(r)exp
(
− r2

2σ2

)
L

(1)
γ

(
r2

2σ2

)
dr

∣∣∣∣∣∣
2

= 2
+∞∑
γ=0

P bp2γ+1ρ
2γ+1
bp exp(−jφ), (3.100)

where P bp2γ+1 is the power associated to the IMP of order 2γ+ 1 that is defined as [8], [11],
[12], [32], [90]

P bp2γ+1 = 1
4σ6(γ+ 1)

∣∣∣∣∣∣
+∞∫
0

r2fbp(r)exp
(
− r2

2σ2

)
L

(1)
γ

(
r2

2σ2

)
dr

∣∣∣∣∣∣
2

. (3.101)

By noting that

ρ2γ+1
bp exp(−jφ) =

Rs̃,bp(τ)γ+1R∗s̃,bp(τ)γ

Rs̃,bp(0)2γ+1 , (3.102)

we can finally write the autocorrelation of the nonlinearly distorted signal as

Rỹ,bp(τ) = 2
+∞∑
γ=0

P bp2γ+1
Rs̃,bp(τ)γ+1R∗s̃,bp(τ)γ

Rs̃,bp(0)2γ+1 . (3.103)

Under these conditions, the average power of the nonlinearly distorted bandpass signal
can be computed as

P bpnl = 1
2Rỹ,bp(0) =

+∞∑
γ=0

P bp2γ+1

= 1
2

+∞∫
0

A2(r)p(r)dr, (3.104)
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where A(r) is the AM/AM conversion function of (3.76). Having in mind the Bussgang’s
theorem, the total output power can also be defined as

P bpnl = P bpnl,u +P bpnl,d, (3.105)

with

P bpnl,d = 1
2Rd̃,bp(0) =

+∞∑
γ=1

P bp2γ+1, (3.106)

denoting the average power associated to the nonlinear distortion component and

P bpnl,u = |αbp|2σ2 = P bp1 , (3.107)

denoting the average power of the useful component. The PSD associated to the complex
envelope of the nonlinearly distorted signal at the bandpass nonlinearity output is given
by the Fourier transform of (3.103), i.e.,

Gỹ,bp(f) = 2
+∞∑
γ=0

P bp2γ+1
Rs̃,bp(0)2γ+1F

(
Rs̃,bp(τ)γ+1R∗s̃,bp(τ)γ

)
(3.108)

= 2
+∞∑
γ=0

P bp2γ+1
Rs̃,bp(0)2γ+1

Gs̃,bp(f) ∗ · · · ∗Gs̃,bp(f)︸                           ︷︷                           ︸
γ+1 times

 ∗
Gs̃,bp(−f) ∗ · · · ∗Gs̃,bp(−f)︸                                ︷︷                                ︸

γ times

 ,
where Gs̃,bp(f) is the PSD associated to the complex envelope of the input signal. As the
output is composed by two uncorrelated components (see (3.77)), we also can write

Gỹ,bp(f) = |αbp|2Gs̃,bp(f) +Gd̃,bp(f), (3.109)

where Gd̃,bp(f) is the PSD associated to the complex envelope of the nonlinear distortion
component, given by

Gd̃,bp(f) = 2
+∞∑
γ=1

P bp2γ+1
Rs̃,bp(0)2γ+1

Gs̃,bp(f) ∗ · · · ∗Gs̃,bp(f)︸                           ︷︷                           ︸
γ+1 times

 ∗
Gs̃,bp(−f) ∗ · · · ∗Gs̃,bp(−f)︸                                ︷︷                                ︸

γ times

 .
(3.110)

From (3.108), it is clear that the bandwidth of the nonlinearly signal ỹ(t) increases in
relation to the bandwidth of the input signal s̃(t), since the former is obtained by convolving
the PSD of the input signal with itself many times. In fact, this leads not only to out-of-
band radiation, but also in-band radiation that can severely degrade the performance of
multicarrier systems.

3.3 Equivalent Nonlinearities

Equations (3.57), (3.70) and (3.103) allow us to analytically obtain the autocorrelation
(and the corresponding PSD) of nonlinearly distorted Gaussian signals considering both
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real-valued and complex-valued signals submitted to baseband or bandpass nonlinearities,
respectively. However, all of these equations involve an infinite summation that is not
practically realizable. Therefore, in order to obtain the autocorrelation of a given non-
linearly distorted signal, one must truncate those summations considering a given value
of nγ IMPs. Under these conditions, only the contribution of a finite number of IMPs is
taken into account. As aforementioned, we denote this approach as the “truncated IMP”
approach.

The truncated IMP approach is relatively straightforward and can be employed for
most baseband and bandpass memoryless nonlinearities that can be encountered in multi-
carrier transceivers. However, it should be mentioned that the accuracy of this approach
is intimately related with the number of IMPs employed for the computation of the au-
tocorrelation of the nonlinearly distorted signal. In fact, the truncated IMP approach
implicitly involves a polynomial approximation for the nonlinearity, since the nonlinear
distortion effects at the nonlinearity output are divided into the individual contribution of
the different IMP and each IMP is associated to a given polynomial term. This means that
the number of required IMPs vary with the “smoothness” associated to the nonlinearity.
Therefore, the higher the desired accuracy, the higher the number of IMPs that should be
considered, i.e., the higher the value of nγ . Put in other words, the value of nγ is strongly
dependent on the degree of the polynomial approximation associated to the nonlinear
characteristic. Clearly, this means that for non-smooth nonlinear characteristics (such
as the ones inherent to clipping operations or low-resolution quantization processes with
many discontinuities), the value of nγ required to obtain an acceptable accuracy can be
very large, leading to higher complexity. In addition, the truncated IMP approach may
also present convergence issues since we may find numerical problems when obtaining the
contribution of IMPs of very high order. Therefore, in some situations, increasing nγ does
not necessarily means better accuracy, which conditions the applicability of this approach
in some situations.

In this section, we present a simplified method for obtaining the statistical characteriza-
tion of nonlinearly distorted Gaussian signals that is based on the truncated IMP approach
presented in the previous section. This approach is specially adequate to be employed
in situations where the nonlinearities are severe and operate in sampled multicarrier sig-
nals. The method involves the creation of an equivalent nonlinearity that can substitute
the original, non-smooth nonlinearity for the evaluation of the corresponding nonlinear
distortion effects, but that leads to signals with the same spectral characterization of the
ones distorted by the original nonlinearity. This equivalent nonlinearity is polynomial and
has low degree. For this reason, it allows to easily obtain the statistical characterization
of nonlinearly distorted Gaussian signals. In the following, the principle behind these
equivalent nonlinearities is described. The baseband equivalent nonlinearities that can
be employed both in real-valued and complex-valued baseband signals are introduced in
subsection 3.3.1. The bandpass equivalent nonlinearities are introduced in subsection 3.3.2.
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3.3.1 Baseband Equivalent Nonlinearities

As aforementioned, the “strong” nonlinearities associated to some operations performed
in the transmission chain of multicarrier systems require the computation of a large
number of IMPs, provided that an accurate statistical characterization of the corresponding
nonlinearly distorted signals is desired. In fact, the complexity of such process is related
to the nonlinearity, i.e, it can be very high for severe nonlinearities with discontinuities.
For this reason, the use of the truncated IMP approach in those situations usually leads to
inaccurate results since, to avoid high complexity, only a small number of IMPs is taken
into account for the computation of the autocorrelation of the nonlinearly distorted signal.
In the following, the concept associated to baseband, real-valued equivalent nonlinearities
is explained. In addition, it is shown how these nonlinearities can be obtained.

Regarding the truncated IMP approach, the approximate autocorrelation of a real-
valued multicarrier signal submitted to a baseband nonlinearity represented by f(·) is
obtained by truncating (3.57) to the first nγ + 1 IMPs, i.e.,

Ry,bb(τ)≈
nγ∑
γ=0

(
Rs,bb(τ)
σ2

)2γ+1
P bb2γ+1. (3.111)

As mentioned before, the choice of nγ is dependent on a trade-off between accuracy and
complexity, but in some situations its increase does not guarantee a better accuracy.
Here, we propose to replace the conventional baseband nonlinearity, f(·), by a smoother,
polynomial equivalent nonlinearity, g(·), that gives rise to signals with the same spectral
characterization of the ones submitted to f(·). This equivalent nonlinearity can then
be employed to obtain the statistical characterization of Gaussian signals submitted to
baseband nonlinearities [91], [92]. In the following, the steps associated to the obtainment
of this equivalent nonlinearity are described.

Let us consider a stationary, Gaussian signal s(t) with bandwidth Bs and average
power Rs,bb(0) = σ2. In addition, let us consider that this signal is sampled at rate
fs = 2OBs (i.e., considering an oversampling factor of O) and submitted to a real-valued,
baseband nonlinearity that yields a sampled version of y(t) (see (3.1)). As demonstrated
before, by making use of the Wiener-Khinchin’s theorem, the PSD of y(t) can be obtained
through the Fourier transform of its autocorrelation (see (3.59)). Note that, by defining
the frequency-domain distribution associated to the IMP of order 2γ+ 1 as

G2γ+1
y,bb (f) =

P bb2γ+1
σ2(2γ+1)

(
Gs,bb(f) ∗Gs,bb(f) ∗ · · · ∗Gs,bb(f)

)︸                                           ︷︷                                           ︸
2γ+1 times

, (3.112)

we can rewrite (3.59) as a summation of the PSDs associated to the different IMPs as

Gy,bb(f) =
+∞∑
γ=0

G2γ+1
y,bb (f). (3.113)

Fig. 3.9 shows the PSD associated to a baseband, real-valued nonlinearly distorted signal
considering O = 4, as well as the PSDs associated to IMPs of order 1, 7 and 9. It is assumed
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Figure 3.9: PSD associated to a given nonlinearly distorted signal and the PSD associated
to the IMPs of order 2γ + 1 considering an oversampling factor of O = 4 and different
values of γ.

that the PSD of the signal at the nonlinearity input, Gs,bb(f), is rectangular. From the
results shown in the figure, it can be noted that the PSD associated to γ = 0, G1

y,bb(f),
is proportional to the input signal’s PSD, which was expected from (3.112) since, in fact,
G1
y,bb(f) = |αbb|2Gs,bb(f) (see (3.55)), which justifies it rectangular shape. Additionally,

it can also be noted that when γ increases, the corresponding PSDs associated to the
IMPs of that order become more flat. For instance, when γ = 4, one can note that
G9
y,bb(f) is almost constant. Therefore, this means that its corresponding autocorrelation,

R9
y,bb(τ) = F−1(G9

y,bb(f)) (F−1 denotes the inverse Fourier transform), is approximately
given by a scaled Dirac delta function. This can be explained by taking into account that
as

max(Rs,bb(τ)) = σ2, (3.114)

we have (
Rs,bb(τ)/σ2

)2γ+1
≈ δ(τ). (3.115)

Indeed, that approximation can be observed from the IMPs of a given order γ ≥ γmax,
where 2γmax + 1 is defined as the order of the IMP from which the corresponding PSD
becomes approximately flat.

Fig. 3.10 shows the PSD associated to a baseband, real-valued nonlinearly distorted
signal considering O = 2, as well as the PSDs associated to IMPs of order 1, 3 and 5. From
the figure it can be noted than when the oversampling is lower, the value of γmax that
leads to a constant PSD at the nonlinearity output is also lower. In fact, the value of γmax

is related not only with the nature of the nonlinearity (i.e., with its severeness), but also
with the oversampling factor. Therefore, we can note that from a given value of γ = γmax,
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Figure 3.10: PSD associated to the nonlinearly distorted signal and the PSD associated to
the IMP of order 2γ+ 1 considering an oversampling factor of O = 2 and different values
of γ.

one can concentrate the effect of all IMPs of order 2γ+1≥ 2γmax +1 in that IMP of order
2γmax + 1. Under these conditions, (3.57) can be approximated as

Ry,bb(τ) =
+∞∑
γ=0

(
Rs,bb(τ)
σ2

)2γ+1
P bb2γ+1

≈
γmax−1∑
γ=0

(
Rs,bb(τ)
σ2

)2γ+1
P bb2γ+1 +

+∞∑
γ=γmax

P bb2γ+1δ(τ)

≈
γmax−1∑
γ=0

(
Rs,bb(τ)
σ2

)2γ+1
P bb2γ+1 +P bb,∞2γ+1δ(τ), (3.116)

where, according to the definition of the average power of the signal at the output of the
real-valued, baseband nonlinearity in (3.39), we have

P bb,∞2γ+1 = Pnl−
γmax−1∑
γ=0

P bb2γ+1. (3.117)

This means that the autocorrelation of the nonlinearly distorted signal can be obtained
by computing the total output power and the power associated to the first γmax IMPs.
Therefore, this means that the infinite summation of (3.57) can be avoided, which is
traduced in an effective complexity reduction for obtaining an accurate PSD. By making
use of this fact, we can define an equivalent, polynomial nonlinearity, g(·), with degree
2γmax + 1, where its last polynomial term concentrates the effect of several terms of the
“original nonlinearity”, f(·). This equivalent nonlinearity is defined as

g(s) =
γmax∑
γ=0

cbb2γ+1s
2γ+1 = cbb1 s+ cbb3 s

3 + · · ·+ cbb2γmax+1s
2γmax+1, (3.118)
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where cbb2γ+1 is the polynomial coefficient associated to the (2γ+1)th polynomial term. We
also define the set constituted by all polynomial coefficients of g(·) as cbb = [cbb1 cbb3 · · · cbb2γmax+1] ∈
Rγmax+1. Note that having in mind (3.117), we can define the IMPs of the equivalent non-
linearity as follows(1)

P bb,g2γ+1 =


P bb,f2γ+1, 0≤ γ < γmax

+∞∑
γ=γmax

P bb,f2γ+1 = P fout−
γmax−1∑
γ=0

P bb,f2γ+1, γ = γmax

0, γ > γmax.

(3.119)

In fact, as we have the power associated to the IMPs of the equivalent nonlinearity and
we know its expression (see (3.118)), we are able to obtain its polynomial coefficients
cbb = [cbb1 cbb3 · · · cbb2γmax+1] ∈ Rγmax+1, which allows us to completely define equivalent
nonlinearity g(·). In order to do that, let us start by redefining (3.58) as

P bb,g2γ+1 =

(
pbb,g2γ+1

)2

22γ+1(2γ+ 1)! . (3.120)

Moreover, let us define the block pbb,g = [pbb,g1 pbb,g3 ... pbb,g2γmax+1]T ∈ Rγmax+1 formed by the
coefficients pbb,g2γ+1, where

pbb,g2γ+1 = 22γ+1(2γ+ 1)!
√
P bb,g2γ+1

=
+∞∫
−∞

g(s)p(s)H2γ+1

(
s√
2σ

)
ds. (3.121)

By replacing (3.118) into (3.121), we have

pbb,g2γ+1 =
+∞∫
−∞

γmax∑
γ′=0

cbb2γ′+1s
2γ′+1

p(s)H2γ+1

(
s√
2σ

)
ds

=
γmax∑
γ′=0

cbb2γ′+1

+∞∫
−∞

s2γ′+1p(s)H2γ+1

(
s√
2σ

)
ds

︸                                      ︷︷                                      ︸
βbb
γγ′

=
γmax∑
γ′=0

cbb2γ′+1β
bb
γγ′ . (3.122)

Additionally, by defining the γmax× γmax square matrix βbb as

βbb =


βbb0,0 βbb0,1 · · · βbb0,γmax
...

. . . · · ·
...

βbbγmax,0 · · · · · · βbbγmax,γmax

 , (3.123)

(1)We adopt the superscript f or g to distinguish between the original and the equivalent nonlinearity,
respectively.

70



3.3. EQUIVALENT NONLINEARITIES

we can write (3.122) in matrix notation, resulting

pbb,g = cbbβbb. (3.124)

Therefore, as the set pbb,g = [pbb,g1 pbb,g3 ... pbb,g2γmax+1]T ∈ Rγmax+1 and the matrix βbb are both
known, the polynomial coefficients of the equivalent nonlinearity cbb = [cbb1 cbb3 · · · cbb2γmax+1] ∈
Rγmax+1 can be computed as

cbb = β−1pbb,g. (3.125)

Fig. 3.11 shows the nonlinear characteristic of a quantizer with nb = 3 bits of resolution
as well as its corresponding equivalent nonlinearities considering different values of γmax.
It should be mentioned that this equivalent nonlinearity is polynomial, but it does not
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Figure 3.11: Nonlinearity associated to a quantization operation as well as its equivalent
nonlinearities obtained for different values of γmax.

constitute a polynomial approximation for the original nonlinearity.
For the case of Cartesian nonlinearities, this approach of replacing the original non-

linearity, fbb(·), with the equivalent nonlinearity can also be employed to obtain a simple
and accurate statistical characterization of the corresponding nonlinearly distorted signals.
However, for Cartesian nonlinearities, both the nonlinearities operating on the real and
imaginary parts of the signal fbb,I(·) and fbb,Q(·), respectively, should be replaced by the
corresponding equivalent nonlinearities. Nevertheless, if fbb,I(·) = fbb,Q(·) = f(·), then only
one equivalent nonlinearity should be computed.

3.3.2 Bandpass Equivalent Nonlinearities

The concept of equivalent nonlinearities can also be employed for bandpass nonlinearities
[93], [94]. In this section, we consider bandpass nonlinearities characterized by the AM/AM
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and AM/PM baseband model represented in (3.24), and it is shown how we can obtain
their corresponding equivalent nonlinearities.

Let us start by considering the complex envelope s̃(t) of a given bandpass signal (see
(3.74)). Besides of having a Gaussian nature, we assume that s̃(t) has a rectangular PSD,
bandwidth Bs and average power 2σ2. This complex envelope is sampled at rate fs = 2OBs
(i.e., considering an oversampling factor of O) and submitted to a bandpass, memoryless
nonlinearity that yields ỹ(t) =A(r(t))exp(jϕ(t)).

As in the case of baseband nonlinearities, when bandpass nonlinearities are considered,
we also can decompose the PSD of the nonlinearly distorted signals (see (3.108)) as the
sum of the individual PSDs associated to the different IMPs, resulting

Gỹ,bp = 2
+∞∑
γ=0

G2γ+1
ỹ,bp (f), (3.126)

where

G2γ+1
ỹ,bp (f) =

P bp2γ+1
Rs̃,bp(0)2γ+1

Gs̃,bp(f) ∗ · · · ∗Gs̃,bp(f)︸                           ︷︷                           ︸
γ+1 times

 ∗
Gs̃,bp(−f) ∗ · · · ∗Gs̃,bp(−f)︸                                ︷︷                                ︸

γ times

 .
(3.127)

Fig. 3.12 shows the PSD associated to the nonlinearly distorted signal considering
O = 2, as well as the PSDs associated to IMPs of order 1, 3 and 5. From the figure, one
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Figure 3.12: PSD associated to the nonlinearly distorted signal and the PSD associated
to the IMP of order 2γ+ 1 considering an oversampling factor of O = 4.

can note that when γ = 2, the corresponding PSD G5
ỹ,bp(f) is approximately flat. This

means that from a given order γ = γmax, all the PSDs associated to those IMPs (i.e.,
the ones with order γ ≥ γmax), are approximately constant and can be concentrated in
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only one IMP. Therefore, the autocorrelation of the nonlinearly distorted signal can be
approximated by

Rỹ,bp(τ)≈ 2
γmax−1∑
γ=0

P bp2γ+1
Rs̃,bp(τ)γ+1R∗s̃,bp(τ)γ

Rs̃,bp(0)2γ+1 + 2P bp,∞2γ+1δ(τ), (3.128)

where

P bp,∞2γ+1 = P bpnl −
γmax−1∑
γ=0

P bp2γ+1, (3.129)

with P bpnl defined as in (3.105). Note that this is formally equivalent to submit the complex
envelope of the bandpass signal to an equivalent, polynomial nonlinearity gbp(·), with
degree γmax, defined as

gbp(r) =
γmax∑
γ=0

cbp2γ+1r
2γ+1 = cbp1 r+ cbp3 r

3 + · · ·+ cbp2γmax+1r
2γmax+1, (3.130)

where cbp = [cbp1 cbp3 · · · c
bp
2γmax+1] ∈ Rγmax+1 denote the set of polynomial coefficients of the

equivalent, bandpass nonlinearity gbp(·). The IMPs of this nonlinearity are defined as

P bp,g2γ+1 =


P bp,f2γ+1, 0≤ γ < γmax

+∞∑
γ=γmax

P bp,f2γ+1 = P fout,bp−
γmax−1∑
γ=0

P bp,f2γ+1, γ = γmax

0, γ > γmax.

(3.131)

Let us define the IMP of order 2γ+ 1 as

P bp,g2γ+1 =

(
pbp,g2γ+1

)2

4σ6(γ+ 1) . (3.132)

In addition, let us define the block pbp,g = [pbp,g1 pbp,g3 ... pbp,g2γmax+1]T ∈ Rγmax+1, formed by
the coefficients pbp,g2γ+1, where

pbp,g2γ+1 =
+∞∫
0

gbp(r)r2p(r)L(1)
γ

(
r2

2σ2

)
dr. (3.133)

By replacing (3.130) into (3.133), we obtain

pbp,g2γ+1 =
+∞∫
−∞

γmax∑
γ′=0

cbp2γ′+1r
2γ′+1

r2p(r)L(1)
γ

(
r2

2σ2

)
dr

=
γmax∑
γ′=0

cbp2γ′+1

+∞∫
−∞

r2γ′+1r2p(r)L(1)
γ

(
r2

2σ2

)
dr

︸                                     ︷︷                                     ︸
βbp
γγ′

=
γmax∑
γ′=0

cbp2γ′+1β
bp
γγ′ . (3.134)
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Additionally, by defining the γmax× γmax square matrix βbp as

βbp =


βbp0,0 βbp0,1 · · · βbp0,γmax
...

. . . · · ·
...

βbpγmax,0 · · · · · · βbpγmax,γmax

 , (3.135)

we can rewrite (3.134) in matrix notation as

pbp,g = cbpβbp. (3.136)

Therefore, as the both set pbp,g = [pbp,g1 pbp,g3 ... pbp,g2γmax+1]T ∈ Rγmax+1 and the matrix βbp

are known, the polynomial coefficients associated to the equivalent nonlinearity cbp =
[cbp1 cbp3 · · · c

bp
2γmax+1] ∈ Rγmax+1 can be computed as

cbp = β−1pbp,g. (3.137)

Fig. 3.13 shows the nonlinear function associated to an envelope clipping operation, as
well as its corresponding equivalent nonlinearities obtained for γmax = 3 and γmax = 9.
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Figure 3.13: Nonlinearity associated to an envelope clipping operation as well as its
equivalent nonlinearity computed with different values of γmax.

3.4 Optimum Detection of Nonlinear Multicarrier Schemes

In this section, we analyze the optimum detection of nonlinear multicarrier schemes. To mo-
tivate the use of the optimum detection, the conventional approaches commonly employed
for detection of nonlinear multicarrier schemes are briefly described in the subsection 3.4.1.
In fact, the optimum detection arises as an alternative to those conventional approaches
that does not consider the nonlinear distortion as an additional noise term that leads to
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performance degradations, but instead as useful information that can be used to improve
the performance of multicarrier schemes.

This was noticed in [16], where the gains associated to the optimum detection of
OFDM schemes with nonlinear distortion effects were studied, and it was verified that
the nonlinear distortion gives an additional diversity effect that can be used to improve
the performance in frequency-selective channels. More recently, it was demonstrated
that the optimum detection of nonlinearly distorted multicarrier signals provide potential
asymptotic gains relatively to linear OFDM transmissions, even in ideal AWGN channels,
considering different nonlinearities, and considering different multicarrier schemes such as
DMT schemes [17], [95]–[97]. These potential asymptotic gains were studied analytically
and it was also verified that even sub-optimum receivers present performance improvements
relatively to the conventional detection of linear, multicarrier schemes.

In order to understand the motivation behind the existence of these potential gains, we
firstly present the theoretical principle associated to the optimum detection considering
a linear multicarrier scheme in subsection 3.4.2. After that, subsection 3.4.3 concerns
with the asymptotic performance associated to the optimum detection considering both
linear and nonlinear multicarrier schemes. Then, theoretical expressions for the potential
asymptotic gains considering different multicarrier schemes, different nonlinearities and
both for ideal AWGN and frequency-selective channels are presented in subsections 3.4.4
and 3.4.5, respectively.

3.4.1 Motivation and Conventional Approaches

As seen in the last section, nonlinearities introduce both in-band and out-of-band radiation
on the transmitted signals. Although the out-of-band nonlinear distortion can be mitigated
through the use of proper filtering techniques, the in-band distortion cannot be easily
removed. Conventionally, the in-band nonlinear distortion is considered as an additional
noise term that is added to the AWGN. This is a consequence of the Bussgang’s theorem
[10], that allows us to separate the nonlinearly distorted signals into uncorrelated useful
and distortion components. In fact, although the nonlinear distortion is not Gaussian
in the time-domain, it can be shown that it is approximately Gaussian at the subcarrier
level [8], which reinforces the idea of considering it as noisy term that can substantially
degrade the performance of multicarrier systems. In the following, the impact of nonlinear
distortion effects on the performance of conventional receivers based on a simple hard-
decision, that work in a subcarrier-by-subcarrier basis (see subsection 2.2.2), is shown.
Without loss of generality, the specific case of a bandpass OFDM signal submitted to
a bandpass nonlinearity is analyzed. More concretely, the nonlinear distortion effects
associated to an envelope clipping are considered. The equivalent, subcarrier-level scenario
for this nonlinear OFDM scheme is depicted in Fig. 3.14.

Each OFDM signal has Nu QPSK symbols (M = 4), oversampling factor O (see (2.23))
and is represented by the frequency-domain block S = [S0 S1 S2 ... SN−1]T ∈ CN . Its
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IDFT
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fbp(·)

Figure 3.14: Equivalent, subcarrier-level model for a nonlinear OFDM system with an
envelope clipping operation.

corresponding time-domain version is s = [s0 s1 s2 ... sN−1]T ∈ CN . As mentioned before,
the time-domain samples sn have a complex Gaussian distribution. The variance of the
its real and imaginary parts is σ2 (see (2.26)). These time-domain samples are submitted
to an envelope clipping operation (see Fig. 3.5 and Fig. 3.13), whose the corresponding
AM/PM conversion function is null and the AM/AM conversion function is given by(2)

fbp(rn) =A(rn) =
{
rn, rn ≤ sM
sM , rn > sM ,

(3.138)

where rn = |sn|. According to the Bussgang’s theorem [10], the nonlinearly distorted signal
is given by the sum of two uncorrelated terms, i.e.,

y = αbps + d, (3.139)

where d = [d0 d1 d2 ... dN−1]T ∈ CN is a block that gathers the nonlinear distortion
components and αbp is a scale factor given by (3.78). For the nth time-domain sample, we
have

yn = αbpsn + dn, (3.140)

where dn represents the nonlinear distortion term associated to the nth time-domain
sample. On the other hand, as the detection in OFDM is made in the frequency-domain,
one must obtain the frequency-domain version of (3.139), that is

Y = Fy

= αbpS + D, (3.141)

where D = [D0 D1 D2 ... DN−1]T ∈ CN is a block formed by the frequency-domain version
of the nonlinear distortion terms. Therefore,

Yk = αbpSk +Dk, (3.142)

where Dk is the nonlinear distortion term associated to the kth subcarrier and Sk is the
QPSK data symbol transmitted on the kth subcarrier. From (3.142), one can note that
the received symbol associated to the kth subcarrier is a complex scaled replica of the
transmitted data symbol plus an additive nonlinear distortion term. This means that the

(2)Although the clipping level (also known as “saturation” level) is sM , we usually refer to the normalized
clipping level sM/σ since the magnitude of the nonlinear distortion effects and their corresponding impact
on the performance is conditioned by that value.
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constellation of the received symbols can be considerably different from the original QPSK
constellation, leading to a large number of errors at the detection and an increased BER,
that can even be irreducible. This effect is illustrated in Fig. 3.15, which depicts the
constellation of the received nonlinearly distorted OFDM symbols Yk, considering different
normalized clipping levels sM/σ (note that, for sM/σ = +∞, we have an ideal, linear
transmission). From the results shown in the figure it can be noted that the lower the
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Figure 3.15: Constellation of the received symbols Yk considering an envelope clipping
operation with different normalized clipping levels sM/σ.

normalized clipping level, the higher the magnitude of the nonlinear distortion effects. It
can also be seen that the constellation is shrunken according to the scale factor αbp and
that the higher the magnitude of the nonlinear distortion effects, the higher is dimension
of the “cloud” that is formed around its central point. It should be mentioned that if
the bandpass nonlinearity has a non-null AM/PM conversion function, then the scale
factor αbp is complex, which means that, besides being shrunken, the constellation is
also rotated (naturally, this does not apply to clipping functions, since they do not have
AM/PM conversion). Due these unwanted effects on the received symbol’s constellation,
it is easy to conclude that the nonlinear distortion can severely degrade the detection,
increasing substantially the BER. This performance degradation can be confirmed in Fig.
3.16, which shows the simulated BER associated to a conventional receiver and a nonlinear
OFDM transmission with Nu = 256, O = 4 and different normalized clipping levels sM/σ.
From the figure, one can note that the BER associated to the conventional receivers when
nonlinear distortion effects are high can be very poor. For instance, for a target BER of
Pb = 10−3, the degradation is around 2 dB when sM/σ = 1.5, but can reach approximately
6 dB when sM/σ = 1.0. In fact, for lower clipping levels, we can even have an accentuated
error floor where the BER becomes irreducible, regardless of the value of Eb/N0.
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Figure 3.16: Simulated BER associated to a nonlinear OFDM transmission for different
normalized clipping levels.

