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Abstract

The growing demand for capacity in wireless communications is the driving force behind im-
proving established networks and the deployment of a new worldwide mobile standard. Ca-
pacity calculations show that the direct sequence code division multiple access (DS-CDMA)
technique has more capacity than the time division multiple access technique. Therefore, most
3rd generation mobile systems will incorporate some sort of DS-CDMA.

In this thesis DS-CDMA receiver structures are investigated from the view point of pattern
recognition which leads to new DS-CDMA receiver structures. It is known that the optimum
DS-CDMA receiver has a nonlinear structure with prohibitive complexity for practical imple-
mentation. It is also known that the currently implemented receiver in 2nd generation DS-
CDMA mobile handsets has poor performance, because it suffers from multiuser interference.
Consequently, this work focuses on sub-optimum nonlinear receivers for DS-CDMA in the
downlink scenario.

First, the thesis reviews DS-CDMA, established equalisers, DS-CDMA receivers and pattern
recognition techniques. Then the new receivers are proposed. It is shown that DS-CDMA can
be considered as a pattern recognition problem and hence, pattern recognition techniques can be
exploited in order to develop DS-CDMA receivers. Another approach is to apply known equal-
iser structures for DS-CDMA. One proposed receiver is based on the Volterra series expansion
and processes the received signal at the chip rate. Another receiver is a symbol rate radial
basis function network (RBFN) receiver with reduced complexity. Subsequently, a receiver is
proposed based on linear programming (LP) which is especially tailored for nonlinearly sep-
arable scenarios. The LP based receiver performance is equivalent to the known decorrelating
detector in linearly separable scenarios. Finally, a hybrid receiver is proposed which combines
LP and RBFN and which exploits knowledge gained from pattern recognition. This structure
has lower complexity than the full RBF and good performance, and has a large potential for
further improvements.

Monte-Carlo simulations compare the proposed DS-CDMA receivers against established linear
and nonlinear receivers. It is shown that all proposed receivers outperform the known linear re-
ceivers. The Volterra receiver’s complexity is relatively high for the performance gain achieved
and might not suit practical implementation. The other receiver’s complexity was greatly re-
duced but it performs nearly as well as an optimum symbol by symbol detector.

This thesis shows that DS-CDMA is a pattern recognition problem and that pattern recognition
techniques can simplify DS-CDMA receiver structures. Knowledge is gained from the DS-
CDMA signal patterns which help to understand the problem of a DS-CDMA receiver. It
should be noted that from the large number of known techniques, only a few pattern recognition
techniques are considered in this work, and any further work should look at other techniques.

Pattern recognition techniques can reduce the complexity of existing DS-CDMA receivers
while maintaining performance, leading to novel receiver structures.
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Chapter 1
Introduction

Over the last few decades society has changed considerably. More people than ever are af-

fluent and educated. Therefore many more people become involved with technology such as

computers. Communications is often called the market of the future in newspapers. However,

customer needs and wishes can not be satisfied if the requested technology is not available at

a reasonable price. Fortunately, as society tends towards mobility, technology tends towards

portability. Technology has progressed from making large and bulky products to small and

smart products. In the past, network operators offered mainly telephony (voice) and occasion-

ally pager services. But the customer of the future will request in addition email, fax, local

area network, Internet access and video services. A short list of possible features which should

entice users includes:

� high speed hardware available;
� cost effective hardware available;
� interactive user interfaces established;
� packet data available and established;
� powerful application rich user devices available.

Therefore, it should not be difficult to develop equipment and provide a network. However, this

is a very cost intensive investment and the network operator needs to be sure of some return on

their investment.

The network operator stands between the service providers and the customers and provides the

infrastructure in order to connect them together. Since both sides grow very rapidly, it becomes

difficult for the network provider to keep pace with upgrading the network’s capacity. A few

points emphasise this dilemma:

� growth in ownership of mobile phones;
� growth in ownership of (portable) computers;
� growth in use of Internet applications and services;
� accelerating Internet commerce � demand for home business;
� success of Internet applications � demand for high data rate services;
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� success of computer games � demand for amusement.

Therefore, network operators need equipment which enables them to satisfy both parties. Fi-

nally, a list illustrates some network requirements:

� enhanced information and multimedia capabilities;
� subscriber control, billing, fraud detection;
� capacity to meet more demanding environments;
� interoperability;
� ease of operations and maintenance;
� robust voice systems to operate in more dynamic environment;
� preservation of previous investment.

This last list shows also that this equipment must be flexible in its nature in order to follow new

trends. One step in this direction is a global standard for mobile communications [2]. Work in

this direction is in progress with the regulatory bodies such as the European Telecommunica-

tions Standards Institute (ETSI) and the International Telecommunication Union (ITU) where

the latter will define the � rd generation mobile standard International Mobile Telecommunic-

ations 2000 (IMT 2000) based on the submitted proposals. The European proposal is known

as Universal Mobile Telecommunication Standard (UMTS) [3]. It combines two techniques to

meet the expected capacity demand, see [4–6] and [7–10]. A flexible standard is also desired in

order to run a wide range of services. Thus, a combined cordless and mobile telephony system

has been suggested [11], and a combined satellite and terrestrial system [12]. It also has been

suggested to incorporate existing technology (standards) [13], in order to preserve the invest-

ments made in 7 nd generation systems. Some ideas seem to contradict each other. Moreover,

since the system must be very flexible it may be doubtful if a single standard can provide all

desired services.

Nevertheless, the basic constraints in engineering are of a physical nature [14]. The available

frequency spectrum is limited, and hence it must be ensured that it is exploited efficiently [15].

In order to do so, mobile communications such as mobile telephony must use techniques based

on multiuser communications.

1.1 Multiuser communications

The aim in mobile telephony is to have as many transmitting users as possible using a certain

frequency band (channel). In the past, where analogue technology dominated circuitry, fre-
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quency division multiple access (FDMA) was used. Several users share a common channel

while all users are frequency separated by sub-channels. Every user is communicating over an

individual channel over the whole period of time of the call, see Figure 1.1. Figure 1.1 shows
4

transmitting users in the time
�
, frequency

�
and power

"
domain. After finishing a call, the

sub-channel can be reused and allocated to another user.

P

t

f

Sub-channel 1 Sub-channel 2 Sub-channel U

Channel

User 1 User 2 User U

Figure 1.1: Frequency division multiple access (FDMA).

This is not an efficient way of exploiting the frequency spectrum. Because the sub-channel is

occupied even if no information is transmitted, and the system requires guard bands. Because it

was found that mobile conversations have a duty factor of � � 7 (time used for conversation/time

of call) [16], even more users can share a channel at the same time. The availability of cheap

digital circuitry made it possible to deploy digital mobile network systems, the 7 nd generation

mobile networks. Most networks exploit a technique known as time division multiple access

(TDMA), such as the popular global system for mobile (GSM) [17, 18]. Figure 1.2 shows how

a TDMA system works. Several users share a common channel but they are separated by time.

Each user transmits and receives for a short period of time (time slot) within a frame.

P

t

f

4
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2

1
2

1 1
2

2

3
4

1 Time slot

Frame

Channel A Channel B

Figure 1.2: Time division multiple access (TDMA).
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There is another technology which is used for 7 nd generation mobile networks. The idea is

based on spread spectrum (SS) [19, 20] which has been in use for a long time in military and

space applications and is called code division multiple access (CDMA) [21]. In CDMA net-

works all users share a common channel in time and frequency. The separation is done using

a code. Each user transmits with a unique code, the spreading sequence, and since the receiver

knows the user’s code it can demodulate and extract the information. Figure 1.3 shows how this

technique works. Usually, within a network there are two channels, one for the uplink (mobile

to base station) and one for the downlink (base station to mobile). All user share both channels

at the same time. The number of users which can communicate simultaneously is dependent,

f

t

P

User 1
User 2
User 3
User 4
User 5

User 1
User 2
User 3
User 4
User 5

DownlinkUplink

Figure 1.3: Code division multiple access (CDMA).

among other factors, on the length of the spreading sequence (code, a series of binary data).

If this code is long and pseudo-random then the interference induced from other users can be

interpreted as an increased background noise level. CDMA offers many advantages over the

other two techniques [16, 22]. The capacity is soft limited, which means that as more users

are active the higher the background noise becomes and performance (in terms of probability

of errors
" (

or bit error ratio (BER)) degrades. It is less susceptible to effects induced from a

changing environment, which is important in mobile communications. Finally, it is generally

believed that its capacity is much greater than that of the established (TDMA) systems [23, 24].

However, CDMA systems also have some additional constraints which must be considered if it

is to be used for cellular mobile communications, e.g. requirement for power control [25].
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1.2 Cellular communications

In this work, mobile communications is analogous to cellular communications and is thought of

as a terrestrial network of cells, depicted as hexagons, and the investigations are carried out in a

single cell system with
4

simultaneously transmitting users for the downlink scenario. Mobile

satellite communications shall be omitted. Each cell covers a certain region and has in its centre

a base station, to which all users (mobiles) within a cell are linked. The base station (BS) is

connected to a base station controller (BSC) and the BSC is connected to the mobile switching

centre (MSC), see Figure 1.4. Finally, the MSC is connected to the landline (public) network

and the operator’s data base for billing and network management.

BS

BSC

BS

BSC

BS

BS

MSC

Public network Network operator

Figure 1.4: The structure of a cellular network.

While a mobile moves it may enter another cell, and in order to keep the link quality high,

it should get linked to the nearest base station. This procedure is called handover, changing

from one BS to another. Several handover techniques are in use. GSM uses a mobile assisted

hard handover, where the BSC handles the handover between two BSs. CDMA systems use a

soft handover [26, 27], where each user’s signal strength is monitored and the MSC handles the

handover. This technique uses the fact that in CDMA all users use the same carrier frequency,

whereas in GSM different frequencies are used. Thus a GSM system over a larger area can

be depicted as in Figure 1.5, where each colour represents a carrier frequency. The typical

frequency reuse factor [28] for the system depicted in Figure 1.5 is � � � [16]. Figure 1.5 would

be a uniform colour for a CDMA network and the theoretical frequency reuse factor is one.
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Figure 1.5: Frequency reuse pattern in established cellular networks.

1.3 Mobile environment

A possible mobile environment is depicted in Figure 1.6. It shows a car as a mobile which

moves. The surroundings such as buildings, hills or lorries cause the radiated signal energy

to be reflected. Hence, several delayed versions of a transmitted signal can be received. This

effect is known as the multipath effect. Further, the frequency of the received signal varies due

to the speed of the mobile due to the large number of incoming scatterers (Doppler spread).

Downlink
Uplink

BS

Figure 1.6: A possible mobile environment within a cell and a moving vehicle (mobile). The
radiated signal will be reflected from the surrounding and the frequency is Doppler
shifted due to the vehicle’s motion.
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A cellular network has to cope with the following effects:

� Doppler effect;
� fading;
� inter symbol interference;
� co-channel interference;
� multiple access interference;
� near-far problem.

Doppler spread is due to a moving mobile, it can be compensated within the receiver with a

frequency follower. Multipath effects are harder to combat since they are also responsible for

a change in the received signal strength [29, 30]. The common approach to overcome fading

effects is to vary the transmitted signal power [31]. Multipath effects are also responsible for

inter symbol interference (ISI), which can be combatted by equalising the received signal. Many

equaliser structures are known with varying performance and complexity. Well designed equal-

isers can enhance the receiver performance at the mobile or at the base station considerably

through diversity gain. Co-channel interference is interference from adjacent cells [32–34].

In addition, CDMA systems have to deal with a special kind of interference. Since all user

transmit at the same carrier frequency, they interfere with each other. This effect is called mul-

tiple access interference (MAI). Related to this effect is the near-far problem [35]. This means

that, if one user transmits at high power near the base station, its signal will cover up a weaker

signal from a user which is far away from the BS. Hence CDMA systems need power control

in order to ensure that all signals at the base station are received at equal strength [26, 36].

This brief introduction showed that mobile communications work in a most unfriendly envir-

onment. To get a mobile system running to satisfy the customers, a large amount of processing

is involved [16, 37, 38].

The current trend in mobile communications is to apply CDMA, since CDMA has advantages

over the other techniques. However, the current CDMA handset receiver idea (technology)

used dates back to the fifties [16]. This receiver suffers from MAI. Hence, in order to cope

with the expected demand in mobile communications, industry looks for new receiver designs.

Thus, current research focuses on new receiver designs which exploit digital signal processing

power [39, 40]. Recently, another way to improve performance is becoming popular called

turbo coding [41]. Turbo coding can enhance system performance approaching the Shannon

limit.
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1.4 Thesis structure

The main objective of this thesis is to link pattern recognition with CDMA. Or in other words,

CDMA is a pattern recognition problem, therefore, pattern recognition techniques can help to

derive new receivers for CDMA.

The current chapter is a brief introduction into mobile telephony, and ends with the thesis

structure outlined in Figure 1.7.

Chapter 1

Introduction

Chapter 2

Chapter 3

Chapter 4

Communication system

Receiver review

Pattern recognition in DS-CDMA 

Conclusions

Chapter 8

Linear programming

based receiversbased receiver based receiver

Chapter 6 Chapter 7Chapter 5

Polynomial series Radial basis function

Figure 1.7: The structure of this thesis.

Chapter two discusses in more detail the CDMA system and its superiority over other multiple

access schemes. Of special interest is the downlink scenario, since the handset receiver struc-

ture has to be limited in complexity for economic reasons such as handset price, battery life,

processor and processor power. Currently, a simple structure is employed, which suffers from

multiuser interference (all user share the same channel bandwidth) and therefore has limited

performance. Next, a matrix and vector notation is introduced to describe the received signal.

Chapter three reviews established receiver structures. First, equalisers are discussed followed

by a survey of linear and nonlinear receivers for CDMA. It appears that only nonlinear receiv-

ers have the potential to considerably increase performance. Thus, the focus is on nonlinear

receivers for CDMA handsets with reduced complexity.
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Chapter 3 introduces pattern recognition. After a survey on known techniques in the field

of pattern recognition, it will be shown that CDMA can be viewed as a pattern recognition

problem. Examples are presented which illustrate that the CDMA signal has patterns which can

be exploited in order to derive receiver structures. Further, decision boundaries are presented

for two and three user scenarios which indicate that CDMA is a nonlinear separation problem.

Chapters five, six and seven present new CDMA receiver structures and contribute to the under-

standing of CDMA receivers together with chapter four. All proposed receiver structures are

nonlinear because the optimum decision boundary is nonlinear. Simulation results show their

performance which is compared against established receivers.

The last chapter is a summary and discussion on the work presented in this thesis where also

further work is outlined.
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Chapter 2
The communication system

This chapter focuses on mobile communication systems based on spread spectrum, particularly

on direct sequence code division multiple access systems.

First, the benefit of SS systems is analysed generally. Then reasons are given for employing

CDMA for cellular mobile applications followed by a descriptive analysis of cellular CDMA.

The downlink scenario is of special interest and shall be investigated in more detail for two

basic receiver designs. The mathematical formulation is followed by a brief description of an

established cellular network. Finally, this chapter is summarised.

2.1 Spread spectrum communications

Spread spectrum communications have their origin in space and military applications. The

motivation for SS was to hide the fact that one is transmitting a signal from an enemy. This

feature is known as low probability of interception (LPI) of a SS signal, or privacy. If it is hard

to determine whether a signal is present, then that signal cannot interfere substantially with

other present signals, hence the system has good electromagnetic compatibility (EMC) [42].

Shannon [43] stated that the stationary Gaussian noise process which maximises capacity is the

one that spreads its available power uniformly across the given bandwidth. Thus the capacity
�

for a given bandwidth
1

of a jamming channel is derived from the well known equation
� 5 1 &������ � � � 
 � � � �

, where
� � �

is the signal to noise ratio defined as:

� � � 5
"

1 �  
 ��� = (2.1)

where
"

is the signal power,
�� 

the thermal noise density and
� �

the jamming power. The

motivation is then to expand (spread)
1

in jamming situations until the total received noise

power
1 �  

dominates
� �

[44]. The spreading leads to a reduction in required
� � �

which is

10
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very advantageous for communications and can be represented as a processing gain (PG):

" � 5
�

1 =
(2.2)

where
�

denotes the SS spreaded signal bandwidth and
1

the unspread signal bandwidth.

SS systems can be categorised by the techniques used to spread and despread the transmitted

signal. There are four main techniques [20]:

Direct sequence (DS) used for conventional and military applications.

Frequency hopping (FH) popular in military applications.

Time hopping (TH) less common, mainly used in hybrid systems.

Chirp mainly used for radar applications.

These systems treat interference differently. DS SS averages the interference over a large period

of time, whereas the other techniques combat interference by separating the desired signal in

frequency or time (on average) from the majority of the interference. The spreading in DS SS

is done by multiplying the user’s bit with a signature sequence of bits (code), where these bits

are called chips, which are generated by a pseudo-noise (PN) or random generator [20]. Such

a transmitted sequence, which contains the information of the user bit is also referred to as a

symbol.

SS communication systems are also of interest for multiuser applications, since a LPI is re-

lated to a small inter user interference, giving the communication system good multiple access

capability [42].

2.2 DS-CDMA

The performance gain obtained from a DS SS signal through the processing gain can be used

to enable many DS SS signals to occupy the same channel bandwidth, provided that each sig-

nal has its own signature waveform. Thus it is possible to have several users transmit simul-

taneously over the same channel bandwidth. This type of communication is called CDMA,

the combined DS SS CDMA system is simply called DS-CDMA which is often shortened to

CDMA.
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2.3 Cellular DS-CDMA

Consider a mobile receiver for CDMA with
4

simultaneous transmissions (
4

transmitting

users) plus additive white Gaussian noise (AWGN). In order to describe the received signal
& �����

without looking at particular receiver designs (which are discussed in the next chapter),

two general receiver concepts are introduced. One receiver design processes the received signal

at the chip rate, whereas the other concept exploits preprocessed signals at the symbol rate, see

Figure 2.1.

y(t)

Chip rate

Receiver

Symbol rate

D (k)
d

^
y(kN+n)

(a) Chip rate based receiver.

y(t) y(kN+n)

Prepro-

cessing

stage

r (k)

Receiver

r (k)

1

U

D (k)
^

d

Chip rate

.

.

.

.

Symbol rate

(b) Symbol rate based receiver.

Figure 2.1: The two CDMA receiver designs, which are discussed in the following subsections.

Figure 2.1(a) shows a conventional single user receiver, which is currently implemented in

CDMA handsets. The receiver structure depicted in Figure 2.1(b) exploits preprocessed signals
� ��<F��

, which are synchronised to the symbol rate, where
F

stands for the
F

th symbol and
�

for

the
�

th preprocessed output. The receiver’s output is the reconstructed transmitted bit for the

desired user G denoted as
	CED �<F��

. The received signal
& �����

consists of a sum of user specific

signals plus noise. This is illustrated in Figure 2.2, where the uplink and downlink scenario are

shown for a single cell system.

According to Figure 2.2 and assuming a non-dispersive AWGN channel, the noise corrupted

12



The communication system
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(a) The uplink scenario (mobiles to base sta-
tion) for � mobiles.
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(b) Downlink scenario (base station to mobile).

Figure 2.2: The two possible links within a cellular DS-CDMA mobile system.

received signal
& �����

is defined as:

& ����� 5 # �+��� 
 � ����� 5 9�
��� � #�� �+��� 
 � �+��� = (2.3)

where � �+��� denotes the white Gaussian noise with double sided power spectral density
�  � 7 .