To avoid this large degradation on the performance of OFDM, the Bussgang noise can-
cellation (BNC) receivers (also denoted as Bussgang receivers) were proposed [15], [98], [99].
The main goal of these receivers is to estimate and cancel this distortion at the receiver side.
If these receivers could perfectly remove the nonlinear distortion from the received signal,
the performance penalty would be only restricted to the degradation that comes from the
fraction of the transmission power wasted in the nonlinear distortion component. However,
this is an ideal situation since, in practice, it is very difficult to estimate the nonlinear
distortion component. In fact, particularly at low SNR, the performance of BNC receivers
is relatively poor due to error propagation issues, and can be even worse than the one as-
sociated to the conventional OFDM receivers based on a simple hard-decision process [100].

3.4.2 Principle

In general, the task of a receiver is to output a signal from the transmission signals set, given
the observed channel output. When referring to the optimum receiver, the optimization
criterion is the probability of error. Thus, the goal of the optimum receiver is to maximize
the probability of a correct decision or, equivalently, minimize the error probability. In
this subsection, the principle behind the optimum detection (also known as maximum
likelihood (ML) detection) is presented.

After the demodulation process performed by the DFT, the received OFDM signal in
the frequency-domain is represented by the block R = [R0 R1 R2 ... RN−1]T ∈ CN where,
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taking into account (2.77), we can write

R = HS + N. (3.143)

For the sake of simplicity, we will start with an OFDM transmission over an ideal AWGN
channel (the extension to other cases will be done later). Under these conditions, the
received signal can be expressed as

R = S + N. (3.144)

Generally speaking, one can say that the probability of error is minimized if the a posteriori
probability is maximized. In fact, given that R is observed, the detected signal S̃ =
[S̃0 S̃1 S̃2 ... S̃N−1]T ∈ CN is the one that maximizes the probability that the sequence
S(m) = [S(m)

0 S
(m)
1 S

(m)
2 ... SN−1]T ∈ CN was transmitted, with S(m) denoting the mth

possible transmitted message. Note that the superscript m ranges from m = 1 to the
maximum number of sequences that can be generated in an OFDM system with Nu

subcarriers employing M -QAM constellations, that is MNu . Put differently, the optimum
receiver selects the signal S̃ as the possible transmitted sequence S(m) that results from
the following maximization

S̃ = argmax
m

(
P
(
S(m)|R

))
, (3.145)

where P
(
S(m)|R

)
denotes the conditional probability that S(m) was transmitted given

that R is observed. This receiver is known as the maximum a posteriori (MAP) receiver.
By taking advantage of the Bayes’s rule, one can also write the conditional probability of
observed S(m) given R as [35]

P
(
S(m)|R

)
=
p
(
R|S(m)

)
P
(
S(m)

)
p(R) . (3.146)

However, as P (R) is independent of S, the MAP decision rule can be rewritten as

S̃ = argmax
m

(
p
(
R|S(m)

)
P
(
S(m)

))
. (3.147)

Additionally, if the transmitted messages are equally probable, then P
(
S(m)

)
is constant

and does not influence (3.147). Under these conditions, we end up with the ML detection
rule. The ML receiver makes its decision by solving the following maximization

S̃ = argmax
m

(
p
(
R|S(m)

))
. (3.148)

As mentioned before, each element of N has a complex Gaussian distribution, i.e., Nk ∼
CN (0,2σ2

N ), with σ2
N denoting the variance of the real and imaginary parts of each noise

sample (see (2.76)). In fact, N can be seen as a complex, circularly symmetric Gaussian
vector, whose the corresponding PDF given by

p(N) = 1
πN det(CN ) exp(−NHC−1

N N), (3.149)

79



CHAPTER 3. NONLINEAR DISTORTION IN MULTICARRIER
SYSTEMS

where CN is the covariance matrix associated to the vector N and det(CN ) is its determi-
nant. As CN = 2σ2

NIN , we have

p(N) = 1
(2πσ2

N )N
exp

(
−||N||

2

2σ2
N

)
, (3.150)

where ||N||2 is the squared Euclidean norm of the vector N. As the received signal R can
be written as the sum of a deterministic and a random vector (see (3.144)), the conditional
PDF of observed R, given that S(m) was transmitted, is

p
(
R|S(m)

)
= 1

(2πσ2
N )N

exp

−
∣∣∣∣∣∣R−S(m)

∣∣∣∣∣∣2
2σ2

N

 . (3.151)

Under these conditions, the ML rule presented in (3.148) can be written as

S̃ = argmax
m

 1
(2πσ2

N )N
exp

−
∣∣∣∣∣∣R−S(m)

∣∣∣∣∣∣2
2σ2

N


 . (3.152)

Clearly, the constant term 1
(2πσ2

N )N does not affect the above maximization and can be
ignored. In addition, taking advantage of the monotonic characteristic of the logarithmic
function, we can rewrite the ML decision rule as

S̃ = argmax
m

ln

exp

−
∣∣∣∣∣∣R−S(m)

∣∣∣∣∣∣2
2σ2

N





= argmax
S

−
∣∣∣∣∣∣R−S(m)

∣∣∣∣∣∣2
2σ2

N


= argmin

S

(∣∣∣∣∣∣R−S(m)
∣∣∣∣∣∣2) . (3.153)

Note that the quantity
∣∣∣∣∣∣R−S(m)

∣∣∣∣∣∣2 represents the squared Euclidean norm between R
and S(m), i.e., the squared Euclidean distance between them. Therefore, this means that
the ML receiver selects, among all the possible transmitted signals S(m), the one that is
closest to the received signal R, i.e., the one that presents the minimum squared Euclidean
distance relatively to the received signal R. For this reason, the complexity associated to
the optimum receiver can be very high, even with a low-to-moderate number of subcarriers
and/or small constellations since, before taking a decision for a size-M constellation, it
should perform MNu calculations of the squared Euclidean distance, in order to verify
what is the sequence S(m) closest to the received signal.

3.4.3 Performance Analysis

3.4.3.1 Linear Multicarrier Schemes

In this section, the performance associated to the optimum detection of linear multicarrier
schemes in ideal AWGN channels is analyzed. In fact, although the specific scenario of a
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linear OFDM transmission is considered, the conclusions are valid for other multicarrier
schemes such as DMT schemes.

Let us define Dm as the decision region associated to the data sequence S(m), i.e., the
region in which all received signals R are detected as S(m). In addition, let us define Dc

m

as the corresponding complementary region to Dm. Under these conditions, the exact
BER associated to the multicarrier scheme can be obtained as

Pb =
∑
m

P
(
S(m)

)
P
(
R <Dm|S(m)

)
=
∑
m

P
(
S(m)

)
P (e|m) , (3.154)

where P (e|m) is the probability of having an error, given that the sequence S(m) was
transmitted. Indeed, given that S(m) is transmitted, there is an error if the received signal
R does not belong to the decision region of S(m), i.e., does not lie in the decision region
Dm or, equivalently, if the received signal belong to the complementary decision region
Dc
m. Therefore, the probability of error, given that S(m) is transmitted, can be obtained

by the following multidimensional integral

P (e|m) =
∫
Dcm

p
(
R|S(m)

)
dR. (3.155)

Note that the event e|m is composed by the union of all error events, i.e.,

e|m=
⋃
m′

m′,m

e(m′)∣∣m, (3.156)

where e(m′)|m represents the event of detecting S(m′) given that S(m) was transmitted. As
these error events are mutually exclusive, we can rewrite (3.156) as

e|m=
∑
m′

m′,m

e(m′)|m. (3.157)

Under these conditions, we can redefine P (e|m) as

P (e|m) =
∑
m′

m′,m

∫
Dm′

p
(
R|S(m)

)
dR. (3.158)

By replacing the above equation in (3.154), the optimum receiver’s BER can be rewritten
as

Pb =
∑
m

P
(
S(m)

) ∑
m′

m′,m

∫
Dm′

p
(
R|S(m)

)
dR. (3.159)

Although this expression gives the optimum receiver’s exact BER, it is very complex due to
the multidimensional integrals and the large number of possible transmitted sequences that
should be analyzed. Instead of computing (3.159), the optimum performance is commonly
obtained by considering some approximations. In fact, one can define both upper and
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lower performance bounds that are associated with “pessimistic” and “optimistic” BERs,
respectively. Under some conditions, these bounds might provide an accurate insight
on the truth BER of the optimum receiver, while, at the same time, avoid a very large
complexity.

In the following, we present an approximation of the exact optimum receiver’s BER
that involves a combination of a lower and an upper bound. The lower bound is related
to the assumption that an error event is only associated with single bit errors, i.e., all
errors occur when there is one and only one bit error. Clearly, this is an optimistic
assumption since we can have, although with lower probability, more than one bit in error
in a given block. It should be mentioned that although this is an optimistic approximation,
it is quite tight, specially, in the asymptotic region, i.e., for large Eb/N0 values. The
upper bound, on the other hand, constitutes a pessimistic approximation. It is based
on the so-called pairwise union bound. The idea behind this approximation is to upper
bound an error event by the union of all the pairwise error probability (PEP) of two
signals that belong to the transmission set. In this bound, instead of integrating the
distribution p

(
R|S(m)

)
over the decision region Dm′ (see (3.159)), a larger decision region

Dmm′ =
{
p
(
R|S(m′)

)
> p

(
R|S(m)

)}
is considered. Note that, in this larger region, it is

more likely that S(m′) was transmitted. Under these conditions, we have

Pb =
∑
m

P
(
S(m)

) ∑
m′

m′,m

∫
Dm′

p
(
R|S(m)

)
dR ≤

∑
m

P
(
S(m)

) ∑
m′

m′,m

∫
Dmm′

p
(
R|S(m)

)
dR,

(3.160)
where

P (Sm→m′) =
∫
Dmm′

p
(
R|S(m)

)
dR, (3.161)

is the PEP between m and m′, which represents the probability of estimating S(m′) given
that S(m) was transmitted. The union upper bound based on the PEPs can hence be
written as

Pb ≤
∑
m

P
(
S(m)

) ∑
m′

m′,m

P (Sm→m′) . (3.162)

Note that, by assuming that the transmitted sequences are equally probable, i.e., P
(
S(m)

)
=

M−Nu , we have
Pb ≤

∑
m

M−Nu
∑
m′

m′,m

P (Sm→m′) . (3.163)

Note also that the event Sm→m′ happens when S(m′) differs at least in one bit from S(m).
Let us denote Φ(µ,m) as the set of all sequences S(m′) that differ from S(m) in µ bits and
P
(
S
m

µ−→m′

)
as the probability that the detected sequence S(m′) differs from S(m) in µ

bits. Under these conditions, we can write

Pb ≤
MNu∑
m=1

M−Nu
log2(M)Nu∑

µ=1

µ

log2(M)Nu

∑
Φ(µ,m)

P
(
S
m

µ−→m′

)
. (3.164)
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Moreover, it can be shown that, in ideal AWGN channels, the PEP associated to sequences
that differ in µ bits is related to the squared Euclidean distance between them [35]. In the
following, we denote this squared Euclidean distance as D2 (l)

m,m′(µ) (the superscript (l) is
related to the linear characteristic of the transmission). Therefore, the PEP associated to
sequences that differ in µ bits can be written as

P
(
S
m

µ−→m′

)
=Q


√√√√D

2 (l)
m,m′(µ)
2N0

 , (3.165)

where Q(·) represents the tail probability of the standard normal distribution, defined in
(2.83), and

D
2 (l)
m,m′(µ) =

∣∣∣∣∣∣S(m)−S(m′)
∣∣∣∣∣∣2

=
N−1∑
k=0

∣∣∣S(m)
k −S(m′)

k

∣∣∣2 . (3.166)

Under these conditions, we have

Pb ≤
MNu∑
m=1

M−Nu
log2(M)Nu∑

µ=1

µ

log2(M)Nu

∑
Φ(µ,m)

Q


√√√√D

2 (l)
m,m′(µ)
2N0

 . (3.167)

As referred before, we are only considering single bit errors, which is an assumption
that lead us to a lower bound of the optimum receiver’s performance. In fact, as the
Euclidean distance between signals that differ in more than one bit is much higher than
the Euclidean distance associated to sequences that differ in one bit, we can take advantage
of the decreasing characteristic of the Q(·) function. Therefore, Q(x)� Q(y) for x > y,
which means that Q(x) +Q(y) ≈ Q(min(x,y)). Under these conditions, the optimum
receiver’s BER bound of (3.167) can be approximated by considering only sequences that
have µ= 1 bit errors, resulting

Pb ≈
MNu∑
m=1

M−Nu

log2(M)Nu

∑
Φ(1,m)

Q


√√√√D

2 (l)
m,m′(1)
2N0



≈
MNu∑
m=1

M−Nu

log2(M)Nu

∑
Φ(1,m)

Q


√√√√∣∣∣∣∣∣S(m)−S(m′)

∣∣∣∣∣∣2
2N0

 . (3.168)

Clearly, in the asymptotic region, the sequences that differ in one bit are at the minimum
Euclidean distance. Note that the squared minimum Euclidean distance D2

min is constant,
regardless of the position (the subcarrier’s index) of the bit that is in error and regardless
of the data sequences S(m) and S(m′), i.e.,

D
2 (l)
m,m′(1) =D2 (l)(1) =D2

min ∀ m,m′. (3.169)
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Figure 3.17: Difference between two OFDM sequences that differ in µ= 1 bits.

This can be confirmed in Fig. 3.17, which shows the difference between two OFDM
sequences generated randomly and their variations of µ= 1 bits. The error positions were
also randomly generated. From the figure, it can be noted that the value of the squared
Euclidean distance (see (3.166)) is the same in both situations, which means that the
squared Euclidean distance is only dependent on the number of bit errors, µ. Additionally,
in an OFDM scheme employing M -QAM constellations, the average number of symbols
that are at the minimum Euclidean distance relatively to a given sequence S(m) is 4

√
M−4√
M

(note that, for QPSK constellations, this expression yields the exact number of symbols
that are at the minimum Euclidean distance). Therefore, the size of the set Φ(1,m) is
Nu
(

4
√
M−4√
M

)
, which makes possible to write

Pb ≈
MNu∑
m=1

M−Nu

log2(M)Nu
Nu

(
4
√
M − 4√
M

)
Q

√D2
min

2N0


= 4

√
M − 4

log2(M)
√
M
Q

√D2
min

2N0

 , (3.170)

since D2
min is constant (see (3.169)). For an M -QAM constellation, the minimum squared

Euclidean distance is given by

D2
min = 6Es

M − 1

= 6log2(M)Eb
M − 1 , (3.171)

where Es = log2(M)Eb denotes the average symbol energy. Note that the average bit
energy Eb is defined as in (2.84), i.e., it does not depend on the transmitted signal S(m).
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Under these conditions, we have

Pb ≈
(

4
√
M − 4

log2(M)
√
M

)
Q

(√
3log2(M)Eb
(M − 1)N0

)
. (3.172)

For the specific case of QPSK constellations, i.e., M = 4, (3.171) yields

D2
min = 4Eb. (3.173)

Therefore, the optimum performance is given by the well known expression

Pb =Q

(√
2Eb
N0

)
. (3.174)

Note that the above equation gives the exact BER although, in general, for an M -QAM
constellation, (3.172) gives an approximation. This can be explained by the compound
effect of the upper and lower bounds that are considered for obtaining (3.172). In fact this
compound effect is null for QPSK constellations. Note also that, as Ps = log2(M)Pb, the
symbol error rate (SER) associated to the optimum detection of a linear OFDM system
employing QPSK constellations in an ideal AWGN channel is

Ps = 2Q
(√

2Eb
N0

)
. (3.175)

It is worth to mention that the BER represented in (3.174) is identical to the BER
associated to the conventional OFDM detection that was presented in chapter 2 (see
(2.82) and (2.85)). This means that the conventional detection of OFDM, made under
a subcarrier-by-subcarrier basis, allows to obtain the optimum detection performance.
Put differently, the optimum detection reduces to the conventional detection, which is a
consequence of the orthogonality of the subcarriers. However, as will be demonstrated in
the following, the optimum detection provides substantial potential gains when employed
in nonlinear multicarrier schemes.

3.4.3.2 Nonlinear Multicarrier Schemes

In the following, the asymptotic optimum performance for the specific case of OFDM
schemes that have a clipping operation on their transmission chain is analyzed by a set of
simulation results. However, as will be seen later in this document, the main conclusions
presented here are valid for other multicarrier schemes (such as DMT schemes) impaired by
either baseband or bandpass nonlinearities. We consider both ideal AWGN and frequency-
selective channels.

Ideal AWGN Channels
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When a given OFDM signal S = [S0 S1 S2 ... SN−1]T ∈ CN is submitted to an envelope clip-
ping device (see (3.142) and Fig. 3.14), the transmitted signal Y = [Y0 Y1 Y2 ... YN−1]T ∈
CN can be written as

Y = αbpS + D. (3.176)

Therefore, the received signal is

R = Y + N

= αbpS + D + N. (3.177)

Let us consider two data sequences S(m) = [S(m)
0 S

(m)
1 ... S

(m)
N−1]T ∈ CN and S(m′) =

[S(m′)
0 S

(m′)
1 ... S

(m′)
N−1]T ∈ CN that differ in µ bits. As aforementioned, independently of

m and m′, the squared Euclidean distance between these two signals in AWGN channels
D

2 (l)
m,m′(µ) only depends on the number of µ bit differences between them, regardless of their

position. However, the situation is different when the squared Euclidean distance between
their corresponding nonlinearly distorted versions Y(m) = [Y (m)

0 Y
(m)

1 ... Y
(m)
N−1]T ∈ CN

and Y(m′) = [Y (m′)
0 Y

(m′)
1 ... Y

(m′)
N−1 ]T ∈ CN is taken into account. This is explained by the

fact that for a given sequence S(m), the corresponding nonlinear distortion term D(m) =
[D(m)

0 D
(m)
1 D

(m)
2 ... D

(m)
N−1]T ∈ CN depends on all elements of S(m). In fact, when there is

a bit modification on S(m), the entire block of nonlinear distortion terms at the nonlinearity
output change. This means that the squared Euclidean distance depends, therefore, on
the information spread along all subcarriers. In addition, as the nonlinearity introduces
out-of-band radiation, the difference between two nonlinearly distorted sequences spread
over the entire band of the signal, i.e., is nonzero for the N =ONu subcarriers. This can
be confirmed in Fig. 3.18, which shows the difference between two different nonlinearly
distorted OFDM sequences Y(m′) and Y(m′). In both cases, the sequences differ in µ= 1
bits. The positions of the errors were randomly generated. From the results depicted
in the figure, it can be seen that the difference between the nonlinearly distorted signals
has components in the entire block, i.e., on the N subcarriers. Additionally, it can also
be noted that, differently from the linear transmission case (see Fig. 3.17), the squared
Euclidean distance D2 (nl)

m,m′ (µ) (the superscript (nl) is related to the nonlinear nature of
the transmission) depends on all energy spread over the signal band, i.e.,

D
2 (nl)
m,m′ (µ) =

∣∣∣∣∣∣Y(m′)−Y(m)
∣∣∣∣∣∣2

=
N−1∑
k=0

∣∣∣Y (m′)
k −Y (m)

k

∣∣∣2
=
N−1∑
k=0

∣∣∣αbp(S(m′)
k −S(m)

k

)
+D

(m′)
k −D(m)

k

∣∣∣2 . (3.178)

This means that the BER associated to the optimum detection of nonlinearly distorted
OFDM signals can be upper bounded as

Pb ≤
MNu∑
m=1

M−Nu
log2(M)Nu∑

µ=1

µ

log2(M)Nu

∑
Φ(µ,m)

P
(
Y
m

µ−→m′

)
, (3.179)
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Figure 3.18: Difference between two nonlinearly distorted OFDM sequences that differ in
µ= 1 bits.

where P
(
Y
m

µ−→m′

)
represents the probability of detecting S(m′) given that S(m) (and

correspondingly Y(m)) was transmitted. As this probability can be computed as

P
(
Y
m

µ−→m′

)
=Q


√√√√D

2 (nl)
m,m′ (µ)
2N0

 , (3.180)

we can write

Pb ≤
MNu∑
m=1

M−Nu
log2(M)Nu∑

µ=1

µ

log2(M)Nu

∑
Φ(µ,m)

Q


√√√√D

2 (nl)
m,m′ (µ)
2N0

 . (3.181)

By considering only single bit errors (as previously seen, an approximation that is valid
in the asymptotic region, where the SNR is high and the BER is dominated by the error
events associated to 1 bit variations), the approximate BER can be computed as

Pb ≈
MNu∑
m=1

M−Nu

log2(M)Nu

∑
Φ(1,m)

Q


√√√√D

2 (nl)
m,m′ (1)
2N0

 . (3.182)

Without loss of generality, let us focus on the case where a QPSK symbol is transmitted
on each subcarrier, i.e., the case with M = 4. Under these conditions, we can rewrite
D

2 (nl)
m,m′ (1) as

D
2 (nl)
m,m′ (1) = 4Gm,m′(1)E(nl)

b,m , (3.183)

where Gm,m′(1) is defined as the asymptotic gain relatively to the linear transmission case
when the sequences differ in 1 bit (in general, for sequences differing in µ bits, we will
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denote this gain as Gm,m′(µ)) and E(nl)
b,m can be defined in the frequency-domain as

E
(nl)
b,m = 1

2Nu

N−1∑
k=0

∣∣∣Y (m)
k

∣∣∣2 . (3.184)

In the remaining of this analysis, the average E(nl)
b,m is considered, i.e., we consider

E
(nl)
b = ES(m)

[
E

(nl)
b,m

]
, (3.185)

i.e., the average E(nl)
b,m obtained over different realizations of data symbols S(m). It should

be mentioned that if Gm,m′(1) > 1.0, then there is a gain relatively to linear OFDM
transmissions, where D2 (l)

m,m′(1) = 4Eb and Gm,m′(1) = 1.0. In the following, it is shown
that, although the squared Euclidean distance between sequences that differ in µ= 1 bits,
D

2 (nl)
m,m′ (1), has some fluctuations, we have almost always Gm,m′(1) > 1.0. This suggests

that the optimum detection of nonlinear distorted OFDM schemes can be even better than
the performance of conventional, linear OFDM schemes, at least, in the asymptotic region.
However, it is not easy to obtain the approximate optimum receiver’s BER represented
in (3.182), since it involves the computation of 4Nu × 2Nu Euclidean distances, due to the
fact that each one of the 4Nu possible transmitted sequences has 2Nu possible variations
of µ= 1 bit, which clearly involves a very high complexity, even considering constellations
with only M = 4 points and/or a small number of subcarriers. For this reason, in order
to have an insight on the optimum performance of nonlinearly distorted OFDM signals,
we present a method to obtain an approximation of (3.182). This method is based on
the histogram of the possible values of D2 (nl)

m,m′ (1). Indeed, we can take advantage of the
fact that the 4Nu × 2Nu values of squared Euclidean distances may have relatively low
fluctuations and, therefore, it may be possible to avoid the computation of all possible
values of D2 (nl)

m,m′ (1) and still obtain a good approximation of (3.182).
The first step to obtain the histogram of the Euclidean distances is to randomly

generate Nseq � 4Nu sequences and compute the squared Euclidean distance between
them and their 2Nu variations of µ = 1 bit(3). These Nseq2Nu values are divided into a
set of intervals where D2 (nl)

i (1) represents the ith possible value of the squared Euclidean
distance. The absolute frequency associated with D2 (nl)

i (1) is fabs
(
D

2 (nl)
i (1)

)
and the

corresponding relative frequency is
fabs

(
D

2 (nl)
i (1)

)
Nseq2Nu . Given the histogram of the squared

Euclidean distances, the approximate BER can be obtained as

Pb ≈
∑
i

frel
(
D

2 (nl)
i (1)

)
Q


√√√√D

2 (nl)
i (1)
2N0


=
∑
i

fabs
(
D

2 (nl)
i (1)

)
Nseq2Nu

Q


√√√√D

2 (nl)
i (1)
2N0

 . (3.186)

(3)Note that, as the sequences are generated randomly, the variations of the same sequence can be
analyzed more than one time. However, as Nu is typically large, this “redundancy” is very unlikely.
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In fact, we can see the squared Euclidean distance as a “random variable”, for which
we may attach a given distribution computed from the histogram described above. Fig.
3.19 shows the distribution of the squared Euclidean distances between two randomly
generated, nonlinearly distorted OFDM sequences that differ in µ= 1 bits. Each OFDM
sequence has O = 4 and different values of Nu are considered. The normalized clipping
level is sM/σ = 0.5. From the results depicted in the figure, it can be noted that the
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Figure 3.19: Distribution of the squared Euclidean distances between two nonlinearly
distorted OFDM sequences that differ in µ= 1 bits.

distribution of the squared Euclidean distances tends to be Gaussian. In addition, its
variance tends to be smaller as the number of subcarriers increases. This effect is clearly
illustrated in Fig. 3.20, that shows the average value associated to distribution of the
squared Euclidean distances D2 (nl)(1) (Fig. 3.20.A), as well as its variance (Fig. 3.20.B),
considering different values of Nu and O = 4. From the figure it can be seen that, although
the average value of the squared Euclidean distance increases with Nu, it tends to stabilize
for large values of Nu (say, for instance, Nu ≥ 512). Additionally, it can also be seen that
the variance tends to zero as Nu increases. This suggests that for very large values of Nu,
the squared Euclidean distances tend to be equal to the average value E

[
D2 (nl)(1)

]
(4).

Under these conditions, the optimum performance may be approximated as

Pb ≈Q

√D2 (nl)(1)/2
N0

 . (3.187)

In fact, this approximate BER can be directly compared to the one associated to linear

(4)In the following, we will consider the asymptotic case (where the number of subcarriers Nu is very
large). For this reason, we denote E

[
D2 (nl)(1)

]
as simply D2 (nl)(1).
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Figure 3.20: Evolution of the average value associated to p(D2 (nl)(1)) (A) as well as its
variance (B) considering different values of Nu and O = 4.

OFDM transmissions (see (3.174)). In addition, by noting that

D2 (nl)(1) = 4G(1)E(nl)
b , (3.188)

where
G(1) = D2 (nl)(1)

4E(nl)
b

, (3.189)

is defined as the average asymptotic gain associated to the optimum detection of nonlinearly
distorted OFDM signals, it is clear the existence of an asymptotic gain relatively to the
conventional, linear OFDM schemes. Fig. 3.21 shows the asymptotic gain’s distribution,
p(G(1)), obtained through the histogram of the squared Euclidean distances associated to
nonlinearly distorted OFDM signals that differ in µ= 1 bits. Those distances are computed
between OFDM signals with Nu subcarriers and O = 4. The normalized clipping level is
sM/σ = 0.5. From the figure it can be verified that G(1)> 1.0 (this means that, at least
for the generated sequences and their variations of 1 bit, we never obtained G(1) < 0),
which confirms the existence of potential asymptotic gains. Once again, it can be noted
that for large values of Nu, the variance of D2 (nl)(1) (and consequently of G(1)) decreases.
Under these conditions, one can rewrite the approximate BER of (3.187) as

Pb ≈Q


√√√√2

G(1)E(nl)
b

N0

 . (3.190)

It should be mentioned, however, that the clipping is commonly followed by a frequency-
domain filtering operation to remove the out-of-band radiation and reduce the ACI levels
[55], [56]. However, in Fig. 3.22, it can be observed that even when part of the nonlinear
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Figure 3.21: Asymptotic gain distribution for nonlinearly distorted OFDM signals that
differ in µ= 1 bit.

distortion is removed, there are also potential asymptotic gains, since we almost always
have G(1)> 0 dB. It should also be noted that the average value of the gain is dependent on
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Figure 3.22: Asymptotic gain distribution obtained through the histogram of the squared
Euclidean distances considering clipped and filtered OFDM signals that differ in µ= 1 bit.

the nonlinearity, since the magnitude of the distortion term, that influences the Euclidean
distances, depends on the severeness of the nonlinearity. This is illustrated in Fig. 3.23,
which shows the distribution of p(G(1)) considering Nu = 1024 and different normalized
clipping levels sM/σ. As expected, the asymptotic gain decreases as sM/σ increases.
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Figure 3.23: Asymptotic gain distribution obtained through the histogram of the squared
Euclidean distances between two nonlinearly distorted OFDM signals.

For sM/σ = +∞ (i.e., when the transmission is linear), we cannot observe potential
performance gains, since the squared Euclidean distance between two sequences is always
4Eb (see (3.169)). On the other hand, as the magnitude of the nonlinear distortion effects
increases, the asymptotic gain also increases. More concretely, the average value of the
asymptotic gain is approximately 1.05 dB, 1.15 dB, 1.35 dB and 1.85 dB for sM/σ = 2.0,
1.5, 1.0 and 0.5, respectively.

Fig. 3.24 shows the BER obtained with (3.186) considering nonlinearly distorted OFDM
signals submitted to an envelope clipping operation with different normalized clipping
levels sM/σ, as well as the theoretical BER associated to linear OFDM transmissions (see
(3.174)). As expected, the asymptotic gains shown in Fig. 3.23 provide considerable BER
improvements. As these gains decrease with the magnitude of the nonlinear distortion
effects, the BER obtained from the distribution of the gains for sM/σ = +∞ is equal to the
BER associated to linear transmissions. On the other hand, for a target BER of Pb = 10−3,
the potential asymptotic gain associated to the optimum detection is approximately 2.7
dB, 1.3 dB and 0.6 dB for sM/σ = 0.5, sM/σ = 1.0 and sM/σ = 1.0, respectively.

In order to clearly access the potentialities of the optimum detection, let us look at
Fig. 3.25. This figure shows the BER associated to linear transmissions and nonlinear
OFDM transmissions, when a normalized clipping level sM/σ = 1.0 is considered. For
the case of nonlinear transmissions, the figure presents the BER associated to both con-
ventional and ideal BNC receivers. Additionally, it includes the approximate optimum
receiver’s performance. Clearly, it can be seen that the optimum receiver dealing with
nonlinearly distorted signals outperforms all the others. For a target BER of Pb = 10−3,
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Figure 3.24: Approximate optimum receivers’ BER for nonlinearly distorted signals sub-
mitted to an envelope clipping operation with normalized clipping level sM/σ.
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Figure 3.25: Performance of different receivers considering nonlinearly distorted OFDM
signals and ideal AWGN channels.

the conventional receiver presents a degradation of 6 dB relatively to the linear transmis-
sion case. In fact, even if we were able to perfectly estimate and eliminate the nonlinear
distortion from the received signal (which is the case of the ideal BNC receivers), we
end up with a degradation of about 0.5 dB relatively to the linear transmission scenario.
In contrast, regarding the optimum receiver, it can be seen that it not only does not
present a degradation relatively to the linear OFDM, but it also has considerable perfor-
mance gains. For instance, for a target BER of Pb = 10−3 or Pb = 10−4, the performance
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gain is around 1.3 dB. This means that the optimum detection of nonlinearly distorted
OFDM signals may be even better than the conventional detection of linear, OFDM signals.

Frequency-Selective Channels

Let us now consider a more realistic scenario. Here, we consider a nonlinear OFDM scheme
where the channel is assumed to be frequency-selective and composed by L equally-spaced,
uncorrelated multipath components. The equivalent, subcarrier-level model for that sce-
nario is depicted in Fig. 3.26. Note that when frequency-selective channels are considered,

IDFT
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DFT

Yy

Clipping

s

Channel
H

B

Figure 3.26: Equivalent, subcarrier-level model for a nonlinear OFDM transmission in a
frequency-selective channel.

the transmitted signal associated to the OFDM symbol S(m) = [S(m)
0 S

(m)
1 ... S

(m)
N−1]T ∈ CN

can be written as
B(m) = HY(m), (3.191)

where H is the channel matrix associated to a given channel realization (see (2.75)).
Regarding the kth subcarrier, we have

B
(m)
k =Hk

(
αS

(m)
k +D

(m)
k

)
. (3.192)

Therefore, the squared Euclidean distance between two nonlinearly distorted multicarrier
signals Y(m) = [Y (m)

0 Y
(m)

1 ... Y
(m)
N−1]T ∈ CN and Y(m′) = [Y (m′)

0 Y
(m′)

1 ... Y
(m′)
N−1 ]T ∈ CN

that differ in µ bits can be computed as

D
2 (H,nl)
m,m′ (µ) =

∣∣∣∣∣∣B(m′)−B(m)
∣∣∣∣∣∣2

=
∣∣∣∣∣∣H(

Y(m′)−Y(m)
)∣∣∣∣∣∣2

=
N−1∑
k=0
|Hk|2

∣∣∣α(S(m′)
k −S(m)

k

)
+D

(m′)
k −D(m)

k

∣∣∣2 . (3.193)

Clearly, the squared Euclidean distance is conditioned by the squared magnitudes of the
channel frequency responses |Hk|2. Due to their random nature (|Hk|2 is distributed
according to (2.86)), we can consider that the asymptotic gain for frequency-selective
channels is a random quantity given by

G(H)(µ) = D2 (H,nl)(µ)
4E(H,nl)

b

. (3.194)

Note that for large values of Nu, the quantity D2 (H,nl)(µ) is only dependent on the channel
frequency responses and, for this reason, the subscript m,m′ disappears in (3.194) (this
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will be analyzed in more detail in subsection 3.4.5). Additionally, as the frequency-selective
channel presents E

[
|Hk|2

]
= 1, it should be noted that we have EH [E(H,nl)

b ] = E
(nl)
b , and

we can write

G(H)(µ) = D2 (H,nl)(µ)
4E(nl)

b

. (3.195)

Therefore, the asymptotic BER associated to a given channel realization (i.e., associated
to a given channel matrix H), considering OFDM sequences that differ in µ= 1 bits, can
be computed as

Pb(H)≈Q


√√√√2

G(H)(1)E(nl)
b

N0

 . (3.196)

Once again, due to the random nature of |Hk|2, the average asymptotic BER associated
to the optimum detection is given by

Pb ≈ EH [Pb(H)] =
+∞∫
0

Pb(H)p(H)dH. (3.197)

Fig. 3.27 shows the simulated average BER associated to the optimum detection of
nonlinearly distorted OFDM signals considering Nu = 512, O = 4, a variable normalized
clipping level sM/σ and frequency-selective channels with L= 32 uncorrelated multipath
components. From the results depicted in this figure, one can note that there are very large

Eb/N0 [dB]
0 5 10 15 20

P
b

10-3

10-2

10-1

100

: Linear OFDM
- - - - : Nonlinear OFDM (Approx. Opt)

(◦): sM/σ = +∞

(+): sM/σ = 2.0
(*): sM/σ = 1.5
(⋄): sM/σ = 1.0
(∆): sM/σ = 0.5

Figure 3.27: Simulated BER associated to the optimum detection of nonlinearly distorted
OFDM signals considering frequency-selective channels and an envelope clipping.

potential gains associated to the optimum detection of nonlinearly distorted OFDM signals,
when frequency-selective channels are considered. As in the case of ideal AWGN channels,
the potential gains are larger when the magnitude of the nonlinear distortion effects is
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higher. For instance, for a target BER of Pb = 10−3 and sM/σ = 1.0, the improvement
in the performance relatively to linear OFDM transmissions is around 8.7 dB and may
even reach approximately 11 dB when sM/σ = 0.5. In fact, the existence of higher gains
in frequency-selective channels can be explained by the fact that the nonlinear distortion
effects introduce an additional diversity effect. This diversity effect is associated to the
correlation between the subcarriers that is introduced by the nonlinearity. Therefore, as
the optimum receiver makes the detection in a block-by-block basis, the BER becomes less
conditioned on the local deep fades that may exist along the block. Fig. 3.28 shows the
BER associated to linear transmissions and nonlinear OFDM transmissions considering a
normalized clipping level sM/σ = 1.0. The figure presents BERs associated to conventional
receivers, ideal BNC receivers and the approximate optimum receiver’s performance. For
the sake of comparison, the BER associated to a linear OFDM transmission is also shown.
Clearly, from the results depicted in the figure, one can note that the approximate optimum

Eb/N0 [dB]
0 5 10 15 20

P
b

10-3

10-2

10-1

100

: Linear OFDM
· · · · · · : Nonlinear OFDM (Conventional)
· − ·− : Nonlinear OFDM (Ideal BNC Receiver)
- - - - : Nonlinear OFDM (Asympt. Opt)

Figure 3.28: Performance of different receivers considering nonlinearly distorted OFDM
signals and frequency-selective channels.

receiver’s performance is the best performance. For a target BER of Pb = 10−3, the
performance gain relatively to the conventional detection of linear, OFDM schemes is
approximately 8.4 dB.

3.4.4 Theoretical Asymptotic Gains in AWGN Channels

In the previous subsection, it was demonstrated that the optimum receiver presents con-
siderable potential asymptotic gains relatively to conventional receivers that deal with
nonlinearly distorted OFDM signals. More surprisingly, it was also shown that the opti-
mum receiver can even outperform the conventional receivers that deal with linear OFDM
signals. However, all of these conclusions were drawn based on simulation results, i.e.,
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by obtaining the average squared Euclidean distance between two nonlinearly distorted
OFDM signals by simulation and then obtaining the corresponding asymptotic gains in
the system’s performance.

The main goal of this subsection is to present a theoretical characterization of the
average value of these potential asymptotic gains. This theoretical analysis is based on the
computation of the average value of squared Euclidean distance between two nonlinearly
distorted multicarrier signals and comprises not only OFDM schemes that have an envelope
clipping operation on their transmission chain [17], [95], but also other multicarrier schemes,
impaired by general bandpass nonlinearities (i.e., with AM/AM and AM/PM conversion
functions) [96], [97], as well as Cartesian and real-valued nonlinearities. The subsection is
divided in two parts: firstly, attention is given to the characterization of the asymptotic
gains for nonlinearly distorted, complex-valued multicarrier signals. Then, we present
expressions for the average value of the asymptotic gains when baseband, real-valued
multicarrier signals are impaired by memoryless nonlinearities. In both cases, the squared
Euclidean distance is obtained in the time-domain, considering that the original multicarrier
signals differ in µ bits.

3.4.4.1 Complex-valued Multicarrier Signals

Let us consider two OFDM data symbols S(m) = [S(m)
0 S

(m)
1 ... S

(m)
N−1]T ∈ CN and

S(m′) = [S(m′)
0 S

(m′)
1 ... S

(m′)
N−1]T ∈ CN , that differ in µ bits. Their corresponding time-

domain versions are s(m) = F−1S(m) = [s(m)
0 s

(m)
1 ... s

(m)
N−1]T ∈ CN and s(m′) = F−1S(m′) =

[s(m′)
0 s

(m′)
1 ... s

(m′)
N−1]T ∈ CN , respectively. Let us also define the array E = [E0 E1 ... EN−1]T ∈

CN as the error (or the difference) between S(m) and S(m′). Under these conditions, we
have

S(m′) = S(m) + E. (3.198)

The indexes of the nonzero subcarriers of the error term, i.e., the indexes of the subcarriers
where there are bit errors are represented by the set Υ = [Υ0 Υ1 ... Υµ−1] ∈ Nµ. Therefore,
the kth element of E is given by

Ek =
{
dadj exp(jυ), k ∈ Υ

0, otherwise,
(3.199)

where dadj is the absolute value of the difference between two adjacent symbols from a
given constellation and υ represents the argument of that difference. In the concrete case
of normalized QPSK constellations, we have Sk = ±1± j, dadj = 2 and υ ∈ {±π,±π/2}.
Regarding the time-domain, the error term is expressed as ε = [ε0 ε1 ... εN−1]T ∈ CN ,
where

ε= F−1E. (3.200)
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According to our IDFT definition (see (2.17), the nth element of ε can be expressed as

εn =
N−1∑
k=0

F−1
n,kEk

=
∑
k∈Υ

F−1
n,kEk

=
∑
k∈Υ

dadj
N

exp
(
j2πnk
N

+ jυ

)
= ∆n exp(jϑn), (3.201)

where ∆n and ϑn represent the absolute value and the argument of nth time-domain sample
of the error term, εn, respectively.

Bandpass Nonlinearities

Here, we are interested in the computation of the squared Euclidean distance between
the nonlinearly distorted versions of s(m) = [s(m)

0 s
(m)
1 ... s

(m)
N−1]T ∈ CN and s(m′) =

[s(m′)
0 s

(m′)
1 ... s

(m′)
N−1]T ∈ CN , which are represented by y(m) = [y(m)

0 y
(m)
1 ... y

(m)
N−1]T ∈ CN

and y(m′) = [y(m′)
0 y

(m′)
1 ... y

(m′)
N−1]T ∈ CN , respectively. These nonlinearly distorted signals

are obtained at the output of a given bandpass memoryless nonlinearity fbp(·) (see subsec-
tion 3.1.2). To obtain the average value of the squared Euclidean distance between two
OFDM signals submitted to bandpass nonlinearities, we focus, firstly, on the difference
between these two signals at the nth time instant. To obtain that difference, it is important
to notice that the nth time-domain sample of a given OFDM signal can be written in its
polar form as

sn = rn exp(jθn), (3.202)

where θn is the phase associated to the nth time-domain sample sn. Under these conditions,
by applying the IDFT to (3.198) and considering (3.201), we have, for the nth sample of
s(m′),

r
(m′)
n exp

(
jθ

(m′)
n

)
= s

(m)
n + εn

= r
(m)
n exp

(
jθ

(m)
n

)
+∆n exp(jϑn) . (3.203)

However, due to the circular nature of s(m)
n and εn, we can assume, without loss of generality,

that θ(m)
n = 0. Therefore,

r
(m′)
n exp

(
jθ

(m′)
n

)
= r

(m)
n +∆n exp(jϑn)

=
(
r

(m)
n +∆n cos(ϑn)

)
+ j∆n sin(ϑn), (3.204)

as can be observed in Fig. 3.29. Defining ςn = θ
(m′)
n − θ(m)

n , we have

98



3.4. OPTIMUM DETECTION OF NONLINEAR MULTICARRIER
SCHEMES

ϑnθ
(m′)
n

r
(m′)
n

r
(m)
n

s
(m′)
m

s
(m)
n

εn

∆n

Im

Re

Figure 3.29: Vectorial representation of the samples s(m)
n and s(m′)

n when θ(m)
n = 0.

ςn = arg
(
r

(m)
n +∆n exp(jϑn)

)
= arctan

(
∆n sin(ϑn)

r
(m)
n +∆n cos(ϑn)

)
(a)
≈ ∆n sin(ϑn)

r
(m)
n

, (3.205)

where approximation (a) is valid if r(m)
n � ∆n. Similarly, r(m′)

n can be approximated by

r
(m′)
n =

∣∣∣r(m)
n +∆n exp(jϑn)

∣∣∣
=
√

(r(m)
n +∆n cos(ϑn))2 +∆2

n sin2(ϑn)

≈ r(m)
n +∆n cos(ϑn). (3.206)

Under these conditions, regarding the input sample s(m)
n , the bandpass nonlinearity output

is

y
(m)
n =A

(
r

(m)
n

)
exp

(
j
(
θ

(m)
n +Θ

(
r

(m)
n

)))
=A

(
r

(m)
n

)
exp

(
jΘ
(
r

(m)
n

))
. (3.207)

On the other hand, when the input is s(m′)
n , the nonlinearity yields

y
(m′)
n =A

(
r

(m′)
n

)
exp

(
j
(
θ

(m′)
n +Θ

(
r

(m′)
n

)))
=A

(
r

(m)
n +∆n cos(ϑn)

)
exp(jςn)exp

(
jΘ
(
r

(m)
n +∆n cos(ϑn)

))
=A

(
r

(m)
n +∆n cos(ϑn)

)
exp

(
j
∆n sin(ϑn)

r
(m)
n

)
exp

(
jΘ
(
r

(m)
n +∆n cos(ϑn)

))
. (3.208)

Let us now consider the Cartesian form of the bandpass nonlinearity

fbp(r) =A(r)cos(Θ(r)) + jA(r)sin(Θ(r))

= fbp,I(r) + jfbp,Q(r). (3.209)
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Under these conditions, when the input is s(m)
n , the nonlinearity outputs

y
(m)
n = fbp,I(rn) + jfbp,Q(rn). (3.210)

Additionally, by considering a Taylor approximation, we can expand fbp,I(rn+∆n cos(ϑn))
and fbp,Q(rn +∆n cos(ϑn)) around rn, resulting,

fbp,I(rn +∆n cos(ϑn)) = fbp,I(rn) + f ′bp,I(rn)∆n cos(ϑn), (3.211)

and,
fbp,Q(rn +∆n cos(ϑn)) = fbp,Q(rn) + f ′bp,Q(rn)∆n cos(ϑn), (3.212)

where f ′bp,I(rn) and f ′bp,Q(rn) are the derivatives of fbp,I(rn) and fbp,Q(rn), respectively.
With this approximation, we can rewrite the nonlinearity output for s(m′)

n as(5)

y
(m′)
n ≈

(
fbp,I(rn) + f ′bp,I(rn)∆n cos(ϑn) + j

(
fbp,Q(rn) + f ′bp,Q(rn)∆n cos(ϑn)

))
(3.213)

exp(jςn).

Considering (3.210) and (3.210), we can write the difference between the two nonlinearly
distorted signals at the nth time-domain sample as

y
(m′)
n − y(m)

n ≈
(
fbp,I(rn) + jfbp,Q(rn) +∆n cos(ϑn)

(
f ′bp,I(rn) + jf ′bp,Q(rn)

))
exp(jςn)−

fbp,I(rn) + jfbp,Q(rn)

=
((
fbp,I(rn) + jfbp,Q(rn)

)
(1− exp(−jςn)) +

(
∆cos(ϑn)(f ′bp,I(rn) + jf ′bp,Q(rn))

))
exp(jςn)

=
(
A(rn)exp(jΘ(rn))(1− exp(−jςn)) +

(
∆n cos(ϑn)(f ′bp,I(rn) + jf ′bp,Q(rn))

))
exp(jςn). (3.214)

Furthermore, by taking into account that sin(ςn)≈ ςn and cos(ςn)≈ 1 for low values of ςn
(say ςn� 1) and using (3.205), we can write

exp(−jςn)≈ 1− jςn

= 1− j∆sin(ϑn)
rn

. (3.215)

Under these conditions, we can rewrite (3.214) as

y
(m′)
n − y(m)

n ≈
(
A(rn)exp(jΘ(rn))j

(
∆n sin(ϑn)

rn

)
+∆n cos(ϑn)

(
f ′bp,I(rn) + jf ′bp,Q(rn)

))
exp(jςn)

≈ ∆n

(
A(rn)exp(jΘ(rn))j

(sin(ϑn)
rn

)
+ cos(ϑn)

(
f ′bp,I(rn) + jf ′bp,Q(rn)

))
exp(jςn). (3.216)

(5)For the sake of notation simplicity, the superscript (m) is omitted in the following computations.
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Since
f ′bp,Q(rn) =A′(rn)sin(Θ(rn)) +A(rn)cos(Θ(rn))Θ′(rn), (3.217)

and f ′bp,I(rn) = f ′bp,Q(rn + π
2 ), we have

f ′bp,I(rn) + jf ′Q(rn) =A′(rn)exp(jΘ(rn)) +A(r)Θ′(rn)exp
(
j

(
Θ(rn) + π

2

))
= exp(jΘ (rn))

(
A′(rn) + jA(rn)Θ′(rn)

)
. (3.218)

Using this result, (3.216) turns to

y
(m′)
n − y(m)

n ≈ ∆n exp(jςn)exp(jΘ(rn))
(
j
A(rn)sin(ϑn)

rn
+ cos(ϑn)

(
A′(rn) + jA(rn)Θ′(rn)

))
.

(3.219)

Therefore, the squared absolute value of (3.219) is

∣∣∣y(m′)
n − y(m)

n

∣∣∣2 ≈ ∆2
n

((
A′(rn)cos(ϑn)

)2 +
(
A(rn)sin(ϑn)

rn
+Θ′(rn)A(rn)cos(ϑn)

)2)
.

= ∆2
n

(
A
′2(rn)cos2(ϑn) + A2(rn)sin2(ϑn)

r2
n

+Θ
′2(rn)A2(rn)cos2(ϑn)

)

+∆2
n

(
2Θ′(rn)A2(rn)cos(ϑn)sin(ϑn)

rn

)

= ∆2
n

(
A
′2(rn)cos2(ϑn) + A2(rn)sin2(ϑn)

r2
n

+Θ
′2(rn)A2(rn)cos2(ϑn)

)

+∆2
n

(
Θ′(rn)A2(rn)sin(2ϑn)

rn

)

= ∆2
n

(
A
′2(rn)1 + cos(2ϑn)

2 + A2(rn)
r2
n

1− cos(2ϑn)
2

)

+∆2
n

(
Θ
′2(rn)A2(rn)1 + cos(2ϑn)

2 + Θ′(rn)A2(rn)sin(2ϑn)
rn

)

= ∆2
n

2

(
A
′2(rn)(1 + cos(2ϑn)) + A2(rn)

r2
n

(1− cos(2ϑn))
)

+ ∆2
n

2

(
Θ
′2(rn)A2(rn)(1 + cos(2ϑn)) + 2Θ′(rn)A2(rn)sin(2ϑn)

rn

)
. (3.220)

On the other hand, the squared Euclidean distance between two nonlinearly distorted
OFDM signals can be computed as

D
2 (nl)
m,m′ (µ) =

N−1∑
n=0

∣∣∣y(m′)
n − y(m)

n

∣∣∣2 . (3.221)

As we are interested in the average value of D2 (nl)
m,m′ (µ) we make use of the fact that the

absolute values of the time-domain samples of the error term, |εn|= ∆n, can be modeled
by the random variable ∆, and their phases, ϑn, can be modeled by the random variable ϑ.
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In fact, it is important to note that, although we do not have the distribution of ∆, p(∆),
it can be easily demonstrated that

E[∆2] = µ

N2d
2
adj. (3.222)

Moreover, the random variable ϑ has uniform distribution in [0,2π[ and, consequently, its
PDF is given by

p(ϑ) =
{ 1

2π , ϑ ∈ [0,2π[,
0, otherwise,

(3.223)

whereas the samples rn are modeled by the Rayleigh random variable r (see (3.75)). Under
these conditions, the average value of the squared Euclidean distance between two OFDM
signals submitted to a bandpass nonlinearity is

D2 (nl)(µ)≈NE
[∣∣∣y(m′)

n − y(m)
n

∣∣∣2] (3.224)

≈NE
[
∆2

2

(
A
′2(r)(1 + cos(2ϑ)) + A2(r)

r2 (1− cos(2ϑ))
)]

+NE
[
∆2

2

(
Θ
′2(r)A2(r)(1 + cos(2ϑ)) + 2Θ′(r)A2(r)sin(2ϑ)

r

)]
.

However, we can take advantage of the fact that the random variables ϑ, ∆ and r can be
considered to be independent from each other. In addition, we can take advantage of the
fact that

E[cos(2ϑ)] =
2π∫
0

cos(2ϑ)p(ϑ)dϑ= 0, (3.225)

and

E[sin(2ϑ)] =
2π∫
0

sin(2ϑ)p(ϑ)dϑ= 0. (3.226)

Therefore, by considering (3.222), the average value of the squared Euclidean distance can
be approximated as

D2 (nl)(µ)≈ N

2

(
E
[
∆2
]
E
[
A
′2(r) + A2(r)

r2 +Θ
′2(r)A2(r)

])

= µ

2N d2
adj

+∞∫
0

(
A
′2(r) + A2(r)

r2 +Θ
′2(r)A2(r)

)
p(r)dr. (3.227)

Furthermore, in addition of (3.184) and (3.185), we may define the average bit energy
theoretically regarding the time-domain as

E
(nl)
b = N

2Nu
E
[
|yn|2

]
= N

2Nu
E
[∣∣fbp(r)∣∣2]

= O

2

+∞∫
0

∣∣fbp(r)|2p(r)dr
= O

2

+∞∫
0

A2(r)p(r)dr. (3.228)

102



3.4. OPTIMUM DETECTION OF NONLINEAR MULTICARRIER
SCHEMES

Therefore, by using (3.227), (3.228) and (2.25), we can express the theoretical average
asymptotic gain associated to the optimum detection of nonlinearly distorted OFDM
signals submitted to bandpass nonlinearities as

G(µ)≈ D2 (nl)(µ)
4E(nl)

b

=

µ
2N d

2
adj

+∞∫
0

(
A
′2(r) + A2(r)

r2 +Θ
′2(r)A2(r)

)
p(r)dr

4O2

+∞∫
0

A2(r)p(r)dr

=

µd2
adj

+∞∫
0

(
A
′2(r) + A2(r)

r2 +Θ
′2(r)A2(r)

)
p(r)dr

4NuO2
+∞∫
0

A2(r)p(r)dr

=
µ(dadjσ)2

4

+∞∫
0

(
A
′2(r) + A2(r)

r2 +Θ
′2(r)A2(r)

)
p(r)dr

+∞∫
0

A2(r)p(r)dr

. (3.229)

Cartesian Nonlinearities

Here, we are interested in the computation of the squared Euclidean distance between
the nonlinearly distorted versions of s(m) = [s(m)

0 s
(m)
1 ... s

(m)
N−1]T ∈ CN and s(m′) =

[s(m′)
0 s

(m′)
1 ... s

(m′)
N−1]T ∈ CN , which are represented by y(m) = [y(m)

0 y
(m)
1 ... y

(m)
N−1]T ∈ CN

and y(m′) = [y(m′)
0 y

(m′)
1 ... y

(m′)
N−1]T ∈ CN , respectively. These nonlinearly distorted signals

are obtained by submitting s(m) and s(m′) to a Cartesian nonlinearity. In order to do that,
we start by obtaining the difference between these two signals at the nth time instant. Due
to the Cartesian nature of the nonlinearity, it is useful to express the nth time-domain
sample of a multicarrier signal in its Cartesian form (as was made in (2.24)),

sn = sn,I + jsn,Q. (3.230)

Moreover, the nth time-domain sample of error term represented in (3.201), can also be
written in its Cartesian form, resulting

εn = εn,I + jεn,Q

= ∆n cos(ϑn) + j∆n sin(ϑn). (3.231)
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Applying the IDFT to (3.198) and considering (3.231) we have, for the nth time-domain
sample,

s
(m′)
n = s

(m)
n + εn

=
(
s

(m)
n,I + εn,I

)
+ j

(
s

(m)
n,Q + εn,Q

)
, (3.232)

as is geometrically represented in Fig. 3.30. Considering (3.4), the nonlinearity output for

εn,I

Im

Res
(m)
n,I s

(m′)
n,I

εn,Q

s
(m)
n,Q

s
(m′)
n,Q εn

s
(m′)
n

s
(m)
n

Figure 3.30: Vectorial representation of s(m)
n , s(m′)

n and their corresponding Cartesian
components.

the input s(m)
n is

y
(m)
n = fbb,I

(
s

(m)
n,I

)
+ jfbb,Q

(
s

(m)
n,Q

)
. (3.233)

On the other hand, for the input s(m′)
n , the nonlinearity yields

y
(m′)
n = fbb,I

(
s

(m)
n,I + εI

)
+ jfbb,Q

(
s

(m)
n,Q + εn,Q

)
. (3.234)

In the following, we consider that the nonlinearity that operates on the real and imaginary
parts of the signal are equal, i.e., fbb,I(·) = fbb,Q(·) = f(·). By considering a Taylor
approximation of f(·) around sn,I and sn,Q, we can approximate y(m′)

n as

y
(m′)
n ≈

(
f
(
s

(m)
n,I

)
+ εn,If

′
(
s

(m)
n,I

))
+ j

(
f
(
s

(m)
n,Q

)
+ εn,Qf

′
(
s

(m)
n,Q

))
, (3.235)

where f ′(·) represents the derivative of the nonlinear function f(·). Under these conditions,
the difference between the two samples y(m)

n and y(m′)
n is given by

y
(m′)
n − y(m)

n ≈ εn,If ′
(
s

(m)
n,I

)
+ jεn,Qf

′
(
s

(m)
n,Q

)
. (3.236)

Furthermore, the squared absolute value of that difference is approximately∣∣∣y(m′)
n − y(m)

n

∣∣∣2 ≈ (εn,If ′(s(m)
n,I

))2
+
(
εn,Qf

′
(
s

(m)
n,Q

))2

= ε2
n,If

′2
(
s

(m)
n,I

)
+ ε2

n,Qf
′2
(
s

(m)
n,Q

)
= ∆2

n

(
cos2(ϑn)f ′2

(
s

(m)
n,I

)
+ sin2(ϑn)f ′2

(
s

(m)
n,Q

))
= ∆2

n

2
(
(1 + cos(2ϑn))f ′2

(
s

(m)
n,I

))
+ ∆2

n

2
(
(1− cos(2ϑn))f ′2

(
s

(m)
n,Q

))
. (3.237)
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To obtain the average squared Euclidean distance between two nonlinearly distorted OFDM
signals submitted to a Cartesian nonlinearity, we make use of the fact that both sn,I and
sn,Q can be modeled with Gaussian random variable s, whose the corresponding PDF is
given in (2.26). In addition, under the assumption of a large number of subcarriers, each
sample of the difference between the two signals can be replaced by its average value, i.e.,

D2 (nl)(µ)≈NE
[∣∣∣y(m′)

n − y(m)
n

∣∣∣2]
=NE

[
∆2

2 f
′2(s)((1 + cos(2ϑ)) + (1− cos(2ϑ))

]
=NE

[
∆2f

′2(s)
]
. (3.238)

Once again, as ∆, s and ϑ can be considered to be independent, the average value of the
squared Euclidean distance can be written as

D2 (nl)(µ)≈N
(
µd2

adj
N2 E

[
f
′2 (s)

])

=
µd2

adj
N

+∞∫
−∞

f
′2(s)p(s)ds, (3.239)

given that Eφ[cos(2ϑ)] = 0 and considering (3.222). On the other hand, the average bit
energy can be computed theoretically as

E
(nl)
b = N

2Nu
E
[
|yn|2

]
= 2N

2Nu

+∞∫
−∞

f2(s)p(s)ds

=O

+∞∫
−∞

f2(s)p(s)ds. (3.240)

Thus, by considering (3.239) and (3.240), the average value of the asymptotic gain is given
by

G(µ) = D2 (nl)(µ)
4E(nl)

b

=

µd2
adj

+∞∫
−∞

f
′2 (s)p(s)ds

4NuO2
+∞∫
−∞

f2(s)p(s)ds

=
µ(dadjσ)2

4

+∞∫
−∞

f
′2 (s)p(s)ds

+∞∫
−∞

f2(s)p(s)ds

. (3.241)
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3.4.4.2 Real-valued Multicarrier Signals

Here, we study the asymptotic optimum performance for scenarios where we have nonlinear-
ities operating in real-valued multicarrier signals. This happens, for instance, when carrier-
less UWB-OFDM systems [101] are considered. Let us consider two real-valued multicarrier
signals s(m) = [s(m)

0 s
(m)
1 ... s

(m)
N−1]T ∈ CN and s(m′) = [s(m′)

0 s
(m′)
1 ... s

(m′)
N−1]T ∈ CN . Note

that when these two data sequences differ in µ bits, their corresponding frequency-domain
data versions S(m) = [S(m)

0 S
(m)
1 ... S

(m)
N−1]T ∈ CN and S(m′) = [S(m′)

0 S
(m′)
1 ... S

(m′)
N−1]T ∈ CN

differ in 2µ subcarriers. This is explained by the Hermitian symmetry of the frequency-
domain signal, necessary to assure that the multicarrier signals are real-valued at the IDFT
output. Fig. 3.31 depicts the difference between S(m′) and S(m). These two frequency-
domain symbols have Nu = 256, O = 4 and µ= 1 bit differences. As expected, it can be
seen that the signals differ in two subcarriers.

k/N
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

|S
(m

)
k

−
S
(m

′ )
k

|

0

0.5

1

1.5

2

2.5

Figure 3.31: Difference between two frequency-domain OFDM symbols with Hermitian
symmetry considering µ= 1.