The
�

th user’s transmitted data bit for bit
F

is denoted as
C � � F��

and is either

 � or � � with

equal probability and all users are transmitting with equal power, normalised to one. Then, the

received signal
#��+���

due to the
�

th user is given by:

# � �+��� 5�� 7 " � ��
� � � �

C � �<F�� � � ���
�
F �

� � � �	� ��
 � � � � 
 � � � �� � � 4 =
(2.4)

where
�

is the bit interval,
" �

, � � and
� �

are the power, delay and carrier phase shift of the
�

th

user, and ��� is the carrier frequency;
� �
�+���

is the
�

th spreading sequence (signature) waveform

given by:

� � �+��� 5��
� ��

@ �  � � * @ ����� �
� � � � = (2.5)

where
� � * @���� � = � ��� is the

�
th element of the spreading sequence for user

�
,
� �+���

is the chip

waveform,
�

the processing gain (number of chips per user bit), and
� � 5 � � � is the chip dur-

ation. It is assumed that
�������

has unit energy and duration
� � . Each user in Figure 2.2(a) has its

own delay � � which is taken into account in equation (2.4), while the channel delay is incorpor-

ated in the channel block. Thus the uplink (mobile to base station) is generally asynchronous.
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If the delay � � is equal for all
�

, then the communication system is considered synchronous,

which is typically the downlink scenario (base station to mobile), see Figure 2.2(b).

In order to simplify the notation, it is assumed that all carrier phases are equal to zero and base-

band notation can be used [45]. In the downlink scenario all user signals share the same channel

to a specific, whereas in the uplink scenario each user is transmitting through a unique channel

with different delays. The channel is modelled by an
�

-tap finite impulse response (FIR) fil-

ter [46]. The downlink channel impulse response
� �� can be estimated from monitoring a pilot

tone transmitted by the BS (e.g. IS-95). Since the signal processing task is done on sampled

signals, it is more convenient to make use of vector and matrix notation. Therefore equation

(2.3) can be rewritten for a fully synchronised downlink antipodal ( � +1,-1 � ) DS-CDMA sys-

tem with
4

independent users and a non-dispersive AWGN channel. It is assumed that the

number of active users and their corresponding spreading sequences are known. Each
�

th user

bit
C ��<F��

is spread by a unique user specific spreading sequence A � 5 L � � * � � � * � � � � � � * �
M

of

length
�

, with
� 5 � = 7 = � � � = � chips, where the chips are either


 � or � � 1. Hence, equation

(2.3) becomes:

& �<F � 
 � � 5 9�
��� � C ��<F�� � � * @ 
 � � F � 
 � � �

(2.6)

The received signal becomes �
� F��

in vector notation, where
F

denotes the
F

th user bit. Now,

the received signal (2.6) shall be described from the view point of set theory. It can be assumed

that for a certain period of time the number of users
4

is constant, hence also the number of

possible transmitted noise free signal combinations, which is denoted by 3 . It is shown in the

following subsections, that when
4

and all
4

spreading sequences are known, such a set of

signals can be constructed. Therefore, the received signal (2.6) for the
F

th transmitted symbol

may be rewritten as:

� �<F�� 5 � �<F�� 0 
 	 �<F�� = (2.7)

where 	 �<F�� is a vector containing the random noise and is the only non-deterministic compon-

ent. Vector �
�<F��

is drawn from a set
�

with equal probability, where the 3 elements � 	 in
�

1In this thesis, only real signals are considered, the extension to complex signals is straightforward.
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are the noise free signal states:

� 5 � � 	�� � � � � 3 � �

Set
�

can be given as a matrix, where each row corresponds to an element of this set. The

elements of
�

are the rows of a ( 3 & �
) matrix for a non-dispersive channel, or of a ( 3 &

� � 
 �
� � � ) matrix for multipath channels, for chip rate receivers. While the elements of

�

are the rows of a ( 3 & 4
) matrix for symbol rate receivers. The matrices are derived in the

next subsections and shall be referred to as the generation matrices. The variable 3 can have

different values for different scenarios and is also defined in the following subsections. Further,

different aspects and interpretations on the signal properties are discussed in the following

chapters. Thus, only the basic construction of this set of possible signals shall be given here.

Further, the signal description is given from a signal processing perspective, which enables the

designer to understand how a receiver structure processes the received stream of samples.

2.3.1 Chip rate based receiver

The chip rate based receiver presented in Figure 2.1(a) is first analysed for simplicity for the

less practical non-dispersive AWGN channel, or simply AWGN channel, and then extended to

the multipath channel. The elements in
�

are the rows of a matrix, e.g.
*

.

2.3.1.1 AWGN channel

The number of possible noise free vectors �
�<F��

is given by 7 9 for a
4

user DS-CDMA sys-

tem [46], hence 3 5 7 9 . Since there are
�

chips per bit, �
�<F��

has
�

elements and
*

is a
� 3 & � �

matrix. Matrix
*

is constructed from a
� 7:9 & 4 �

combination matrix
2

containing

the 7:9 combinations of vectors with length
4

(columns) and elements with values � 
 � = � � = � ,
and a

� 48& � �
matrix

?
with the

�
chip spreading code A � in the

�
th row. For convenience,

matrix
?

is denoted as a partitioned matrix [47]
? 5 L A 0 � � � � A 0

9
M 0

, where A � is the
�

th user’s

spreading sequence. Thus:

* 5 2>? =
(2.8)
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where the combination matrix
2

is described by2:

2 5

���������������
�

� � � � � � �
� � � � � � � �
� � � � �

� � �
� � � � � � � � � � � � � � � � �

� � � � � � � � � �
� � � � � � �

� � �
� � � � � � �

� � � �

����������������
�

and matrix
?

is given by:

? 5

�������
�

A 0 �
A 0 �
...
A 0
9

��������
�
�

Each row of
*

has length
�

and is the sum of
4

positive and/or negative spreading sequences.

With the
� 3 &$4 �

combination matrix
2

with 3 5 7 9 , as given in (2.8), this results in:

* 5 2>? 5

���������������
�

A 0 � 
 A 0 � 
 � � � 
 A 0 9 �
� 
 A 0

9A 0 � 
 A 0 � 
 � � � 
 A 0 9 �
� � A 0

9A 0 � 
 A 0 � 
 � � � � A 0
9 �

� 
 A 0
9� � � � � � � � � � � � � � � � � � � �

� A 0 � � A 0 � �
� � � 
 A 0

9 �
� � A 0

9
� A 0 � � A 0 � �

� � �
� A 0

9 �
� 
 A 0

9
� A 0 � � A 0 � �

� � �
� A 0

9 �
� � A 0

9

����������������
�

�
(2.9)

2.3.1.2 Multipath channel

The notation for the multipath channel is more difficult due to ISI. Here, more than one sym-

bol must be taken into account, namely the previous, current and the next symbol in order to

collect all of the current symbol’s energy. The symbol of interest is the current symbol. It

can be assumed that the spreading sequence length
�

is much longer than the length
�

of the

2Rows can be interchanged, since the order is not important. The columns correspond to each user’s transmitted
bit and the rows to the possible signal combinations between the users.
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channel impulse response
� �� 5 L � � � � � � � ����M

. Due to the three symbols needed
2

is of

size
� 3 & � 4 � where 3 5 7

�
9 . This requires a different code matrix

?
which is an exten-

ded version of the previous one and has the form
L A 0 � � � � A 0

9
A 0 � � � � A 0

9
A 0 � � � � A 0

9
M 0

. However, in

order to simplify the notation, combination matrix
2

is partitioned into three sub-matrices and

no extended code matrix is necessary:

2 5 L�2�� 2�� 2�� M�=

where each sub-matrix
2	�

(

 � � � = 7 = � � ) is of size

� 3 & 4 �
. Matrix

?
is also partitioned as

? 5 L ?
�E?�� ?	� M
, where each

?	�
corresponds to the set with all spreading codes, given by

L A 0 � � � � A 0
9
M 0

. The channel impulse response
� �� is stored in a (

� � 
 �
� � � & � � ) matrix




which is Toeplitz [47, 48].



does not have to be ( � � & � � ) since only the current symbol and

its ISI affected chips are of interest. Thus, a (
� � 
 �

� � � & � � ) matrix is sufficient where the

first and last
� �

�
� 
 � � columns of



only contain zeros. So for instance for a 3-tap channel

(
� 5 � ) and a 5 chip spreading code (

� 5 �
),



becomes:


 5

���������������
�

� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �

����������������
�

�
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Finally, in order to derive the
� 3 & � � 
 �

� � � � matrix
*

, which contains all possible received

sequences, the Hadamard product ( % ) [47] 3 is used:

* 5 L�2 0 % ? 0 M 0 
 0
(2.10)

5

���
�

���
�
2��
2��
2��

����
� %

���
�
?��
?��
?��

����
�

����
�
0


 0
(2.11)

5

����
� 2
�

����
�
A 0 �
...
A 0
9

�����
� 2��

����
�
A 0 �
...
A 0
9

�����
� 2��

����
�
A 0 �
...
A 0
9

�����
�

�����
� 
 0 �

(2.12)

In the non-dispersive channel scenario



is an identity matrix
�

of size
� � & � �

. Thus



has

been omitted in (2.8).

This derivation is an extension of the basic formulation given by Kailath [49, 50], but on a

chip by chip basis. However, most papers describe the signals on a symbol by symbol basis.

This sometimes makes it difficult to understand how a receiver processes the signals, but there

are articles which present a geometrical interpretation [51–53] in order to support a visual

description for different receivers.

2.3.2 Symbol rate based receiver

The symbol rate based receiver presented in Figure 2.1(b) is first analysed for the non-dispersive

channel and then extended to the multipath channel. Again, the elements in a set
�

are given

by the rows of a matrix, here denoted as
/

.

2.3.2.1 AWGN channel

Figure 2.1(b) shows that symbol rate based receivers process signals
� ��<F��

for
� 5 � = 7 = � � � = 4 ,

where 3 �<F�� is the preprocessor output in vector notation. If the receiver is symbol synchronised,

then vectors �
� F��

and 3 �<F�� are of interest. Again, all possible noise free signal (states), which

can be fed into the receiver can be stored in a matrix. This
� 3 & 4 �

matrix
/

is derived from

matrix
*

in (2.8). If the preprocessing stage consists of a bank of matched filters (each filter

3Dot product: ����� ��� ; Hadamard: �	�
��� �� ������������� or ���
�����  �����  ����!���  "���#�  
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matched to one of the
4

spreading sequences), then the preprocessed signal is said to have

sufficient statistics [38, 54]. Thus,
/

is given by:

/ 5 * ? 0
(2.13)

5 2>?E? 0 5 2 6 =

where
2

is the combination matrix and
6

is the crosscorrelation matrix between the spreading

codes, thus:

6 5 ?E? 0 5

������������
�

A 0 � A � A 0 � A � � � � A 0 � A 9 �
� A 0 � A 9A 0 � A � A 0 � A � � � � A 0 � A 9 �
� A 0 � A 9A 0� A � A 0� A � � � � A 0� A 9 �
� A 0� A 9� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

A 0
9 �

� A � A 0
9 �

� A � � � � A 0
9 �

� A 9 �
� A 0

9 �
� A 9A 0

9
A � A 0

9
A � � � � A 0

9
A 9 �

� A 0
9
A 9

�������������
�
�

(2.14)

If the spreading codes are orthogonal, then the main diagonal of
6

contains ones and all the off

diagonal elements in
6

are zero, yielding
/ 5 2

. If
/ 5 2

then
/

consists (only) of vertices

(corners) of a hypercube, and the signal constellation is convex [55]. A more elaborate analysis

will be given in the following chapters.

The preprocessing stage (block) shown in Figure 2.1(b) for a multipath channel, can have dif-

ferent architectures, and each architecture has its unique properties. Since these methods are

discussed in the forthcoming chapters, the discussion shall be omitted at this point for brevity.

2.4 Commercial system

Currently, several CDMA based mobile satellite systems are being introduced, e.g. Iridium,

Globalstar [12, 56]. Moreover, proposals have been made for the global third generation mobile

standards based on wideband CDMA [6, 57] and TDMA-CDMA [10, 58]. Thus it looks as if

most mobile systems in the future will have an element of CDMA. In the US and some Asian

countries a CDMA based cellular system is already in use, based on IS-95.

IS-95 is a digital cellular standard endorsed by the US Telecommunications Industry Associ-

ation based on CDMA [16]. The IS-95 system allows a number of users within a cell to use
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the same channel, and users in adjacent cells also use the same channel. It completely elimin-

ates the need for frequency planning within a geographical area. Spectral allocations are in the

800-900 MHz and 1800 MHz region for two operators. Both operators have 12.5 MHz of spec-

trum in each direction, this is divided into 1.25 MHz channels, giving 20 full duplex carriers.

The mobile station transmit frequency is always 45 MHz lower than the base station transmit

frequency. Different cells use different phases of a short PN code with period ( 7
���

� � ). Each

carrier is divided into a maximum of 63 information channels using orthogonal spreading codes

(Walsh codes). The user data is convolutional coded and spread, which leads to a channel chip

rate of 1.2288 Mchip/s, with a total spreading factor of 128 including forward error correction

coding (FECC), where the maximum data rate is 9.6 kbps. In order to ensure privacy, user data

is encrypted by a user specific long PN sequence with a period of ( 7 � � � � ). At both the base

station and the mobile RAKE [46] receivers are used. A new feature of IS-95 is the ability to

provide soft handover, connections of a mobile to two base stations at the same time. To solve

the near-far problem in the uplink, open and closed loop power control systems are used.

2.4.1 Downlink

The downlink channel consists of a pilot, a synchronisation, up to 7 paging and up to 63 traffic

channels. Of special interest is the pilot channel, which allows a mobile to acquire the timing

of the channel, provides a phase reference for coherent demodulation, and provides each mo-

bile with a means for signal strength comparisons between base stations to determine when to

handoff. The pilot channel is also modulated by the base station specific short PN code. The

traffic channel contains the data, which is grouped into 20 ms frames. User data is first convo-

lutionally coded, interleaved and formatted to adjust the data rate, and then spread with a Walsh

code and encrypted with a long PN sequence.

2.4.2 Uplink

The uplink channel consists of access and traffic channels. The access channel is used by the

mobile to initiate communication with the base station and to respond to paging messages.

User data is grouped into 20 ms frames. All data transmitted is convolutionally encoded, block

interleaved, modulated by an orthogonal modulation, and spread prior to transmission. The

user data may vary between 1200 bps and 9600 bps.
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2.5 Summary

Established multiuser communication systems are based on FDMA or TDMA, and will reach

their capacity limit soon. Military and efficiency considerations lead to the development of SS

systems, which became possible with the development of suitable hardware such as digital cir-

cuitry and digital signal processors (DSPs). Since SS techniques are more robust to interference

than common techniques, they are well suited to the difficult mobile environment [59].

To satisfy the growing demand on mobile communications, SS has been applied for mobile

communications in the form of DS-CDMA , which enables service providers to offer higher

capacities at lower costs. The third generation mobile standards and the satellite based mobile

systems are highly likely to be based on DS-CDMA [3, 60].

This work is focusing on receivers for mobile handsets. This is partly due to the tough limit-

ations on available computer power, hardware size and costs, and also due to the fact that the

current receiver structure deployed is far from optimum. Generally, linear receivers do not per-

form well in DS-CDMA since the optimum processing task is nonlinear, thus, nonlinear signal

processing techniques (e.g.[61]) must be used in order to improve receiver performance.
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Chapter 3
Established receivers

This chapter reviews equalisers and receiver structures for digital communications and DS-

CDMA.

After an introduction to optimum signal detection and a survey on equalisers, a review is given

on optimum, linear and nonlinear receivers for DS-CDMA. Finally, the chapter will be sum-

marised.

3.1 Equalisers

In the mobile environment, the radio channel can have a non-flat frequency response and non-

linear phase responses in the signal passband. Sending digital data at high speed through these

channels often results in ISI, caused by signal pulse smearing in the dispersive medium. Thus,

ISI is associated simply with the time delay between first and last significantly large echoes.

One of the earliest paper concerned with ISI was due to Price [62], where he introduced the

concept of the RAKE receiver. This structure is still popular [46], although other techniques

have been developed. However, ISI is not the only obstacle in mobile CDMA communications.

CDMA receivers must also take MAI into account and should be near-far resistant [35, 63, 64].

All of these factors must be taken into account, while maintaining reasonable complexity.

Equalisation techniques may be divided into two general types, linear and nonlinear equalisers,

see Figure 3.1.

Equalisation in data modems combats ISI by filtering the incoming signals. When the filter

weights become a channel inverse, then the filter can compensate for the irregularities in chan-

nel magnitude and phase response. A non-stationary environment requires equalisers, which

can follow the changing channel impulse response [65]. Hence, the equaliser must be adapt-

ive [65–70]. A discussion on adaptive algorithms such as the least mean square (LMS) or the

recursive least square (RLS) can be found in Haykin [48].
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Figure 3.1: A possible grouping of equaliser structures.

3.1.1 Optimum detector

Optimum receivers can be compared according to their decision criterion [71]. The Bayesian [72]

receiver’s decision criterion, for a signal
&

and binary signalling, where no assumptions are

made, is given by:

� � &
! � �
� � &
! � �

�
�

�  
�  " � � �
� � " � � � = (3.1)

where
� � is the



th cost of deciding wrongly for



,
� � &
! 
 �

the conditional probability density

function (pdf) and
" � 
 �

the a priori probability. If the costs are unknown and the assumption is

made such that
�  5 � �

, then the maximum a posteriori (MAP) decision criterion is given as:

� � &
! � �
� � &
! � �

�
�

�  
" � � �" � � � � (3.2)

If neither the
� ����
 $���


probability nor the costs are known and the assumption
�  �" � � � 5

� � " � � �
is made, then equation (3.2) is called a maximum likelihood (ML) decision criterion

and becomes:

� � & ! � �
� � & ! � �

�
�

�  � � (3.3)
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The ratio of the pdfs on the left hand side of (3.1) is the likelihood ratio
� �

, and the Bayesian

decision rule compares the likelihood ratio to a threshold
�
, which is one in (3.1).

The minimum probability of error is achieved when the receiver guesses the transmitted signal

to be that signal which, given the received signal plus noise, was most likely to have been

transmitted. Such a receiver is called a ML receiver. The optimum decision rules, in the sense

of minimising the probability of false detection, based on an observation vector � is given

according to [38, 54]. A signal transmitted over an AWGN channel can be demodulated by
�

matched filter type filters and produces a vector � 5 L & � & � � � � & �
M 0

with sufficient statistics.