Let us start by defining S(m′) through S(m) and the error term E, i.e.,

S(m′) = S(m) + E. (3.242)

The indexes associated to the subcarriers where there are bit errors are represented by the
set Υ = [Υ0 Υ1 ... Υ2µ−1] ∈ N2µ. Therefore, the kth element of E is given by

Ek =
{
dadj exp(jυ), k ∈ Υ

0, otherwise.
(3.243)

Note that the time-domain samples of the error term ε= F−1E = [ε0 ε1 ... εN−1]T ∈ CN

are real-valued, which means that εn = ∆n. In addition, it can be shown that

E[∆2] = 2µ
N
d2

adj. (3.244)
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In the following, we are interested in obtaining the squared Euclidean distance between
two real-valued, nonlinearly distorted signals y(m) and y(m′), obtained by submitting s(m)

and s(m′) to a real-valued, baseband nonlinearity f(·) (see (3.1)). Let us start by consider
the difference between these two signals at the nth time instant. One one hand, we can
express the nonlinearly distorted version of s(m)

n as

y
(m)
n = f

(
s

(m)
n

)
. (3.245)

On the other hand, for s(m′)
n = s

(m)
n + εn, the nonlinearity yields

y
(m′)
n = f

(
s

(m)
n + εn

)
. (3.246)

As εn is real-valued, we have εn = ∆n. Additionally, by employing the Taylor series, we
can approximate y(m′)

n as

y
(m′)
n ≈ f

(
s

(m)
n

)
+ f

′ (
s

(m)
n

)
∆n. (3.247)

Under these conditions, the difference between the two nonlinearly distorted time-domain
samples is

y
(m′)
n − y(m)

n ≈ f ′
(
s

(m)
n

)
∆n, (3.248)

and the squared absolute value of their difference is

∣∣∣y(m′)
n − y(m)

n

∣∣∣2 ≈ ∆2
n

∣∣∣f ′(s(m)
n

)∣∣∣2 . (3.249)

This means that the average value of the squared Euclidean distance between the two
nonlinearly distorted signals can be computed as

D2 (nl)(µ)≈NE∆,s

[
∆2 ∣∣f ′(s)∣∣2]

=
2µd2

adj
N

+∞∫
−∞

∣∣f ′(s)∣∣2 p(s)ds, (3.250)

where p(s) is given by (2.26). On the other hand, the average bit energy is theoretically
given by

E
(nl)
b = N

Nu− 2E
[
|yn|2

]
= N

Nu− 2

+∞∫
−∞

|f(s)|2 p(s)ds. (3.251)

Using (3.250) and (3.251), the average asymptotic gain associated to the optimum detection
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can be expressed as

G(µ) = D2 (nl)(µ)
4E(nl)

b

=

2µd2
adj

N

+∞∫
−∞

∣∣f ′(s)∣∣2 p(s)ds
4N
Nu−2

+∞∫
−∞

|f(s)|2 p(s)ds

=

µd2
adj

+∞∫
−∞

∣∣f ′(s)∣∣2 p(s)ds
2 N2

Nu−2

+∞∫
−∞

|f(s)|2 p(s)ds

=
µ(dadjσ)2

4

+∞∫
−∞

∣∣f ′(s)∣∣2 p(s)ds
+∞∫
−∞

|f(s)|2 p(s)ds

, (3.252)

where it should be noted that the variance of the real-valued multicarrier signal is given
by σ2 = 2(Nu− 2)/N2.

3.4.5 Theoretical Asymptotic Gains in Frequency-Selective Channels

In this subsection, we are interested in deriving the theoretical asymptotic optimum
performance associated to multicarrier transmissions under frequency-selective channels.
This theoretical analysis makes use of the results of the previous section and considers the
statistical characterization of the frequency-selective channels made in subsection 2.2.2.

Note that, in addition to (3.193), the squared Euclidean distance between two non-
linearly distorted multicarrier signals Y(m) = [Y (m)

0 Y
(m)

1 ... Y
(m)
N−1]T ∈ CN and Y(m′) =

[Y (m′)
0 Y

(m′)
1 ... Y

(m′)
N−1 ]T ∈ CN that differ in µ bits and are transmitted through a frequency-

selective can be written as

D
2 (H,nl)
m,m′ (µ) =

∣∣∣∣∣∣B(m′)−B(m)
∣∣∣∣∣∣2

=
N−1∑
k=0

∣∣∣B(m′)
k −B(m)

k

∣∣∣2
=
N−1∑
k=0
|Hk|2

∣∣∣α(S(m′)
k −S(m)

k

)
+D

(m′)
k −D(m)

k

∣∣∣2︸                                            ︷︷                                            ︸
D

2 (nl)
m,m′ (µ)

k

=
N−1∑
k=0
|Hk|2D

2 (nl)
m,m′ (µ)

k
, (3.253)

where D2 (nl)
m,m′ (µ)

k
represents the kth component of the squared Euclidean distance between

Y(m) and Y(m′). In fact, by summing up all these components, we have the squared
Euclidean distance between Y(m) and Y(m′) in an ideal AWGN channel, i.e.,

D
2 (nl)
m,m′ (µ) =

N−1∑
k=0

D
2 (nl)
m,m′ (µ)

k
. (3.254)
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From (3.253), it can be noted that the squared difference between the kth subcarrier of the
two signals is weighted by the squared absolute value of the channel frequency response
associated to that subcarrier, |Hk|2. Additionally, as mentioned in the previous subsection,
under the assumption of a large number of subcarriers, the squared Euclidean distance
between two sequences, D2 (nl)

m,m′ (µ), tends to a fixed value that does not depend on S(m)

and S(m′). Under these conditions, it is possible to approximate this value by the sum of
two components: one component associated to the difference between the µ subcarriers
that have bit errors, D2 (nl)

d (µ), and other component associated to the difference between
the nonlinear distortion terms, D2 (nl)

c (µ). This means that

D
2 (nl)
m,m′ (µ) =

N−1∑
k=0

∣∣∣α(S(m′)
k −S(m)

k

)
+D

(m′)
k −D(m)

k

∣∣∣2
(a)
≈
∑
k∈Υ

∣∣∣α(S(m′)
k −S(m)

k

)∣∣∣2 +
N−1∑
k=0

∣∣∣D(m′)
k −D(m)

k

∣∣∣2
(b)
≈
∑
k∈Υ

∣∣∣α(S(m′)
k −S(m)

k

)∣∣∣2︸                      ︷︷                      ︸
D

2 (nl)
d (µ)

+
N−1∑
k=0

E
[∣∣∣D(m′)

k −D(m)
k

∣∣∣2]︸                             ︷︷                             ︸
D

2 (nl)
c (µ)

=D
2 (nl)
d (µ) +D

2 (nl)
c (µ). (3.255)

The approximation (a) is valid since, although the size of the first term of the sum is com-
parable to the size of the second term (associated to the nonlinear distortion components),
the second term is formed by much more elements(6) (see Fig. 3.18 and note that the size
of Υ is typically µ�N). Moreover, from the Bussgang’s theorem [10], we known that the
terms D(i)

k are uncorrelated with S(i)
k and that the cross terms between S(m)

k and D(m′)
k or

D
(m)
k and S(m′)

k are also uncorrelated with zero mean. The approximation (b) is related
to the fact that for D(i)

k we have, when N � 1,

N−1∑
k=0

∣∣∣D(i)
k

∣∣∣2 ≈ N−1∑
k=0

E
[∣∣∣D(i)

k

∣∣∣2] , (3.256)

since the different D(i)
k are almost uncorrelated and the expected values change slowly

with k. Note that the decomposition of (3.255) holds independently of the type of the
nonlinearity. Under these conditions, we can separate the asymptotic gain associated to
the optimum detection in ideal AWGN channels as the sum of two components, i.e.,

G(µ)≈
D

2 (nl)
d (µ)
4E(nl)

b

+ D
2 (nl)
c (µ)
4E(nl)

b

=Gd(µ) +Gc(µ). (3.257)

(6)Due to distortion term in the µ subcarriers, this decomposition has an error of order µ/N that becomes
negligible when N � µ.
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Additionally, we can also decompose the asymptotic gain associated to the optimum
detection in frequency-selective channels in two components, i.e,

G(H)(µ)≈G(H)
d (µ) +G

(H)
c (µ), (3.258)

where the first component, G(H)
d (µ), is related to the µ subcarriers that have bit errors and

the second term, G(H)
c (µ), is related two the difference between the nonlinear distortion

components. In fact, from (3.253), we can write that

G
(H)
d (µ)≈

D
2 (nl)
d (µ)
µ

∑
k∈Υ
|Hk|2

4E(nl)
b

= Gd(µ)γd
µ

, (3.259)

where γd is a random variable defined as

γd =
∑
k∈Υ
|Hk|2. (3.260)

The computation of G(H)
c (µ) is more difficult, since it has a term of type

G
(H)
c (µ) =

N−1∑
k=0
|Hk|2

∣∣∣D(m′)
k −D(m)

k

∣∣∣2︸                 ︷︷                 ︸
D

2 (nl)
c k

4E(nl)
b

. (3.261)

To obtain it, we should have in mind that the variances of the terms D2 (nl)
c k vary slowly

in the frequency (i.e., with k), and their mean are constant and equal to 0. Therefore,
one can admit that D2 (nl)

c k is approximately stationary in a neighborhood around k (the
length of this neighborhood can be on the order of tens of subcarriers). Moreover, we will
assume that the statistical means in that neighborhood are equal to the ensemble average,
which means that D2 (nl)

c k can be considered to be approximately ergodic. Indeed, one
should note that:

(a) D2 (nl)
c k changes much faster than |Hk|2 (see Fig. 3.32);

(b) D2 (nl)
c k has a huge number of oscillations over the sum (see Fig. 3.32);

(c) The statistical properties D2 (nl)
c k change very slowly over the sum, namely when

compared with |Hk|2;

(d) |Hk|2 has a large number of oscillations;

(e) The sum of |Hk|2 over a sliding window with length R, with 1� R�N is almost
constant and equal to R

N

∑
k |Hk|2 (7).
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Figure 3.32: Evolution of D2 (nl)
c k in an ideal AWGN channel and the squared value of

the channel frequency responses in a frequency-selective channel.

Therefore, we have

N−1∑
k=0
|Hk|2D

2 (nl)
c k ≈

N−1∑
k=0
|Hk|2E

[
D

2 (nl)
c k

]
(3.262)

≈

 1
N

N−1∑
k=0
|Hk|2

×
N−1∑
k=0

E[D2 (nl)
c k]


= D

2 (nl)
c (µ)
N

N−1∑
k=0
|Hk|2,

where the first approximation comes from (a), (b) and (c) and the second approximation
comes from (c), (d) and (e). Under these conditions

G
(H)
c (µ)≈

D
2 (nl)
c (µ)
N

N−1∑
k=0
|Hk|2

4E(nl)
b

= Gc(µ)γc
N

, (3.263)

where γc is a random variable defined as

γc =
N−1∑
k=0
|Hk|2. (3.264)

In fact, the asymptotic gain associated to the optimum detection of nonlinear multicarrier
schemes in frequency-selective channels, G(H)(µ), is a random variable due to the random

(7)Indeed, this is not necessarily equal to
∑
kE
[
|Hk|2

]
= N , due to statistical fluctuations in the

amplitudes of the corresponding multipath components associated to that channel realization.
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nature of its two components (see (3.258)). In order to obtain its distribution, we must
have the corresponding asymptotic gain in ideal AWGN channels, since we need both
Gd(µ) and Gc(µ), as well as the statistical behavior of the frequency-selective channel,
since we also need to characterize the random variables γd and γc. In the following, we
derive the distribution of G(H)(µ) by taking advantage of the statistical analysis of the
channel frequency responses made in subsection 2.2.2. In that subsection, it was shown
that the absolute value of the channel frequency response associated to the kth subcarrier
has Rayleigh distribution with scale parameter

√
1/2, i.e., |Hk| ∼ Rayleigh(1/

√
2). This

means that the different |Hk|2 have a Gamma distribution with unitary scale and shape
parameters, i.e., |Hk|2 ∼ Γ (1,1) (see Fig. 2.7).

Let us start by characterizing the distribution of γd, that is the random variable related
to the frequency-responses that weight Gd(µ), as well as the distribution of γc, associated
to Gc(µ). With these two distributions, we are able to derive the distribution of the
asymptotic gain G(H)(µ), as well as obtain its basic statistical properties. Regarding the
definition of γc in (3.264), we have

γc =
N−1∑
k=0
|Hk|2 ≈N

L−1∑
l=0
|αl|2, (3.265)

where αl is the complex amplitude of the lth multipath component (see (2.42)). Therefore,
the random variable γc has a Gamma distribution with shape parameter L and scale
parameter N

L , i.e., γc ∼ Γ
(
L, NL

)
. Similarly, from (3.260), we have γd ∼ Γ (µ,1). Fig.

3.33 shows the distribution of γc obtained both theoretically and by simulation. The
figure confirms the high accuracy of the theoretical expression for p(γc). In fact, the
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Figure 3.33: Distribution of γc obtained both theoretically and by simulation.

random variable G(H)(µ) is given by the sum of two independent gamma variables with
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different parameters, i.e., G(H)
d (µ) ∼ Γ (µ, Gd(µ)

µ ) and G
(H)
c (µ) ∼ Γ (L, Gc(µ)

L ). Fig. 3.34
shows the distribution G(H)

d (µ) and G(H)
c (µ) obtained both theoretically and by simulation

considering L = 32, Nu = 512, O = 4, µ = 1 and an envelope clipping with normalized
clipping level sM/σ = 1.0. From the results depicted in the figure, it can be noted that
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Figure 3.34: Distribution of G(H)
d (µ) and G

(H)
c (µ) obtained both theoretically and by

simulation for µ= 1.

distribution of both gain components can be obtained with accuracy. In Appendix B, by
making use of these distributions, we derive the distribution of G(H)(µ), which is shown
to be

p(G(H)(µ)) =

(
µ

Gd(µ)

)µ( L
Gc(µ)

)L
Γ (L+µ) G(H)(µ)L+µ−1 exp

(
−G

(H)(µ)L
Gc(µ)

)

×M
(
µ,L+µ,G(H)(µ)

(
L

Gc(µ) −
µ

Gd(µ)

))
. (3.266)

With this distribution, we are able to derive the asymptotic optimum performance in
frequency-selective channels for a variety of multicarrier schemes and nonlinearities.
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Applications

This chapter presents several applications where the theoretical results of the previous
chapters can be employed to provide an accurate characterization of nonlinearly distorted
multicarrier schemes. These applications consist in different multicarrier schemes with
nonlinearities on their transceivers. For each application, we provide an accurate theoretical
characterization of the corresponding nonlinearly distorted signals. Additionally, for most
of applications, the potential optimum performance considering both ideal AWGN and
frequency-selective channels is also studied. This optimum performance is accessed through
the potential asymptotic gains, as well as by a set of performance results associated to
practical sub-optimum receivers.

This chapter is divided as follows: in section 4.1, we analyze the nonlinear distortion
effects and the optimum performance of nonlinear bandpass OFDM schemes. In that
section, results associated to transmitter-side nonlinearities such as the ones associated to
nonlinear power amplifiers and envelope clipping techniques are presented. In section 4.2,
OFDM systems with linear amplification with nonlinear components (LINC) transmitter
structures are considered. In section 4.3 the analytical characterization and the optimum
performance of constant envelope OFDM schemes are presented. Section 4.4 concerns with
the analytical characterization of nonlinearly distorted signals associated to an amplify-
and-forward, relay-based OFDM system. Section 4.5 focuses on nonlinearly distorted
MIMO-OFDM systems. In that section, the nonlinear distortion effects associated to both
conventional MIMO-OFDM as well as to massive MIMO-OFDM systems are considered.
Section 4.6 presents results for nonlinear, baseband multicarrier schemes such as DMT
schemes that have clipping and/or quantization operations on their transmission chain.
Finally, section 4.7 focuses on optical OFDM schemes. This section is subdivided into two
subsections: in subsection 4.7.1, fiber optical OFDM systems impaired by nonlinear phase
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noise are analyzed and, in subsection 4.7.2, wireless optical OFDM schemes such as DC-
biased optical (DCO)-OFDM and asymmetrical clipping optical (ACO)-OFDM systems
that have asymmetrical clipping operations on their transmission chain are studied.

In all results presented in this chapter, it is assumed the existence of a CP adequate to
remove both the ISI and IBI. In addition, perfect channel estimation and synchronization
are also considered.

4.1 Conventional OFDM

Due to the their large PAPR, it is very common that conventional OFDM systems are im-
paired by bandpass nonlinearities (see subsection 3.1.2). These nonlinearities are typically
associated to a nonlinear amplification process, but can also be related to the simplest
solutions that avoid this nonlinear amplification (e.g., envelope clipping techniques for
PAPR reduction [53], [54]), that were discussed in subsection 2.3.2. In this section, results
regarding both the analytical characterization and the optimum performance of nonlinear,
bandpass OFDM systems are shown.

4.1.1 Low-complexity Analytical Signal’s Characterization

Although bandpass nonlinearities act “physically” on the bandpass OFDM signal, we
consider the equivalent baseband scenario presented in subsection 3.1.2, that takes into
account the AM/AM and AM/PM model for the characterization of such nonlinearities.
Therefore, a given bandpass nonlinearity is described by the complex nonlinear function
fbp(r) = A(r)exp(jΘ(r)). Fig. 4.1 shows the equivalent, sub-carrier level for a nonlinear
OFDM transmission. Although conventional OFDM systems are described in detail in

IDFT

S

DFT

Yy
Nonlinearity

s

fbp(·)

Figure 4.1: Equivalent, sub-carrier level model for a nonlinear OFDM transmission con-
sidering an envelope clipping.

subsection 2.2.1, a brief characterization of such systems is reproduced here. Each OFDM
symbol S = [S0 S1 ... SN−1]T ∈ CN is composed by Nu useful subcarriers that carry
M -QAM symbols (otherwise stated, we consider that M = 4, i.e., each useful subcarrier
employs a QPSK symbol and Sk =±1± j) and an oversampling factor of O, which means
that the total number of subcarriers is N =ONu. Under these conditions, at the input of
the IDFT block, we have a rectangular signal, since E[|Sk|2] = 2 for the in-band subcarriers
and E[|Sk|2] = 0 for the out-of-band subcarriers. A rectangular, frequency-domain OFDM
signal withNu subcarriers and O = 4 is depicted in Fig. 4.2. After the IDFT block, we have
the set of time-domain samples s = [s0 s1 ... sN−1]T ∈ CN . As mentioned before, when
the number of subcarriers is large, the time-domain samples of a given OFDM signal can
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Figure 4.2: Rectangular PSD at the nonlinearity input considering Nu QPSK symbols and
O = 4.

be seen as samples of a complex stationary, Gaussian random process. Therefore, the real
and imaginary parts of each sample are Gaussian distributed with variance σ2 = 2/(NuO2)
(see (2.25)) and PDF, p(s), given by (2.26). Additionally, it is important to note that
E[sn] = 0 and that the input signal autocorrelation is

Rs̃,bp
(
n′
)

= E
[
sns
∗
n−n′

]
, (4.1)

Therefore, we have

Rs̃,bp
(
n−n′

)
= E

[
sns
∗
n−(n−n′)

]
= E [sns∗n′ ] . (4.2)

By considering (2.17) and (2.4), the autocorrelation can be written as

Rs̃,bp
(
n−n′

)
= E[sns∗n′ ]

= 1
N2

N−1∑
k=0

N−1∑
k′=0

E[SkS∗k′ ] exp
(
−j2πkn− k

′n′

N

)

= 1
N2

N−1∑
k=0

E
[
|Sk|2

]
exp

(
−j2πk(n−n′)

N

)
. (4.3)

As expected, when n′ = n, the autocorrelation gives the average power associated to the
complex envelope of the bandpass OFDM signal, i.e.,

Rs̃,bp(0) = E
[
|sn|2

]
= 1
N2

N−1∑
k=0

E
[
|Sk|2

]
= 2
NuO2 = 2σ2. (4.4)
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It is also important to note that

E[SkS∗k′ ] =
N−1∑
n=0

N−1∑
n′=0

E [sns∗n′ ] exp
(
−j2πkn− k

′n′

N

)

=
N−1∑
n=0

N−1∑
n′=0

Rs̃,bp
(
n−n′

)
exp

(
−j2πkn− k

′n′

N

)

=
N−1∑
n′=0

N−1∑
n=0

Rs̃,bp
(
n−n′

)
exp

(
−j2πkn

N

)exp
(
j2πk

′n′

N

)
.

=
N−1∑
n′=0

Gs̃,bp(k)exp
(
−j2π (k− k′)n′

N

)
, (4.5)

where Gs̃,bp(k) ∆=Gs̃,bp(k/T ) represents the kth sample associated to the PSD of the OFDM
signal Gs̃,bp(f), that is the DFT of (4.1). Note that if k = k′, we obtain that

E
[
|Sk|2

]
=NGs̃,bp(k), (4.6)

which means that the signal represented in Fig. 4.2 is just a scaled version of the PSD of
the OFDM signal.

As was mentioned in the previous chapter, the Bussgang’s theorem [10] can be em-
ployed to characterize nonlinearly distorted OFDM signals, since OFDM samples present
a Gaussian distribution when the number of subcarriers is large. Under these conditions,
the samples of a nonlinearly distorted signal at the output of a bandpass nonlinearity
y = [y0 y1 y2 ... yN−1]T ∈ CN can be written as the sum of two uncorrelated terms, i.e.,

y = αbps + d, (4.7)

where d = [d0 d1 d2 ... dN−1]T ∈ CN represents the nonlinear distortion components and
αbp is given by (3.78). By focusing on the nth time-domain sample, we have

yn = αbpsn + dn, (4.8)

where dn, that is uncorrelated with the input sample sn, i.e., E [snd∗n′ ] = 0, represents the
nonlinear distortion term associated to the nth time-domain sample.

To quantify the performance degradation associated to the conventional OFDM schemes
impaired by bandpass nonlinearities it is useful to obtain the PSD of the transmitted
signals. In fact, by making use of the Gaussian nature of OFDM signals, one can obtain
the analytical characterization of the nonlinearly distorted OFDM signals. In subsection
3.2.2, it was shown that the autocorrelation of a nonlinearly distorted Gaussian signal
submitted to a bandpass nonlinearity is given by (3.103), i.e.,

Rỹ,bp(τ) = 2
+∞∑
γ=0

P bp2γ+1
Rs̃,bp(τ)γ+1R∗s̃,bp(τ)γ

Rs̃,bp(0)2γ+1 , (4.9)
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where P bp2γ+1 represents the power associated to the IMP of order 2γ+1, defined in (3.101).
Therefore, we have

E [yny∗n′ ] =Rỹ,bp(n−n′)
(a)
≈ 2

nγ∑
γ=0

P bp2γ+1
Rs̃,bp(n−n′)γ+1R∗s̃,bp(n−n′)γ

σ2(2γ+1) , (4.10)

where the approximation (a) is related to the truncated IMP approach, i.e., only nγ IMPs
are considered for the computation of the autocorrelation. In addition, as

Rỹ,bp(n−n′) = |αbp|2Rs̃,bp(n−n′) +Rd̃,bp(n−n
′), (4.11)

and, since the IMP of order 1 is associated to the useful signal at the nonlinearity output,
we have

E [dnd∗n′ ] =Rd̃,bp(n−n
′)≈ 2

nγ∑
γ=1

P bp2γ+1
Rs̃,bp(n−n′)γ+1R∗s̃,bp(n−n′)γ

σ2(2γ+1) . (4.12)

By recalling (3.176), we have that frequency-domain samples of the nonlinearly distorted
signal Y = [Y0 Y1 Y2 ... YN−1]T ∈ CN can be divided as follows

Y = αbpS + D, (4.13)

where D = [D0 D1 D2 ... DN−1]T ∈ CN is a block with the frequency-domain version of
the nonlinear distortion terms. Under these conditions,

Yk = αbpSk +Dk. (4.14)

As in (4.5), we have that
E
[
|Yk|2

]
=NGỹ,bp(k), (4.15)

and
E
[
|Dk|2

]
=NGd̃,bp(k), (4.16)

where Gỹ,bp(k) and Gd̃,bp(k) represent the DFT of (4.10) and (4.12), respectively. Addi-
tionally, by applying the DFT to (4.11), we have

Gỹ,bp(k) = |αbp|2Gs̃,bp(k) +Gd̃,bp(k). (4.17)

In the following, a set of results regarding the PSD of nonlinearly distorted signals
obtained by simulation and theoretically are presented. Fig. 4.3 shows the PSD of a clipped
OFDM signal obtained both by simulation (i.e., by considering Gỹ,bp(k) = E

[
|Yk|2

]
/N)

and theoretically through the truncated IMP approach. Each OFDM signal has Nu = 256
subcarriers and O = 4. The envelope clipping has a normalized clipping level sM/σ = 0.5.
From the figure it can be seen that the PSD obtained through the truncated IMP approach
can be very accurate. However, to obtain that degree of accuracy, and a maximum error
relatively to the PSD obtained by simulation lower than 0.2 dB, a value of nγ = 14 must
be considered, which means that a large number of IMPs must be computed. In fact, when
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Figure 4.3: PSD associated to a clipped OFDM signal considering sM/σ = 0.5 and different
values of nγ .

nγ = 4, the error can reach a value around 0.5 dB, but it can even be approximately 13 dB
when only 3 IMPs are considered, i.e., when nγ = 2. Clearly, the accuracy of the truncated
IMP approach is related to the number of IMPs.

To obtain the degradation associated to the nonlinear distortion for a given subcarrier,
it is common to compute the corresponding signal-to-interference ratio (SIR) for that
subcarrier. The SIR is defined as the ratio between the PSDs associated to the useful part
and the distortion parts of the nonlinearly distorted signal, i.e.,

SIR =
|αbp|2Gs̃,bp(k)
Gd̃,bp(k)

=
|αbp|2E

[
|Sk|2

]
E [|Dk|2] . (4.18)

Fig. 4.4 shows the SIR obtained by simulation and theoretically considering the truncated
IMP approach and nγ = 14. Each OFDM signal has Nu = 512 subcarriers, O = 4 and
different clipping levels are considered. From the figure it can be seen that accurate
estimates of the SIR can be obtained. As expected, when the clipping level is lower, the
SIR levels decrease and, for sM/σ = 0.5, the SIR can even reach a minimum of around
8.6 dB at the middle of the band, since the distortion is maximum at that frequency
(note that the PSD of the input signal is constant and the nonlinear distortion terms
are approximately Gaussian distributed at the subcarrier level). On the other hand, for
sM/σ = 1.5, the SIR increases substantially since the distortion levels are lower. In that
case, it can be observed that the minimum SIR is approximately 14.2 dB.

Let us now study the impact of the “severeness” of the nonlinearity in the number
of required IMPs to obtain accurate PSDs. Fig. 4.5 shows the PSD of an OFDM signal

120



4.1. CONVENTIONAL OFDM

k/N
-0.5 0 0.5

S
IR

k
[d
B
]

9

10

11

12

13

14

15

16
: Theory

sM/σ = 1.5

sM/σ = 1.0

sM/σ = 0.5

· · · · · · : Simulation

Figure 4.4: Simulated and theoretical SIR associated to a clipped OFDM signal considering
different normalized clipping levels.

amplified through a TWTA. The PSD was obtained both by simulation considering
Gỹ,bp(k) = E

[
|Yk|2

]
/N and theoretically with the truncated IMP approach and two values

of nγ . The OFDM signals have Nu = 256 useful subcarriers and O = 4. The TWTA has
a normalized clipping level sM/σ = 0.5 and a phase rotation at the saturation region of
θM = π/4 (see the corresponding AM/AM and AM/PM conversion functions of the Saleh’s
model represented in (3.27) and (3.28), respectively). When such TWTA is employed, it
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Figure 4.5: PSD associated an OFDM signal amplified with a TWTA with sM/σ = 0.5
and θM = π/4.
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can be noted that even if nγ = 14, which is actually a high value, the error between the
simulated and the theoretical PSD can reach approximately 1.6 dB. On the other hand,
to obtain an error of approximately 0.2 dB, one should consider nγ = 20. As expected,
this confirms that the higher the magnitude of the nonlinear distortion effects, i.e., the
severeness of the nonlinearity, the higher the number of IMPs required to obtain an accurate
estimate of the PSD, since this number is intimately related with the number of polynomial
terms employed to approximate the nonlinear characteristic.

Let us now access the impact of the oversampling factor on the number of required IMP
to obtain accurate PSDs. Fig. 4.6 presents the PSD of an OFDM signal amplified by an
SSPA obtained both by simulation and theoretically through the truncated IMP approach.
Each OFDM signal has Nu = 512 useful subcarriers and different oversampling factors are
considered. The SSPA has a normalized clipping level sM/σ = 1.0 and sharpness factor
of p = 3 (see the corresponding AM/AM function associated to the Rapp’s model for
SSPAs in (3.31)). In fact, although when O = 4 the difference between the simulated and
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Figure 4.6: PSD associated an OFDM signal amplified by an SSPA with sM/σ = 1.0 and
p= 3 considering different oversampling factors.

theoretical PSD has a maximum value of approximately 0.4 dB, when the oversampling
factor increases to O = 8, this difference increases substantially and can even reach a value
around 10 dB. This means that when higher oversampling factors are considered, the
number of required IMPs to obtain an accurate spectral characterization of the nonlinearly
distorted signal is also higher.