The joint conditional probability density function of the received data vector is:

� � & � = & � = � � � = & �
! � 	 � 5 �

� ��� �  �
�
�����

�
��� �@ � � � & @ �

� 	 * @ � �
�  � =

(3.4)

where � 	 is a signal from a set of
� 5 � = 7 = � � � = 3 possible signals. Maximising the exponent

is equivalent to minimising the sum of squares of the distance measure between the received

data and those possible signal vectors � 	 , resulting in maximising the probability. The wish

is to design a signal detector such that the probability of a correct decision is maximised. The

decision rule is based on the computation of the
� � $ � � ��� 
%$�� 


probabilities, defined as:

" �
signal � 	 was transmitted

! � � =

which shall be abbreviated as
" � � 	 ! � � . The decision criterion is based on selecting the sig-

nal corresponding to the maximum of the set of a posteriori probabilities � " � � 	 ! � � � � 5
� = 7 = � � � = 3 � , which is the MAP criterion. Applying Bayes’ rule, the a posteriori probabilities

can be stated as:

" � � 	 ! � � 5
� � � ! � 	 � " � � 	 �

� � � � =
(3.5)

where
� � � ! � 	 � is the likelihoodfunction that results when symbol � 	 is transmitted, and

" � � 	 �
is the prior probability of the

�
th signal being transmitted. Some simplifications can be made

in the MAP criterion, when the 3 signals are equally probable prior (
" � � 	 � 5 � � 3 for all

�
). Furthermore, if the denominator in (3.5) is independent of which signal is transmitted, then

the decision rule can be stated as finding the signal that maximises
� � � ! � 	 � , which is the ML
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criterion. The likelihood function of
� � � ! � 	 � can be given in its natural logarithm form:

��� � � � � ! � 	 � � 5 �

�

7
��� � � �  �

�
�
�  ��@ � � � & @ �

� 	 * @ � � � (3.6)

The first term in (3.6) is a constant and can be ignored, hence, the maximum of
��� � � � � ! � 	 � �

over � 	 is given when the Euclidean distance is minimum. This shows that the ML decision

rule is simply to choose the signal closest to the received signal in terms of the Euclidean

distance. The second term in (3.6) can further be split into three terms: a term independent of
�

(which can be ignored), the inner product of � and � 	 , and the energy of the signal. So an

equivalent decision rule (for the AWGN channel) is selecting the signal that maximises:

7 � 0 � 	 �
! � 	 ! � = (3.7)

where the first term is the correlation between the received vector and the
�

th signal. If all

signals have equal energy,
! � 	 ! � may also be ignored. Hence, the optimum ML detector for

equally probable signals computes a set of distances and selects the signal with the smallest

distance.

A well known ML receiver is Forney’s [73] maximum likelihood sequence estimator (MLSE),

which comprises a sampled linear filter, called a whitened matched filter [74], and a recursive

nonlinear processor, called the Viterbi algorithm [75] for the distance measure. This equaliser

is often considered as the optimum receiver in literature, although the optimum receiver is

a symbol by symbol detector which incorporates the MAP criterion, e.g.[76, 77]. Moreover,

recently it has been shown that a MAP receiver outperforms the MLSE receiver, see [65, 78].

Optimum detectors are generally complex and computationally expensive. Thus the aim is to

find a receiver structure with near optimum performance and reasonable complexity, so called

sub- optimum or near-optimum receivers.

3.1.2 Linear equalisers

In the early work on linear equalisation, equalisers were generally designed to minimise the

peak distortion. This is achieved, under certain conditions, by a technique known as zero forcing

(ZF) [79]. Here, the equaliser forces the receiver output to be zero at all the sampling instances,

except at the time instant that corresponds to the transmitted pulse. The shortcoming of the ZF
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is that the linear filter removes ISI without regard to the effect on the noise. The result is that

in eliminating the ISI (or a portion thereof) it necessarily enhances the noise [80]. Moreover,

this technique cannot be used in its simple form for equalising severely time varying signal

distortion [79].

Another form of optimising the filter design is by minimising a cost function. The most common

criteria is the mean square value of the estimation error (MSE), because it leads to tractable

mathematics. The minimum mean square error (MMSE)
� 	 � @ is defined by:

� 	 � @ 5 K)L ! � �<F�� ! � M�= (3.8)

where
� �<F�� 5 G �<F�� �

	& �<F��
, and

	& � F��
denotes the estimated (filter output) for the

F
th symbol

of the desired response G �<F�� 1, and
K)L � M

denotes the expected value. The optimum, in the MSE

sense, is given by the Wiener-Hopf equations [48]. They define the linear filter coefficients (or

weights) in terms of two correlation functions: the autocorrelation function of the filter input,

and the crosscorrelation function between the filter input and the desired response. The matrix

formulation of the Wiener-Hopf equation is:

� 5 / � �0 0 3 4 0 = (3.9)

where � are the filter weights or coefficients.
/ 020

denotes the autocorrelation matrix of the

received signal defined as
/ 020 5 K/L � �<F�� � 0 � F�� M where � is the (

� & � ) input vector, and
3 4 0 5 K/L G �<F�� � �<F�� M is the crosscorrelation vector between the desired response and the filter

input. This is the most popular equaliser, known as the feedforward linear transversal equaliser

(LTE). An adaptive form of this equaliser is known as the Widrow-Hoff LMS, which converges

to the MMSE solution [48, 79].

3.1.3 Nonlinear equalisers

A nonlinear structure known in nonlinear system modelling has been suggested, based on the

Volterra2 series [81], since its inverse can be used to compensate for nonlinear distortion. The

Volterra series expansion can be seen as a Taylor series expansion with memory. The limitations

of the Volterra series expansion are similar to those of the Taylor series expansion: they do

1 ������� represents the known transmitted signal.
2Vito Volterra, Ital. mathematician (1860-1940).

26



Established receivers

not perform well, when there are discontinuities in the system description [82]. Taylor series

converge and represent a function, e.g.
����#�

, if and only if the remainder of the Taylor series

becomes zero as the order of the Taylor series tends to infinity [83]. If the order of the system

is very high or even infinite, then, generally, the contribution of each Volterra operator cannot

be separated from the total system response. For this case, there is no exact method for the

measurement of the system Volterra kernels, and approximation techniques must be used [81,

82].

The continuous time Volterra model is given by:

� �+��� 5 �  
 �1� L #������ M 
 � � � 
 � 	 L # �+��� M 
 � � � 
 ���$L # �+��� M�=
(3.10)

where
�  

is the DC term,
� 	 L #��+��� M is the

�
th-order Volterra operator given by (3.11), and

� 	 � � � = � � = � � � = � 	 � is the
�

th-order Volterra kernel:

� 	 L # �+��� M 5
� �
� �

� � � � �
� �

� 	 � � � = � � = � � � = � 	 �2# �+� � � � � � � � #��+� � � 	 � G � � � � � G � 	 � (3.11)

Volterra series have been applied to equalisation [84, 85], image processing [86], and also their

adaptive behaviour has been investigated [82, 87, 88]. However, a Volterra structure can become

computationally expensive, which is why most Volterra filter proposals use low order (up to 3).

Sid and Figueiras [89] showed an equalisation example for a maximum phase channel, which

is known to be difficult to equalise [79, 90] and may require a prohibitively large equaliser

structure. In order to construct the optimum decision boundary, it required a Volterra structure

of order 17. However, this scenario is not typical. Tsimbinos and Lever [91] investigated the

Volterra FIR filter complexity
� �<;E= 3 �

in terms of multiplications needed. Figure 3.2 shows

the true complexity
� �<;>= 3 �

, where
;

denotes the highest filter-order and 3 the memory

span, in terms of the total floating point operations (flops) needed. However, current DSPs

need one clock cycle for a multiply and accumulate (MAC) operation, therefore it is reasonable

to count the multiplications only. Note that the complexity scale is logarithmic.

Gibson et al. [90] and Georgoulakis and Theodoridis [92] considered the equalisation problem

as a classification problem. The equaliser’s task is to construct the boundary which minimises

classification errors. Gibson et al. showed that the optimum decision boundary is not generally

linear and hence nonlinear equaliser structures can outperform linear ones. Results were given

in [90] for the LTE and a multilayer perceptron (MLP) neural network (NN) [93], which indic-
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Figure 3.2: Complexity
� �<;>= 3 �

per estimated user bit (receiver output) against the memory
span 3 at the FIR filter; 3 corresponds to the Volterra filter length (taps) and
parameter

;
is the Volterra-order.

� � � = 3 �
is the complexity curve for a FIR filter

with M-taps.

ate the superiority of the nonlinear NN structure over the LTE. However, MLP networks must

be trained according to an algorithm (e.g. back propagation (BP) [94]). This training can take

a very long time, hence the MLP is not suited to real time applications. In their paper, Gibson

et al. also showed that under certain circumstances, when the channel is not of minimum phase

nature, the equalisation problem becomes nonlinearly separable. This means, any linear equal-

iser will fail to perform well regardless of the SNR, and only nonlinear structures succeed in

achieving good performance.

An approach is given in Hassell et al. [95] to tackle the nonlinear separation problem. They

applied linear programming (LP) [96] in order to construct slabs3. Results presented indicate

little performance loss against the optimum Bayesian equaliser. However, due to the complex

nature of the problem a higher SNR was often needed to achieve good performance. Figure 3.3

shows the results reproduced according to [95] for two different channel models, where Channel

1 has impulse response
� �� ��� � 5 ��� � 
 � � �

and Channel 2
� �� ��� � 5 �� � � � 
 �������� � �

�

 � � � .

Clearly, the LTE can no longer resolve the nonlinear separable scenario and fails to achieve

good performance since its structure is linear. The proposed LP based equaliser (SLAB) can

perform nearly as well as the optimum Bayesian equaliser.

3The vector space is sub-divided with hyperplanes into regions (bounded by hyperplanes) with a joint property,
which look like slabs.
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Figure 3.3: Hassell’s proposed slab receiver compared against the linear LTE and the Bayesian
receiver for two nonlinearly separable scenarios.

Another approach for NN based equalisers is based on approximation [97, 98]. Here, radial

basis function networks (RBFN) were considered, which can reconstruct any hypersurface

boundary [98]. Chen et al. [99] proposed the adaptive RBF equaliser and concluded that its

performance depends on the selection of the RBF centres. In [100], Chen et al. presented a

supervised clustering technique. Moreover, a derivation has been given which showed the struc-

tural equivalence between the optimal Bayesian solution and the RBFN. This explains why NN

equalisers outperform linear equalisers. Theodoridis et al. [101] also applied the RBFN and

reduced the number of centres. Due to this reduction, the cluster distribution is no longer

spherical. Hence, the Euclidean distance measure is no longer the appropriate choice, and was

replaced by the Mahalanobis distance measure [102]. Finally, Cha and Kassam [103] examined

a number of different RBF NN structures as well as training algorithms for interference cancel-

lation.

3.2 Optimum multiuser receiver for DS-CDMA

A CDMA receiver can either process the received signal at the chip rate or symbol rate (user

bit rate), see Figure 3.4. Figure 3.4(a) shows chip rate receivers, which consists of a bank of

matched filters (MFs) or RAKEs. A bank of MFs is for the non-dispersive AWGN channel,

whereas RAKEs are considered for multipath channels. Current mobiles have a simple RAKE

because of its simplicity, whereas base stations can have a bank of MFs (or RAKEs) as de-

picted in figures 3.4(a) and 3.4(b). However, structure Figure 3.4(a) suffers from MAI and
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therefore has limited performance. Performance improvement can be gained, when
����� ��
��	�

to

� � ��� � �����	� ��� ��� � 
%$

(CIR) information from the interferers is taken into account to combat

MAI, as structure 3.4(b) suggests. This structure is known as the multiuser detector (MUD)

and is usually suggested for the asynchronous uplink receiver [104]. It could also be used in

a modified version as a single user detector in mobiles and might be implemented in the next

generation of mobile systems.
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scheme with MFs for the AWGN channel.

Figure 3.4: Two different MUD receiver structures.

A receiver structure which processes the received signal
& �+���

at the chip rate, will be known

as a chip level based (CLB) receiver. Receivers, such as 3.4(b), which process
& �+���

at the

symbol rate and consist of a front end bank of filters, will be called preprocessing based (PPB)

receivers.

Verdu [105] showed, based on Forney’s paper [73], that the
4

user maximum likelihood de-

tector for CDMA in AWGN consists of a bank of
4

single user matched filters followed by a

Viterbi algorithm with a time complexity of
;)� 7 9 � per bit (binary signalling). This receiver

structure shall be called Verdu’s receiver (for DS-CDMA). The complexity of the Verdu re-

ceiver makes it unsuitable for practical applications. Verdu’s receiver structure is often con-

sidered in the literature as the optimum receiver for CDMA, in terms of minimising the number

of incorrectly detected symbols. However, there is also evidence that a MAP based receiver

outperforms Verdu’s receiver, as has been proven for equalisers. Moreover, Jung and Alexan-

der [52] investigated MUD receivers and also state that the optimum CDMA receiver, defined

as the receiver with the least detection errors, is a MAP detector such as that in [77]. Thus,

the optimum detector is a maximum likelihood symbol detector (MLSD) since it minimises

the symbol error probability and not the sequence error probability as Verdu’s receiver does.
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The optimum receiver is also too complex to implement since it compares the received signal

against all possible signal states.

Because all optimum receivers are too complex for practical applications, the search for sim-

pler and near optimum receivers became vital and goes on. Most proposals are based on the

multiuser concept, which is preprocessing based (PPB) for several reasons. First, they relate

to Verdu’s MUD receiver, since they consider it optimum. Second, when long spreading se-

quences are used, as suggested for wideband CDMA (WCDMA) [3], then matrix and vector

manipulations become very expensive, whereas preprocessing reduces the signal dimensional-

ity to a reasonable size, from
�

to
4

, since generally the number of users is smaller than the

number of chips. Third, preprocessing filters (RAKEs) are fast, easy to build and embed into

hardware as a simple block, while the output signal has sufficient statistics.

3.3 Linear receivers for DS-CDMA

The general form of a linear receiver is given by
	CED 5 sgn

� � 0 � � , where the sgn
�����

function

returns the sign of the operand and where the filter weight vector � is chosen to minimise a cost

function, while
	C D

is the estimated transmitted bit of the desired user G and � is the received

signal, see Figure 2.1.

The simplest CDMA receiver is the MF receiver, where � is replaced by A D , the spreading

sequence vector of the desired user. In a multipath fading channel, � corresponds to the convo-

lution between A D and
� �� , implemented as a RAKE [106]. The theoretical performance

" (
of

a MF receiver for a single cell system with
4

users, long random codes, where
�

is the number

of chips (processing gain) in AWGN is [23]:

" ���( 5 -
� �

� � 
 � 4
� � � � =

(3.12)

where
-)���I� 4 may be written in terms of the complementary error function as:

-)��# � 5 ��� �
erfc

��# ��� 7 � =

4Defined as: � � � � � �� �	��
�������� ��� �
����� � � � .
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and � � denotes the noise power, derived from:

K N
�  E5

�

7 � �
=

(3.13)

where ��� 5 �  � 7 is the two sided noise power spectral density and
K N

the bit energy.

Minimising the MSE results in the optimal Wiener filter (MMSE), where the optimal weights

are given by equation (3.9). The autocorrelation matrix of the signal of the input of the receiver

for CDMA has been shown by Cruickshank [107] to be equivalent to
/ 020 5 ? 0 * ? 
 � � � .

The (
4 & �

) matrix
?

contains the spreading codes as vector rows. The matrix
*

has size

(
4 & 4

) and has
" �

at its diagonal and is zero elsewhere,
" �

being the signal power at the

receiver of user
�

. Term � � � is the noise term. The crosscorrelation vector 3 4 0 is given by
3 4 0 5 K/L�C D 3 M , where

C D
is the desired response and 3 the preprocessed received vector.

This results in the spreading code of the desired user with the assumptions made in [107]. The

theoretical performance of the MMSE receiver is [108]:

" � �����( 5 -
�

� 0 3 4 0
� � �

0 354 0 � �
(3.14)

To obtain the average BER performance, equation (3.14) must be averaged over all users in the

system to give
" � �����(

. If the chip level based MMSE is applied to a multipath scenario, the

spreading codes A � used in the matrix
?

are replaced by the convolution between A � and
� �� .

The multiuser MMSE receiver has also been investigated by Madhow and Honig [109] and has

been shown to be near-far resistant. A different derivation of the filter weights is presented next.

r(t)
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r (k)MF 1
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y(kN+n)
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1

2

}Receiver

Preprocessing stage

Figure 3.5: A bank of matched filters, the preprocessing stage, as for the optimum multiuser
receiver suggested.

Figure 3.5 shows a synchronised two user system, from which the MMSE description is derived.

Received signal (2.6) for bit
F

, here denoted as
& �<F � 
 � �

, is preprocessed and fed as signal
3 �<F�� 5 L �5� � F�� � � �<F�� M 0 into the receiver. For a three chip spreading code (

� 5 � ) and
4 5 7 ,
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vector �
�<F��

has components (chips):

& � 5 C � � � * � 
 C � � � * � 
 � � � � =
& � 5 C ����� * � 
 C � � � * � 
 � � 7 � =
& � 5 C ����� * � 
 C � � � * � 
 � � � � =

where
C �

denotes the user bit, which is equiprobable +1 or -1 and
� � * @ is chip

�
of user (code)

�
which is either +1 or -1, and � ����� the added noise. Vector 3 �<F�� components are substituted

with
� 5 � � �<F��

and
� 5 � � �<F�� , and become after matched filtering:

3 �<F�� 5 L � � M 0
� 5 � � 
 � � 
 � � 5 & ����� * � 
 & � ��� * � 
 & �	��� * �
� 5 � � 
 � � 
 � � 5 & ��� � * � 
 & � � � * � 
 & �	� � * � �

The crosscorrelation vector 3 4�� is:

3 4�� 5 K/L�C D 3 M (3.15)

5 K/L�C1� L � =�� M 0 M 5 L � C1� & � � � 
 � � 
 � � � � � C1� & ��� � 
 � � 
 � � � � M 0 =

without loss of generality, it is assumed that user one is the desired user, hence
C D 5 C �

.

Terms with factor
C ��

are one for even



(powers) and zero for odd


. Bearing this in mind, the

first element in 3 4�� becomes

� 3 4�� � � 5 K/L�C � & � � � 
 � � 
 � � � M

5 K/L�C � & � C � � �� * � 
 C � ��� * � � � * � 
 ��� * � � � � � 

C ��� �� * � 
 C � ��� * � � � * � 
 ��� * � � � 7 � 

C � � �� * � 
 C � � � * � � � * � 
 � � * � � � � � � M

5 � �� * � 
 � �� * � 
 � �� * �

and the second element is

� 3 4�� � � 5 K/L�C1� & ��� � 
 � � 
 � � ��M 5 ��� * � � � * � 
 ��� * � � � * � 
 ��� * ��� � * � �

It turns out that the crosscorrelation vector of the MUD MMSE is the correlation between the
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spreading sequence of the desired user and all transmitting users. The autocorrelation matrix
/10 0 5 K/L 3 3 0 M is accordingly given by:

/ 020 5 K
�
� � � � �

� � � �

�
� =

(3.16)

with terms

� � 5 � � � 
 � � 
 � � � � 5 � �� 
 � �� 
 � �� 
 7 � � � � 
 7 � � � � 
 7 � � � �
� � 5 � �� 
 � �� 
 � �� 
 7 � � � � 
 7 � � � � 
 7 � � � �

and the two mixed terms, which can be assumed to be equal, are:

� � 5 � � 5 � � � 
 � � 
 � � � � � � 
 � � 
 � � �

5 � � � � 
 � � � � 
 � � � � 
 � � � � 
 � � � � 
 � � � � 
 � � � � 
 � � � � 
 � � � � �

Finally, with backsubstitution, the terms become:

� � 5 � � � * � 
 � � � * � 
 � � � * � 

� �� * � � �� * � 
 � �� * � � �� * � 
 � �� * � � �� * � 
 7 � �� * � � �� * � 
 7 � �� * � � �� * � 
 7 � �� * � � �� * � 


7 � � * � � � * � � � * � � � * � 
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These results show that
/ 020

can be split into two matrices, the first covers all possible received

noise free signals, and the second takes the correlated nature of the noise into account (due to

preprocessing), hence:

/10 0 5 * 0 * 
 � � 6 = (3.17)

where
6

is the covariance matrix of the spreading codes, and
*

denotes a ( 7 9 & 4
) matrix

containing all possible received signal states as its rows. For the multipath case with RAKE

preprocessing, 3 4�� is the correlation among the convolved sequences of the user codes A � and
� �� and

6
the covariance matrix of the convolved sequences. Matrix

*
has size ( 7

�
9 & 4 ) and

contains all possible received signals of 3 , taking the previous, current and next symbol into

account, which is computationally prohibitive for a large
4

. A common approach is to apply

MFs instead of RAKEs for preprocessing, which reduces the matrix size of
*

to ( 7 � 9 & 4
) at

the expense of performance.