Besides the high complexity associated to high nγ values, convergence problems can
also take place, i.e., increasing nγ may not guarantee substantial lower errors between the
simulated and the theoretical PSDs. This fact is illustrated in Fig. 4.7, that shows the PSD
of a clipped OFDM signal considering sM/σ = 0.5, Nu = 512, O = 8 and two values of nγ .
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From the results depicted in the figure, one can clearly note that even when the number of
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Figure 4.7: PSD associated to a clipped OFDM signal considering sM/σ = 0.5 and O = 8.

IMPs is doubled from nγ = 20 to nγ = 40, the maximum error between the simulated and
the theoretical PSDs decreases only approximately 0.8 dB. This means that we can have
unavoidable errors even when substantially increase nγ . On the other hand, nγ should not
be large to avoid high complexity. Fig. 4.8 shows the maximum error between the PSDs of
a nonlinearly distorted OFDM signal obtained by simulation and theoretically considering
the truncated IMP approach, different nonlinearities and different oversampling factors.
These figure summarizes the conclusions taken above. In fact, it confirms that the number
of IMP required to obtain good accuracy varies with the sharpness of the nonlinearity and
with the oversampling factor and can be very large in some scenarios (i.e., when there are
high oversampling factors and/or severe nonlinearities), not to mention the existence of
convergence problems that are expressed as “error floors”. In fact, the convergence and
complexity problems are the key limitations associated to the truncated IMP approach.

In [93], [94] it was shown that the use of equivalent nonlinearities to substitute the con-
ventional non-smooth, nonlinear characteristics can reduce the convergence and complexity
problems associated to the truncated IMP approach, providing a simple and accurate spec-
tral characterization of sampled, nonlinearly distorted signals. In the following, results for
the PSD associated to a nonlinearly distorted, bandpass OFDM signal are given. These
results are obtained by simulation and theoretically and the accuracy of the truncated
IMP approach with nγ IMPs is compared to the accuracy associated to the equivalent
nonlinearity approach (see subsection 3.3.2 for theoretical details of that approach) with
γmax IMPs.

Fig. 4.9 shows the simulated and the theoretical PSD associated to a clipped OFDM
signal with Nu = 512 and O = 4 when sM/σ = 0.5. From the figure, it can be noted
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Figure 4.8: Maximum error between the simulated and the theoretical version of the PSD
of a nonlinearly distorted OFDM signal considering the truncated IMP approach, different
nonlinearities and different oversampling factors.
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Figure 4.9: PSD associated to a clipped OFDM signal considering sM/σ = 0.5, O = 4 and
nγ = γmax = 8.

that the theoretical PSD obtained with the equivalent nonlinearity is more accurate than
the one associated to the conventional truncated IMP approach. In fact, although they
are obtained with the same number of IMPs, i.e., nγ = γmax = 8, the theoretical PSD
associated to the equivalent nonlinearity has a maximum error of approximately 0.2 dB
when compared to the simulated PSD, while this value increases to approximately 1.3 dB

124



4.1. CONVENTIONAL OFDM

when the truncated IMP approach is considered. This “accuracy” gain is more visible
when a severe nonlinearity is considered, as is shown in Fig. 4.10. This figure shows the
simulated and the theoretical PSD associated to an OFDM signal amplified by a TWTA.
Note that although the signal that goes through the TWTA is continuous, we can have
an insight on the impact of the nonlinear distortion by considering its sampled version,
provided that the oversampling factor is high enough. Each OFDM signal has Nu = 512
and O = 4. The TWTA has a saturation output of sM/σ = 0.5 and a phase rotation of
θM = π/3. As previously mentioned, when a TWTA is considered, the truncated IMP
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Figure 4.10: PSD associated to a nonlinearly amplified OFDM signal considering both the
truncated IMP approach and the equivalent nonlinearity.

approach requires a large number of IMPs to provide an accurate PSD. However, even
when a very high number of IMPs is considered, i.e., nγ = 12, the truncated IMP approach
presents a maximum error of approximately 1.8 dB. In contrast, when the equivalent
nonlinearity is employed, there is an almost negligible error, even when a lower number of
IMPs is considered, i.e., for γmax = 10.

Fig. 4.11 shows the maximum error between the PSDs of a nonlinearly amplified
OFDM signal obtained by simulation and theoretically, considering both the truncated
IMP and the equivalent nonlinearity approaches, was well as different oversampling factors.
These two approaches are compared with the same number of IMPs, i.e., nγ = γmax.
The nonlinear amplifier is a TWTA with normalized saturation level sM/σ = 0.5 and
θM = π/3. Clearly, the use the equivalent nonlinearity approach leads to accuracy gains
relatively to the truncated IMP approach. As expected, these gains are higher when higher
oversampling factors are employed. For instance, when O = 4 and 6 IMPs are considered,
the accuracy gain is around 6 dB. However, when O = 8 and 8 IMPs are taken into
account, this accuracy gain increases to approximately 7 dB. Besides these considerable
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Figure 4.11: Maximum error between the simulated and theoretical PSD of a nonlin-
early amplified OFDM signal considering the truncated IMP approach and the equivalent
nonlinearity.

accuracy gains that are more noticeable in the out-of-band region, it can be observed
that when the equivalent nonlinearity is considered, the error relatively to the simulated
PSD converges to zero at a higher “rate”. This effect can also be seen in Fig. 4.12, that
shows the maximum error between the simulated and theoretical PSDs considering an
envelope clipping with sM/σ = 0.5 and oversampling factors O = 2 and O = 4. For these
reasons, the use of equivalent nonlinearities constitutes an efficient, low-complex method
for obtaining the analytical spectral characterization of nonlinearly distorted, bandpass
OFDM signals [93], [94].

4.1.2 Potential Optimum Performance

Here, we present results regarding the optimum performance of nonlinearly distorted
OFDM schemes whose the equivalent model is depicted in Fig. 4.13. Some of these results,
namely the asymptotic optimum performance, derive from the theory presented in section
3.4.

As seen in subsection 3.4.1, the existence of nonlinear distortion effects can severely
prejudice the performance of conventional OFDM systems. Let us recall the unwanted
effects associated to the nonlinear distortion. In fact, if the nonlinear distortion is consid-
ered as an additional noise component, the BER can be substantially higher comparatively
to the one associated to linear, OFDM systems. As verified in (4.14), the transmitted
signal for a given subcarrier k, Yk, can be divided into uncorrelated useful and distortion
components [10], and each subcarrier may present a low SIR, if the nonlinearity is severe.
In addition, depending on the nature of the scale factor αbp, that can be either real-valued
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Figure 4.12: Maximum error between the simulated and theoretical PSD of a clipped
OFDM signal considering the truncated IMP approach and the equivalent nonlinearity.
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Figure 4.13: Equivalent, subcarrier-level model for a nonlinearly distorted OFDM scheme.

or complex-valued, the constellation of the transmitted signals can be rotated. Fig. 4.14
shows the constellation of the transmitted symbols when a TWTA with normalized satu-
ration level sM/σ = 3.0 and θM = π/4 is considered for the amplification process. Clearly,
due to the complex nature of the scale factor αbp, a rotation of the constellation can
be observed from the figure (this rotation effect, however, is not observed in Fig. 3.15
since, in this case, the scale factor αbp is real-valued). In addition, due the existence of
nonlinear distortion terms Dk, exists a “cloud” of points around the shrunken and rotated
version of the constellation. As aforementioned, the existence of these nonlinear distortion
effects degrades the performance of OFDM systems. This is confirmed in Fig. 4.15, that
shows the simulated BER associated to conventional receivers considering both linear and
nonlinear OFDM transmissions with Nu = 512 and O = 4. Results for both an envelope
clipping and TWTA with θM = π/6 are shown. It should be also mentioned that a perfect
channel estimation implicitly involves a perfect estimation of αbp(1). From the figure, it

(1)Although for QPSK constellations and bandpass nonlinearities with only AM/AM conversion function
the estimation of αbp is not necessary, the estimation of αbp for bandpass nonlinearities with AM/PM
conversion function should be made since, in those cases, the constellation is rotated. However, in practice
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Figure 4.15: Simulated BER associated to a conventional OFDM receiver considering both
linear and a nonlinear OFDM transmissions.

can be noted that the performance degradation associated to the nonlinear distortion can
be severe and we can even have an irreducible error floor. Although when sM/σ ≥ 2.0
this degradation is relatively low when an envelope clipping is employed (the impact on
the performance is noticeable for lower clipping levels as shown in Fig. 3.16), this is not
the situation when a nonlinear power amplifier such as a TWTA is considered, where

the estimation of this factor can implicitly be done by conventional channel estimation procedures [102].
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considerable performance penalties can be observed.
As demonstrated in the previous chapter, the optimum detection can be a good al-

ternative to conventional detection of nonlinearly distorted multicarrier signals. In the
following, results associated to the theoretical asymptotic optimum performance of conven-
tional OFDM schemes that have bandpass nonlinearities on their transmission chain (see
Fig. 4.1) are presented [17], [95]–[97]. As shown in subsection 3.4.4, the theoretical average
asymptotic gain associated to the optimum performance of OFDM signals impaired by
bandpass nonlinearities is given by

G(1)≈
(dadjσ)2

4

+∞∫
0

(
A
′2(r) + A2(r)

r2 +Θ
′2(r)A2(r)

)
p(r)dr

+∞∫
0

A2(r)p(r)dr

. (4.19)

Therefore, the BER in the asymptotic region can be expressed as

Pb ≈Q


√√√√2G(1)E(nl)

b

N0

 . (4.20)

This approximation involves two assumptions: (i) a large number of subcarriers Nu since,
in this case, the squared Euclidean distance between two nonlinearly distorted OFDM
signals tends to assume a unique value and (ii) the error events associated to sequences
that differ in more than µ= 1 bits are neglected (this assumes that the squared Euclidean
distance between two nonlinearly distorted signals that differ in µ > 1 bits is higher than
for the cases where µ = 1 with very high probability). In the concrete case of an ideal
envelope clipping, whose the AM/AM conversion function is given by (3.138), (4.19) turns
into

G(µ) =
µ(dadjσ)2

4

+∞∫
0

(
A
′2(r) + A2(r)

r2

)
p(r)dr

+∞∫
0

A2(r)p(r)dr

, (4.21)

since Θ(R) = 0. Fig. 4.16 shows the evolution of the average asymptotic gain considering
an ideal envelope clipping with different normalized clipping levels sM/σ, µ = 1, O = 4
and different values of Nu. Clearly, (3.229) constitutes an accurate theoretical expression
to obtain the average value of the asymptotic gain. As expected, this accuracy increases
with Nu, since the Taylor approximations associated to (3.229) (for instance, the one made
in (3.213)) become more precise when the number of subcarriers is large. When Nu = 256,
it can be seen that the simulated and theoretical average values of the asymptotic gain are
almost equal. In fact, even when a lower number of subcarriers is considered, the theoretical
results present a considerable accuracy and only for small clipping levels deviate from the
simulated results. From the figure, it can also be noted that when sM/σ increases, the gain
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Figure 4.16: Evolution of the average asymptotic gain considering different normalized
clipping levels, µ= 1 and different values of Nu.

tends to 0 dB, which is in agreement with the results of the simulated PDFs of Fig. 3.23.
Indeed, when sM/σ→∞, the transmission is linear and there is no asymptotic gain. On
the other hand, it can be seen that the asymptotic gain increases when the clipping level
decreases, i.e., increases with the severeness of the clipping. This can be clearly observed
in Fig. 4.17 that shows the simulated and theoretical average asymptotic gain associated
to the optimum detection of nonlinearly amplified signals considering different amplifiers
and different values of Nu. The TWTA has θM = π/3 and the SSPA has p= 1. From the
results depicted in the figure, it can be noted that when a severe nonlinearity such as a
TWTA is considered, the average asymptotic gain can be very large, which might mean
higher performance improvements, comparatively to the conventional detection of linear,
OFDM signals. Regardless of the type of the amplifier, it can also be noted that (4.19)
yields very accurate estimates of the asymptotic gain. Fig. 4.18 shows the asymptotic
BER associated to linear and nonlinear bandpass OFDM transmissions, obtained through
the distribution of the asymptotic gain G(µ), for µ= 1, Nu = 256, O = 4 and an envelope
clipping with normalized clipping level sM/σ. From this figure, asymptotic gains relatively
to linear OFDM transmissions can be clearly observed. For instance, for a target BER of
Pb = 10−4, the performance gain relatively to linear OFDM transmissions is around 1.3
dB when sM/σ = 1.0, and increases to approximately 2.5 dB, when sM/σ = 0.5.

As seen in the previous chapter, the optimum detection presents also potential asymp-
totic gains when frequency-selective channels with L uncorrelated Rayleigh components
are considered. In addition, it was demonstrated that the asymptotic gain’s distribution
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Figure 4.17: Evolution of the average asymptotic gain considering nonlinearly amplified
OFDM signals, µ= 1 and different values of Nu.
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Figure 4.18: Asymptotic optimum receiver BER considering nonlinearly distorted signals
submitted to an envelope clipping operation with normalized clipping level sM/σ.

associated to the optimum detection in those scenarios is given by

p(G(H)(µ)) =

(
µ

Gd(µ)

)µ( L
Gc(µ)

)L
Γ (L+µ) G(H)(µ)L+µ−1 exp

(
−G

(H)(µ)L
Gc(µ)

)

×M
(
µ,L+µ,G(H)(µ)

(
L

Gc(µ) −
µ

Gd(µ)

))
. (4.22)
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In fact, from the above equation, one can note that the asymptotic gains in frequency-
selective channels are function of the asymptotic gain in ideal AWGN channels, G(µ), that
can be decomposed as

G(µ)≈Gd(µ) +Gc(µ). (4.23)

Fig. 4.19 shows the asymptotic gains associated to the optimum detection of OFDM
signals in AWGN channels, as well as its two components, Gd(µ) and Gc(µ), considering
Nu = 512, O = 4, µ= 1 and an envelope clipping with different clipping levels sM/σ. From
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Figure 4.19: Evolution of the asymptotic gain components with the clipping level consid-
ering ideal AWGN channels.

the figure it can be noted that the division of the asymptotic gain in two components
(the approximation of (4.23)) can be considered with accuracy. In fact, it can be seen
that the asymptotic gain in ideal AWGN channels (given theoretically by (4.19)) can be
obtained by the sum of Gd(µ) and Gc(µ). On the other hand, these two gain components
can be employed to obtain (4.22). As expected, when sM/σ increases, the gain component
associated to the nonlinear distortion terms, Gc(1), tends to 0, since the magnitude of
the distortion effects decreases. In those scenarios, the asymptotic gain tends to 1 (0 dB)
and is almost only associated with subcarriers that have bit errors, i.e., only the gain
component Gd(1) contributes for the “total gain” G(1).

Fig. 4.20 shows asymptotic gain’s distribution considering a frequency-selective channel
with L= 32, Nu = 512, O = 4 and an envelope clipping. In this figure it can be seen that
(4.22) constitutes an accurate theoretical expression for obtaining the distribution of the
gain when the channel presents frequency selectivity. It should be mentioned that although
the gain can be lower than 1, this is also the case when linear OFDM transmissions are
considered, as can be noted when the clipping level increases and the magnitude of the
nonlinear distortion effects is small. However, when the signals are nonlinearly distorted,
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Figure 4.20: Distribution of G(H)(1) considering an envelope clipping.

the event of having an asymptotic gain lower than 1 is more rare, which leads to performance
gains over the conventional detection of linear, OFDM schemes.

Fig. 4.21 shows the distribution of the asymptotic gain considering Nu = 1024, O = 4,
and sM/σ = 1.0 and two different amplifiers: an SSPA with p = 3 and a TWTA with
θM = π/6. The results depicted in this figure reveal the accuracy of (4.22) for these different
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Figure 4.21: Distribution of G(H)(1) considering an OFDM system impaired by different
bandpass nonlinearities.

nonlinearities. Furthermore, it should be mentioned that when an SSPA with p= 3 and
sM/σ = 1.0 is employed, the gains are lower than when a TWTA with the same clipping
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level and θM = π/6 is considered, since the latter nonlinearity is more severe and leads to the
existence of stronger nonlinear distortion effects. Fig. 4.22 presents the asymptotic BER
associated to linear and nonlinear bandpass OFDM transmissions in frequency-selective
channels calculated through (4.22), considering µ = 1, L = 32, Nu = 256, O = 4, and
an envelope clipping with normalized clipping level sM/σ. From the results depicted in
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Figure 4.22: Approximate optimum performance of a nonlinear distorted OFDM scheme
considering an envelope clipping operation and frequency-selective channels.

the figure, it can be seen that the optimum receiver presents potential asymptotic gains
relatively to linear OFDM transmissions in frequency-selective channels. For instance, for
a target BER of Pb = 10−2, the performance gain is around 6.3 dB when sM/σ = 1.5, but
can reach a value around 11 dB when sM/σ = 0.5. As expected, when sM/σ→∞, the
optimum receiver’s performance coincides with the performance of conventional, linear
OFDM receivers.

It is widely known that the performance of OFDM in frequency-selective channels
can be very poor and it is strongly conditioned by the subcarriers that are in deepest
fades. To reduce the performance degradation, it is common to employ channel coding
schemes. Although the performance of COFDM with nonlinear transmitters and conven-
tional receivers is worse than with linear transmitters, the degradation can be negligible
due to the high coding gains of COFDM. Therefore, one might ask what is the optimum
asymptotic performance of COFDM with strong nonlinear effects, and how it compares
with the optimum performance of linear OFDM. In COFDM schemes, the encoded data
sequences differ in many bits. For this reason, it is of interest to study a scenario where
the data sequences differ in µ > 1 bits, since this is the situation of COFDM signals.
Note that a scenario where the sequences differ in µ > 1 bits can be seen as a scenario
where we employ channel coding with minimum Hamming distance equal to µ, combined
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with an appropriate interleaving (to assure that the bits where the sequences differ are in
uncorrelated positions). Let us start by taking into account the scenario of COFDM in
ideal AWGN channels. From (4.21), it is clear that the asymptotic gain increases linearly
with µ, i.e., which suggests that the optimum detection of nonlinear COFDM schemes
present asymptotic gains relatively to linear COFDM schemes. Fig. 4.23 presents the
theoretical and simulated asymptotic gain obtained with Nu = 512, O = 4, different values
of µ and an SSPA with p= 1. In fact, it can be noted that the gain increases linearly with

sM/σ
0.5 1 1.5 2 2.5 3 3.5

G
(µ

)
[d
B
]

0

2

4

6

8

10

12
: Theory

µ = 8

µ = 4

µ = 2

µ = 1

· · · · · · : Simulation

Figure 4.23: Evolution of the average asymptotic gain considering an SSPA with p = 1
and different values of µ.

µ (a similar effect was observed for other values of µ). For instance, when sM/σ = 1.0
and µ= 1, the asymptotic gain is approximately 0.8 dB. However, it increases to approx-
imately 3.8 dB, 6.8 dB and 9.8 dB for µ = 2, µ = 4 and µ = 8, respectively. Fig. 4.24
shows the asymptotic optimum performance associated nonlinear OFDM and COFDM
schemes in AWGN channels. A 64-state convolutional code with rate Cr = 1/2 and min-
imum Hamming distance DHamming = 10 is considered. The nonlinearity is an envelope
clipping with clipping level sM/σ. Clearly, it can be noted from the figure that besides the
natural performance improvements that COFDM presents relatively to uncoded OFDM
due to the coding gains, the optimum performance of COFDM schemes present potential
asymptotic gains(2) relatively to linear COFDM schemes [103]. In fact, it can be observed
that for a target BER of Pb = 10−4, the use of an envelope clipping with sM/σ = 1.0 leads
to a performance gain of approximately 0.4 dB relatively to the linear COFDM. This
performance gain increases to a value around 0.85 dB for sM/σ = 0.5.

Let us now focus on the case of frequency-selective channels. Fig. 4.25 shows the

(2)Note that to obtain the asymptotic gain relatively to linear COFDM schemes, the squared Euclidean
distance between nonlinearly distorted COFDM signals should be compared to 4CrDHammingEb.
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Figure 4.24: Asymptotic optimum performance associated to COFDM signals submitted
to an envelope clipping operation in AWGN channels.

asymptotic gain’s distribution considering Nu = 1024, O = 4, sM/σ = 1.0 and different
values of µ. From the results depicted in the figure, it can be noted that (4.22) yields an
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Figure 4.25: Distribution of G(H)(µ) considering an envelope clipping with sM/σ = 1.0
and different values of µ.

accurate distribution of the asymptotic gains when µ≥ 1. As expected, these asymptotic
gains increase with the number of different bits between the sequences, which suggests that
the use of channel coding schemes might lead to performance improvements, namely when
the optimum detection of nonlinear COFDM is compared to the conventional detection of
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linear COFDM. Fig. 4.26 shows the asymptotic optimum performance associated nonlinear
COFDM schemes in frequency-selective channels. Once again, a 64-state convolutional
code with rate Cr = 1/2 and minimum Hamming distance DHamming = 10 is used. The
nonlinearity is an envelope clipping. In this figure it can be noted that in frequency-
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Figure 4.26: Asymptotic optimum performance associated to nonlinear COFDM schemes
in frequency-selective channels.

selective channels there are also potential asymptotic improvements associated to the
optimum detection of nonlinearly distorted COFDM signals. In fact, to obtain a target
BER of Pb = 10−4, one only needs an Eb/N0 of around 8.8 dB, which means that the
optimum performance of linear COFDM is substantially better than the performance of
linear OFDM schemes, which is an expected result. However, when nonlinear transmissions
are considered, the required Eb/N0 to obtain that BER decreases to approximately 4.8 dB
when sM/σ = 1.5 and to only 1 dB when sM/σ = 0.5.

4.1.3 Sub-Optimum Detection

In fact, although these large asymptotic gains point out to considerable performance
improvements, the complexity associated to the optimum receiver constitutes an important
problem that can compromise its practical implementation, even when the number of
subcarriers and/or the constellation size is small. Nevertheless, it was already demonstrated
that even sub-optimum, less complex receivers present performance gains relatively to the
conventional detection of linear OFDM transmissions [104], [105]. This was observed not
only for the specific scenarios associated to the results of the previous section, but also for
other scenarios such as for OFDM systems employing clipping and filtering or iterative
clipping and filtering techniques [106], receive diversity or M -QAM constellations (with
M > 4) [107]. The main idea associated to the sub-optimum detection is to reduce the
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complexity relatively to the optimum detection, but at the same time try to achieve its
potential asymptotic gains. This can be accomplished by testing a reduced number of
possible transmitted sequences, instead of analyzing all of them. In [104], different sub-
optimum receivers were proposed. For instance, one can consider sub-optimum receivers
that:

(a) Compute all the possible combinations of the q less reliable bits and choose the one
that presents the lower Euclidean distance relatively to the received signal. Note
that this receiver tests 2q sequences for making a decision.

(b) Test all the 1 bit variations of the hard-decision sequence and verify what is the one
that presents the lower Euclidean distance relatively to the received signal. This
sub-optimum receiver tests log2(M)Nu sequences before making a decision.

Although these sub-optimum receivers allows us to obtain better performance than the
conventional receivers that deal with nonlinearly distorted OFDM signals, we will consider
in the following other sub-optimum receiver, that was also proposed in [104], since it
presents better performance than the ones identified above (i.e., than the sub-optimum
receivers (a) and (b)). Its algorithm is described as follows:

S̃← hard-decision sequence
D2

min← get Euclidean distance between the received signal and the nonlinearly distorted
version of the hard-decision S̃
S̃bits← get the bits from the hard-decision S̃
S̃sopt

bits ← S̃bits
for v = 1→ V do
for b= 1→ log2(M)Nu do
Modify the bth bit of S̃sopt

bits
D2 ← get Euclidean distance between the nonlinearly distorted version of S̃sopt

and the received signal
if D2 ≤D2

min then
D2

min←D2

else
return the bth bit to its original value

end if
end for

end for

Basically, its decision process starts by taking the hard-decision sequence at the conven-
tional receiver’s output. After that, the receiver changes the first bit and the corresponding
modulated signal is passed through the same nonlinearity associated to the transmitted
signal. Then, the squared Euclidean distance relatively to the received signal is computed.
If the squared Euclidean distance reduce, the bit is effectively changed, if not, it returns
to its original value. This process is repeated in all the log2(M)Nu bits of the hard-
decision data sequence. As the sub-optimum sequence can be modified during the process,
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the cycle of bit modifications can be repeated V times. Note that this sub-optimum re-
ceiver computes the Euclidean distance between the received signal and a total number of
log2(M)NuV �MNu variations of it, which means that the complexity relatively to the
“full” optimum detection is substantially lower.

Approximate Optimum Performance

As pointed out before, it is very difficult to obtain the optimum performance. How-
ever, it will be interesting if we can compare the sub-optimum receiver’s performance with
the one obtained by the “full” optimum receiver. In fact, as in the simulation environment
we have “access” to the transmitted sequence, an approximation of the optimum receiver’s
performance can be obtained by considering that the sub-optimum receiver makes bit mod-
ifications on the transmitted sequence, instead of considering the hard-decision sequence
at the conventional receiver’s output. We denote the performance of this variation of the
sub-optimum receiver as “approximate optimum performance”.

In the following, performance results associated to the sub-optimum receiver described
above are shown. All these results were obtained through Monte Carlo simulations. Fig.
4.27 presents the BER associated to the sub-optimum receiver for ideal AWGN channels.
Each OFDM signal has Nu = 128, O = 4, M -QAM constellations. The sub-optimum
receiver performs V = 2 cycles of bit modifications. It should be noted that different
normalized clipping levels are adopted since, the higher the size of the constellation, the
higher the sensitivity to nonlinear distortion effects. For this reason, the normalized clipping
level is sM/σ = 1.0 for QPSK, but increases to sM/σ = 1.6 and sM/σ = 2.0 for 16-QAM
and 64-QAM constellations, respectively. In fact, we adopt a higher sM/σ whenM is higher
to approximately obtain the same distortion level for the different constellations. From
the results depicted in the figure it can be noted that regardless of the constellation’s size,
the sub-optimum detection presents performance gains relatively to conventional, linear
OFDM schemes. Another important aspect is that the sub-optimum receiver with even
only V = 2 cycles of bit modifications has almost the “approximate optimum performance”,
especially for large values of Eb/N0. This behavior reveals that the optimum sequence
may typically differ in few bits relatively to the received signal and there is no need to
test the MNu possible transmitted sequences for obtaining the full-optimum receiver’s
performance. Considering QPSK constellations and a target BER of Pb = 10−3, it can be
seen that the conventional receiver dealing with nonlinearly distorted signals presents a
degradation of approximately 6 dB when compared to the linear OFDM. However, the
sub-optimum receiver even outperforms the linear OFDM by presenting a performance
gain of approximately 1 dB. When M > 4, the gain associated to the sub-optimum
receiver is even higher, since the conventional nonlinear OFDM receiver presents an error
floor at Pb = 1.6× 10−2 and it is not able to obtain Pb = 10−3. Fig. 4.28 presents the
BER under the same conditions of the previous figure but considering frequency-selective
channels with L = 32 uncorrelated multipath components. In the figure it can be seen
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Figure 4.27: Sub-optimum receiver’s BER considering ideal AWGN channels and different
constellations.
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Figure 4.28: Sub-optimum receiver’s BER considering frequency-selective channels and
different constellations.

that the sub-optimum receiver outperforms not only the conventional receivers that deal
with nonlinear OFDM signals, but even the linear OFDM. At Pb = 10−3, these gains
are approximately 8 dB, 9 dB and 13 dB for M = 4, M = 16 and M = 64, respectively.
In fact, the performance gains in frequency-selective channels are even higher than the
ones obtained in ideal AWGN channels. This can be explained by the additional diversity
effect that is introduced by the nonlinearity. This additional diversity effect is related to
the correlation between the subcarriers which, in its turn, is associated to the nonlinear
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distortion terms. Indeed, as the information of each subcarrier is spread along the entire
block, even when a subcarrier is in a deep fade, the fact that other subcarriers may have
good SNRs means that the optimum receiver may still be able to correctly detect the
transmitted signal, since it detects the signals in a block-by-block basis. Fig. 4.29 shows
the simulated BER in frequency-selective channels with L= 64 when Nu = 128 and O = 4.
A receive diversity of order R = 2 is considered (R represents the number of received
antennas). The nonlinearity is an envelope clipping with sM/σ = 1.0. In fact, although
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Figure 4.29: Sub-optimum receiver’s BER considering frequency-selective channels and
receive diversity.

is expected that the performance improves when more receive antennas are considered,
due to the reduction of the deep fade probability, it can also be noted from the figure
that the sub-optimum detection of nonlinear OFDM schemes presents performance gains
even relatively to the linear OFDM when receive diversity is considered. For a target BER
of Pb = 10−2 and R= 2, the performance gain associated to the sub-optimum receiver is
approximately 4.3 dB, but it can reach a value around 9.5 dB for Pb = 10−3.

4.2 LINC Transmitters for OFDM Signals

Even when simple and efficient PAPR reducing techniques such as clipping techniques
are employed, the use of nonlinear, low cost power amplifiers is precluded since these
amplifiers require input signals with a PAPR of 0 dB or almost 0 dB to avoid severe
nonlinear distortion effects at the transmitter output [46]. A highly efficient, nonlinear
amplification technique is the LINC technique [108], that can be employed in OFDM
transmissions [109], [110]. However, although LINC techniques have a good amplification
efficiency, they may introduce nonlinear distortion effects in the transmitted signals due to
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the existence of phase and/or gain imbalances between the power amplifiers that compose
the LINC structure. The constant envelope paired burst (CEPB)-OFDM techniques [111],
based on LINC techniques, try to solve the problems associated to those imbalances
between the amplifiers. In fact, as in CEPB-OFDM only one amplifier is needed and the
two LINC components are transmitted one after another, the gain and phase imbalances
do not take place. On the other hand, the use of CEPB-OFDM techniques leads to a
loss of 50% in the spectral efficiency. Clearly, such a spectral degradation cannot be
accommodated due to the spectrum scarcity and cost, which precludes its use in the
majority of the applications. This justifies the use of traditional LINC techniques, even
knowing that the amplifiers might be unbalanced. For this reason, it is important to
accurately characterize the nonlinear distortion effects associated to the gain and phase
imbalances inherent to those techniques, in order to access their corresponding impact on
the system’s performance.