As the level of background noise tends to zero ( � � �
�
), the MMSE receiver converges to the

decorrelating detector (DECO), introduced by Lupas and Verdu [110], which eliminates MAI

at the expense of noise enhancement. This receiver structure can be considered as the ZF filter

for CDMA. The decorrelating receiver is also near-far resistant [35].

Moshavi et al. [111] proposed a polynomial based structure, a multistage receiver. This struc-

ture converges to the Wiener solution as the number of stages tends towards infinity. The

authors showed that a small number of stages is sufficient to outperform the MF receiver.

Simulation results for linear CDMA receivers are presented in figures 3.6 and 3.7. The simula-

tion scenarios were set according to [112], with short randomly generated spreading sequences

(
� 5�� ) and noise power

K N�� �  5�� dB. The simulation results show how the MF suffers from

MAI and is outperformed by the decorrelating (DECO) and the MMSE receiver, see also [39].

3.4 Nonlinear receivers for DS-CDMA

A straightforward way to improve the performance of CDMA receivers is to cancel MAI.

This class of receivers, known as interference cancellers, have drawn much attention. Most

designs use combinations of linear receiver for pre and postfiltering since it keeps the complex-

ity low [39, 107, 108, 113, 114]. However, in order to cancel MAI well, a good estimate of each
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Figure 3.6: BER against the number of users in AWGN at
K N�� �  5 � dB and with randomly

generated spreading codes with 7 chips.
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users signal power is essential, otherwise interference is added and not subtracted.

The multistage detector (MSD) proposed by Varanasi and Aazhang [115] improves each stage’s

estimate by subtracting an MAI estimate obtained from the previous stage, a linear processing

followed by an iterative nonlinear processing step. Kechriotis and Manolakos [116] showed

that the MSD is a special case of a discrete time approximation of their proposed Hopfield

Neural Network (HNN) [117]. Moreover, the HNN can correspond to an infinite number of

stages of MSD sharing similar characteristics.

Miyajima and Yamanaka [118] proposed a blind adaptive receiver for DS-CDMA. Their re-

ceiver consists of a user specific MF and a bank of MFs which match the received signal against

an orthonormal set of signals, derived from the users’ spreading sequence. The filter bank out-

put is fed into an adaptive block. The adaptive block generates a signal which is subtracted from

the output of the user specific MF. The receiver, which works at the symbol rate in a Gaussian

channel, was compared against Verdu’s receiver and performed nearly as well for the used set

of short Gold codes.

Aazhang et al. [119] investigated the MLP for high bandwidth efficiency5. Two training al-

gorithms were considered. First the BP algorithm [94], where the supervisor has access to the

desired user bit. This resulted in the incorrect decision boundary of the decorrelating receiver

due to an improper choice of cost function, since it was based on minimising the least square

error (LSE) which is not the same as minimising the number of misclassifications [120]. Thus

they considered the assisted backpropagation algorithm, where the supervisor knows all user

bits, which leads to a near optimum decision boundary. The open question of determining the

number of neurons was solved by assigning a sufficient number of neurons by analysing the de-

cision boundary first. Once again, the MLP NN showed excellent performance at the expense

of long training time, computational complexity and network size uncertainty.

Hopfield networks are single layer recurrent neural networks with symmetric weight matrices in

which the diagonal elements are ideally zero. Hopfield neural networks introduce the concept of

an energy function into neural networks and are often viewed as a memory model, performing

a recognition or retrieval task [93]. When viewed as a memory, the network’s storage capa-

city (the maximum number of patterns that can be stored with acceptable error for retrieval)

becomes vital. The capacity of a HNN is limited by a certain ratio between the number of

5Measured as the ratio of the number of users to spread factor.
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patterns and the number of neurons; if this ratio is exceeded, then the HNN loses its memory.

Nevertheless, the objective function of the multiuser problem [121] can be translated into an

energy function, which makes HNN applicable for CDMA [116]. Results given in [122, 123]

claim near optimum performance for many scenarios. A hybrid HNN with reduced complex-

ity is presented in [123], and hardware aspects are investigated in [124], which suggest that

the HNN might be an interesting alternative to linear structures. The HNN is also referred to

as a recurrent neural network (RNN) [125]. Unlike MLP NN, RNN do not require iterative

training since the connection weights can be computed in many cases but the network must be

brought into a stable state. It appears that [116] and [125] are very similar. However, this RNN

seems to perform as well as the optimum receiver since the network always converges to one

vertex of the energy surface hypercube, which is close to, or, is the optimum solution. Teich

and Seidl [126] extended this RNN for multipath scenarios and presented near optimum res-

ults. Their RNN complexity grows linearly with the number of users. They also state that the

RNN requires only a few training iterations, dependent on ISI and MAI, to obtain the desired

performance, but the performance degrades if too few iterations are used.

A derivative of the HNN is the annealed neural network (ANN) by analogy to the real annealing

process in metallurgy. Such an annealing function can be used as a cost function, where the

network is expected to find a configuration which minimises an energy function. Here, the

HNN is viewed as solving an optimisation problem. Yoon and Rao [127] reported that the

ANN performs better than the DECO.

Mitra and Poor [128] applied the RBF network for CDMA as an adaptive RBF since the MUD

receiver may not have sufficient parameter knowledge. The RBFN consists of centres and

weights, the centres were created (set up) by clustering techniques, and the weights were es-

timated with the adaptive LMS algorithm. A mathematical formulation is also given, which

derives the weights and the relationship between RBF and ML detection. The received signal is
3 5 � D 
 	 , where �

D
is the desired signal vector and 	 the noise component inclusive of MAI.

The observation density conditioned on a hypothesis
� � , for


 5 �
or � (binary signalling), is:

� � 3 ! 
 � 5 �
7 9 �

� �
��� ��
	 � � �

� � 7 ��� � � � �����
�

�

 3 � �
D � 
 �

� � 	  �
7 � � � =

(3.18)

where
4

is the number of users, � � is the Gaussian noise variance, �
D � 
 �

is the desired signal
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vector given
� � and � 	 is the

�
th permutation of the sum of the interferer’s signal’s6. The

likelihood ratio becomes then:

� � 5 � � ��� �	 � � ��� ��� ����� �����
	 ��� ���� � ���� � �
� � ��� �	 � � ��� ��� ����� �����
	  �� ���� � ���� � � = (3.19)

from which the authors derived the Bayesian decision rule as:

� 5 sgn �� � � � � ��
	 � � �����

�
�

 3 � �
D � � � � � 	  �
7 � � � �

� � � ��
	 � � ��� �

�
�

 3 � �
D � � �

� � 	  �
7 � � �

� �
� �

(3.20)

The RBF network structure is defined as:

& � 3 � 5
��
	 � ��� 	 � �  3 � A 	  �

��	 � =
(3.21)

where
�������

is a continuous, nonlinear function from
. D

�
.

, 3 the input data vector, A 	 is

called a centre of the RBF neuron, and �	 is the spread of the neuron and � 	 are the linear

weights. Each centre A 	 corresponds to a row of a generating matrix. Mitra and Poor showed

that the optimum Bayesian decision rule in terms of the MAP criterion, can be implemented

with a RBF network, by substitution the terms in (3.21). However, it has been shown that the

RBF is an optimum receiver for DS-CDMA. A non-adaptive RBF receiver for CDMA was pro-

posed by Cruickshank [112]. Since all network coefficients were computed, this deterministic

procedure does not require any training. However, the receiver must know the number of users,

their spreading sequences and signal power, and the channel impulse response. Unfortunately,

the mobile has only access to a limited number of parameters, whereas the base station does

have knowledge of all of them. Moreover, in the multipath scenario, the receiver complex-

ity grows with factor 7
�
9 . The simulations of [112] were repeated and presented in Figure 3.8

and 3.9, showing the superiority of the RBF receiver over the linear receiver structures (matched

filter and MMSE receiver) in both cases, Gaussian and multipath scenario. The simulation has

been stopped at six users for the multipath scenario due to the complexity of the RBFN.

6Means that the interfering signals can be constructed from the spreading codes allocated to each (interfering)
active user.
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Figure 3.8: BER against the number of users in AWGN at
K N � �  5�� dB for randomly gener-

ated spreading codes with 7 chips.
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3.5 Summary

Due to multipath effects the orthogonality among the spreading codes at the receiver is des-

troyed and linear filters are no longer optimum. The optimum receiver is nonlinear. It has been

shown that nonlinear equaliser structures can be applied successfully to DS-CDMA. Optimum

and sub-optimum nonlinear receivers appear to be complex, but the trend in increasing hardware

power makes them interesting in future applications. A fact which has not been considered is

that most receivers are required to be adaptive, due to the fact that the channel is not stationary

and must be tracked. The non-stationary mobile environment needs an adaptive receiver struc-

ture which can track the fast changing channel characteristics. Linear (and feedback) receiver

structures are in this respect advantageous, which explains their current dominance [129, 130].

Further work should consider investigating nonlinear network structures which have some sort

of determinism incorporated such as multistage detectors, hybrid networks, Hopfield networks

and radial basis function networks. HNNs appear very interesting since it has been pointed out

that there is a relationship with the optimum detector and fast hardware is available. However,

they require a loop too in order to converge to the optimum network state (training). However,

the authors claim performances as being close to the MLSE’s performance. This may be ques-

tioned because the HNN can be related to the MSD receiver, and the MSD was shown to

perform like the MMSE receiver [131]. Also of interest are RBF networks since they perform

a nonlinear and a linear mapping, can be made adaptive and can be constructed (no training).

Among the many equaliser designs proposed, Volterra and RBF networks are of interest since

little work has been published concerned their application to DS-CDMA. Thus both structures

appear worthwhile for further investigation.
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Chapter 4
Pattern recognition in DS-CDMA

This chapter introduces the concept of pattern recognition and shows how it can be applied to

digital communications such as DS-CDMA.

After a brief historical introduction, common techniques known in pattern recognition are re-

viewed. Then, pattern recognition is applied to DS-CDMA. Decision boundaries are presented,

followed by an introduction to approximation theory. Finally, a discussion with conclusions

summarises this chapter.

4.1 Introduction

Any signal, in particular digital signals, can be viewed as a pattern. A signal or pattern, given as

a vector, can be interpreted as a point in the vector space. Points with similar properties can be

assigned to sets, groups or classes. A machine’s task is then to store, retrieve, compare, assign

or recognise patterns. Work done in the field of neuro biology prepared the way to develop

brain like computers: neural networks.

The very early models of neurons and neural networks, such as McCulloch-Pitts, were based

on simple threshold devices to perform logic functions [93]. Later, Rosenblatt proposed per-

ceptrons [132] and Widrow introduced adalines (adaptive linear elements) [133]. Since these

models were of a linear nature, the most important requirement was linear separability [134] of

the classes to apply linear networks [135–137]. Mangasarian [138] applied linear programming

(LP), already well known in operations research, for testing linear separability and recently for

cancer cell diagnosis [139]. However, the LP algorithm can be very time consuming when

applied to large networks.

A network which shall perform well as a pattern recogniser, must be able to construct decision

boundaries, or must have a memory. These are typical features of neural networks. Thus,

common network solutions are associative memory networks, e.g. HNNs, MLPs, RNNs and
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RBFNs. The increasing obtainable computer power will increase NN applications. The current

trend in pattern recognition is applying nonlinear models, where popular approaches rest upon

neural networks [140–143] and RBFs [144], encouraged by industrial applications [145]. Nev-

ertheless, linear models (and machines) are still important, since they are very simple, fast and

therefore cheap.

4.2 Pattern recognition

Pattern recognition means identifying, classifying and assigning a signal (e.g. represented by

a point) to a known class. If the signal is antipodal then the network deals with two classes or

groups, representing the desired user’s bit sign.

Usually, points within a group form a cluster1. Clusters can be sharp bounded or disperse into

other clusters. Assume there are 3 known patterns each denoted as vector � 	 5 L # � # � � � � # D M 0

(
� 5 � = 7 = � � � = 3 ) in an Euclidean space

J D
and each pattern belongs to a class denoted as ��� .

Further, there exists an infinite number of patterns when they are noise corrupted, denoted as � � ,
where the

F
th pattern originally has been drawn from the set with 3 patterns. The first class of

pattern clusters is deterministic in nature and can be described by its (convex) hull [146, 147],

whereas the second class is probabilistic and may be described by its statistics [144]. Signals in

digital communications belong to the probabilistic class because of the added (Gaussian) noise.

Obviously, if the convex hull is known, then the cluster can be described more easily which re-

duces the network complexity by a large amount if the set is large. For describing probabilistic

classes, it makes sense to find the boundary between the classes, since this is the region where

classification errors occur. Ideally, to find these decision boundaries, knowledge of the points

and the noise statistics should be available to the detector, the pattern classifier.

1In pattern recognition is it more common to use the term point, instead of signal, since any signal in vector form
can be interpreted as a point in the vector space.
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4.2.1 Linear discriminant function

The simplest way to classify two classes of patterns is by applying a linear discriminant func-

tion, defined as:

��� � � � 5
D�
� � � � � # � * � 
 �  = (4.1)

where � � are the weights and �  denotes an offset. Figure 4.1 presents a linear machine with

a classifier at the output which is not stated in equation (4.1) but introduced in the next subsec-

tion. A complete specification of any linear discriminant function is achieved by specifying the

values of the weights.

1

d

x

x

+1

Σ

w1

wd

w0

ω i

Discriminator Classifier OutputInput

Pattern kx

Figure 4.1: A model of a linear machine.

An important special case of a linear machine is a minimum distance classifier with respect to

points in
J D

[148–150].

4.2.2 Linear pattern classification

Equation (4.1) is better known from its modified version as perceptrons and adalines, where

the offset �  is called the threshold and the sign of the sum is taken, so (4.1) becomes a linear

threshold element [151], depicted in Figure 4.1 and defined as:

��� ��	 � 5 sgn

� D�
� � � � � # 	 * � 
 �  � �

(4.2)
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Equation (4.2) can distinguish in its simple form between two sets (classes), those which have

a positive output, and those with a negative output, which corresponds to matched filtering.

Ideally, the separation of a two class problem is carried out with a matched filter, which gener-

ates a simple plane or hyperplane [152]. But if the problem is not of a simple linear nature (e.g.

orthogonal points), then the optimum solution becomes more complex. Figure 4.2 presents sev-

eral possible pattern configurations and a possible separation boundary, depicted as a dashed

line.

b) c)a)

d) e) f)

Figure 4.2: Different classes of pattern arrangements and a decision boundary, where b-f are
nonlinearly separable. a) Linearly separable b) Piecewise linear c) Double bounded
d) Quadratically e) Cubically f) Elliptically

Figure 4.2(a) is the simplest way to classify the two classes of dots and 4.2(f) the most complex

way. All patterns could also be separated linearly by piecewise linear approximation, of course

with increasing complexity. Such a piecewise linear machine is depicted in Figure 4.3(a). The

machine generates 3 linear segments with the discriminator (4.2). Since the number of linear

segments required, e.g. for approximating a circle, can generate a prohibitively large network,

alternative functions which describe or approximate nonlinear functions, such as polynomial

functions [153] and series should be considered, e.g. Figure 4.3(b).
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(a) Piecewise linear decision boundaries.
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(b) Quadratically nonlinear decision boundaries.

Figure 4.3: Two models of nonlinear machines which generate decision boundaries.

4.2.3 Minimum distance classifier

The minimum distance classifier compares each pattern ��	 against prototype patterns + . This

network becomes large as their number increases. Hence, minimum distance classifiers are

appropriate in situations, where each class is represented by a single prototype pattern, e.g.

circles, centroids, around which all other patterns in the class cluster [151]. This is already

known since this technique corresponds to the ML technique, introduced in equation (3.3)2.

4.2.4 Linear separability in pattern recognition

Starting from a pattern vector � 5 L # � # � � � � # D M 0 belonging to one of the 3 classes � � � = � � =
� � � = � � � which needs to be classified, there are 3 decision functions

� � � � � = � � � � � = � � � = � � � � �
with the property that if a pattern � belongs to ��� , then

� � � � � � � , � � � , ( 5 � = 7 = � � � = 3 and

��5 (

. The decision boundary for separating ��� from � , is given by values of � for which
� � � � � 5 � , � � � , thus:

� �I, � � � 5 � � � � � �
� , � � � 5 � =

(4.3)

which describes a hyperplane
�

. Therefore, for patterns of class ��� � �I, � � � � �
and for patterns

of class � , � �I, � � � � �
, see Figure 4.4.

The mentioned minimum distance classifier exploits the Euclidean distance
� , � � � 5  � � � ,  ,

where � is assigned to the class � � if
� � � � � is the smallest distance. Term �
, is the mean of a

2Nilsson pointed out that the terms correlation detection and matched filtering are also common.
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Figure 4.4: A possible 7 -dimensional pattern classification problem, where two classes are
separated by the linear boundary

�
.

class given as:

� , 5 �
� ,

�
�����  
� =

and
� , denotes the number of patterns within class ��, . The decision boundary (4.3) between

classes ��� and � , becomes then (after several transformations):

� �I, � � � 5 � 0 � �
� � � , � �

� 0� � � � � 0, � ,
7 5 ���

(4.4)

A Bayesian classifier for a (0,1) loss function can be seen as the implementation of decision

functions of the form
� , � � � 5 � � � ! � , � " � � , � [154, 155]. For the � -dimensional Gaussian case

(normal distribution), and 3 5 7 ,
� , � � � becomes:

� , � � � 5 � � � ! � , � " � � , � 5 �� 7 � � , �����
�

�

� � � � , � �
7 ���, � " � � , � = (4.5)

if all classes are equally likely,
" � ��, � can be neglected. For the G -dimensional case, the mul-

tivariate normal distribution [155], the density of � in the
(

th class is:

� � � ! � , � 5 �
� � 7 ��� D � ! 6 , ! ��� �

�
�

� � � �, � 0 6 � �, � � � � , �
7 � =

(4.6)
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where � , 5 K , L � M is the mean, and
6 , 5 K , L � � � � , � � � � � , � 0 M is the covariance matrix of

class
(

. Both can be approximated , yielding:

� , 5 �
� ,

�
� � �  
� and

6 , 5 �
� ,

�
�����  

�
� � 0 � � , � 0,�� =

where
� , is the number of patterns in class

(
.

The next step has a serious implication. The common approach taken to simplify the Bayesian

mathematics is to take the logarithm, thus
� , � � � 5 � � � ! ��, � " � ��, � becomes:

��� ��� , � � � � 5 ��� � � � � ! � , � � 
 ��� � " � � , � � � (4.7)

This results in the simpler form for (4.6):

��� ��� , � � � � 5 �
G ��� � 7 ���

7 �

��� � ! 6 , ! �
7 �

� � � � , � 0 6 � �, � � � � , �
7

=
(4.8)

which is a function of hyperquadratics, because no term is higher than the second degree, which

also explains Nilsson’s [151] interest in the quadratic decision function. The first term in (4.8)

can be eliminated since it is assumed to be equal for all classes, then (4.8) can be analysed. If
6 , 5 6

for all
(

, then
� , � � � are linear decision functions, and if

6 , 5 �
then (4.8) represents

the minimum distance classifier. Of particular interest is the first case, since it results in the

Lupas and Verdu [110] DS-CDMA decorrelating detector solution. For further explanation,

refer also to Figure 4.4. First, the centre of gravity ( � , ) is computed for each class � , . Then, in

order to maximise the distance to each class, the distance (dotted line) between them is halved.

At that point, a hyperplane
�

perpendicular to the dotted line is placed, which is the decision

boundary
�

.
�

is determined by its weight vector in the G -dimensional space, which is known

from the distance vector between the means.

It is also worth mentioning that sometimes, this linear boundary is referred to in literature as an

optimum Bayesian decision boundary. On one hand it is true since it has been derived from the

Bayesian statistics, but only for orthogonalised data. On the other hand, the optimum boundary

(in terms of minimising the classification errors) is in many cases nonlinear.
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4.2.5 Nonlinear pattern classification

Nilsson [151] investigated the quadratic boundary in more detail. For brevity, the discussion is

kept short and shall show the relationship between a quadratic function and the MLSE, which

exploits the Euclidean distance measure, a quadratic function too. Decision surfaces of quad-

ratic machines are sections of second degree, defined as:

� 0 " � 
 � 0�� 
 � 5 ���
(4.9)

If
"

is positive definite, the surface of (4.9) is called a
� & �������	� � 
����5$�
 G . The axes of the hy-

perellipsoid are the directions of the eigenvectors of
"

. When
"

is an identity (or any select

identity) matrix, then the surface is called a
� & ����� � � � �����

[156]. A possible implementation is

given in Figure 4.3(b), where a quadratic preprocessor is embedded. A quadratic preprocessor

generates a new pattern from � , which is a nonlinear mapping into a higher space. Of course,

this idea can be extended to higher polynomials, although the complexity rises. This tech-

nique is similar to the Volterra expansion, e.g. equation (4.9) is related to a 7 nd-order Volterra

equation [151].

A reasonable decision rule for optimum CDMA multiuser detection is to select the set of sym-

bols corresponding to that signal among the possible ones that resembles most closely the re-

ceived waveform. Verdu [121] stated the multiuser problem as:

��� � � � �
� � ��� �
	 � 7 3 0 � � 3 0 6 3 � = (4.10)

where 3 is a symbol vector, � is the received signal,
6

the crosscorrelation matrix and
� 9 the

set with all possible signals for
4

users. Again, a quadratic function is involved because the

decision rule is based upon the mean square measurement.

4.3 Decision boundary in DS-CDMA

It is known from the ML technique that a received signal can be matched against all possible

signal combinations and this also applies to CDMA. Assuming that the number of active users

and their spreading sequences are known, all possible combinations can be constructed. For

antipodal signalling and a multipath free channel, there are 3 5 7 9 possible signal combin-

ations among the codes, see equation (2.6). These signals are binned into two sets, accord-
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ing to the sign of the desired user bit. It is assumed that the desired user is user one, hence
C��� 5 � + 	 ! � 5 � = 7 = � � � = 7 9 � 7 � and

C �� 5 � + 	 ! � 5 7 9 � 7 
 � = 7 9 � 7 
 7 = � � � = 7 9 � . So,

for a two user system, the 4 points + 	 are derived from equation (2.8):

+ � 5 
 C1� A 0 � 
 C � A 0 � 5 
 A 0 � 
 A 0 �
+ � 5 
 C1� A 0 � �

C � A 0 � 5 
 A 0 � � A 0 �
+ � 5 �

C1� A 0 � 
 C � A 0 � 5 � A 0 � 
 A 0 �
+ � 5 �

C1� A 0 � �
C � A 0 � 5 � A 0 � � A 0 � =

where A � is the spreading code of user
�

, and + 	 id the
�

th row in matrix
*

. Without loss

of generality the preprocessing based scheme (PPB) can be used, which enables a graphic

representation of the points for
� � � . The PPB construction of the two sets for a three user

scenario (
4 5 � ) with randomly generated spreading codes of size (

� 5 � ) with chips A � 5
L

� � � � 
 � � � � � � � 
 � M 0 , A � 5 L
� � 
 � 
 � � � � � 
 � 
 � M 0 and A � 5 L

� � 
 � 
 � 
 � 
 � 
 � � � M 0
based upon equation (2.14) returns:

C �� 5 � L 
 � = 
 � � = 
 � M�= L 
 � = � � = 
 � M = L 
 �5� = 
�� = �
� M�= L 
 � = �

� =
� � � M �

(4.11)
C �� 5 � L � � = � � � = �

� M�= L
� � = 
 � = � � M = L � �5� = �

� = 
�� M�= L
� � = 
 � = 
 � � M � =

where each set consists of vectors with length
4 5 � . A ML receiver’s task would be to make

use of all points for distance measure, which means, that the distance is measured between a

received signal and all signals within a set. Another way to classify a received signal could be

to assign the received signal to one of the two sets by working out on which side of a decision

boundary it lies. This implies that the decision boundary is known a prior. The optimum

decision boundary of the above example is derived from the shape of a Bayesian structure as

Figure 4.5 illustrates for a two user scenario. Clearly, the two points belonging to the desired

user bit sign

 C �

can be separated from the two points belonging to �
C �

, giving the two

classes.

In order to compare linear and nonlinear decision boundaries, another presentation is given.

Figure 4.6(b) presents the boundary derived from Figure 4.5 and in Figure 4.6(a) linear bound-

aries are depicted. These boundaries are found by putting a grid over an area, whose range

is found empirically. Then, each point in the grid is fed into a receiver structure. The points
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Figure 4.5: The decision surface (shape) of the Bayesian receiver structure for a two user
CDMA scenario in AWGN and

K N � �  5 � dB. The axis
� �

and
� � are the out-

puts of the preprocessor. Each hub represents the noise distribution around one of
the four possible noise free signal states, see also Figure 3.5.
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(receiver input) corresponding to the change of sign (receiver output) are stored in a file and

used to draw the decision boundary.

Figure 4.6(a) shows linear decision boundaries for the two user scenario in AWGN with
� 5��

and
K N�� �! 5�� dB, obtained from the system depicted in Figure 3.5. The MF’s boundary is the

� � axis. The DECO’s boundary is optimum in the sense that the orthogonal distance from the

hyperplane to all points is minimised. This can also be achieved by LP, since it minimises the
� �

distance criterion. The MMSE’s boundary is optimised in terms of the MSE for a noise power

of
K N�� �  5 � dB, thus DECO and MMSE do not coincide. The optimum Bayesian decision

boundary, in terms of classification error minimisation, is depicted in Figure 4.6(b) for three

different noise powers. A comparison between Figure 4.6(a) and 4.6(b) gives an indication of

the potential for receiver performance improvement when nonlinear decision boundaries are

constructed. This becomes even more apparent for a three user scenario.
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(b) Optimum Bayesian decision boundaries for three different
values of � � ��� � .

Figure 4.6: Decision boundaries derived from three different receiver structures for a two user
scenario in a non-dispersive AWGN channel.
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Figure 4.7(b) shows all 8 points given in (4.11). Figure 4.7(a) shows for comparison the points

for orthogonal codes, where linear filters are optimum. Figures 4.7 reveals the fact that all

points are vertices of a hypercube, if the spreading codes are orthogonal. This is described

by matrix
2

in equation (2.8) and (2.13). The covariance matrix
6

describes the shape of the

hypercube. If
6

is a diagonal matrix, then the hypercube’s shape looks like Figure 4.7(a). If
6

contains crosscorrelation factors between the spreading codes, then the hypercube’s shape

looks like Figure 4.7(b).

The optimum decision boundary is given in Figure 4.8(a) and the MMSE decision boundary in

Figure 4.8(b). Note that the coordinate system has been changed for better visualisation. The

points � � = �B= � = G � are not directly shown but their location can easily be assumed by comparing

Figure 4.8(a) and 4.8(b) with Figure 4.7(b).
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(b) Nonorthogonal codes, the points are given in
equation (4.11).

Figure 4.7: The 8 possible points of a three user CDMA scenario in a noise free non-dispersive
AWGN channel, which correspond to the 8 expected possible received signal
points.
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(b) MMSE decision boundary (plane).

Figure 4.8: Decision boundaries for the scenario given in Figure 4.7(b). Due to the chosen
stepsize to compute both graphs, which is a compromise between accuracy of the
shape and the contrast, the surfaces appear not very smooth or plain.
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Figure 4.9 shows all possible received signals from a three user multipath scenario which form

eight clusters. There are in total 3 5 7
���
9 5 7

��� �
points which form 7 9 5 7

�
5 � clusters,

where each cluster has 7 �
�

9 5 7 �
� �

5 � 	 points. The points within a cluster are not explicitly

shown but their convex hull. The centre of each cluster does not correspond to the points shown

in Figure 4.7(b) but can be determined. This is discussed in chapter 6 and 7. Important is to

note the fact, that ISI causes a signal (or point) to spread and clusters can arise. For a better

presentation, the convex hull [146, 147] of each cluster is drawn3.

r1

r2
r3

-D

+D

1

1

Figure 4.9: Eight convex hulls which contain in total all possible received signals.

3With Geomview [157], see: http://www.geom.umn.edu/software/download/geomview.html
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4.4 Approximation theory

Constructing sub-optimum decision boundaries, for the sake of network complexity reduc-

tion, can also be considered as approximating the optimum Bayesian decision boundary with

something simpler. This important technique known as approximation theory is reviewed in

this section, based on Poggio and Girosi [98].

A multivariate function
��� � � shall be approximated by a function

� � � = � � , having a fixed

number of parameters � belonging to some set
"

.
� � � = � � corresponds to multilayer (neural)

networks and performs a mapping from
. D

�
.

. The classical linear mapping is:

� � � = � � 5 � 0 � = (4.12)

which corresponds to a (neural) network without a hidden layer. The classical approximation

scheme is:

� � � = � � 5
��
	 � � � 	 � 	 � � � (4.13)

and corresponds to a single hidden layer (neural) network.
�

is a polynomial when the
� 	 ���I�

are products and powers of the input. The nested sigmoid scheme is:

� � � = � � 5 �
�� �
�
�>� �

�� �
,
� , � ,������ =

(4.14)

where
�

is a linear threshold function or a sigmoid. This network corresponds to a multilayer

network, such as a MLP, and has its origin in representing Boolean functions. Networks of

this type with one hidden layer can approximate any continuous multivariate function. Poggio

calls them regularization networks and shows that they are strictly related to the interpolation

method of RBFs.

Poggio reviews the RBF method as a possible solution to the real multivariate interpolation

problem. Given 3 different points � � � � . D
�

 5 � = 7 = � � � = 3 � and 3 real numbers� ��� � . �

�

 5 � = 7 = � � � = 3 � find a function

�
from

. D
to

.
satisfying the interpolation:

� � ��� � 5 ��� � (4.15)
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Then the RBF approach is choose a function
�

, which has the form:

� � � � 5
��
� � � � � ���  � � ���  � = (4.16)

where
�������

is a continuous function from
. �

to
.

, called the radial basis function.
 �  

is the

Euclidean norm on
. D

. Micchelli [158] showed that the coefficients �)� can be derived from

the linear system:

� 5 � � = (4.17)

where
� � � , � 5 � , , and

� �I, 5 ���  � � � � ,  � (

 = ( 5 � = 7 = � � � = 3 ). A list of possible interpol-

ation functions are also given, such as:

��� � � 5 � (linear)

��� � � 5 ����� � �

���
A �
�

(Gaussian)

��� � � 5 �� A � 
 � � ��� � � �
��� � � 5 � A � 
 � � ��� � � � � � �

The linear and the Gaussian functions are the most popular. The linear case corresponds, in one

dimension, to piecewise linear interpolation, the simplest case of what is called spline interpol-

ation [1]. However, all of these functions depend on a parameter that will generally depend on

the distribution of the data points. Since the quality of interpolation and approximation of a

decision surface depends on parameters, an accurate parameter estimation appears to be vital

for a good network performance.
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4.5 Summary

This chapter reviewed pattern recognition techniques and showed how it can be applied to DS-

CDMA. Linear techniques developed in the sixties are still desirable due to their simplicity, and

are even more powerful in combination with current DSP technology. Since most classification

applications have a nonlinear decision boundary, and fully nonlinear techniques are complex in

nature, it appears to be reasonable to approximate them with piecewise linear decision bound-

aries.

It also has been shown that linear decision boundaries derived from Bayesian statistics do not

necessarily lead to the optimum boundary. A reason for this is that it is assumed to be deal-

ing with whitened data, which is orthogonal, in which case the linear MSE boundary becomes

optimum. But this assumption calls for a whitening filter for data preprocessing, which adds

additional complexity to the network. However, it is known that other distance metrics than

the Euclidean metric take the correlated noise into account, for example the Mahalanobis dis-

tance measure [155]. This technique adds little additional computation to the network and it

seems straightforward to apply. Also presented were several graphs which show the decision

boundary for CDMA systems. Linear and nonlinear CDMA decision surfaces were shown and

it has been demonstrated that the optimum boundary is nonlinear and consists at least of 7 9 hy-

perplanes (in the ML sense). Moreover, reasons for the performance loss of linear boundaries

became obvious. Finally, a brief overview on approximation theory was given which showed

the relations between linear, polynomial and RBF networks. The theory states that the input

data is mapped linearly or nonlinearly into another space (generally of higher dimension), then

a linear mapping maps them back to the desired output space. It appeared that the Wiener-Hopf

equation and the Volterra series can be derived from it as well. A useful feature seems to be the

fact that nonlinear functions can easily be embedded, while a linear mapping remains which

enables the use of linear techniques to find the coefficients for the final linear mapping.

This review showed that techniques known in pattern recognition can classify CDMA data.

Moreover, approximation theory support this fact since it enables the engineer to apply nonlin-

ear techniques for receiver designs which can be made adaptive. This can lead to a new series

of nonlinear receivers (which may be adaptive) with superior performance compared with the

established linear receiver designs.
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Chapter 5
The Volterra approach

This chapter presents a CLB Volterra receiver structure based on the Wiener-Hopf equation.

Firstly, a general introduction is given followed by a detailed analysis of the Volterra expansion.

Then the � st-order Volterra receiver is shown to be the MMSE receiver. The investigation of the

7 nd-order Volterra system shows that it is not applicable. Consequently, higher- order Volterra

systems are investigated. A statistical analysis is given for the autocorrelation matrix of a � rd-

order Volterra system, and a technique is presented to circumvent the problems encountered.

Simulation results compare the performance of the proposed receiver structure against estab-

lished ones. Then decision boundaries obtained from preprocessed based Volterra structures

are presented. Finally a discussion summarises this chapter. Results and investigations, which

lead to the conclusions presented in this chapter, but which are too lengthy to present here, can

be found in the appendices A and B.

5.1 Introduction

The general Volterra series (VS) is given as an infinite series expansion [159], which is not

useful for practical applications. Thus, one must work with a truncated VS, such as the third-

order VS given in (5.1), which consists of products up to � rd-order.

� �<F � 
 � � 5 �
� ��

�

�  � � � � � & � F � 
 �
�
� � 


(5.1)

�
� ��

�

�  �
� ��
N �  � � � � = � � & � F � 
 �

�
� � & �<F ��
 �

�
� � 


�
� ��

�

�  �
� ��
N �  �

� ��
� �  � � � � = �B= � � & �+F � 
 �

�
� � & �<F � 
 �

�
� � & � F � 
 �

�
� � =

where
& �<F � 
 � �

denotes the filter input and �
�<F � 
 � �

the output for the
F

th symbol of

length
�

with
� 5 � = 7 = � � � = � chips. The term

�
� in (5.1) denotes the

$
th-order Volterra ker-

nel (coefficients, or weights � ) of the system. Without loss of generality, it can be assumed that
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the kernels are symmetric (e.g.
� � � � = � � 5 � � � �B= � � ). The symmetric terms can be omitted since

they do not contribute any additional information, which results in half the number of coeffi-

cients for
�

� [81]. Thus the Volterra kernels
�

� are fixed for any of the possible permutations.

Hence, (5.1) can be rewritten for a symbol synchronised receiver:

	CED � & �<F�� � 5 sgn
� �

� ��
�

�  � � � � � & � F � �
� � 
 �

� ��
�

�  �
� ��
N �

�

� � � � =�� � & �<F � �
� � & � F �

�
� � 


�
� ��

�

�  �
� ��
N �

�

�
� ��
� � N � � � � =��B= � � & �+F � �

� � & �<F �
�

� � & �<F �
�
� ��� =

(5.2)

where
	CED � & � F�� �

stands for the
F

th estimated transmitted bit of the desired user G . A possible

filter structure is depicted in Figure 5.1(b). It becomes apparent from equation (5.2), that the

term in sgn
�����

is a sum of products between a received sequence �
�<F��

and Volterra coefficients
�

� .

5.2 The Volterra expansion

The Volterra expansion and the expansion sequence are analysed for a one user CLB CDMA

system in AWGN. Due to the binomial growth in number of coefficients, the analysis is presen-

ted with a short spreading code of length
� 5 � . In order to apply the Volterra filter to the

received signal �
�<F��

, it must first be expanded to a larger sequence, denoted by �
�<F��

. Figure 5.1

shows the difference between a simple FIR filter and a Volterra based FIR filter.

The expansion process is a mapping from the input space
�

to the Volterra space 3 , �
�<F����

� � F���� .
�
� . �

, where
�

is the number of chips and 3 the number of Volterra coeffi-

cients1. The 3 elements of �
�<F�� 5 L � � � � � � � � � M 0 are computed corresponding to the desired

order
$

of the VS (5.2). This process is depicted for a � st and � rd-order system in Figure 5.2.

The second-order sequence can be omitted for equiprobable and antipodal signals, for reasons

which will be explained in section 5.4. For the same reasons, the even terms are omitted in

equation (5.3) and Figure 5.2.

1Note, this � is not related to the number of patters, which is also � .
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(a) Common N-tap FIR.
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(b) Volterra based approach with M-taps.

Figure 5.1: Conventional FIR filtering and the Volterra approach.

The expansion sequence � of Figure 5.2 is given by (2.6) and (5.2) and is defined as:

� 5 L � � � � � � � � � M 0 (5.3)

� � 5 9�
��� � C � � � * � 
 � � � �

...

�

� 5 9�
��� � C � � � * �


 � � � �

�

�
�
� 5

� 9�
��� � C � � � * � 
 � � � ���

�

�

�
� � 5

� 9�
��� � C � � � * � 
 � � � � � � & � 9�

��� � C � � � * � 
 � � 7 � �
...

� � 5
� 9�
��� � C � � � * �


 � � � ��� � =
where

C �
is the transmitted bit of user

�
and

� � * @ the
�

th chip of the
�

th user’s spreading
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Figure 5.2: The Volterra expansion for a combined � st and � rd-order system.

sequence.

The vector length of � is 3 , where 3 is the number of filter weights or Volterra coefficients,

and is determined by the binomial expression:

3 � � = ; � 5 ��
�
� D2( � � ���

�
� D2( � � � � * � * � *������ 	

��
� 
 $�� G ��� � �

$ � G �	�
�� =

(5.4)

where
�

is the length of the input sequence (memory) and
;

the highest Volterra order.