In this section, we present an accurate spectral characterization as well as the optimum
performance of OFDM schemes with LINC transmitter structures. Due to the high severe-
ness of the nonlinearities associated to LINC techniques, we consider the use of equivalent
nonlinearities for the characterization of the corresponding nonlinearly distorted signals
[112]. This allows us to avoid the very high complexity and the convergence problems
associated to conventional truncated IMP approach.

The model for the LINC transmitter structure is depicted in Fig. 4.30. In fact, the

s

GL,1

fbp(·)

y

fL,1(·)

GL,2fL,2(·)

Figure 4.30: LINC transmitter structure.

LINC transmitter can be modeled as a bandpass memoryless function. To perform the
LINC decomposition, the absolute value of the time-domain OFDM signal r = |s| =
[r0 r1 ... rN−1]T ∈ CN is submitted in parallel to the nonlinear functions fL,1(rn) and
fL,2(rn). The nonlinear function associated to the ith branch is defined as

fL,i(rn) = fL,c(rn) + j(−1)i+1fL,e(rn), i= 1,2, (4.24)

where fL,c(rn) represents and envelope clipping function with clipping level sM , i.e.,

fL,c(rn) =
{ 1

2rn, rn ≤ sM
1
2sM , rn > sM ,

(4.25)
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and fL,e(rn) is defined as

fL,e(rn) =

 1
2

√
s2
M − r2

n, rn ≤ sM
0, rn > sM .

(4.26)

At the output of these nonlinearities, the signals in both branches have a constant envelope
since |fL,1(rn)|= |fL,2(rn)|= sM/2. Therefore, they can be submitted to nonlinear power
amplifiers that are solely characterized by the complex gain coefficients GL,1 and GL,2,
respectively. The two branches are then converted to the RF band and combined to form
the transmitted signal. As mentioned before, the LINC transmitter can be characterized
by a single bandpass nonlinearity. This nonlinearity can be expressed by the function

fbp(rn) =GL,1fL,1(rn) +GL,2fL,2(rn)

= (GL,1 +GL,2)fL,c(rn) + j(GL,1−GL,2)fL,e(rn). (4.27)

Ideally, the complex amplification coefficients associated to each amplifier should be equal.
In those conditions, we have GL,1 =GL,2 and (4.27) yields

fbp(rn) = 2fL,c(rn), (4.28)

i.e., the bandpass nonlinearity turns into an ideal envelope clipping function (see (3.138)).
However, in practice, the amplifiers may present both gain imbalances (i.e., when |GL,1| ,
|GL,2|) and/or phase imbalances (i.e., when arg(GL,1) , arg(GL,2)). In the following, these
gain and phase imbalances are denoted as ∆L,G and ∆L,P , respectively. Fig. 4.31 shows the
AM/AM conversion function associated to a LINC transmitter for different values of ∆L,G
and ∆L,P . From the results depicted in the figure it can be clearly noted that when the
amplifiers are balanced, the nonlinearity associated to a LINC transmitter structure turns
into an envelope clipping. However, when there are gain or phase imbalances, the AM/AM
curve deviates from the clipping function. These “deviations” accentuate the magnitude
of the nonlinear distortion effects, which implies that the analytical characterization of
the transmitted signals may require a very large number of IMPs if the truncated IMP
approach is employed to obtain the autocorrelation of the nonlinearly distorted signal (and
the corresponding PSD). This is illustrated in Fig. 4.32, which shows the PSD associated to
a nonlinearly distorted OFDM signal that passes through an unbalanced LINC transmitter.
The gain imbalance is ∆L,G = 0.1 and the phase imbalance is ∆L,P = 10◦. The normalized
clipping level is sM/σ = 1.0 and each OFDM signal has Nu = 256 and O = 4. In this figure
it can be seen that a very large number of IMPs is required to obtain a good match between
the theoretical and the simulated PSDs. When nγ = 10, the error is approximately 3 dB
and can even reach a value around 6 dB when nγ = 5. In fact, the error only becomes
negligible when nγ = 18, i.e., when a very large number of IMPs is taken into account.
However, when equivalent nonlinearities are used to substitute the nonlinear functions
associated to the LINC process, accurate PSDs can be obtained even with γmax = 8,
as can be seen in Fig. 4.33. These results were generated with the same transmission
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Figure 4.31: AM/AM conversion function associated to the bandpass nonlinearity of a
LINC transmitter
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Figure 4.32: PSD of a nonlinearly distorted OFDM that passes through an imbalanced
LINC transmitter considering the truncated IMP approach.

scenario of the previous figure, considering not only the truncated IMP approach, but
also the equivalent nonlinearity approach with same number of IMP, i.e., nγ = γmax = 8.
Clearly, the use of the equivalent nonlinearity allows to obtain considerable accuracy gains
regarding the spectral characterization of the nonlinearly distorted signals. In fact, to
obtain the same level of accuracy using the truncated IMP approach, one may need to
consider the contribution of more 10 IMPs, i.e., a value of nγ = 18 should be considered
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Figure 4.33: PSD associated to a nonlinearly distorted OFDM that passes through an
imbalanced LINC transmitter structure considering different approaches.

(see Fig. 4.32).

The expression used to obtain the optimum asymptotic performance of (4.19) may
present accuracy problems for very strong nonlinearities such as the ones associated to
the LINC process. For this reason, we also consider the use of equivalent nonlinearities
to obtain the optimum asymptotic performance. Fig. 4.34 shows the average asymptotic
gain associated to the optimum detection of OFDM schemes that have LINC transmitters
obtained both by simulation and theoretically. The two amplifying branches have ∆L,G = 0
and different values of ∆L,P . From the results shown in this figure, the existence of potential
asymptotic gains can be confirmed. Although when ∆L,G = ∆L,P = 0, the use of (4.19)
with the conventional LINC nonlinearity leads to accurate results, this is not the case
when amplifiers are unbalanced, since the theoretical asymptotic gain differs considerably
from the simulated one, especially for low clipping levels. However, when equivalent
nonlinearities are considered, the theory matches the simulation and there is a maximum
error of only approximately 0.2 dB in the worst case, i.e, when ∆L,P = ±10◦. Fig. 4.35
shows the average asymptotic gain associated to the optimum detection for ∆L,P = −5◦

and different values of ∆L,G. Once again, it can be noted that the use of equivalent
nonlinearities allows to obtain better estimates of the potential asymptotic gains than
when the conventional LINC nonlinearities are considered. It should also be pointed
out that when we have gain imbalances, the corresponding nonlinear distortion effects
are stronger, which means that the optimum performance may present higher potential
asymptotic gains.
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Figure 4.34: Average asymptotic gain associated to the optimum detection considering
∆L,G = 0 and different values of ∆L,P .
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Figure 4.35: Average asymptotic gain associated to the optimum detection considering
∆L,P =−5◦ and different values of ∆L,G.

4.3 Constant-Envelope OFDM

In addition to the LINC and the CEPB-OFDM techniques, the constant envelope (CE)-
OFDM was recently proposed as a highly efficient technique for extremely high frequency
(EHF) communications [113], [114]. As the name indicates, CE-OFDM signals have
constant envelope, since they are generated by submitting a real-valued OFDM signal to
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a phase modulator. This means that they can be amplified by highly efficient, nonlinear
power amplifiers such as the ones of class D, E or F. However, since the phase modulator
is a nonlinear device, it can lead to substantial spectral widening due to the out-of-band
radiation levels associated to IMPs. In addition, it can also lead to significant BER
degradation due to in-band nonlinear distortion, that includes an unwanted DC component.
However, as aforementioned, the nonlinear distortion terms (naturally, excluding the DC
component) have information inherent to the transmitted symbols that can be employed
to improve the performance, provided that optimum or even sub-optimum receivers are
employed.

In this section, we present the analytical spectral characterization as well as the perfor-
mance evaluation of CE-OFDM. For this purpose, we take advantage of the Gaussian-like
nature of OFDM signals and employ the results of subsection 3.2.1. To employ those results,
we assume that the phase modulation process is a nonlinear transformation of a conven-
tional OFDM signal. This analytical characterization is then employed to compute the
PSD of CE-OFDM signals. Additionally, using the results of subsection 3.4.4.2, we present
analytical results for the asymptotic optimum performance associated to CE-OFDM [115]–
[117].

The equivalent, subcarrier-level scenario of a CE-OFDM transmitter is depicted in
Fig. 4.36. We considered that each useful subcarrier carries a QPSK symbol. It should

S
f(·)

IDFT DFT

s

Phase Mod.

y

Y

Figure 4.36: Equivalent, subcarrier-level scenario of a CE-OFDM transmitter.

be mentioned that as the corresponding time-domain samples are submitted to a phase
modulation process, they must be real-valued. Therefore, before the addition of zeros
that is inherent to the oversampling operation, the data symbols are constrained to have
Hermitian symmetry, i.e., the frequency-domain samples obey to the following relation

Sk =
{

0, k = 0,Nu/2
SNu−k = S∗k , otherwise.

(4.29)

Under these conditions, after the IDFT, we have a real-valued OFDM signal whose the
samples are represented by s = [s0 s1 ... sN−1]T ∈ CN . Note that between theN subcarriers,
only Nu − 2 are effectively used to transmit data. Therefore, by considering the same
approach of (4.3), it can be shown that the variance of the real and imaginary parts of
each sample sn is σ2 = (Nu−2)/N2. These time-domain samples are submitted to a phase
modulator, that is represented by the following nonlinear function

f(sn) = exp(j2πhsn/σ), (4.30)
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where h denotes the modulation index. Naturally, regardless of the modulation index,
the resultant CE-OFDM signal has a PAPR of 0 dB. Nevertheless, the phase modulation
process leads to nonlinear distortion effects on the transmitted signals. Therefore, the
impact of this nonlinear distortion on the system’s performance should be evaluated.
In the following, we consider the truncated IMP approach for obtaining the analytical
characterization of CE-OFDM signals. Fig. 4.37 shows the simulated and theoretical PSD
of a CE-OFDM signal with Nu = 128, O = 4 and modulation index 2πh = 2.0. In this
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Figure 4.37: PSD associated to a CE-OFDM signal considering the truncated IMP approach
and different values of nγ .

figure it can be seen that when nγ = 8, the theoretical PSD matches the simulated PSD
with an error near 0 dB. As expected, the accuracy is as higher as higher is the number of
considered IMPs, i.e., it increases with nγ . The existence of a DC component should also be
noted. This DC component, introduced by the phase modulation process, can substantially
degrade the system’s performance. As can be seen in Fig. 4.38, the power of the DC
component is higher for lower modulation indexes. In fact, under these conditions, the
signal at the output of the nonlinearity is essentially a complex exponential with constant
and almost zero phase. Fig. 4.39 shows the simulated and theoretical PSD associated
to the distortion term of a CE-OFDM signal considering Nu = 64, different oversampling
factors and nγ = 8. Regardless of the oversampling factor O, it can be confirmed that
the accuracy of the truncated IMP approach is very high. This high accuracy can also
be observed in Fig. 4.40, which shows the PSD of the distortion term under the same
conditions of the previous figure, but considering different modulation indexes.

Let us now focus on the detection procedures of CE-OFDM schemes. Conventionally,
the detection of CE-OFDM signals involves a phase detector, i.e., involves a phase demod-
ulation process [113]. However, receivers based on a phase demodulation process are only
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Figure 4.38: Evolution of the power spent in the DC component in a CE-OFDM transmis-
sion.
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Figure 4.39: PSD associated to the distortion term of a CE-OFDM signal considering
different oversampling factors.

suitable when the phase does not have excursions over ±π, which can not always be guar-
anteed, especially, when large modulation indexes are considered. This is demonstrated
in Fig. 4.41 where one can clearly see that the probability of having phase excursions
outside the interval [−π,π] increases with the modulation index. On the other hand, it is
worth to mention that when lower modulation indexes are employed, the power associated
to the DC component can be very large, which leads to low energy inefficiency and large
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Figure 4.41: Distribution of the phase of CE-OFDM signals considering different modula-
tion indexes.

performance penalties.

As aforementioned, the phase modulation process can be seen as a nonlinear transfor-
mation of a conventional OFDM signal. For this reason, following the results that point out
to performance gains associated to the optimum detection of nonlinearly distorted OFDM
signals, it is important to evaluate what is the optimum performance of CE-OFDM. In
the following, the asymptotic gains associated to optimum detection of CE-OFDM signals
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are studied considering both AWGN and frequency-selective channels.
As demonstrated in subsection 3.4.4, the average asymptotic gain associated to the

optimum detection of nonlinearly distorted, real-valued OFDM signals is given by

G(µ) =
µ(dadjσ)2

4

+∞∫
−∞

∣∣f ′(s)∣∣2 p(s)ds
+∞∫
−∞

|f(s)|2 p(s)ds

. (4.31)

Considering the specific case of the phase modulation process and replacing f(s) by (4.30)
(and f ′(s) by its corresponding derivative) in (4.31), we have

G(µ) =
µ(dadjσ)2

4

(2πh
σ

)2 +∞∫
−∞

p(s)ds

= µ(πhdadj)2. (4.32)

Fig. 4.42 shows the simulated and theoretical asymptotic gain (obtained with (4.32)) for
CE-OFDM signals with Nu = 512, O = 4, different values of µ and different modulation
indexes. From the results depicted in the figure one can see that, regardless of the number
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Figure 4.42: Asymptotic gain associated to the optimum detection of CE-OFDM signals
obtained both by simulation and theoretically considering different values of µ.

of µ bit differences between the signals, (4.32) presents high accuracy. Additionally, it
can be noted that the average asymptotic gain associated to the optimum performance of
CE-OFDM signals is strongly related with the modulation index h. Actually, for low values
of 2πh, we do not have a gain but a degradation instead. When 2πh increases, however,
the magnitude of the nonlinear distortion effects increases and the power associated to the
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DC component decreases, leading to gains relatively to the performance of conventional,
linear OFDM schemes.

Let us now compare the optimum asymptotic performance with the performance of the
conventional phase demodulator. The nth time-domain sample of the phase modulated
signal is

yn = f(sn) = exp(j2πhsn/σ). (4.33)

For ideal AWGN channels, the received signal is

zn = yn + νn

= exp(j2πhsn/σ) + νn, (4.34)

where νn is the nth noise sample and E[|νn|2] = N0. In the phase demodulation process,
the phase detector extracts the phase of (4.34). After that, a DFT is employed prior to
the detection, that works on a subcarrier-by-subcarrier basis. Note additionally that, by
considering that exp(jx)≈ 1 + jx for low values of x, we can approximate (4.34) as

zn ≈ 1 + j2πhsn/σ+ νn, (4.35)

which is a tight approximation for low modulation indexes. After some lengthy but
straightforward manipulations, it can be shown that the asymptotic BER associated to
the phase demodulation process is approximately given by [113]

Pb ≈Q
(√

(2πh)2 2Eb
N0

)
. (4.36)

From the previous equation, it seems that a receiver based on a phase demodulator is
able to obtain the optimum performance, since, when µ= 1 and QPSK constellations are
considered, (4.32) turns into G(1) = (2πh)2. Thus, considering (3.190), it can be noted that
the optimum asymptotic performance is also given by (4.36). In fact, as demonstrated in
the following, this is only true for low modulation indexes, since the use of high modulation
indexes leads to phase excursions over ±π and substantial performance degradations. For
this reason, the phase detection is only optimum for a limited range of modulation indexes.
This effect is illustrated in Fig. 4.43, which shows the simulated BER associated to the
phase detector, as well as the optimum asymptotic BER, both obtained in ideal AWGN
channels. The CE-OFDM signals have Nu = 512, O = 4 and different modulation indexes
are considered. From the figure it can be noted when the modulation index is small, the
phase detector has approximately the optimum performance (i.e., its performance is given
by (4.36)). However, when 2πh > 0.5, its performance starts to degrade substantially when
compared to the optimum performance. Additionally, for small modulation indexes, it can
be observed that the performance improves with the modulation index. However, this is
not true for higher values of h, since the phase detector’s performance starts to degrade.
In fact, the required Eb/N0 to achieve a target BER of Pb = 10−3 is approximately 10.8
dB when 2πh= 0.75, but increases to a value around 11.6 dB when 2πh= 1.0. Moreover,
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Figure 4.43: Simulated BER associated to the phase detector and optimum asymptotic
BER considering different modulation indexes.

when 2πh = 1.25, we can even observe an accentuated error floor of Pb = 1.3× 10−2,
which is due to the phase excursions beyond the interval [−π,π]. Naturally, due to the
Gaussian nature of the samples sn, phase excursions outside this interval can always
occur, even for small values of h (see Fig. 4.41). However, they become more common
for large modulation indexes. This means that, in practice, the phase detector has an
applicability zone restricted to values where 2πh≤ 0.5. Therefore, the phase detector can
only be employed when the power efficiency is low since, for small modulation indexes, the
power associated to the DC component introduced by the phase modulation process is
high. This justifies the demand for other receivers such as the ones based on the optimum
detection. Note that, regarding the optimum detection, we only have asymptotic gains
relatively to linear OFDM when 2πh > 1.0, which can also be observed in the evolution
of the asymptotic gain shown in Fig. 4.42. Fig. 4.44 shows the required Eb/N0 for
obtaining different target BERs, considering the optimum asymptotic performance and
different modulation indexes. As expected, the higher the modulation index, the higher
the performance gain. In fact, since we only have gains when 2πh > 1.0, the figure clearly
identifies the gains and degradations region.

Let us now consider the optimum asymptotic performance in frequency-selective chan-
nels. Fig. 4.45 shows the distribution of the asymptotic gain associated to the optimum
detection of CE-OFDM signals obtained both by simulation and theoretically with (3.266),
for different modulation indexes. Additionally, in order to promote a fairly comparison
between the linear and nonlinear cases, we also include the distribution of |Hk|2 and de-
note it as “equivalent fading factor”. The CE-OFDM signals have Nu = 512 and O = 4.
The frequency-selective channel has L = 32 uncorrelated multipath components. From
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Figure 4.44: Required Eb/N0 for obtaining a target BER considering the optimum asymp-
totic performance of CE-OFDM and different modulation indexes.

GH(1)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

p
(G

H
(1
))

0

0.5

1

1.5

2

2.5

3
: Theory

2πh = 0.75

2πh = 1.0

2πh = 1.5

· · · · · · : Simulation
−−− : Equivalent Fading Factor

Figure 4.45: Distribution of the asymptotic gains associated to CE-OFDM schemes in
frequency-selective channels considering different modulation indexes.

the figure, one can note that (3.266) constitutes an accurate expression for obtaining the
distribution of the optimum asymptotic gains. As in the case of ideal AWGN channels, the
asymptotic gains tend to increase with the modulation index, i.e., when the magnitude of
the nonlinear distortion effects increase. In fact, although with lower modulation indexes
the gain can be smaller than 1, it is substantially better than the equivalent fading factor
that is the “gain” associated to linear OFDM transmissions. Fig. 4.46 shows the average
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asymptotic BER associated to the optimum detection of CE-OFDM signals obtained with
the distributions of the asymptotic gain (see (3.197)) and considering Nu = 512, O = 4 and
different modulation indexes. From the depicted results, it can be noted that the optimum
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Figure 4.46: Average asymptotic BER associated to the optimum detection of CE-OFDM
signals in frequency-selective channels for different modulation indexes.

performance can be even better than the performance associated to linear OFDM trans-
missions, where the BER is largely conditioned on the subcarriers that are in deep fade.
As mentioned before, the performance improvements are larger for frequency-selective
channels, since the optimum receiver analyzes the entire OFDM block, being able to take
advantage of the correlation between the subcarriers.

4.4 Amplify-and-Forward Relay OFDM Systems

Relay-based techniques have two main important advantages: (i) they allow significant
robustness against fading and/or (ii) increase the coverage of wireless communication
systems. For this reason, they received considerable attention over the last ten years [118],
[119]. In the literature, two main relay-based techniques can be identified: the amplify
and forward (AF) [118] techniques and the decode and forward (DF) [119] techniques.
Although DF techniques allow better performance in general, they require a more complex
relay, not to mention the existence of higher delays at the relay than AF techniques. In
addition, the simpler AF techniques do not require channel knowledge at the relay. For
this reason, the relay in such techniques can be simply regarded as passive repeater that
not only increases the signal power, but also provides additional multipath diversity.
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AF relay techniques combined with OFDM modulations are being considered for broad-
band wireless systems since they allow simple relay systems suitable for severely time-
dispersive channels. However, due to the large envelope fluctuations of OFDM signals,
these techniques are prone to nonlinear distortion effects that can take place not only
at the transmitter but also at the relay. In this section, we consider OFDM-based AF
relay systems with strong nonlinear distortion effects at both the transmitter and the relay
nodes and we present an analytical method to characterize the corresponding nonlinearly
distorted signals [120].

The model considered for the AF relay OFDM-based system is depicted in Fig. 4.47.
Contrarily to other scenarios previously considered in this work, this nonlinear OFDM

f
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Figure 4.47: AF relay system model.

system has two bandpass nonlinearities(3), that are denoted as f (A)
bp (·) and f (B)

bp (·). These
two nonlinearities model the transmitter and the relay amplifiers, respectively, and are
assumed to be ideal envelope clippings (see (3.138)).

Let us focus on the system’s description regarding the characterization of the signals
along the AF relay system. Each OFDM signal has Nu = 256 useful subcarriers with
QPSK constellations (E

[
|Sk|2

]
= 2) and oversampling factor O = 4. Regarding the time-

domain, the variance of its real and imaginary parts is σ2. At the transmitter’s amplifier
output, the time-domain samples are represented by y(A) = [y(A)

0 y
(A)
1 y

(A)
2 ... y

(A)
N−1]T ∈ CN .

Fig. 4.48 shows the simulated and theoretical PSD of the nonlinearly distorted OFDM
signal after being amplified in the transmitter, considering a normalized clipping level
of sM/σ = 1.0. Clearly, the PSD obtained theoretically is almost equal to the PSD
obtained by simulation. After the amplification process in the transmitter, the nonlinearly
distorted OFDM signal is sent to a time-dispersive channel characterized by the channel
matrix H(A) = diag

(
[H(A)

0 H
(A)
1 H

(A)
2 ... H

(A)
N−1] ∈ CN

)
(see (2.75)). This channel models

the link between the transmitter and the relay and is characterized by I(A) uncorrelated
multipath components. In addition, its frequency response are defined in such a way that
E[|H(A)

k |
2] = 1. After pass through the frequency-selective channel, the signal associated

to the kth subcarrier can be written as

B
(A)
k = α

(A)
bp H

(A)
k Sk +H

(A)
k D

(A)
k , (4.37)

(3)In this section the superscript (A) and (B) are associated to the link between the transmitter and the
relay and the link between the relay and the receiver, respectively.

156



4.4. AMPLIFY-AND-FORWARD RELAY OFDM SYSTEMS

k/N
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

G
ỹ
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Figure 4.48: PSD associated to the nonlinearly distorted signal at the transmitter.

where α(A)
bp is the scale factor associated to f (A)

bp (·). The AWGN that is added to (4.37) is
characterized in the frequency-domain by the block N(A) = [N (A)

0 N
(A)
1 N

(A)
2 ... N

(A)
N−1]T ∈

CN , where E[|N (A)
k |2] =N0 is chosen according to a specific channel SNR. After addition

of AWGN, the time-domain samples of the resultant signal are represented by r(A) =
[r(A)

0 r
(A)
1 r

(A)
2 ... r

(A)
N−1]T ∈ CN . This signal is then amplified in the relay node and sent to

the receiver. The link between the relay and the receiver is modeled as a time-dispersive
channel with frequency responses H(B) = diag

(
[H(B)

0 H
(B)
1 H

(B)
2 ... H

(B)
N−1] ∈ CN

)
, char-

acterized by I(B) multipath rays and E[|H(B)
k |2] = 1. The frequency responses of the

second block of AWGN are represented by N(B) = [N (B)
0 N

(B)
1 N

(B)
2 ... N

(B)
N−1]T ∈ CN and

E
[∣∣∣N (B)

k

∣∣∣2]=N0.
It should be noted that, although the samples of the nonlinearly distorted signal at

the transmitter’s output y(A) = [y(A)
0 y

(A)
1 y

(A)
2 ... y

(A)
N−1]T ∈ CN do not have a Gaussian

distribution, after passing through the frequency-selective channel between the transmitter
and the relay, H(A), they become approximately Gaussian. In fact, the variance of the
real and imaginary parts of the resultant samples b(A)

n is given by the power of the signal
at the nonlinearity’s output, i.e.,

σ2
b =

+∞∑
γ=0

P
bp,(A)
2γ+1 , (4.38)

where P bp,(A)
2γ+1 represents the power of the IMP of order γ at the output of the bandpass

nonlinearity f (A)
bp (·). Fig. 4.49 demonstrates the validity of this Gaussian approximation

by showing the PDF associated to the real part of the samples b(A)
n considering different

values of I(A). Clearly, even when a low-to-moderate number of multipath components

157



CHAPTER 4. APPLICATIONS

Re(b
(A)
n )

-0.05 0 0.05

p
(R

e(
b(

A
)

n
))

0

5

10

15

20

25

30

35

40

45

: N (0, σ2
b )

· · · · · · : p(Re(b
(A)
n ))

I (A) = 4

I (A) = 16

Figure 4.49: Distribution of the samples of the nonlinearly distorted signal after passing
through a frequency-selective channel.

is considered, the PDF is almost Gaussian. To characterize the distortion level between
the transmitter and the relay, we define the equivalent signal-to-noise plus self-interference
ratio (ESNR) associated to the kth subcarrier as

ESNR(A)
k =

|α(A)
bp H

(A)
k |

2E
[
|Sk|2

]
∣∣∣H(A)

k

∣∣∣2E[∣∣∣D(A)
k

∣∣∣2]+E
[∣∣∣N (A)

k

∣∣∣2]

=

∣∣∣α(A)
bp H

(A)
k

∣∣∣2
∣∣∣H(A)

k

∣∣∣2 E
[∣∣∣D(A)

k

∣∣∣2]
E[|Sk|2] + N0

E[|Sk|2]

. (4.39)

Fig. 4.50 shows the simulated and the theoretical ESNR(A)
k considering O = 4, Nu = 512,

I(A) = 128, SNR = 10 dB, sM/σ = 1.0 and a given channel realization. The theoretical
evolution of the spectral distribution of the nonlinear distortion terms E[|D(A)

k |
2] was

obtained through the truncated IMP approach. From the results depicted in the figure,
one can that the simulated and theoretical results match. Additionally, it can also be seen
that evolution of ESNR(A)

k follows closely the evolution of the channel frequency responses.
Considering the Gaussian approximation validated in (4.49), it can be noted that the
samples of the input to the relay’s nonlinearity r(A) = [r(A)

0 r
(A)
1 r

(A)
2 ... r

(A)
N−1]T ∈ CN are

approximately Gaussian distributed with variance σ2
r = σ2

b+σ2
n, where σ2

n =N0/(2N). This
means that the signal at the output of the relay’s amplifier can be statistically characterized
considering the truncated IMP or the equivalent nonlinearity approach. At the output of
the relay’s amplifier, the signal associated to the kth subcarrier is given by

Y
(B)
k = α

(B)
bp α

(A)
bp H

(A)
k Sk +α

(B)
bp H

(A)
k D

(A)
k +α

(B)
bp N

(A)
k +D

(B)
k , (4.40)

158



4.4. AMPLIFY-AND-FORWARD RELAY OFDM SYSTEMS

k/N
-0.5 0 0.5

d
B

-25

-20

-15

-10

-5

0

5

10

15

20

25

: ESNR (Simulation)
−−− : ESNR (Theory)

· · · · · · :
∣

∣

∣
H

(A)
k

∣

∣

∣

2

Figure 4.50: Evolution of ESNR(A)
k and
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k

∣∣∣2 when the channel SNR is 10 dB.

where α(B)
bp and D(B)

k denote the scale factor and the nonlinear distortion term associated

to the relay’s nonlinearity. Fig. 4.51 depicts the evolution of
∣∣∣H(A)

k

∣∣∣2, as well as the PSD
associated distortion component produced by the relay’s amplifier, Gd̃(B),bp(k), considering
O = 4, Nu = 256, I(A) = 64 and sM/σ = sM/σr = 1.5. From the figure, one can note that
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Figure 4.51: Evolution of |H(A)
k |

2 and Gd̃(B),bp(k) when the channel SNR is 10 dB.

due to the existence of intermodulation products, the PSD associated to the distortion term
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E[|D(B)
k |

2] is approximately constant, which means that it is approximately independent of
|H(A)

k |
2. Once again, one can also observe that there is a good match between the simulated

and the theoretical PSDs. Fig. 4.52 presents the PSD of the nonlinearly distorted signal
after the relay’s amplifier, i.e., the PSD of (4.40), obtained both theoretically and by
simulation. It is considered that O = 4, Nu = 128, SNR = 10 dB and sM/σ = sM/σr = 1.0.
At the receiver, the signal at the kth subcarrier is
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Figure 4.52: PSD of the nonlinearly distorted signal after the relay’s node amplifier when
the SNR = 10 dB.

Z
(B)
k =H

(B)
k Y

(B)
k +N

(B)
k

= α
(B)
bp α

(A)
bp H

(A)
k H

(B)
k Sk︸                         ︷︷                         ︸

Useful term

+α
(B)
bp H

(A)
k H

(B)
k D

(A)
k︸                      ︷︷                      ︸

Distortion term

+α
(B)
bp H

(B)
k N

(A)
k +H

(B)
k D

(B)
k +N

(B)
k︸                                            ︷︷                                            ︸

Distortion term

.

(4.41)

Therefore, the ESNR associated to the kth subcarrier is given by

ESNR(B)
k =

∣∣∣α(B)
bp α

(A)
bp H

(A)
k H

(B)
k

∣∣∣2E[|Sk|2]∣∣∣α(B)
bp H

(A)
k H

(B)
k

∣∣∣2E[∣∣∣D(A)
k

∣∣∣2]+
∣∣∣H(B)

k

∣∣∣2(|α(B)
bp |2N0 +E

[∣∣∣D(B)
k

∣∣∣2])+N0

.

(4.42)

Fig. 4.53 shows the ESNR(B)
k considering Nu = 256, O = 4, I(A) = I(B) = 64, sM/σ =

sM/σr = 1.5 and SNR = 10 dB. The values of E
[∣∣∣D(B)

k

∣∣∣2] and E
[∣∣∣D(A)

k

∣∣∣2] were obtained
both by simulation and theoretically. From the figure it can be noted that the distortion
levels at the subcarrier level can be computed analytically with very high accuracy, this
can be explained by the high accuracy associated to the analytical characterization of the
nonlinear distortion terms associated to both nonlinearities.
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Figure 4.53: ESNR(B)
k obtained theoretically and by simulation when both channels have

an SNR of 10 dB.

4.5 MIMO-OFDM and Massive MIMO-OFDM Systems

The larger and larger demands for higher throughputs and stronger link reliabilities have
become key goals for present and future wireless broadband communications systems. By
exploiting the spatial domain, multiple antenna systems such as MIMO systems were
proposed to achieve diversity, higher data-rates, and/or increased capacity, and are being
widely used in the modern wireless transceivers.

In a MIMO system, multiple antennas can be placed at the transmitter and at receiver.
These antennas should be spatially separated to promote and enrich the spatial diversity
between the different streams. Essentially, MIMO techniques can be used to obtain: (i)
a diversity gain to mitigate the fading or (ii) an increased capacity. Depending on the
intended goal, different MIMO implementations can be adopted. To maximize the spatial
diversity and the power efficiency, space-time techniques such as space time block codes
(STBC) [121], [122] can be considered. On the other hand, to fully maximize the capacity,
techniques such as V-Bell Laboratories layered space time (BLAST) [13], [123] may be
implemented.

Initially, MIMO techniques were proposed for flat-fading channels, although they were
later extended to frequency-selective channels [124], [125]. As seen in chapter 2, OFDM can
convert frequency-selective channels into a set of parallel flat-fading channels. Therefore,
the combination of MIMO with OFDM arises naturally, allowing to explore the advantages
of MIMO and OFDM in an unified way. This combination makes possible the attainment
of high data-rates in wireless multipath channels, where there is strong frequency-selective
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fading. For this reason, MIMO-OFDM schemes are employed in different wireless commu-
nication standards [25], [27], [126].

Recently, to take further advantage of the gains inherent to multiple antenna schemes,
the so-called massive MIMO systems [127] have been proposed. In these systems, a very
large number of antenna elements (a number that can range from several tens to even
hundreds) are placed at the transmitter and receiver. However, the use of a very large
number of antennas can lead to implementation difficulties and complex transmission
chains, not to mention the complexity associated to the signal processing schemes, that
grows rapidly with the number of antennas. Nevertheless, despite of these implementation
challenges, massive MIMO is being proposed for 5th generation (5G) cellular networks
[128] and a large attention is being given to low-complexity, massive MIMO systems [14],
[129]. In this section, we are interested in the analytical characterization of MIMO and
massive MIMO systems impaired by strong nonlinear distortion effects.

Let us start by introducing a MIMO system composed by T transmit antennas and
R receive antennas. This MIMO system employs a singular value decomposition (SVD)
technique [130]. This combination leads to capacity gains that arise from the exploitation
of the spatial multiplexing capability that is inherent to multiple antenna systems. Indeed,
if the channel is known at the transmitter and receiver, then the SVD allows to convert
the frequency-selective channel associated to a given MIMO-OFDM system into a set of
narrow-band, flat-fading channels at the “subcarrier-level”, which is achieved by using
unitary pre-processing and decoding matrices at the transmitter and receiver, respectively.
Under these conditions, the MIMO-OFDM system can be regarded as a set of independent
SISO-OFDM(4) systems that transmit individual data streams in parallel, which means
that large capacity gains can be obtained, specially when massive MIMO-OFDM systems
are considered. Note that with the SVD, a value up to P = min(T,R) independent OFDM
data streams can be multiplexed onto the MIMO channel. In general, our scenario admits
T > R, which means that P =R. This MIMO system is represented in Fig. 4.54.

We consider a wideband, frequency-selective channel with uncorrelated Rayleigh fading
and L resolvable taps that is represented by

h(t) =
L∑
l=1

h(l)δ(t− τl), (4.43)

where τl and h(l) represent the delay and the channel matrix associated to the lth tap,
respectively. For the lth path, the R×T channel matrix is represented as

h(l) =


h

(l)
1,1 h

(l)
1,2 · · · h

(l)
1,T

h
(l)
2,1 · · · · · · h

(l)
2,t

... · · · . . .
...

h
(l)
R,1 · · · · · · h

(l)
R,T

 , (4.44)

(4)It should be noted that the analysis and conclusions presented previously regarding the analytical
characterization of nonlinearly distorted SISO-OFDM systems hold for each individual “stream” of the
MIMO-OFDM system.
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Figure 4.54: MIMO-OFDM scenario.

where h(l)
r,t is the Rayleigh fading coefficient between the rth receive antenna and the tth

transmit antenna for the lth tap.
Let us now analyze the transmitter and receiver blocks of Fig. 4.54 in detail. Firstly,

we consider a linear MIMO-OFDM transmitter and then we extend our results to the
nonlinear transmission case. Each one of the P OFDM streams is composed by Nu useful
data symbols plus Ng = Nu(O − 1) subcarriers for oversampling purposes. The total
number of subcarriers of each stream N = Ng +Nu. The “global” OFDM block to be
transmitted is represented by the P ×N matrix

S =


S1,1 S1,2 · · · S1,N

S2,1 · · · · · · S2,N
... · · · . . .

...

SP,1 · · · · · · SP,N

 . (4.45)

Each data symbol is selected from a QPSK constellation. Without loss of generality, we
consider normalized QPSK symbols of the form ±1± j. Therefore, the symbol to be
transmitted on the kth subcarrier of the pth stream is defined as

Sp,k =
{
±1± j, N−Nu

2 ≤ k ≤ N−Nu
2 +Nu

0, otherwise.
(4.46)

To represent the set of data symbols transmitted on the kth subcarrier, we use the block
S(k) = [S(k)1 S(k)2 · · · S(k)P ]T ∈ CN , where S(k)p = Sp,k. On the other hand, we define
the set of data symbols associated to the pth stream as S(p) = [S(p)

1 S
(p)
2 · · · S(p)

N ]T ∈ CN ,
where S(p)

k = Sp,k. The time-domain version of the pth OFDM stream is given by the
IDFT of S(p), i.e., s(p) = F−1S(p) = [s(p)

1 s
(p)
2 · · · s(p)

N ]T ∈ CN . As in the case of a single
OFDM stream (see (2.26)), the real and imaginary part of the time-domain samples s(p)

n

have a zero-mean Gaussian distribution with variance σ2.
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As mentioned in the previous section, the use of OFDM together with a proper CP
larger than the channel impulsive response L, allows to convert a given frequency-selective
channel into a set of flat-fading channels. Therefore, the MIMO frequency-selective channel
represented in (4.43) can be decomposed into N flat-fading channels at the subcarrier level.
Under these conditions, the corresponding channel associated to the kth subcarrier is
characterized by the R×T matrix

H(k) =


H(k)1,1 H(k)1,2 · · · H(k)1,T

H(k)2,1 · · · · · · H(k)2,T
... · · · . . .

...

H(k)R,1 · · · · · · H(k)R,T

 . (4.47)

Without loss of generality, we assume a unitary channel gain in each subcarrier, i.e.,
E[|H(k)

r,t |2] = 1. The main purpose of employing the SVD technique is to decouple the
MIMO channel into several parallel channels for spatial multiplexing. In order to do
that, the channel matrix associated to the kth subcarrier H(k) is decomposed as the
multiplication of three matrices, i.e.,

H(k) = U(k)Λ(k)VH(k), (4.48)

where U(k) and VH(k) are two unitary matrices used for decoding and precoding op-
erations, respectively, and Λ(k) = diag([Λ(k)1 Λ(k)2 · · · Λ(k)P ]) is a diagonal matrix
composed by P non-zero singular values of H(k) in decreasing order. Λ(k)p represents the
“channel gain” associated to the pth stream of kth subcarrier. To obtain the block of data
symbols to be transmitted, the set of data symbols associated to the kth subcarrier S(k)
is precoded by the T ×R matrix V(k), resulting

X(k) = V(k)S(k), (4.49)

where X(k) = [X(k)1 X(k)2 · · · X(k)T ]T ∈ CT denotes the set of precoded data symbols
associated to the kth subcarrier. On the other hand, the tth OFDM stream is denoted
as X(t) = [X(t)

0 X
(t)
2 · · · X(t)

N−1]T where X(t)
k =X(k)t and, regarding the time-domain, the

samples of that stream are represented by the block x(t) = F−1X(t) = [x(t)
0 x

(t)
2 · · · x

(t)
N−1]T ∈

CN . After the precoding process, it should be noted that the real and imaginary parts of
x

(t)
n are still Gaussian distributed. However, their variance is given by σ2

x, where

σ2
x = R

T
σ2. (4.50)

Fig. 4.55 shows the distribution of the real part of the time-domain samples of a given
OFDM stream after the precoding operation, considering R= 2 and different values of T .
Clearly, the Gaussian approximation for the distribution of the samples of the precoded
OFDM signal is very tight. The variance of this distribution is dependent on the ratio
R/T and equal to the variance of the OFDM signal before the precoding operation if
T = R. After the precoding operation, the T OFDM streams are amplified and sent to
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Figure 4.55: PDF of the real part of the time-domain samples of a given OFDM stream
considering R= 2 and different values of T .

a frequency-selective channel (see (4.43)). At the subcarrier level, we may represent the
received signal as W(k) = [W (k)1 W (k)2 · · · W (k)R]T ∈ CR, where

W(k) = H(k)X(k) + N(k)

= H(k)V(k)S(k) + N(k)

= U(k)Λ(k)VH(k)V(k)S(k) + N(k)

= U(k)Λ(k)S(k) + N(k), (4.51)

with N(k) = [N(k)1 N(k)2 · · · N(k)R]T ∈ CR denoting the block of frequency-domain
AWGN noise samples associated to the kth subcarrier, where E[|N(k)r|2] = 2σ2

N . At the
reception, the post-processing operation consists in a multiplication of the received signal
W(k) by the R×R decoding matrix UH(k), resulting

Z(k) = UH(k)W(k)

= UH(k)U(k)Λ(k)S(k) + UH(k)N(k)

= Λ(k)S(k) + UH(k)N(k)︸            ︷︷            ︸
N′(k)

= Λ(k)S(k) + N′(k). (4.52)

As the matrix UH(k) is unitary, i.e., U(k)UH(k) = IR, the decoding operation does not
change the power of the noise samples. The equivalent, subcarrier-level model for the
considered linear MIMO-OFDM system employing an SVD technique is depicted in Fig.
4.56. The received signal associated to the kth subcarrier of the pth stream is given by
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Figure 4.56: Equivalent, subcarrier-level model for the linear MIMO-OFDM system con-
sidering the SVD technique.

Z(k)p = Λ(k)pS(k)p +N ′(k)p. (4.53)

In fact, this means that each stream can be regarded as an individual SISO-OFDM
stream with flat-fading, where the flat-fading coefficient of the kth subcarrier of the pth
stream is |Λ(k)p|2. Indeed, there is an equivalent, subcarrier-level model similar to the one
represented in Fig. 2.11 for each one of the streams. After some lengthy but straightforward
manipulations, it can be shown that the BER associated to a given channel realization
can be written as

Pb(H)≈ 1
NuP

Nu∑
k=1

P∑
p=1

Q

(√
|Λ(k)p|2

2Eb
N0

)
. (4.54)

Fig. 4.57 shows the average BER of a MIMO-OFDM system with R= 2 receive antennas,
a variable number of transmit antennas T , and several channel realizations with L =
64 multipath components. The OFDM signals have Nu = 64 and O = 1. With these
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Figure 4.57: Average BER of a MIMO-OFDM system with SVD considering R = 2 and
different values of T .

combinations of T and R, we can have up to P =R streams spatially multiplexed in the
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same MIMO channel. From the results depicted in the figure, it can be seen that the BER
considerably decreases as the number of transmit antennas increase for a fixed number of
streams, since the reliability of each link increases. When T =R= 2, the BER is identical
to the one associated to a SISO-OFDM system and, to obtain a target BER of Pb = 10−3,
we need an Eb/N0 of approximately 23.6 dB. However, the required Eb/N0 decreases to
approximately 7.4 dB and to a value around 0.67 dB to achieve the same BER when T = 4
and T = 8, respectively.

Let us now consider a nonlinear MIMO-OFDM system where there is a nonlinear power
amplifier (otherwise stated, modeled by an envelope clipping operation with clipping level
sM/σx) in each transmitter branch and evaluate the impact of the corresponding nonlinear
distortion effects on the system’s performance. In order to do that, we present SIR
expressions for the different OFDM streams, which allows to estimate the performance
penalty associated to each stream [131]. To obtain the SIR of each stream analytically, we
take advantage of the Gaussian nature of the samples of precoded signal.

After the amplification process, the nonlinearly distorted OFDM signal associated to
the tth branch can be represented by

y(t) = α
(t)
bp x(t) + d(t), (4.55)

where d(t) = [d(t)
0 d

(t)
1 · · · d(t)

N−1]T ∈ CN is the set of nonlinear distortion terms of the tth
branch and α(t)

bp is the scale factor associated to the tth branch. This scale factor can be
obtained as

α
(t)
bp =

E
[
x

(t)
n y
∗(t)
n

]
E
[
|x(t)
n |2

] =
E
[
x

(t)
n f
∗(t)
bp

(
x

(t)
n

)]
2σ2

x
. (4.56)

In fact, as it is assumed that the nonlinear characteristics of the power amplifiers are
equal and the power of precoded signals is the same for all branches, the scale factor of
(4.57) is independent of t, i.e., α(t)

bp = αbp ∀ t. Note also that the DFT of (4.55) yields the
frequency-domain version of the signal to be transmitted Y(t) = Fy(t). Once again, from
the Bussgang’s theorem, we can separate Y(t) into two uncorrelated components, leading
to

Y(t) = αbpX(t) + D(t), (4.57)

where D(t) = Fd(t) represents the nonlinear distortion terms along the tth branch. Under
these conditions, the nonlinearly distorted signal associated to the kth subcarrier is

Y(k) = αbpX(k) + D(k), (4.58)

where D(k) = [D(k)1 D(k)2 · · · D(k)T ]T ∈ CT is the set of nonlinearly distorted terms
associated to the kth subcarrier. The nonlinearly amplified signals are transmitted through
the frequency-selective channel represented in (4.47). The equivalent, subcarrier-level
model for the nonlinear MIMO-OFDM system is depicted in Fig. 4.58. In the case of a
nonlinear transmission in each transmitter branch, the received signal for the kth subcarrier
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Figure 4.58: Equivalent, subcarrier-level model for a nonlinear MIMO-OFDM system with
the SVD technique.

expressed in (4.51) becomes

W(k) = H(k)Y(k) + N(k)

= H(k)(αbpX(k) + D(k)) + N(k), (4.59)

and the decoded signal can be expressed as

R(k) = UH(k)W(k) (4.60)

= UH(k)(H(k)Y(k) + N(k))

= UH(U(k)Λ(k)VH(k)Y(k) + N(k))

= UH(U(k)Λ(k)VH(k)
(
αbpX(k) + D(k)

)
+ N(k))

= αbpΛ(k)S(k) +Λ(k)VH(k)D(k)︸            ︷︷            ︸
D′(k)

+N′(k)

= αbpΛ(k)S(k)︸             ︷︷             ︸
Useful part

+ Λ(k)D′(k)︸          ︷︷          ︸
Distortion part

+ N′(k)︸   ︷︷   ︸
Noise part

, (4.61)

where D′(k) = [D′(k)0 D′(k)1 · · · D′(k)P ]T ∈ CC andN′(k) = [N ′(k)0 N ′(k)1 · · · N ′(k)P ]T ∈
CC represent the set of equivalent nonlinear distortion and noise terms, respectively. As
the detection is made in frequency-domain, we are specially interested on the spectral
characterization of nonlinearly distorted OFDM signals after the SVD decomposition. In
the following, results of the SIR after the decoding process are shown. The SIR is obtained
as the ratio between the useful and the distortion part of the decoded signal (see (4.60))
and, for a given subcarrier k and stream c, is given by [131]

SIRMIMO
k,p =

|αbp|2|Λ(k)p|2E
[
|S(k)p|2

]
|Λ(k)p|2E [|D′(k)p|2]

=
|αbp|2E

[
|S(k)p|2

]
E


∣∣∣∣∣∣
T∑
t=1

V H(k)p,tD(k)t

∣∣∣∣∣∣
2

. (4.62)

For performance evaluation purposes, it would be interesting to compare the SIR of a
given stream of a nonlinear MIMO-OFDM system with the SIR associated to a nonlinearly
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distorted SISO-OFDM signal with the same power and that passes through the same
nonlinearity. In fact, it can be shown that the SIR associated to a given stream of a
nonlinear MIMO-OFDM system decreases with the number of transmit antennas, provided
that the number of streams is fixed [131]. Indeed,

E


∣∣∣∣∣∣
T∑
t=1

V H(k)p,tD(k)t

∣∣∣∣∣∣
2
≈ T

R
E
[
|D(k)|2

]
, (4.63)

i.e., the distortion levels decrease with the ratio T/R. Therefore, by denoting the spectral
distribution of the nonlinear distortion terms in a SISO-OFDM system as E

[
|D(k)|2

]
, we

have that

SIRSISO
k =

|αbp|2E
[
|S(k)|2

]
E [|D(k)|2] , (4.64)

which means that (4.62) can be also written as

SIRMIMO
k,p ≈

|αbp|2E
[
|S(k)p|2

]
T
RE [|D(k)|2]

= T

R
SIRSISO

k . (4.65)

Fig. 4.59 shows the spectral distribution of the nonlinear distortion term concerning the
first stream(5) (p= 1), i.e., E

[
|D′(k)1|2

]
, for R= 8 and different values of T , as well as the

spectral distribution of the nonlinear distortion term in a SISO-OFDM system. The OFDM
signals have Nu = 256 and O = 4 and the normalized clipping level is sM/σx = 0.5. From
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Figure 4.59: Spectral distribution of the nonlinear distortion term considering a SISO-
OFDM and a MIMO-OFDM system with R= 8 and different values of T .

the results shown in the figure, it can be noted that for R= T = 8, we have T/R= 1 and
(5)This analysis is independent of the stream, since the spectral distribution of the nonlinear distortion

term is equal for all the P streams.
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E
[
|D′(k)1|2

]
≈ E

[
|D(k)|2

]
. On the other hand, it can also be observed that the spectral

distribution of the nonlinear distortion term decreases by a factor of T/R = 1/2, when
T = 16, and by a factor of T/R= 1/4, when T = 32. This confirms that the distortion level
can be greatly reduced when T � R. Fig. 4.60 shows the simulated and the theoretical
evolution of the SIR for the first stream (i.e., for p = 1) considering OFDM signals with
Nu = 256, O = 4, sM/σx = 0.5, R = 1 and several values of T . The frequency-selective
channel has L= 64 multipath components. The figure shows that, regardless of the number
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Figure 4.60: Evolution of SIR for the first stream (p= 1) considering R= 1 and different
values of T .

of transmit antennas, very accurate estimates of the SIR can be obtained theoretically. In
addition, it should be pointed out that the higher the number of transmit antennas, the
better the SIR. In fact, there is a gain relatively to the case when T = 1 and R = 1 (i.e.,
relatively to a SISO-OFDM system) in the SIR, that is approximately given by 10log10(T )
dB, which means that the SIR increases approximately 3 dB when T is doubled. This
effect is also illustrated in Fig. 4.61, where it is shown the theoretical average value of
SIRk, E[SIRMIMO

k ] for different normalized clipping levels and different number of transmit
antennas. As expected, the results shown in the figure show that the average value of SIR
grows when the normalized clipping level increases, since the magnitude of the nonlinear
distortion is lower. Additionally, it can be seen that, regardless of the clipping level, the
SIR augments when T increases, for a fixed number of R streams. Fig. 4.62 shows the PSD
associated to the nonlinear distortion term, the evolution of singular values |Λ(k)|2 and
the SIRk for a given channel realization and considering a MIMO system with T =R= 2.
The OFDM signals have Nu = 256, O = 4 and the normalized clipping level is sM/σx = 0.5.
From the results shown in the figure, it can be seen that although |Λ(k)|2 varies with
frequency, and besides the existence of singular values with low amplitudes (especially the
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Figure 4.62: Evolution of the SIR, power associated to the singular values and distortion at
the detection level considering a MIMO-OFDM system with T =R= 2 and a normalized
clipping level sM/σx = 0.5.

ones associated to the second stream p= 2), the values of SIRk and the distortion at the
detection level have relatively small fluctuations in the frequency (less than 2 dB from the
center of the band to the edge of the band). In addition, SIRk is equal for both streams
(p= 1 and p= 2), which means that even when there are weaker singular values in a given
stream, the corresponding SIRk does not decrease.
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Taking advantage of the conclusions presented above, that suggest that the nonlinear
distortion effects can be reduced with the number of transmit antennas, provided that the
number of streams is fixed we propose, in the following, a very low-complexity, massive
MIMO-OFDM transmitter with T transmit antennas communicating with R receive anten-
nas [132]. Such low complexity is achieved with 1-bit DACs at each transmitting branch
and a low-complexity maximum ratio transmission (MRT) technique for user separation,
which has much lower signal processing requirements than SVD or ZF techniques. Although
the use of 1-bit DACs leads to severe nonlinear distortion effects in the transmitted signals,
we considered a scenario where T � R, showing that, in those conditions, the impact of
the resultant severe nonlinear distortion effects can be mitigated. Fig. 4.63 shows the
equivalent, subcarrier-level model of the system. Note that the quantization operation

S(k) Precoding

HH(k)

Y(k) Channel

H(k)

Z(k)

N(k)

αbb

D(k)

X(k)

Figure 4.63: Equivalent, subcarrier-level scenario of a nonlinear, massive MIMO-OFDM
scheme considering the MRT technique.

is performed at the baseband regarding separately the real and imaginary parts of the
precoded signal. For this reason, the quantization is modeled as a baseband memoryless
nonlinearity. At the quantizer output, we have

Y(k) = αbbX(k) + D(k), (4.66)

where αbb is a real-valued scale factor. Note that, differently from the case of the SVD
decomposition, the precoded signal associated with the kth subcarrier is obtained as

X(k) = HH(k)S(k), (4.67)

i.e., the precoding matrix is HH(k). At reception, the received signal for the kth subcarrier
is

Z(k) = H(k)Y(k) + N(k) (4.68)

= H(k)(αbbX(k) + D(k)) + N(k)

= αbbH(k)HH(k)︸            ︷︷            ︸
P(k)

S(k) + H(k)D(k)︸         ︷︷         ︸
B(k)

+N(k).
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Under these conditions, for the kth subcarrier of the rth user, we have

Z(k)r = αbb

R∑
j=1

P (k)r,jS(k)j +B(k)r +N(k)r (4.69)

= αbbP (k)r,kS(k)j +αbb

R∑
j=1,j,k

P (k)r,jS(k)j︸                           ︷︷                           ︸
Inter-user intereference

+ B(k)r +N(k)r︸               ︷︷               ︸
Nonlinear distortion and noise

,

where

B(k)r =
T∑
j=1

H(k)r,jD(k)j , (4.70)

represents the nonlinear distortion term scaled by the channel frequency responses. As we
are specifically interested in study the impact of the nonlinear distortion on the transmitted
signals, we consider a very large SNR and neglect E[|N(k)r|2]. Under these conditions, the
SIR for the kth subcarrier is

SIRMIMO
k,r =

|αbb|2E[|P (k)r,kS(k)j |2]

E


∣∣∣∣∣∣

R∑
j=1,j,k

P (k)r,jS(k)j

∣∣∣∣∣∣
2
+E[|B(k)r|2]

. (4.71)

According to (4.70), the average value of the nonlinear distortion term can be computed
as

E[|B(k)r|2] = E[B(k)rB(k)∗r ]

= E

 T∑
j=1

H(k)r,jD(k)j

 T∑
j′=1

H(k)r,jD(k)j

∗
= E

 T∑
j=1

T∑
j′=1

H(k)r,jH(k)∗r,j′D(k)jD(k)∗j′

 .
(4.72)

As the nonlinear distortion elements between different transmit branches are uncorrelated,
i.e., E

[
D(k)jD(k)∗j′

]
= 0 for j , j′, we may write

E[|B(k)r|2] = E

 T∑
j=1
|H(k)r,j |2|D(k)j |2


= TE

[
|D(k)r|2

]
. (4.73)

Therefore, the SIR for the kth subcarrier becomes

SIRMIMO
k,r =

|α|2E[|P (k)r,kS(k)r|2]
E[|
∑R
j=1,j,kP (k)r,jS(k)j |2] +TE [|D(k)r|2]

. (4.74)
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Clearly, to avoid interference amongst users, it is required that P (k)r,j = 0 for j , k. In
other words, P(k) should be diagonal, i.e.,

P(k) = βI, (4.75)

where β is a constant. However, in general, the matrix P(k) = H(k)HH(k) is not diagonal.
Nevertheless, when a large number of transmit antennas is considered, i.e., T � R, and
the links between the transmit and receive antennas are uncorrelated, the elements outside
the diagonal are much smaller than the elements inside the diagonal [127]. In fact, when
T �R, the following approximation can be made

P(k)≈ T I, (4.76)

meaning that in such scenarios the interference amongst different users can be almost
neglected. Under these conditions, (4.74) can be rewritten as

SIRMIMO
k,r ≈ |αbb|

2T 2E[|S(k)r|2]
TE [|D(k)r|2] = |αbb|

2TE[|S(k)r|2]
E [|D(k)r|2] . (4.77)

Comparing (4.77) with (4.64), one can note that there is a relation similar to (4.65), i.e.,

SIRMIMO
k,r ≈ T

R
SIRSISO

k , (4.78)

provided that T �R. Fig. 4.64 shows the simulated and theoretical SIR for a given user
(the same results are observed for other users, i.e., for other streams). The theoretical
SIR was obtained by considering the equivalent nonlinearities for obtaining the PSD of
the distortion component. The simulation runs with OFDM signals with Nu = 256 and
O = 4. We present the SIR for massive MIMO-OFDM systems with R = 8 users and
different values of T . Clearly, one can observe that the SIR increases when T increases.
In fact, although the SIR does not increase by a factor of T/R for all values of T , this is
clearly seen for larger values of T (for instance, when T increases from T = 32 to T = 64
or when T increases from T = 64 to T = 128), where the interference amongst users can
be almost neglected (note that, under these conditions (4.76) holds). This means that
even when 1-bit highly nonlinear quantizers are employed, the corresponding nonlinear
distortion effects can haver a low magnitude, provided that T � R. Fig. 4.65 shows
the simulated and theoretical SIR for the first user SIRMIMO

k,1 , considering the impact of
an envelope clipping for PAPR reduction [133], instead of considering a low-resolution
quantization process. The simulation runs with OFDM signals with Nu = 256, O = 4 and
a normalized clipping level of sM/σx = 0.5. The frequency-selective channel has L = 64
multipath components. The massive MIMO-OFDM system has R= 4 and different values
of T . The results show that accurate estimates of the SIR can be obtained. Additionally,
although it can be seen that the SIR does not double when T is doubled for all values
of T , we can observe the validity of (4.78) from a given value of T , since (4.76) becomes
tight for T � R. As an example, it can be noted that when T increases from T = 4 to
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Figure 4.64: Evolution of the SIR for a given user considering R= 8, different values of T
and a 1-bit quantization process.
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Figure 4.65: Evolution of the SIR considering R= 4, different values of T and an envelope
clipping operation.

T = 8, the difference between the two corresponding values of SIRMIMO
k,r is approximately

2.5 dB. However, when T increases from T = 16 to T = 32, the SIR increases almost 3
dB, which also is verified when T is doubled to T = 64. Therefore, it can be concluded
that the magnitude of the nonlinear distortion effects associated to the clipping operation
decreases as T increases, which means that when massive MIMO-OFDM systems and MRT
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techniques are considered, we can have acceptable nonlinear distortion levels even when 1-
bit quantization processes or severe clipping operations are employed. This is an important
result that reveals that the transmitting branches of massive MIMO-OFDM systems may
be composed by non-ideal, low-complexity devices that nonlinearly distorts the signals,
while at the same time one can guarantee that the performance penalty inherent to the
use of such devices is low.