3 � � = � � is the number of coefficients for a combined � st and � rd-order expansion. Thus,

if � of equation (5.3) is of length 3 � � = � � then it has first 3 � � = � � 5 �
linear terms and then

� 3 � � = � � � 3 � � = � � � cubic terms, see Figure 5.2. Since
�

can be assumed to be constant for

a system, a short form 3 ���
of 3 � � = � � is used instead. Tsimbinos and Lever [91] investigated

the computational complexity
� � � = ; �

in terms of multiplications needed, given as:

� � � = ; � 5 ��
�

� �
� � 
 $

� � ���� $
� � ��� � � � � ���

=
(5.5)

where
� � � = ; �

does not represent the number of flops, since it does not take the additions into

account, see also Figure 3.2. The difference between (5.4) and (5.5) is a factor of
$

(order).

Table 5.1 presents some results obtained by (5.4) and (5.5) of VS systems. It does not show

the binomial sum but, the specific complexity for a specific value of
�

and an order. Table 5.1

shows the growing complexity as order and memory increases.
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M(N,O) M(N,O) M(N,O) C(N,O) C(N,O) C(N,O)
order N=3 N=7 N=9 N=3 N=7 N=9

1 3 7 9 3 7 9
2 6 28 45 15 63 99
3 10 84 165 45 315 594
4 15 210 495 105 1155 2574
5 21 462 1287 210 3465 9009

Table 5.1: Complexity in terms of operations required per estimated bit for different Volterra
filters, where 3 � � = ; �

is the expansion length and
� � � = ; �

the number of multi-
plications for a particular VS filter with order

;
and memory

�
, the tap length.

From Table 5.1 it can be seen that for
� 5 � a combined � st and � rd-order VS FIR filter

has 3 ��� 5 � � taps, and a combined � st, � rd and
�
th-order filter has 3 ��� � 5 � � � taps. To

reduce the filter complexity, a VS filter can also be designed as a PPB receiver, which processes
3 �<F�� instead of �

�<F��
[118]. However, in every case, a VS receiver system has to expand the

received sequence in order to filter it. Another point worth mentioning is that the VS expansion

changes the statistics of the sequence the Wiener FIR filter is applied to. Higher-order moments

are induced and may be exploited by higher-order statistics (HOS) [160], which was not the

subject of this work.

5.2.1 Statistical properties of the expansion sequence

A received vector �
�<F�� 5 L & � & � & � M 0 is according to (2.6):

& � 5 9�
��� � C � � � * � 
 � � � �

& � 5 9�
��� � C � � � * � 
 � � 7 �

& � 5 9�
��� � C � � � * � 
 � � � � =

where � � � � is the uncorrelated Gaussian noise with zero mean and given variance added onto

the
�

th chip,
C �

the data bit, which has equal probability of being

 � or � � and

� � * @ is the
�

th chip of the
�

th user’s spreading sequence. The � rd-order Volterra expansion (5.3) induces

products among the vector components � & @ � , which can be grouped according to their statist-
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ical properties. For a � rd-order system there are four groups which represent all permutations:

� � 5 � & � �
� � 5 � & �� �
� � 5 � & �� & , � 
 �5 (
� � 5 � & � & , & � � 
 �5 (��5 F =

where

 = ( = F � � � = 7 = � � � = � � . Obviously, each group

���
represents a term, which is a product

of powers of � & @ � , where the terms have even or odd powers. This leads to another grouping

representing the powers of
& � , � 5 � 7 = 	 = � � and

� 5 � � = � = � � . Further, the noise is con-

sidered to be normally distributed with
� � � = � � for simplicity, since it is an white Gaussian

noise channel. First the distribution for the � group is derived, then for the
�

group.

Define
��� � � � = � � and

� 5 � �
. Then the cdf for the even function is [161, 162]

�/� & � 5 " � � � & �O5 " � � � � & �
5 " � �

& ��� � � � � & ��� � �
5 � � &

��� � �
� � � �

& ��� � �
(5.6)

and the pdf is

� � & � 5 G
G &

�)� & �

5 �� & �� � � ��� & ��� � � 
 �� & �� � � ��� �
& ��� � � �

Substituting the Gaussian function

����# � 5 �� 7 � ��� �
�

�

# �
7 � (5.7)

into the pdf gives

� � & � 5 7� & � � �� �� 7 � ��� �
�

�

& � � �
7 � �

(5.8)
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For the
�

group,
� � � � � = � � and

� 5 � �
, the cdf for the odd function is

�)� & � 5 " � � � & �
5 " � � � � & �
5 " � � � & ��� � � (5.9)

and the pdf is

� � & � 5 �� & � ���� �� 7 � �����
�

�

& � � �
7 � �

(5.10)

The resulting distributions and their expected value are given in appendix A and can also be

found in [163].

5.3 First-order systems

A � st-order Volterra system is given in equation (5.11)

� � F�� 5��
� ��

�

�  � � � � � & � F � �
� �

(5.11)

for a received sequence �
�<F��

. Equation (5.11) is a linear convolution, from which the Wiener

solution (3.9) has been derived, based upon the Wiener-Hopf equations [48].

Equation (5.11) can also be seen as an approximating function, such as the classical approxim-

ation (4.13):
� � � = � � 5 � �� � � �E� ��� � � , where

�������
is a linear or nonlinear function. Again,

if
�������

is a linear function, then it will result in the MMSE solution [48, 158], which has been

introduced in subsection 3.1.2 and section 3.3.

5.4 Second-order systems

If the function
�������

is taken to be a polynomial function, such as the 7 nd-order Volterra series,

then the MSE approach still applies [158]. Hence, the Wiener-Hopf equation can be applied

67



The Volterra approach

and becomes:

� 5 / � �� � 3 4 � = (5.12)

which now deals with the Volterra sequence � instead of the received sequence � . Thus the

filtering can be done with a simple FIR filter.

In order to solve (5.12), the autocorrelation matrix
/ ���

and the crosscorrelation vector 3 4 �

must be derived. 3 4 � is defined as the correlation between the desired user bit
C)D

and the input

sequence � . Without loss of generality, assume the desired user is user one. Then 3 4 � becomes

for a 7 nd-order Volterra system:

3 4 � 5 K/L�C � & � M 5 K/L�C � & � M (5.13)

5 K/L�C1� L�C �� ��� * � � � � C �� ��� *
�
C �� � �� * � � � � C �� � �� *

�
M 0 M

5 K/L L�C �� ��� * � � � � C �� ��� *
�
C �� � �� * � � � � C �� � �� *

�
M 0 M

3 4 � 5 L ��� * � ��� * � � � � ��� * �
M 0 �

(5.14)

Since
C �

is typically equally likely to be

 � or � � , K/L�C

( � ( @� M
with even powers becomes one

and
K/L�C �

D D� M
with odd powers becomes zero. Thus, the crosscorrelation vector for a second-

order Volterra system results in the first-order crosscorrelation vector, which is the spreading

sequence of the desired user.

Hence, for the DS-CDMA system considered, a second-order Volterra filter collapses into a

first-order Volterra filter [164].

5.5 Higher-order systems

The result found in section 5.4 implies that for equiprobable antipodal signals only odd-order

Volterra DS-CDMA filters exist. This leads to an increased filter complexity. In order to keep

the structure reasonable small, � rd-order Volterra structures shall be investigated.

Again, the starting point is equation (5.12), where vector � has the structure given in (5.3). In

order to derive the VS filter weights, the expected value of the autocorrelation matrix and the

crosscorrelation vector has to be derived,
/ ��� 5 K/L � � 0 M and 354 � 5 K/L�C1� & � M respectively.

Due to the Volterra expansion process, the expected value is not easily derived. The received
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signal consists of a sum of spreading codes and Gaussian noise. The expansion process induces

cubic terms, which become of even higher-orders in the autocorrelation matrix.

3 rd v v v v v v v v v v v
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Figure 5.3: The autocorrelation matrix which consists of basically three groups of products,
see also subsection 5.5.1 for more details.

Figure 5.3 shows
/�� �

partitioned into the three major product terms. The linear-linear terms

are known from the MMSE solution [108]. The products among the linear-cubic and the cubic-

cubic terms are not described in the literature and must be derived. An analysis for the autocor-

relation matrix is given next, and from this the crosscorrelation vector also can be derived.

5.5.1 Statistical properties of the autocorrelation matrix

All possible occurring terms within
/ ���

can be grouped according to their expected value. The

terms in the autocorrelation matrix follow the rules for the powers of
K/L�C � M

, hence
K/L � C � � �

D D M 5
�

and
K/L � C �B� ( � ( @ M 5 � . The noise is assumed to be uncorrelated with itself and the data

bit, hence
K/L � � 
 � � � ( � M 5 �

for

 �5 (

and
K/L�C � � � ( ��M 5 �

. This leads to 2 linear-linear, 4

linear-cubic and 7 cubic-cubic groups
� 	 , for

� 5 � = 7 = � � � = 3 , which have expected value
� 	 5 K/L � � � , M with


 = ( � � � = 7 = � � � = 3 � .
In (5.15),

K/L � � � , M 
 �5 (
has been replaced by the chips, hence

K/L & � & , & � M with

 = ( = F � � � = 7 = � �

and

 �5 ( �5 F

. For convenience,
� � * � is replaced in (5.15) by

� � since
� 5 � . The results
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obtained for one user from that derivation are represented by the 13 groups:

� � 5 K � & � & , � 5 � � � ,
� � 5 K � & �� �O5 � �� 
 � � 
 � �
� � 5 K � & �� �O5 � �� 
 � � �� � � 
 � � 
 � � 
 � �
� � 5 K � & �� & , �O5 �

�� � , 
 � � � � , � � 
 � �
� � 5 K � & �� & �, �O5 � �� � �, 
 � �� � � ( � � 
 � �, � � 
 � � 
 � � 
 � � � � ( � �
� � 5 K � & �� & , & � ��5 � �� � , � � 
 � , � � � � 
 � �
��� 5 K � & �� �O5 � �� 
 � � � �� � � 
 � � 
 � � � �� � � 
 � � 
 � � 
 � �
� � 5 K � & �� & , �O5 �

�� � , 
 � � �
�� � , � � 
 � � 
 � � � � , � � 
 � �

� � 5 K � & �� & �, �O5 � �� � �, 
 � � �� � �, � � 
 � � 
 � �, � � 
 � � 
 � �� � � ( � � 
 � � �� � � 
 � � � � ( � � 
 � � 
 � � � � ( � �
� �� 5 K � & �� & , & � ��5 � �� � , � � 
 � � �� � , � � � � 
 � � 
 � , � � � � 
 � �
� �2� 5 K � & �� & �, �O5 �

�� � �, 
 � � � �
�, � � 
 � � 
 � �

�� � ,2� � ( � � 
 � � � � ,2� � 
 � � � � ( � �
� � � 5 K � & �� & �, & � ��5 �

�� � �, � � 
 �
�� � � � � ( � � 
 � � � � �, � � � � 
 � � 
 � � � � � � � 
 � � � � ( � �

� ��� 5 K � & �� & �, & �� ��5 � �� � �, � �� 
 � �� � �� � � ( � � 
 � �, � �� � � 
 � � 
 � �� � � 
 � � � � ( � � 

� �� � �, � �<F�� � 
 � �� � � ( � � � �<F�� � 
 � �, � � 
 � � � �<F�� � 
 � � 
 � � � � ( � � � �<F�� � �

(5.15)

Linear-linear: � � � = � � � Linear-cubic: � � � � � � � � � Cubic-cubic: � ��� � � � � ��� �
Obviously, the terms given in (5.15) are sums of expected values for different products such

as signal-signal, signal-noise and noise-noise terms, where the noise-noise products have a

different distribution function than the original signal.

The term
� �

has no added noise components since the noise added to each chip is uncorrelated

with each other. The diagonal terms
� � have the Gaussian noise component squared, which

results in the Chi-square distribution [163]. Hence the added noise component (power) is de-

scribed with the noise variance � � [71]. Equations (5.15) have noise products up to power six,

and the derivation presented in subsection 5.2.1 can also be used here. Results are also given

in Papoulis [163] and Kay [165]. The important point is that the expected value of a Gaus-

sian random variable
#

with odd-order power becomes zero [165]. Therefore only even powers
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exist:

K)L # � M 5
� �
� �

# � ����# � G # 5 � � (5.16)

K)L # � M 5
� �
� �

# � ����# � G # 5 � � K)L # � M�� � 5 � � � � � � (5.17)

K)L # � M 5
� �
� �

# � ����# � G # 5 � � � K/L # � M<� � 5 � � � � � � � (5.18)

hence, � � 
 � � 5 � � , � � 
 � � 5 � � � and � � 
 � � 5 � � � � .
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Figure 5.4: The autocorrelation matrix with all (13) possible received expected values.

Figure 5.4 shows a graphical representation of the results found in (5.15). Each group
� 	 is

depicted by a unique colour. In order to describe the occurring distributions within the terms

of the autocorrelation matrix and the crosscorrelation vector, it might be better making use of

cumulants instead of working with the pdf, since the calculation with the moments obtained

in appendix A are very intricate. However, all terms of the autocorrelation for a one user

scenario with
� 5 � have been determined. The derivation of the crosscorrelation vector

follows the example of (5.15). Obviously, the calculations are tedious, especially for large
4

and
�

. Therefore, an algorithm which computes
/ ���

and 3 4 � is desirable. Attempts made to

find such an algorithm failed due to the unique nature of the problem, see appendix B. The
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author’s literature search leads to the conclusion that such an algorithm, if it exists, has not

been published. To circumvent the mathematical derivation for each term of
/ ���

and 3 4 � , an

estimation technique has been derived.

5.5.2 The estimation technique

The estimation technique exploits the property that the signal’s autocorrelation matrix and

crosscorrelation vector can be found by adding up all possible sub-autocorrelations and sub-

crosscorrelations, derived from all possible signal combinations, and dividing the sum by the

number of such combinations, which is 3 2. This is a cyclic process, where during each cycle

or loop one possible signal combination is processed. If � � � � in equation (2.6) is zero, then

it results in the signals (spreading codes)
K/L / ��� M

and
K)L 354 � M . However, due to the influence

of the noise � � � � , the resulting matrix and vector are an estimate of the true matrix and vector

respectively, denoted
	K/L /���� M

and
	KEL 3 4 � M . In order to obtain a good estimate, the estimation

must be done over
�

times, where the estimation improves as
��� 3 . After

/ � �
, 3 4 � and

counters
F

and
�

are initialised, the estimation process is started. The iteration is performed

over four steps, where 3 is the number of possible combinations among the spreading codes

and
�

the total number of loops:

Step 1 Take the
�

th sequences + 	 out of the set
*

, which contains all 3 sequences, and add

Gaussian noise onto the sequence and store it in �
�<F��

. Increment
�

.

Step 2 Expand �
�<F��

corresponding to the desired Volterra order.

Step 3 Compute
/���� � F��

and 3 4 � �<F�� and add the result onto
/���� �<F

� � � and 354 � � F � � � .

Step 4 Increment
F

and goto step 1 until
F 5 �

Step 5 Dividing
/�� � � � �

and 3 4 � � � �
by

�
will result in

	KEL /���� M
and
	KEL 354 � M .

This method has two constraints, which are:

� � 5 
'& 3 , where



is an integer

� ��� 3
2Note, here, this � corresponds to the number of signal combinations and is not related to the Volterra expansion

length.
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If these constraints are not satisfied, then
	KEL /���� M

and
	KEL 3 4 � M are biased, and the filter weights

are incorrect. There is no rule of thumb, which suggests a number
�

, since the noise power and

the chosen random sequence of the PN generator influence the result, thus
�

has been found

empirically. For small
�

such as
� 5 3 � � ��� , this technique does not result in a good

estimate of the added noise component. Moreover, the products between spreading code and

noise are insufficiently estimated which is even more severe. This is due to the fact that the

signal power is the dominant part when
4 � � , and the estimate of the autocorrelation matrix

and crosscorrelation vector is less affected by the contributions due noise. These effects are

shown in Figure 5.5 for different
�

for the � st order Volterra system in an AWGN scenario,

since the exact MMSE solution in known and can serve as a reference. Generally, as the total

signal power increases (as
�

increases), the higher signal power to noise power ratio results in

a much better estimate and
	K>L � M � K/L � M

since the signal power dominates.
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Figure 5.5: BER against the number of users
�

for different parameters of
�

for an estimated
� st-order Volterra receiver over an AWGN channel,

K N�� �  5 � dB and 7 chip
spreading codes.

Figure 5.5 shows that for
� � 3 � � � 7�	 and 3 587 9 , then the filter performance converges

to the MMSE performance. It also shows that
� 5 � � 7�	 loops are sufficient to achieve near

MMSE performance, although
� 5 � 7�� loops suggest a good estimate. However, the quality

of Monte-Carlo simulations depend on the length of the simulation, since random generators

may influence the outcome, which was found to be the case for one or two active users. Thus,

if
�

is not chosen to be large enough, then these effects may result in insufficient estimated
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values. Therefore, in order to reduce these effects, a large
�

is advantageous such as � � 7�	 �
� � 7

� �
9 , where

� 5 � in a non-dispersive channel and
� 5 � in a multipath channel.

5.6 Simulation Results

This section presents Monte-Carlo simulation results obtained from a CLB DS-CDMA system

for the desired user, which is user one. Due to the binomial growth of the Volterra complexity,

only short spreading sequences were considered with length
� 5 � . Two different spreading

codes were used, randomly generated sequences and Gold codes [166]. Five receiver structures

are compared against each other, a � rd-order Volterra receiver (VS3), a
�
th-order Volterra re-

ceiver (VS5), the established linear MF or RAKE [46], the linear MMSE [107] and a nonlinear

RBF [112] receiver. The first two graphs show the performance for the AWGN scenario, the

next two results for a stationary AWGN multipath channel. In both scenarios, the SNR was

set to
K N�� �  5 � dB. Both Volterra receiver coefficients were determined by the estimation

technique where
� 5 � � � 7 for

� 5 � , and � � � 7 � � � 7
���
9 for

� 5 � (the number of

channel taps).

5.6.1 AWGN channel

Figure 5.6 shows the BER performance for randomly generated spreading sequences. The

optimum performance is given by the RBF3 and serves as a lower performance bound. An

upper bound for this investigation is given by the MMSE receiver, since the MMSE is a subset

of the group of Volterra receivers. The MF suffers from MAI and performs badly as the MAI

increases. Both Volterra receivers outperform the linear MMSE. Between two and six users,

VS5 has around half the error rate of the MMSE, and VS3 performs around 30% better than the

MMSE receiver. Figure 5.7 shows results obtained for Gold codes. The performance appears

to be flatter due to the lower correlation between the codes.

3This receiver is discussed in the next chapter.
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Figure 5.6: BER against the number of users for randomly generated seven chip spreading
codes and

K N � �  5�� dB in AWGN.
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Figure 5.7: BER against the number of users for seven chip Gold codes and
K N � �  5 � dB in

AWGN.
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5.6.2 Multipath channel

Figure 5.8 and 5.9 show results obtained from a channel with impulse response
� �� ��� � 5

��� ��	�� 7 
 �� ��� � 	 ���
�

 ��� �
	�� 7 ��� � . All receiver structures exploit

� 
 � �
� � � 5 �

chips

instead of seven, and take ISI induced from the previous and next symbol into account. The

simulation has been stopped after six users due to the growing complexity of the Volterra and

RBF receiver ( 7
�
9 possible sequences). The three finger RAKE receiver performs poorest

followed by the MMSE. The RBF performs best, since it is a maximum likelihood symbol

detector. Both Volterra structures show a significant improvement in performance compared

with the results obtained for the AWGN scenario with respect to the MMSE. However, the

price paid for this performance gain is the increased filter complexity, as discussed in [167].
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Figure 5.8: BER against the number of users for randomly generated seven chip spreading
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5.7 Decision boundaries

This section presents the decision boundaries obtained from PPB Volterra receivers. All CDMA

scenarios use randomly generated spreading codes with length
� 5 � . First, the boundaries

for two users are presented followed by three user scenarios, in both cases, for AWGN and a

stationary multipath channel.
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Figure 5.10: Signal constellations for two user PPB CDMA scenarios. The points belonging
to

 C1�

and �
C1�

correspond to all possible transmitted signals.