4.6 DMT

DMT schemes are multicarrier schemes employed for baseband data transmission [23].
As other multicarrier signaling techniques, they are very sensitive to nonlinear distortion
effects due to the large envelope fluctuations of their signals. For PAPR reduction in DMT
schemes, clipping techniques are widely used, not only due to their effectiveness, but also
due to their simplicity. However, as the clipping acts separately regarding the real and
imaginary parts of the baseband DMT signal, we do not have envelope clipping functions
(modeled as bandpass memoryless nonlinearities), but instead Cartesian clipping techniques,
modeled as baseband memoryless nonlinearities (see section 3.1.1). Additionally, other
memoryless nonlinearities such as the ones associated to low resolution quantizers can
also take place in DMT transceivers. Therefore, it is very likely that DMT signals face
nonlinear distortion effects. Thus, for performance evaluation purposes, the impact of this
distortion should be accurately characterized. In this section, we consider the analytical
characterization of DMT signals submitted to baseband memoryless nonlinearities and we
present an accurate spectral characterization of nonlinearly distorted DMT signals. In
addition, results regarding the asymptotic optimum performance of nonlinearly distorted
DMT signals are also shown.

Let us start by considering the analytical spectral characterization of quantized DMT
signals. Due to the severeness associated to the quantization operation, especially when
the number of bits of resolution is low, the equivalent nonlinearity approach is considered
(see subsection 3.3.1) [92], [134]. We consider DMT signals with Nu useful subcarriers
and oversampling factor O. The real and the imaginary parts of the time-domain samples
s = [s0 s1 ... sN−1]T ∈ CN are Gaussian distributed with zero mean and variance σ2. The
quantizer is characterized by nb bits of resolution and normalized clipping level sM/σ. Fig.
4.66 shows quantization characteristics with normalized clipping level sM/σ = 1.0 and a
different number of bits of resolution. In fact, the results shown in the figure reveal that
when nb is low, the corresponding nonlinear function associated to the quantization process
has accentuated discontinuities, which might lead to nonlinear distortion effects with a high
magnitude. For this reason, the truncated IMP approach may present convergence and
complexity problems when employed for obtaining the spectral characterization of DMT
signals quantized with a low number of bits of resolution. Fig. 4.67 shows the theoretical
and simulated PSDs of a quantized DMT signal with Nu = 512 and O = 4. The quantizer
has nb = 4 bits of resolution and clipping level sM/σ = 1.0. Clearly, there are accuracy gains
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different number of bits of resolution.
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Figure 4.67: Theoretical and simulated PSD of a quantized DMT signal.

when the equivalent nonlinearity approach is considered for the theoretical computation of
the PSD. In fact, it can be observed that the maximum error between the simulated and the
theoretical PSDs is approximately 6 dB when the truncated IMP approach is considered.
However, this error decreases to approximately 1 dB when an equivalent nonlinearity is
considered to substitute the conventional quantization characteristic. Fig. 4.68 shows the
maximum error between the theoretical and simulated PSDs considering a quantizer with
a normalized clipping level of sM/σ = 2.0 and different resolutions. Clearly, when the
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Figure 4.68: Maximum error between the simulated and theoretical PSDs of a quantized
DMT signal considering a quantization process with different bits of resolution.

number of bits of resolution decreases, the nonlinearity becomes more severe, which means
that the distortion is higher and a larger number of IMPs should be considered for the
characterization of the nonlinearly distorted signals. Additionally, this figure confirms that
the equivalent nonlinearity approach presents much more accuracy than the truncated IMP
approach. In fact, when the IMP approach is considered, we can observe the existence of
convergence problems that are traduced by the existence of “error floors” in the figure. For
instance, when nb = 5 bits of resolution are considered, the error floor is around 7.6 dB.
However, this error can reach a value of approximately 13 dB and 18.5 dB when nb = 4
and nb = 3, respectively. This means that even increasing the number of IMPs, we might
be not able to improve the accuracy of the corresponding PSD. On the other hand, when
the equivalent nonlinearity approach is considered, it can be noted that this maximum
error decays at a much more higher “rate”, not to mention that it tends do be 0, which
means that the simulated and theoretical PSDs tend to match and we do not have error
floors as when the truncated IMP approach is employed.

In the following, results concerning the optimum detection of nonlinearly distorted
DMT signals are presented. The memoryless nonlinearity considered here is a Cartesian
clipping with normalized clipping level sM/σ, whose the nonlinear function is represented
by

f(s) =


sM/σ, s > sM/σ

s, −sM/σ ≤ s≤ sM/σ
−sM/σ, s <−sM/σ.

(4.79)

As demonstrated in subsection 3.4.4, the average asymptotic gain associated to the opti-
mum detection of multicarrier signals impaired by complex-valued, baseband nonlinearities
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in AWGN channels can be obtained as

G(1) =
(dadjσ)2

4

+∞∫
−∞

f
′2 (s)p(s)ds

+∞∫
−∞

f2(s)p(s)ds

. (4.80)

Fig. 4.69 shows the asymptotic gain associated to a clipped DMT signal, considering
different normalized clipping levels sM/σ, Nu useful subcarriers and oversampling factor
O = 4. This figure confirms the high accuracy of (4.80). This accuracy increases with the
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Figure 4.69: Average asymptotic gain associated to the optimum detection of clipped DMT
signals considering different values of Nu.

number of subcarriers, which is justified by the higher accuracy of the Taylor approximations
employed to obtain (4.80). Fig. 4.70 shows the average value of the asymptotic gain
considering the same conditions of the previous figure, but including also scenarios where
the DMT signals differ in more than 1 bit (see the expression for G(µ) in (3.241)). From
the results shown in the figure, one can note that (4.80) is also accurate when µ > 1,
which is the typical scenario of DMT schemes employing channel coding mechanisms. This
reveals that even in those scenarios the optimum performance can be a good alternative
to the conventional detection. Fig. 4.71 shows the potential asymptotic gain associated
to the optimum detection of clipped DMT signals in frequency-selective channels. The
gain distribution was obtained with (3.266). From the figure, it can be noted that the
optimum performance in frequency-selective channels can be substantially better than the
performance associated with the conventional, linear DMT schemes. This can be observed
by comparing the distribution of the asymptotic gain with the distribution of the equivalent
fading factor (i.e., the distribution of |Hk|2). In fact, although the asymptotic gain can be
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Figure 4.70: Average asymptotic performance gain associated to the optimum detection
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Figure 4.71: Distribution of the potential asymptotic gain considering frequency-selective
channels and different values of µ.

lower than 1, this is also the case of the equivalent fading factor, that can assume a value
lower than 1 with higher probability.
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4.7 Optical OFDM

4.7.1 Coherent Optical OFDM

The coherent optical (CO)-OFDM schemes [135] are widely used in long-haul wired com-
munications, specially due to the high data rates that can be achievable without the need
of complex receivers. However, these schemes are very sensitive to one of the key limita-
tions of the fiber optic communication channels: the presence of NLPN, caused by the
Kerr’s effect [136], [137]. Most of the proposed techniques to mitigate this problem involve
the use of pre-distortion and/or post-compensation of the nonlinear distortion [9]. As an
alternative, we can simply accept the existence of nonlinear effects in the transmission. In
this section, we consider CO-OFDM transmissions with strong NLPN distortion effects.
We present an accurate spectral characterization of CO-OFDM signals as well as a study
regarding the optimum of nonlinearly distorted CO-OFDM signals. It is shown that, as
with other nonlinear OFDM schemes, the nonlinear phase distortion can lead to perfor-
mance improvements relatively to the ideal, linear case. This optimum performance can
be achieved with relatively simple sub-optimum receivers [138].

The CO-OFDM scenario considered here is similar to the one presented in Fig. 4.1,
since the nonlinear phase noise is regarded as a bandpass memoryless nonlinearity. Each
CO-OFDM has Nu subcarriers and an oversampling factor of O. The QPSK symbols Sk
form the block S = [S0 S1 ... SN−1]T ∈ CN . The variance of the real and imaginary parts
associated to the corresponding time-domain samples s = [s0 s1 ... sN−1]T ∈ CN is σ2.

The bandpass nonlinearity that models the phase noise associated to the Kerr’s effect
is given by

fbp(rn) = rn exp(j2πkθrn/σ), (4.81)

where rn = |sn| and kθ is a parameter that controls the magnitude of the NLPN distortion
effects. It should be mentioned that this nonlinearity only distorts the phase of the
time-domain samples and, consequently, has a null AM/AM conversion function (i.e.,
A(rn) = rn). On the other hand, the AM/PM conversion function is given by

Θ(rn) = 2πkθrn/σ. (4.82)

Note also that under ideal conditions (i.e., when transmission chain is linear), we have
kθ = 0 and, consequently, Θ(rn) = 0. In the following, we consider the approach of
subsection 3.2.2 to present results regarding the analytical spectral characterization of CO-
OFDM signals [138], [139]. Fig. 4.72 shows the simulated and theoretical PSD associated
with a CO-OFDM signal with Nu = 512 and O = 4. The NLPN parameter is kθ = 0.2. The
theoretical PSD was obtained with the truncated IMP approach and nγ = 5. From the
figure, it can be seen that the truncated IMP approach presents a considerable accuracy
when nγ = 5. This high accuracy can also be observed in Fig. 4.73, where are shown
the simulated and the theoretical PSDs associated to a CO-OFDM signal with Nu = 512,
O = 4 and different values of kθ. Besides the accuracy associated to the theoretical PSD,

181



CHAPTER 4. APPLICATIONS

k/N
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

G
ỹ
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Figure 4.72: Theoretical and simulated PSD associated to a CO-OFDM signal
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Figure 4.73: Theoretical and simulated PSD associated to the nonlinear distortion term
of a CO-OFDM signal.

it can also be seen that higher values of kθ lead to stronger nonlinear distortion effects,
since the magnitude of the nonlinear distortion term increases.

In the following, results regarding the optimum detection of CO-OFDM signals are
presented. Fig. 4.74 shows the average asymptotic gain obtained by simulation and
theoretically with (3.229), considering O = 4 as well as different values of µ and Nu. From
the results shown in the figure, one can see that (3.229) is accurate for the NLPN distortion.
In fact, although the combination of µ= 5 and a value of Nu = 16 subcarriers leads to some
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Figure 4.74: Average asymptotic gain associated to the optimum detection of CO-OFDM
signals in AWGN channels.

discrepancies between the simulated and the theoretical asymptotic gain, when Nu = 256,
very accurate results can be obtained, regardless the number of different bits between
the signals. Fig. 4.75 shows the asymptotic BER associated to the optimum detection
of CO-OFDM signals in AWGN channels for Nu = 64, O = 4 and different values of kθ.
From the figure, it can be noted that the performance gains increase with kθ, which is an
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Figure 4.75: Asymptotic BER associated to the optimum detection of CO-OFDM signals
in AWGN channels.

expected result from the results depicted in Fig. 4.74. More concretely, for a target BER
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of Pb = 10−3, the performance gain associated to the optimum detection is approximately
0.4 dB. However, this performance gain increases to approximately 1.4 dB and 2.7 dB
when kθ = 0.15 and kθ = 0.2, respectively. Potential asymptotic gains can also be observed
when frequency-selective channels are considered as shown in Fig. 4.76, which depicts the
asymptotic BER associated to the optimum detection of CO-OFDM signals in frequency-
selective channels assumingNu = 64, O = 4 and L= 16 uncorrelated multipath components.
Fig. 4.77 shows the simulated BER associated to the sub-optimum receiver described in
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Figure 4.76: Asymptotic BER associated to the optimum detection of CO-OFDM signals
in frequency-selective channels.

subsection 4.1.3, considering a CO-OFDM transmission with Nu = 64, O = 4 and kθ = 0.1.
The number of cycles of bit modifications is V = 2. For the case of frequency-selective
channels, L = 16 multipath components are considered. From the results shown in the
figure, one can note that even when a sub-optimum receiver is considered and the number
of analyzed sequences (and the corresponding complexity) relatively to the full optimum
detection is substantially reduced, there are substantial performance improvements. These
potential performance gains are observed in both ideal AWGN and frequency-selective
channels although, in this latter scenario, the performance gains are higher.

4.7.2 Optical Wireless OFDM

Recently, OFDM modulations have been considered to be used in optical wireless commu-
nications (OWC) [140]. This is mainly due to the fact that these modulations are suitable
for severely time-dispersive channels since they can cope with strong ISI levels associated
to the multipath propagation. However, contrary to what is common in radio-frequency
wireless communications, in OWC it is better to employ intensity modulation techniques
where the OFDM signal modulates the intensity of light. For this reason, the OFDM
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Figure 4.77: Sub-optimum receiver’s BER considering a CO-OFDM transmission in both
AWGN and frequency-selective channels.

signal must be constrained to have only non-negative, real values. There are two main
approaches to transform a conventional OFDM signal (that has a complex envelope span-
ning all over the complex plane and the corresponding real-valued signals associated to its
in phase and quadrature components are equally likely to be positive or negative) into a
real-valued, non-negative signal [141]. One approach is DCO-OFDM [142], [143], where
a DC component is added to a clipped version of the original OFDM signal (actually it
is an asymmetric clipping, since usually we only clip the signal below the symmetric of
the DC component). Another approach is the ACO-OFDM [144], [145], where the original
OFDM signal is deliberately clipped at zero (actually, this is also an asymmetric clipping,
but with a nature slightly different of the one used in DCO-OFDM).

In this section, we consider both the theoretical spectral characterization and the
optimum detection of real-valued OFDM signals submitted to asymmetrical clipping op-
erations such as the ones associated to ACO-OFDM and the DCO-OFDM systems [146],
[147]. To obtain real-valued OFDM signals, we considered OFDM frequency-domain blocks
S = [S0 S1 ... SN−1]T ∈ CN with Hermitian symmetry. The variance of the corresponding
time-domain samples s = [s0 s1 ... sN−1]T ∈ CN is σ2.

The asymmetric clipping function operating on the real-valued samples of an OFDM
signal is defined as

f(sn) =
{
sn, sn >−sM/σ
−sM/σ, sn ≤−sM/σ.

(4.83)

This nonlinear function is shown in Fig. 4.78 for different normalized clipping levels.
Although this case is not represented in the figure, it should be noted that when ACO-
OFDM systems are considered, the normalized clipping level is sM/σ = 0. Additionally,
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Figure 4.78: Nonlinear function associated to the asymmetrical clipping operation.

it should be mentioned that due to the nonlinear characteristic of optical devices used in
DCO-OFDM, schemes such as light emitting diodes (LEDs), it might also be desirable
to have an upper clipping level to minimize nonlinear distortion effects. In this case,
both positive and negative parts of the signal can be clipped. However, the clipping
operation might still be asymmetric since the upper and the lower clipping levels do not
have to be equal. Although we only considered a lower clipping level, our approach is
still valid when both lower and upper clipping levels are taken into account. It should be
also noticed that in DCO-OFDM schemes, to obtain a real-valued and positive OFDM
signal, a DC component equal to the symmetrical of the clipping level should be added
after the clipping operation. Fig. 4.79 shows PSD of a DCO-OFDM signal obtained
theoretically with the truncated IMP approach and by simulation. It is considered that
Nu = 512, sM/σ = 1.0 and different oversampling factors. Regardless of the oversampling
factor, the results clearly show the high accuracy of the truncated IMP approach when the
nonlinearity is an asymmetrical clipping. This allows us to obtain accurate estimates of
the SIR, at the subcarrier level, as shown in Fig. 4.80. Fig. 4.81 represents the simulated
and theoretical evolution of the asymptotic gain associated to the optimum detection of a
DCO-OFDM signal with Nu = 512, O = 4 and different clipping levels. In this figure it can
be seen that regardless of µ, the average potential asymptotic gains can be obtained with
accuracy considering (3.252). This unveils that even when channel coding schemes with an
appropriate interleaving are considered, the optimum detection might present considerable
performance gains over the conventional, linear COFDM.
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Figure 4.79: Simulated and theoretical PSD associated to a DCO-OFDM signal considering
different oversampling factors.
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Conclusions & Future Work

The analytical characterization and the optimum detection of nonlinearly distorted multi-
carrier signals were the two main goals of this thesis. Regarding the former, we presented
the analytical characterization of several nonlinear multicarrier schemes that can be en-
countered in actual communication systems. This analytical characterization was based
on IMP tools, directly by employing the truncated IMP approach or through the novel
concept of equivalent nonlinearities that is suitable even for severe nonlinearities, where
the truncated IMP approach is not adequate due to accuracy and convergence problems.
In relation to the optimum detection, the optimum asymptotic performance was obtained
for several nonlinear multicarrier schemes, showing that it can be a good alternative, not
only for the conventional detection of nonlinear multicarrier schemes, but also for the
conventional detection of linear, multicarrier schemes. The original work of this thesis
is published in the following articles [17], [91]–[97], [103], [107], [112], [115]–[117], [120],
[131]–[134], [138], [139], [146]–[150].

Chapter 2 was dedicated to the characterization of multicarrier schemes as well as to its
most important particularities and drawbacks. It included an introduction to multicarrier
schemes in general and a statistical characterization of the signals at the receiver and at the
transmitter for the particular case of OFDM. The main drawback of multicarrier schemes
- the large envelope fluctuations and the corresponding amplification problems - was also
analyzed in this chapter. It was pointed out that the amplification process involves trade-
offs between the spectral and energy efficiency and that usually, PAPR-reducing techniques
are employed prior to that process. It was identified that the most simple and effective
PAPR-reducing techniques are the ones that involve a clipping operation, although they
are distortion techniques that introduce nonlinear distortion effects in the transmitted
signals.

Chapter 3 presented the theory behind the analytical characterization and the optimum
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detection of nonlinearly distorted multicarrier signals. Different nonlinearities that can have
either a baseband or bandpass nature were identified and characterized. The conventional
spectral characterization made through IMP tools, although not original, was presented
to introduce and motivate the concept of equivalent nonlinearities. These equivalent
nonlinearities are polynomial nonlinearities that can substitute the conventional ones.
However, although being smoother and suitable to be employed in an IMP analysis, they
give rise to signals with the same spectral characterization than that of the ones distorted
by the original nonlinearities. This means that they can be employed to obtain a simple,
accurate spectral characterization of nonlinearly distorted multicarrier signals. This chapter
also presented a study on the optimum receiver’s performance. The study started with
the introduction of the optimum receiver’s principle. Further, the optimum performance
regarding linear OFDM schemes was derived. It was shown that an insight on the optimum
performance can be computed through the squared Euclidean distance between the signals.
In fact, when the transmission is linear, this distance is equal regardless of the subcarrier
that is in error. However, when the transmission is nonlinear, the squared Euclidean
distance depends on the information spread along the signal band. For this reason, and
due to the large number of possible transmitted sequences, the distribution of the squared
Euclidean distance (and of the corresponding asymptotic gain) was obtained. It was noted
that when the number of subcarriers is large, the variance of this distribution decreases,
meaning that for a very large number of subcarriers, the squared Euclidean distance
between two nonlinearly distorted signals assumes a unique value. The asymptotic gain
was then obtained theoretically for different types of nonlinearity. For the case of frequency-
selective channels, the squared Euclidean distance between the nonlinearly distorted signals
is random even if the number of subcarriers is very large, since it is dependent on the
channel’s frequency responses, that present a Rayleigh distribution. For this reason, we
included a statistical characterization of the channel’s frequency responses. This statistical
characterization was then used to obtain the distribution of the asymptotic gain associated
to the optimum detection. All original work of this chapter was published in conference
proceedings [91], [93], [95], [96], [134], [150] and in journal articles [17], [92], [94], [97].

Chapter 4 was concerned with applications for which the analytical characterization
and the asymptotic optimum performance presented in Chapter 3 can be employed. It
presented a collection of results regarding the contributions of this thesis published in
conferences proceedings and journals. It started with the conventional OFDM impaired by
either an envelope clipping or nonlinear power amplifiers. For that system, it was shown
that the equivalent nonlinearities may be used to obtain accurate spectral characterization
of the corresponding nonlinearly distorted signals and that the optimum performance
present considerable gains when compared to the traditional detection of nonlinear and
even of linear, OFDM schemes. In addition, results regarding a sub-optimum receiver
were presented considering receive diversity, clipping and filtering techniques and M -QAM
constellations, showing that even when a sub-optimum detection is considered, the potential
performance gains associated to the optimum detection might be obtained. After that, the

190



LINC techniques were analyzed. These techniques allow an efficient amplification through
power amplifiers of class D or E, but their use may lead to nonlinear distortion effects in the
transmitted signals. For this reason, we presented both the analytical characterization as
well as the optimum detection of the corresponding nonlinearly distorted signals. Another
alternative for the conventional OFDM that allows the use of highly efficient amplifiers is
the CE-OFDM. It was noted that the severe nonlinear distortion effects created by the
phase modulation process of CE-OFDM schemes can be accurately characterized using
IMP tools and that the optimum detection outperforms the conventional detection based
on a phase demodulator, especially in scenarios where the power efficiency is crucial. We
also presented the analytical spectral characterization for the signals along the chain of an
OFDM-based AF relay system, i.e., in a scenario where there are nonlinearities both at
the transmitter and at the relay. Nonlinear, multiple antenna OFDM systems were also
considered in this chapter. The analytical characterization of nonlinear, MIMO-OFDM
systems with an envelope clipping operation employing an SVD decomposition and massive
MIMO-OFDM systems with MRT approach, employing both Cartesian, 1-bit quantizers
and nonlinear amplifiers was presented. For both systems, it was demonstrated that
the nonlinear distortion at the subcarrier level decreases when the number of transmit
antennas increase, provided that the number of streams is fixed. This means that when
we have much more transmit antennas than receive antennas, the nonlinear distortion
can be substantially reduced. Therefore, massive MIMO-OFDM may have nonlinear
amplification processes and/or employ low-complex, low-resolution quantizers that can
meet their need to have simple and low cost transmitting branches, since the corresponding
performance penalty associated to the use of such nonlinear devices can be tolerated. We
also considered baseband, nonlinear DMT schemes that have a quantization operation
on the transmission chain. Due to the severity of the nonlinearity associated to the
quantization operation, especially when the resolution is low, we consider the use of
equivalent nonlinearities to provide an accurate spectral characterization of quantized,
multicarrier signals. Additionally, the optimum asymptotic performance was derived and
its performance gains over the linear DMT schemes were quantified through a set of
performance results. Chapter 4 ends with the analytical characterization and a study
on the optimum detection of optical OFDM signals and includes the characterization of
nonlinear distortion effects associated to fiber optical systems, i.e., associated to the NLPN,
as well as the characterization of the distortion effects related to optical wireless OFDM
systems, such as DCO-OFDM systems, where asymmetrical clipping operations take place.
All original work presented in this chapter was also published in conference proceedings
[93], [95], [96], [107], [112], [115], [116], [120], [133], [134], [138], [146] and in journal articles
[17], [92], [94], [97], [117], [132], [147].

Besides these particular applications, the theory associated to the analytical character-
ization of nonlinearly distorted multicarrier signals presented in chapter 3 can employed
more generally in sampled, Gaussian signals [91], [149], regardless of their multicarrier or
single carrier nature. In fact, the accuracy associated to the use of equivalent nonlinearities
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was already demonstrated in a nonlinear, single carrier system [150].

Future Work

Due to the its very large capacity gains, many attention have been given to massive
MIMO-OFDM systems. In fact, they are under consideration to support the radio inter-
face of 5G systems. However, as they are formed by a large number of antenna elements, its
implementation complexity can be very high. For this reason, it is important to consider
low-cost, low-complexity transmit and receive chains at each transmit and receive antenna,
respectively. To obtain such simple and cheap chains, it is almost unavoidable that we end
up with nonlinear devices such as nonlinear amplifiers and/or low resolution quantizers.
Therefore, it is very likely that massive MIMO-OFDM systems are impaired by nonlinear
distortion effects. In fact, although the first steps toward the theoretical characterization
of nonlinear distortion effects in massive MIMO-OFDM systems were given in this work,
there are several open issues to be studied. For instance, following the recent results
that point out to reductions on the distortion at the subcarrier level, when the number
of transmit antennas is higher than the number of receive antennas, it will be important
to study the corresponding capacity gains, although the first steps in that direction were
already taken [151]. It will be also interesting to study the optimum detection of nonlinear
massive MIMO schemes. In addition, not only multicarrier systems shall suffer from non-
linear distortion. Indeed, even single carrier, massive MIMO systems can be nonlinearly
distorted, since they are usually combined with precoding operations that increase the
dynamic range of the transmitted signals, leading to large envelope fluctuations and high
sensitivity to nonlinear distortion. For this reason, attention shall also be given to the
characterization of such systems.

In relation to the optimum detection of nonlinearly distorted multicarrier signals, an
important thing that should be done in the future is to define what are the limits associated
to the potential performance gains. In fact, although the asymptotic gains seem to increase
with the magnitude of the nonlinear distortion effects, there must exist a limit on their
magnitude. Another important subject to be further investigated passes through the
analytical characterization of the potential asymptotic gains when clipping and filtering
techniques are employed. In addition, although the sub-optimum receiver proposed in this
work is much less complex than the full-optimum receiver, it is important to explore if
other receivers, with even lower complexity, can achieve similar or even higher performance
gains relatively to linear, multicarrier schemes.
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A
Baseband Representation of Bandpass

Nonlinearit ies

In fact, when s(t) is a narrow-band, bandpass signal with fc�Bs, its complex envelope
s̃(t) changes at a much lower rate than the carrier frequency and s(t) is approximately
periodic. Therefore, if s(t) is submitted to a memoryless nonlinearity characterized by the
function f(·), its nonlinearly distorted version is (omitting the dependence with t)

z = f(r cos(ψ)). (A.1)

Due to the periodicity of the signal r cos(ψ), the nonlinearity output can be expanded in
a Fourier series, resulting

z =
∞∑
n=0

(an cos(nψ) + bn sin(nψ)) , (A.2)

where an and bn are the Fourier coefficients. Note that as fc � Bs, the contribution of
the harmonics created at nfc on the spectrum located at (n− 1)fc is almost negligible. In
fact, as we are only interested in the output centered at the carrier frequency (n= 0) (also
known as first-zone), we can consider that a zonal filter is applied around fc, which means
that all other spectral components can be removed. Under these conditions, the output of
the filtered signal can be written as

y = a1(r)cos(ψ) + b1(r)sin(ψ), (A.3)

where

a1(r) = 1
π

2π∫
0

f(r cos(ψ))cos(ψ)dψ, (A.4)

and

b1(r) = 1
π

2π∫
0

f(r cos(ψ))sin(ψ)dψ. (A.5)
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APPENDIX A. BASEBAND REPRESENTATION OF BANDPASS
NONLINEARITIES

It should be mentioned that if all harmonics generated by the nonlinearity were taken into
account, we do not have a complex baseband representation of the bandpass output signal.
However, if only the output of the first zone is considered, we do have a complex envelope
representation, and the complex envelope associated to the output can be expressed as

ỹ = (a1(r)− jb1(r))exp(jθ)

= fbp(r)exp(jθ). (A.6)

In fact, (A.6) is equal to (3.23), i.e., from this approach one can also note that the complex
envelope of the corresponding bandpass nonlinearly distorted signal only depends on the
nonlinear bandpass function fbp(r). Note also that the bandpass, nonlinearly distorted
output signal can be written as

y = Re(ỹ exp(j2πfct))

= Re
(
fbp(r)exp(jψ)

)
. (A.7)
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B
Distribution of the Optimum Asymptotic Gain

in Frequency-Selective Channels

In [152], a general expression for the distribution of the sum of n independent random
variables with Gamma distribution, Y =X1 +X2 + ...+Xn, with different scale and shape
parameters and in the form Xi ∼ Γ (αi = ωi,βi = 1

υi
), is given. In our specific case, we

have n = 2, since G(H)(µ) is constituted by the sum of two gamma variables. In these
conditions, the general expression in [152] can be particularized to yield

p(y) = Cyα1+α2−1
1∫

0

exp(−yCβ1,β2(t))Bα1,α2(t)dt, (B.1)

with C given by

C = βα1
1 βα2

2
Γ (α1 +α2) , (B.2)

Cβ1,β2(t) = β1t+β2(1− t), (B.3)

Bα1,α2(t) = 1
B2(α1,α2) t

α1−1(1− t)α2−1, (B.4)

and
B2(α1,α2) = Γ (α1)Γ (α2)

Γ (α1 +α2) . (B.5)

By replacing the last equations in (B.1), we may write

p(y) = βα1
1 βα2

2
Γ (α1 +α2)y

α1+α2−1
1∫

0

exp(−y(β1t+β2(1− t))) 1
B2(α1,α2) t

α1−1(1− t)α2−1dt

= Γ (α1 +α2)
Γ (α1)Γ (α2)

βα1
1 βα2

2
Γ (α1 +α2)y

α1+α2−1 exp(−yβ2)
1∫

0

exp(yt(β2−β1))tα1−1(1− t)α2−1dt.

(B.6)

207



APPENDIX B. DISTRIBUTION OF THE OPTIMUM ASYMPTOTIC
GAIN IN FREQUENCY-SELECTIVE CHANNELS

Further, by introducing the variable K = y(β2−β1), we have

p(y) = βα1
1 βα2

2
Γ (α1 +α2)y

α1+α2−1 exp(−yβ2) Γ (α1 +α2)
Γ (α1)Γ (α2)

1∫
0

exp(Kt)tα1−1(1− t)α2−1dt. (B.7)

Additionally, by considering the definition of the Kummer’s function of the first kind,
M(a,b,z), that is given by [85]

M(a,b,z) = Γ (b)
Γ (a)Γ (b− a)

1∫
0

exp(zu)ua−1(1−u)b−a−1du, (B.8)

and replacing y =G(H)(µ), a= α1, b= α1+α2, α1 = µ, α2 = L, β1 = µ
Gd(µ) and β2 = L

Gc(µ) ,
we have

p(G(H)(µ)) =

(
µ

Gd(µ)

)µ( L
Gc(µ)

)L
Γ (L+µ) G(H)(µ)L+µ−1 exp

(
−G

(H)(µ)L
Gc(µ)

)

×M
(
µ,L+µ,G(H)(µ)

(
L

Gc(µ) −
µ

Gd(µ)

))
. (B.9)
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