The expected signals for the two user scenario in AWGN are depicted in Figure 5.10(a) which

are the rows of the generating matrix
/������

� . Figure 5.10(b) presents the points for a station-

ary multipath channel with
� �� ���:� 5 ��� ��	�� 7 
 ��� ��� � 	 � �

�

 ��� ��	��:7 � � � which are the rows

of the generating matrix
/ ���

. The decision boundaries for the AWGN scenario depicted in

Figure 5.10(a) is given in Figures 5.11(a) and 5.11(b).

The difference between a linear and the optimum boundary can be seen in Figure 5.11(a).

It shows clearly that the MMSE lacks the ability to construct the optimum decision surface,

especially near the origin. Both, the � rd and
�
th order Volterra based receiver lack this ability

too, see Figure 5.12(b). This is mainly due to the low Volterra order chosen for practical

reasons, and the limitation of the Volterra series in approximating. Even so, a performance gain

is achieved in the regions far away from the origin of Figure 5.11(b).
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Figure 5.11: The decision boundaries in AWGN with
K N�� �  5 � dB, derived from a two user

PPB CDMA system.
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Figure 5.12: The decision boundaries in a stationary multipath channel with
K N�� �  5 �

dB,
derived from a two user PPB CDMA system.
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The decision boundaries for the stationary multipath scenario given in Figure 5.10(b) are presen-

ted for two different SNRs. Figures 5.12(a) and 5.12(b) show the boundaries for
K N�� �  5 �

dB,

and Figure 5.13(a) and Figure 5.13(b) show the boundaries for
K�N � �  5�� dB. Due to the high

noise power (in the first two pictures), the difference of the curve near the origin is reduced

and smoothed, which enables the Volterra series to approximate it well. However, since the

decision boundary is relatively straight, the performance gain of a nonlinear structure over the

MMSE is limited.
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Figure 5.13: The decision boundaries in a stationary multipath channel with
K N�� �  5 � dB,

derived from a two user PPB CDMA system.

Results for the three user case are presented next. Figures 5.14, 5.15 and 5.16 show the decision

surface for the MMSE,
�
th-order Volterra (VS5) and the Bayesian receiver in an AWGN scen-

ario with
K N � �  5 �

dB. The points (all possible received signals) are shown in Figures 4.7.

There is little difference between the shape of the MMSE and VS5, whereas the Bayesian re-

ceiver clearly shows a nonlinear shape.
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Figure 5.14: The decision surface for the MMSE receiver for three users in an non-dispersive
AWGN channel and

K N � �  5 �
dB.
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Figure 5.15: The decision surface for the
�
th-order Volterra (VS5) receiver for three users in

an AWGN channel and
K N�� �! 5 �

dB.
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Figure 5.16: The decision surface for the Bayesian receiver for three users in an AWGN chan-
nel and

K N�� �  5 �
dB.
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Figure 4.9 shows the points for a three user scenario in multipath, and the decision surfaces

obtained for this stationary multipath are presented in Figure 5.17, 5.18 and 5.19 with
K N�� �  5

�
dB. It can be seen that the surface of the

�
th-order Volterra receiver is nonlinear, although not

as pronounced as the Bayesian structure.
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Figure 5.17: The decision surface for the MMSE receiver in multipath with
� �� ��� � 5��� �
	�� 7 
 ��� ��� � 	 � �

�

 ��� ��	��:7 � � � for three users and

K N � �  5 �
dB.
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Figure 5.18: The decision surface for VS5 receiver in multipath for three users and
K N�� �  5�

dB.
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Figure 5.19: The decision surface for the Bayesian receiver in multipath for three users andK N � �  5 �
dB.
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5.8 Discussion

This chapter presented a novel nonlinear CLB receiver structure based upon the Volterra series

expansion. The receiver performs a nonlinear mapping first, the Volterra expansion, followed by

a linear mapping, the FIR filtering. It has been shown that the VS expansion introduces higher-

order components which are tedious to calculate for higher orders. This makes it complicated

to derive the expected value of the terms within the expansion sequence if
4

or
�

are large.

It also has been shown that the � st-order Volterra receiver is equivalent to the known CLB

MMSE receiver. Investigations conducted on the 7 nd-order Volterra receiver revealed that the

7 nd-order crosscorrelation vector reduces to the � st-order crosscorrelation vector if the sig-

nals are equiprobable and antipodal. Hence, there exists no even-order CLB Volterra receiver,

and higher odd-order Volterra receivers must be applied. This implies that Volterra receivers

become complex when higher-order systems are considered. In order to derive the filter coeffi-

cients for such complex systems, an algorithm which computes them has been searched for. A

literature search was not fruitful. Attempts made to derive such an algorithm which computes

the Volterra filter coefficients by computing the autocorrelation matrix and the crosscorrelation

vector failed due to the unique nature of the problem. It has been shown that no straightforward

algorithm can compute all matrix and vector terms for the user as a parameter. This is due to the

VS expansion which induces products of higher-order, based upon the statistical assumptions

made for noise and data bits. An alternative approach, which depends upon an estimation tech-

nique has been presented. It is also possible to make the Volterra structure adaptive [168], but

this has not been considered since it was already the subject of previous publications. Moreover,

due to the large eigenvalue spread, especially in DS-CDMA, the convergence is very slow for

higher-order systems. Simulation results obtained from Monte-Carlo simulations compared

two Volterra structures ( � rd and
�
th-order) against established receivers. It has been shown that

both VS receivers outperform the MMSE. However, the cost of this performance improvement

is its complexity. It may be argued that the performance gain is little compared to the filter com-

plexity needed. However, explanations were given by comparison of the decision boundaries of

the Volterra structures against the MMSE and the Bayesian ones. Since a low Volterra order has

been chosen, the Volterra decision boundary is far from optimum, and hence its performance is

likewise.

The proposed Volterra receiver showed superior performance compared with the MMSE re-

ceiver. In order to implement the proposed Volterra receiver, an algorithm should be derived
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which enables the system designer to compute the Volterra filter coefficients exactly, instead of

using the estimation technique. Despite its complexity, it may be an alternative compared with

the ML receiver complexity for very slow changing or stationary channels or it may be worth

considering as an adaptive receiver structure.
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Chapter 6
Radial basis function receivers

This chapter is concerned with the RBF receiver, which is applied to DS-CDMA as a determ-

inistic (neural) network.

The first section reviews the established CLB RBF receiver. The following section presents a

PPB RBF receiver structure. There the main drawback appears to be its large network size in a

multipath environment, which makes it too complex for practical implementations. Therefore

a smaller network with equivalent performance is desirable. Thus the next section proposes a

RBF network with reduced complexity, followed by results obtained from Monte-Carlo simu-

lations. Finally, the chapter ends with a discussion.

6.1 CLB RBF reviewed

A class of network models, which possess universal approximation capabilities is the radial

basis function network [97, 143]. The RBFN is also referred to as neural network in [128],

where its adaptive characteristics have been investigated.

RBF methods perform an approximation of mappings from a set of data points in a multi di-

mensional space [98]. The approximation problem requires a mapping for every input vector

onto a target vector. In CDMA the mapping is performed from the
�

-dimensional input space

(processing gain) of �
�<F��

for transmitted symbol
F

, to a � -dimensional target (output) space,

which is the bit of the desired user,
C)D

. The data set consists of all 3 , 3 may be 7 9 , possible

received signals �
� � �

for
� 5 � = 7 = � � � = 3 , together with corresponding targets

C)D � � �
, the

desired user bit, which can be obtained from a generating matrix. For clarity, �
� � �

shall be

denoted as ��	 and corresponds to the
�

th row of a generating matrix, e.g.
*

in equation (2.8).

Ideally, there exists a function
��� � � such that:

��� ��	 � 5 C>D � � � � 5 � = 7 = � � � = 3 �
(6.1)

The RBF approach [98, 144] introduces a set of 3 basis functions, one for each data point.
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They take the form
���  � �<F�� � � 	  � where

�������
may be a nonlinear function. Thus each

function depends on the Euclidean distance
 � �<F�� � ��	  between the received signal �

�<F��
and the legitimate data point � 	 . Many functions for

�������
have been proposed, see section 4.4,

however the Gaussian is the most common. The network output is a linear combination of 3
weighted basis functions:

��� � � F�� � 5
��
	 � � � 	 ���  � �<F�� � � 	  � � (6.2)

The received signal �
� F��

consists of the signal component and added Gaussian noise. Since the

noise component � � � � added onto each vector element � & @ �<F�� � is neither correlated with the

signal nor other noise components,
& �<F��

has a univariate normal density, defined as:

� ��#� 5 �� 7 � � ��� �
�

�

� #
� � � �
7 � � � =

(6.3)

for which � 5 K/L # M
and � � 5 K/L ��#

� � � � M . The univariate normal density is fully described

by its mean � and its variance � � . These normally distributed samples tend to cluster about

the mean with a spread proportional to the standard deviation � [102]. This fact results in

circular distributed signals �
�<F��

about its mean. Figure 6.1(a) illustrates this fact for a two

user PPB CDMA system. There the preprocessed signal 3 forms circular clusters about the

four possible mean (centres), where the diameter of each circle is proportional to � � , the noise

power. The circles were derived from the contour lines of the Bayesian decision surface, the

circles represent a slice of a Gaussian shaped bell, which represents the noise spread, see also

Figure 4.5.

Therefore, the CLB RBF for CDMA has a Gaussian basis function and is defined by:

��� � � F�� � 5
��
	 � � � 	 �����

�
�

 � �<F�� � ��	  �
7 � � � �

(6.4)

The coefficients � 	 , known as weights, can be derived according to (4.17), which also enables

the network to be adaptive, while exploiting a gradient descent algorithm [128]. The parameter
� � controls the smoothness or spread about a mean ��	 of the approximating function and

represents the noise power. The parameter ��	 is known in the literature as the RBF centre

and shall be denoted from now onwards as A 	 . If the data set of all possible received signals

is known, A 	 is known and the network is determined. Otherwise, A 	 must be constructed
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Figure 6.1: The noise corrupted signal clusters differently about the four possible mean in a
two user PPB CDMA system.

according to an established clustering algorithm [128, 144]. Of course, the network is only

fully determined, if � 	 and � � are also known. Assuming that the noise power is known, e.g.

from measurements, then � 	 and AB	 are the remaining two unknowns. In CDMA both can be

pre-calculated. Figure 6.2 shows a CLB RBFN.

The network consists of four parts. First, the input layer, which is at the left hand side, where

the synchronised
�

chips of �
�<F��

are fed into the network. The next layer is the hidden layer,

which consist of 3 centres (also called neurons, units or nodes), and represent the points

around which the received signals lie or cluster. Each centre is connected to all chips of the

input layer. The hidden layer performs a mapping from the input space
.
� to the hidden space

. �
. The output of the

�
th centre is determined by

� 	 � � �<F�� � 5 ���  � �<F�� � A 	  � . Next,

the output of each centre
� 	 � � � is weighted by � 	 and summed over all 3 values. This is a

mapping from
. �

to
.

. Finally, this sum is sliced (for antipodal signalling by a step function

with outputs � 
 � = � ��� ) and the estimate of the desired user bit is produced, hence:
	CED �<F�� 5

sgn
� ��� � �<F�� � � .
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Figure 6.2: The structure of the CLB RBF network.

6.1.1 CLB RBF centre construction

Consider the construction of all possible received signals in CDMA for
4

users in a memoryless

(AWGN) channel with their unique spreading sequences. These signals form a set with 3 5
7 9 points in

.
� and are stored in a

� 3 & � �
matrix

* �����
� , where each row represents a

point, hence
L + � + � � � � + � M 0 . The spreading codes are stored in a

� 4 & � � partitioned matrix
?

with vector elements
L A � A � � � � A 9

M 0
. The notation � A � � indicates the

�
th spreading sequence,

whereas �BAB	 � shall refer to the
�

th RBF centre. Instead of using the term signal, the term

point shall be used, since each signal vector can be seen as a point in the vector space. Bearing

this in mind, all possible points are derived from:

* � ���
� 5 2 ?

(6.5)

5

���������������
�

� � � � � � �
� � � � � � � �
� � � � �

� � �
� � � � � � � � � � � � � � � � �

� � � � � � � � � �
� � � � � � �

� � �
� � � � � � �

� � � �

����������������
�

���������������
�

A 0 �
A 0 �
A 0�
� � � �
A 0
9 � �A 0
9 �

�
A 0
9

����������������
�
5

���������������
�

A 0 � 
 A 0 � 
 � � � 
 A 0
9 �

� 
 A 0
9A 0 � 
 A 0 � 
 � � � 
 A 0

9 �
� � A 0

9A 0 � 
 A 0 � 
 � � �
� A 0

9 �
� 
 A 0

9� � � � � � � � � � � � � � � � � � � �
� A 0 � � A 0 � �

� � � 
 A 0
9 �

� � A 0
9

� A 0 � � A 0 � �
� � �

� A 0
9 �

� 
 A 0
9

� A 0 � � A 0 � �
� � �

� A 0
9 �

� � A 0
9

����������������
�

=
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where
2

is a
� 3 & 4 �

combination matrix with all possible binary signal combinations as its

rows, and code vector A having all user spreading sequences A � as its elements. Column
�

of
2

becomes the RBF weight vector � if the RBF is thought of as a single user detector for the
�

th

user [112]. Elements
L + � + � � � � + � M 0 consist of the sum of spreading codes in equation (6.5)

and become the 3 CLB RBF centres
L A � A � � � � A � M 0 . The ( 3 & � ) vector + ����� � with its

vector elements can also be denoted as a ( 3 &��
) matrix

* � ���
� , since the spreading codes

A � are of length
�

. Now, the RBF is constructed for the memoryless (Gaussian) scenario with

7 9 centres, where each centre has vector length
�

. Note the notation used for spreading codes
A � , centres A 	 and points + ����� �	 .

The RBF centre construction for channels with memory is computationally much more de-

manding, and can be carried out in different ways. Three different approaches shall be dis-

cussed. Further, it is assumed that a perfect estimate of the
�

-tap channel impulse response
� �� (chip spaced) is available at the receiver.

Full multipath Centres + � � are derived from the previous, current and next symbol se-

quence, hence, 7
�
9 centres with length

� ��
 �
� � � .

Reduced multipath Centres +��
�

are derived from the previous and current symbol sequence,

results in 7 � 9 centres with length
� � 
 �

� � � .

Extended Gaussian Centres + � � are derived from the memoryless centres by convolving

each centre with
� �� , hence the number of centres is 7 9 and the vector length of each

centre is
� � 
 �

� � � .

The different aspects of constructing RBF centre vectors shall be discussed in conjunction with

Figure 6.3(a). Here a fully synchronised receiver is assumed. IS-95 has a three finger RAKE

receiver implemented at the mobile, which combines the three strongest multipath compon-

ents [16, 169]. This structure can be seen as an FIR filter, whose filter weights are equal to the

convolution of the spreading sequence of the desired user with
� �� 1. Thus, there are

� � 
!�
� � �

chips of �
� F��

taken into account to estimate the transmitted bit
	CED

. Symbol �
�<F��

consists of

two ISI affected chip sequences named head and tail, see Figure 6.3(a). The
� �

� � � head chips

are affected by the previous transmitted symbol sequence, whereas the tail chips are the head

1The channel coefficients used at the IS-95 RAKE receiver may not be adjacent (e.g. �
�
� � � � � � � � ������� ) as it is

assumed in this work.
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chips of the next symbol, into which the current symbol spreads. In order to take all the energy

of the current symbol into account, the chip or vector span at the receiver must be
� � 
 �

� � � .
Due to the fact that a RAKE receiver can implement a maximum ratio combining (MRC) or

an equal gain combining (EGC) receiver, the term RAKE shall be replaced by MRC or EGC

in order to specify the structure used [16, 46]. Another approach is to take a MF receiver in-

stead of a RAKE. This results in a much simpler receiver structure. Of course, this is at the

cost of severe performance degradation since ISI and

� � ��� � � 
 � 
� � ��� � �����	� ���

(ICI) is not

appropriately taken into account.

Tail chips

N chips

Direction of receipt

ISI free chips Head chips

y(k-1)

Previous symbolCurrent symbolNext symbol

y(k)y(k+1)

(a) From a chip level perspective.

2

Center
r
1

r

Tail

Head Point

(b) From a vector per-
spective.

Figure 6.3: The effect of ISI on the chips within a symbol causes interference. The head and
tail chips are understood as rotating vectors, which depend on the transmitted user
bits in the previous and next symbol, and cause the preprocessed signal (point) to
lie differently (spread).

Figure 6.3(a) depicts the statements made so far. A pure MF receiver would suffer from the

ISI affected head chips and the neglected ICI. Hence, it is not advisable to implement a simple

MF as the receiver in a multipath environment. The first step to improve system performance

is by taking
� �� into account and combating ICI. The extended Gaussian RBF centres fulfill

this requirement. It provides the RBFN with a reasonable number of centres, where the matrix

containing all RBF centres has a size of ( 7 9 & � � 
 �
� � � ).

The next step is to take at least half of the ISI into account, induced from the past symbol,

named reduced multipath. This increases the size of the matrix containing all centres to ( 7 � 9 &
� � 
 �

� � � ).

Finally, the structure which corresponds best to the maximum likelihood symbol by symbol de-

tection scheme is named the full multipath implementation, since all possible received symbols

become centres. Of course, its complexity is prohibitively high for practical implementations
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since the matrix
* � �

containing all centres has size ( 3 & � � 
 �
� � � ) with 3 5 7

�
9 .

The centres of the full multipath implementation are given by the product between an extended

code matrix
? ��� �

and a matrix



describing the channel characteristics. The extended code

matrix shall be of size ( 3 & � � ), where the first
�

columns represent the previous, the next
�

columns the current and the last
�

columns the next symbol. Again, the starting point is a

combination matrix
2

, but this time of size ( 3 & � 4 ), thus:

2 ��� � 5

���������������
�

� � � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � �
� � � � � � �

� � � � � � �
� �

� � � � �
� � � � � � �

� � � � � � � �
� � � � �

� � � � � � �
� � � � � � �

� �

����������������
�

�
(6.6)

In order to simplify the notation,
2 ��� �

is partitioned into three sub-matrices, thus:

2 ��� � 5 L�2���2�� 2�� M�=
(6.7)

where each sub-matrix has size ( 3 & 4
). The next step is to compute the ( 3 & � � ) matrix

? ��� �
with the Hadamard product. Therefore, each sub-matrix is multiplied by the spreading

codes. This results in three ( 3 & �
) sub-matrices, but since they are adjacent (6.7) the rows

are of length � � :

? ��� � 5

����
� 2��

����
�
A 0 �
...
A 0
9

�����
� 2��

����
�
A 0 �
...
A 0
9

�����
� 2	�

����
�
A 0 �
...
A 0
9

�����
�

�����
� �

(6.8)

Finally, the ( 3 & � � 
1�
� � � ) matrix

* � �
containing all possible sequences for three adjacent

symbols is constructed. In order to find
* � �

the matrix



has to be derived. The channel

impulse response
� �� with coefficients � � � = � � = � � � = � � � is stored in a (

� � 
 �
� � � & � � )

matrix



which is Toeplitz [47].



does not have to be ( � � & � � ) since only the current symbol

together with its ISI affected head and tail chips is of interest. Thus, a (
� � 
 �

� � � & � � )

matrix is sufficient where the first
� �

�
� 
 � � columns in



are zero. So for instance for
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� 5 � and
� 5 �

, it becomes:


 5

���������������
�

� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �

����������������
�

�
(6.9)

Then, all possible centres are found from the product between:

* � � 5 ? ��� � 
 0 �
(6.10)

Matrix



for the extended Gaussian approach is given in (6.11). It is a truncated version of

(6.9) with size (
� ��
 �

� � � & �
) since no ISI has to be taken into account, hence:


 5

���������
�

� � � � � � ��� � �
� � � � � � � ��� � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � ��� � � � � � �
� � � � � ��� � ���

����������
�
�

(6.11)

The centres
* � �

of the extended Gaussian RBF are given by the product between
* � ���

�
and



. Thus, the 3 centres with length

� � 
 �
� � � are derived from the (

� � 
 �
� � � &��

)

channel matrix



and the 3 memoryless RBF centres in
* � ���

� :

* � � 5 * �����
�

 0 5 L + � + � � � � + � M 0 
 0

(6.12)

5

���������
�

+ �
+ �
� � � �
+ � � �
+ �

����������
�

���������
�

� � � � � � ��� � �
� � � � � � � ��� � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � ��� � � � � � �
� � � � � ��� � � �

����������
�

0

�

The construction of
* �
�

is straightforward from the previous two derivations and shall not be

discussed in detail.
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6.2 Preprocessed based RBF receiver

It has already been pointed out that multiuser receivers exploit preprocessed signals, see Fig-

ure 3.5. Preprocessing can be done with different pre-filter structures. For the memoryless

channel, matched filtering is optimum [46]. In multipath, the simple MF is no longer op-

timum since it does not take ISI effects into account, but receiver structures based on Price’s

RAKE [62] do. The preprocessing approach taken in this work rests upon the MRC, where

the MRC is derived from the RAKE [16]. Since real data has been used, the MRC weights the

output of each RAKE finger with its corresponding
�
th channel coefficient, while (

�
� � ) fingers

process a delayed version of �
�<F��

, see Figure C.2 in appendix C. If the weights are unity, the

RAKE structure corresponds to the EGC [16]. This process takes advantage of the fact that

matched filters enhance the SNR, while in addition the signal dimensionality is reduced. Thus,

more sophisticated receiver algorithms can be exploited in order to enhance the performance by

combating MAI and ISI more effectively. However, the general approach is to assume uncorrel-

ated noise at the receiver input. This is achieved by embedding a noise whitening filter between

the preprocessor and the actual receiver. Generally, no attempts are made to take correlated

noise into account due to the assumption made that the noise is uncorrelated2, which simplifies

the analysis. A noise whitening filter as such shall not be considered in this work3.

The correlated nature of the noise is easily pointed out. All MFs match the same sampled

sequence �
�<F��

against their (user) specific sequence A � . Thus the noise becomes correlated,

since the orthogonality among the spreading codes can be destroyed by multipath or when

nonorthogonal spreading codes are employed in the first place. Therefore, all possible received

2Either due to whitening filters (preprocessing), or due to a crosscorrelation matrix as suggested in Joint-
Detection [170, 171].

3But as the reader will notice, a decorrelating matrix will be used as part of a new metric instead.
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PPB signals 3 in a memoryless channel are given by:

/ �����
� 5 * ? 0 5 2>?E? 0

(6.13)

5

���������������
�

� � � � � � �
� � � � � � � �
� � � � �

� � �
� � � � � � � � � � � � � � � � �

� � � � � � � � � �
� � � � � � �

� � �
� � � � � � �

� � � �

����������������
�

���������������
�

A 0 �
A 0 �
A 0�
� � � �
A 0
9 � �A 0
9 �

�
A 0
9

����������������
�

���������������
�

A 0 �
A 0 �
A 0�
� � � �
A 0
9 � �A 0
9 �

�
A 0
9

����������������
�

0

resulting in

/ � ���
� 5 2 6

(6.14)
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���������
�

� � � � � � �
� � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � �

� � �
� � � � � � �

� � � �

����������
�

���������
�

A 0 � A � A 0 � A � � � � A 0 � A 9 �
� A 0 � A 9A 0 � A � A 0 � A � � � � A 0 � A 9 �
� A 0 � A 9� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

A 0
9 �

� A � A 0
9 �

� A � � � � A 0
9 �

� A 9 �
� A 0

9 �
� A 9A 0

9
A � A 0

9
A � � � � A 0

9
A 9 �

� A 0
9
A 9

����������
�
=

which results in the product between the combination matrix
2

and the crosscorrelation mat-

rix
6

of the user codes. In the case of a memoryless channel and orthogonal spreading codes

being used,
6

contains zeros on its off diagonals. The received signal 3 has vector elements
L 3 � 3 � � � � 3 � M 0 (the output of each MF), where each 3 	 is equivalent to the

�
th row in

2
.

Hence, the properties of signal 3 0	 depend on
2

. In the case of orthogonal spreading, the re-

ceived signals (seen as points) will form a hypercube4 in
. 9 centered at the origin, because

2
contains all possible binary combinations, which are the 7 9 vertices for the

4
-dimensional

space, see Figure 4.7(a). If nonorthogonal codes are employed, the hypercube becomes skewed

due to
6

, see Figure 4.7(b). The matrix
6

affects the noise statistics at the preprocessor output.

The noise is no longer univariate normal as in equation (6.3) but multivariate normal distrib-

uted [155]:

� � 3 � 5 �
� � 7 ��� 9 � ! 6 ! ��� �

�
�

� 3 � � � 0 6 � � � 3 � � �
7 � =

(6.15)

4A square in
�
-dimensions, a cube in � -dimensions, a hypercube in higher dimensions.
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where 3 is a
4

-dimensional vector, � is the
4

- dimensional mean vector,
6

is the (
4 & 4

)

covariance matrix. For simplicity, (6.15) is abbreviated as
� � 3 � � � � � = 6 � , where

� 5 K)L 3 M

is the mean, and

6 5 K/L � 3 � � � � 3 � � � 0 M

is the expected value of the matrix, found by taking the expected values of its components [102].

Thus, the covariance matrix is equivalent to the crosscorrelation matrix of the users’ spread-

ing codes and noise, since the signal’s mean is zero [172]. The effect of correlated noise

is shown in Figure 6.1(b) for a two user PPB CDMA system with nonorthogonal spreading

codes. Compared with Figure 6.1(a), it shows an elliptical distributed signal, whereas ortho-

gonal codes result in a circular distribution about each mean. The exponential term (within

the brackets) in (6.15) is known in pattern recognition literature as the Mahalanobis distance

measure [102, 144, 173]. Figure 6.4 illustrates the impact of the two distance measures presen-

ted. It shows the decision boundaries for a two user DS-CDMA scenario in AWGN with
K N�� �  5�� dB and 7 chip Gold codes. Clearly, the receiver performance of a PPB RBF receiver

with Euclidean distance (ERBF) or Mahalanobis distance (MRBF) measure will be different,

because of their different boundaries.

The next step is to replace the Euclidean distance measure used in (6.4) by the Mahalanobis

distance measure in (6.15). Therefore, the new radial basis function has the form:

��� 3 � F�� � 5
��
	 � ��� 	 �����

�
�

� 3 �<F�� � AB	 � 0 6 � � � 3 �<F�� � AB	 �
7 � =

(6.16)

where the centres A 	 are the preprocessed CLB RBF centres, which can also be constructed

according to equation (6.15). Vector 3 �<F�� is the signal fed into the PPB RBFN, which has a

correlated noise component. Since this RBF receiver structure takes the correlated noise into

account, it must perform as well as the CLB RBF, which implements the Bayesian function and

hence is optimum for the non-dispersive AWGN scenario.
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Figure 6.4: Two decision boundaries for two different PPB RBF structures for a two user
CDMA system with 7 chip Gold codes and

K N�� �  5�� dB. Shown are the decision
boundaries obtained with Euclidean distance measure (ERBF) and Mahalanobis
distance measure (MRBF).

6.3 Reduced PPB RBF receiver

The Mahalanobis based RBF also has 7
�
9 centres in a multipath scenario though with shorter

centre vectors, which are of length
4

. However, this implies 7
���

centres when five users are

active. Clearly, this is a prohibitively large network for mobile telephony applications. In order

to reduce the RBF complexity, the properties of the processed signals should be analysed. Then,

it may be possible to find a technique to reduce the network size.

MRC preprocessing returns 7
�
9 centres with a lower dimensionality, since it can be assumed

that (
� � 
 �

� � � � 4
). An example for a two user multipath scenario is given next. Figure 6.5

shows all points (centres) for this scenario with
� �� 5 �� ��	�� 7 
 ��� ��� � 	 � �

�

 ��� ��	�� 7 � � � , where

seven chip Gold codes have been used. A three user scenario is depicted in Figure 4.9. More

figures for different
� �� and spreading codes can be found in appendix C.

An empirical investigation of such patterns leads to the hypothesis the MRC preprocessing

creates clusters of points, see also appendix C. It was found that there exists 7 9 clusters, where

7 � 9 points form a cluster. Appendix C shows that different preprocessing filters form different
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Figure 6.5: All possible points for a two user CDMA system with multipath and MRC prepro-
cessing in their

4
-dimensional space. There are only 48 points instead of 64, be-

cause of the spreading sequence chosen and the channel impulse response (which
is even), some points become redundant.

clusters. An explanation shall be given in conjunction with Figure 6.3(b). There, a vector

representation is given for a single point based on the illustration presented in Figure 6.3(a). A

vector
� �	� � ���

is given by the chips unaffected by ISI. On top of this vector, the ISI affected

vectors
����� G and

� ��
��
are added. Since vectors

����� G and
� ��
��

are dependent on the previous,

current and next symbol, they are not fixed and can “rotate”. Hence they can point in different

directions. Each state results in a point, thus, four clusters appear in the given example of

Figure 6.5. The shape of these clusters is dependent on the correlation among the spreading

codes and the channel impulse response. Generally, if the codes are orthogonal the clusters

tend to look circular, whereas highly correlated codes form very elliptical clusters.

6.3.1 Centre construction

In order to exploit the finding that 7 � 9 centres form one cluster and can be replaced by a single

centre, its construction must be derived. For convenience, the centres of the reduced PPB RBF

are named super centres, while centres for the normal PPB RBF are simply named centres. The

super centres represent � in equation (6.15). Thus the 7 9 super centres can be derived from the

7
�
9 centres given in (6.10). Again, Figure 6.3(a) will help to explain the procedure. The 7

�
9
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centres are constructed from the 7 9 previous, 7 9 current and 7 9 next symbol combinations. In

order to find one super centre, all points must be averaged, which can be constructed from the

different head and tail combinations (ISI causing sequences). In other words, take one
� ��� � ���

(see Figure 6.3(b)) and find all associated
����� G and

� ��
�
sequences, add them up and divide

the sum by the number of them. This is still a time consuming task, since it is based on the 7
�
9

centres. A much simpler derivation was found.

The previously stated procedure does the following. It averages the ISI component induced by

the previous symbol and current symbol, respectively. Since this takes all possible combinations

of them into account, while the current symbol is left unchanged, the ISI component will cancel

itself. In other words, since the signal (spreading code) is assumed to be antipodal and the

number of symbol combinations is even, the average of the signal (in “head” and “tail”) is

zero. Hence, what is left is the current symbol convolved with
� �� . Hence, the super centres

can be found by preprocessing the CLB centres + ����� � constructed according to the extended

Gaussian method. The covariance matrix
6

is left unchanged, since the super centres do not

change correlation properties between the spreading codes.

6.4 Simulation results

This section presents simulation results obtained from Monte-Carlo simulations. Different RBF

structures are compared in terms of their BER performance against established receivers. Res-

ults for the memoryless channel shall prove the claim that the PPB RBF with Mahalanobis

distance measure performs as well as the CLB RBF receiver. Then, simulation results conduc-

ted in a stationary multipath environment are presented. Due to the large complexity of some

receiver structures only stationary channels are considered.

6.4.1 AWGN channel

A DS-CDMA system with
4

users and seven chip spreading codes is considered. The SNR

was chosen to be
K N � �  5 � dB. Three RBF structures are compared against the known PPB

MMSE receiver [174]. A CLB RBF receiver (CRBF) acts as the optimum performance bound

since it is equivalent to a Bayesian structure. Two PPB RBF receivers are investigated. The PPB

RBF with Euclidean distance measure (ERBF), and the PPB RBF with Mahalanobis distance

measure (MRBF).
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Figure 6.6: BER against the number of users for a CDMA scenario in AWGN with randomly
generated 7 chip spreading codes and

K N�� �  5�� dB in an AWGN channel.

Figure 6.6 shows results obtained from a set of randomly generated spreading sequences. It can

be seen from Figure 6.6 that the MMSE is a long way from achieving optimum performance.

Moreover, the ERBF structure suffers severely from not constructing the optimum decision

boundary and performs even worse than the MMSE when the MAI is high. Further, the res-

ults show that the MRBF performs as well as the CRBF. Therefore, the Mahalanobis distance

measure is the optimum distance measure for a PPB RBF receiver structure.
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Figure 6.7 shows results obtained from a set of seven chip Gold spreading sequences. Again,

the results lead to the same conclusion. MMSE and ERBF perform poorly, while MRBF and

CRBF perform optimally.
    

0.01

0.001

0.0001

 B
E

R
 

1 2 3 4 5 6 7
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ERBF
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CRBF

Figure 6.7: BER against the number of users for a CDMA scenario with 7 chip Gold spreading
codes and

K N � �  5�� dB.
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6.4.2 Multipath channel

A PPB DS-CDMA system with
4

users and short spreading codes is considered with prepro-

cessing by a bank of MRC filters. Further, perfect knowledge of the channel impulse response

is assumed. The number of active users is kept small since some receivers become too complex

to simulate, e.g. if
4 � �

. Different RBF structures are compared against the known PPB

MMSE receiver. The CLB RBF receiver (CRBF) with 7
�
9 centres of length

� � 
 �
� � � and

the PPB RBF with Mahalanobis distance measure (MRBF) and 7
�
9 centres of length

4
are

compared against the RBF with 7 9 super centres (SRBF) and the RBF with Euclidean distance

measure (ERBF) with 7
�
9 centres of length

4
.
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Figure 6.8: BER against the number of users for a CDMA scenario with randomly generated
7 chip spreading codes and

K N�� �! 5 � dB in a multipath channel with
� �� ��� � 5��� ��	�� 7 
 ��� � � � 	 � �

�

 ��� ��	�� 7 � � � .

Figure 6.8 presents the results obtained from a set of randomly generated spreading codes with

seven chips and
� �� ��� � 5 �� ��	�� 7 
 ��� ��� � 	 ���

�

 ��� ��	�� 7 ��� � . It shows that CRBF, MRBF

and SRBF outperform the linear MMSE structure. Moreover, the MRBF and SRBF perform

quite similarly over a large number of users, while the ERBF performs less well and is even

outperformed by the MMSE at six users. The performance degradation at five users between the

SRBF and the MRBF is due to the simplified decision boundary constructed by the SRBF. This

becomes more severe as the dimension (
4

) is increased. However, it was found that the SRBF

still outperforms the MMSE. Of interest is the superior performance of the CRBF receiver,

which performs much better than the MRBF. Since the preprocessing is done by a bank of

RAKEs (MRCs), the noise of the combined signal is no longer white because the output of
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each finger is weighted by a channel coefficient. This induced additional noise distortion which

is not perfectly described by the multivariate normal distribution (6.15). In order to circumvent

this problem, preprocessing could be done by a bank of grouped MFs, where each group has
�

MFs [175]. However, this increases the signal’s dimension used at the receiver structure to

(
� &$4

) and makes it more complicated to separate the received signals since all RAKE finger

outputs are equally weighted, especially the weaker ones. Moreover, super centres must be

computed differently, if they exist at all.

In Figure 6.9 results obtained from seven chip Gold codes and
� �� ��� � 5 ��� ��	�� 7 
 ��� ��� � 	 ���

�



��� ��	�� 7 ��� � are presented. Figure 6.9 shows that all RBF structures (ERBF is not included)

outperform the MMSE. The SRBF and MRBF receivers diverge at 5 users.
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Figure 6.9: BER against the number of users for a CDMA scenario with 7 chip Gold codes
and

K N � �  5 � dB in a multipath channel with
� �� ���:� 5 ��� �
	�� 7 
 ��� ��� � 	 � �

�



��� ��	�� 7 � � � .
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Figure 6.10 shows the results obtained for randomly generated spreading codes of length 16

with
K N�� �  5 � dB and

� �� ��� � 5 ��� 7 � 
 ��� � ��� � 
 ��� � . The results are similar to the ones

presented in Figure 6.9 in the sense that the MMSE is not greatly outperformed by the RBF

based receivers. For comparison the MRC performance is given, which becomes very poor

as MAI increases. It is important to note that the SRBF is better than the MMSE with the

spreading sequence of length 16.
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Figure 6.10: BER against the number of users for a CDMA scenario with randomly generated
16 chip spreading codes and

K N�� �  5�� dB in a multipath channel with
� �� ��� � 5��� 7 � 
 ��� � � � � 
 � � � .

Results for two different numbers of users over a SNR range between 0dB and 10dB are given in

Figure 6.11. The performance for the MRBF is omitted due to its complexity. In both scenarios,

6.11(a) and 6.11(b), the MRC performs very poorly. Figure 6.11 shows that the performance

gap between the SRBF and the MMSE increases, as the number of users increases. In the 4

user scenario, the SRBF has at
K N � �  5�� dB half the error ratio of the MMSE, and has a gain

of around 1.5dB at a BER of 0.01 over the MMSE. For 8 active users, the SRBF has half the

error ratio of the MMSE at 7dB and a gains 2dB at a BER of 0.01 over the MMSE.
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Figure 6.11: BER against the SNR for a CDMA scenario with randomly generated 16 chip
spreading codes and a multipath channel with

� �� ���:� 5 ��� 7 � 
 ��� � � � � 
 � � � .
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6.5 Discussion

This chapter presented the chip rate and symbol rate RBF receiver. The RBF construction for

the CLB structure was introduced from which the PPB structure has been derived. Both struc-

tures have the same number of centres ( 7 9 ) in a memoryless channel which grows exponentially

with the number of users. It has been shown that the Euclidean distance measure used for the

CLB RBF is only under certain circumstances optimum for the PPB RBF. This is due to the

correlated nature of the noise induced by the preprocessing stage. If nonorthogonal spreading

sequences are used, then the Euclidean distance measure must be replaced by the Mahalanobis

distance measure. Then, the PPB RBF and the CLB RBF perform the same in AWGN.

Applying the PPB RBF for multipath scenarios is of limited use since its computational com-

plexity may exceeds the resources available at a mobile. A technique which introduces super

centres has been proposed. This technique reduces the number of centres from 7
�
9 to 7 9 .

Since it rests upon the Mahalanobis distance measure, it also takes the correlation among the

spreading codes into account. Although it needs a matrix inversion, its complexity is less since

the matrix inversion has to be done only once for a set of spreading codes used. If the set of

codes is known a prior then it might be possible to store the matrix inverse in a look up table.

Monte-Carlo simulations showed little performance loss over a wide range of users for this

RBF structure, if compared with the Mahalanobis based RBF which takes all 7
�
9 into account.

However, the proposed technique of computing super centres is restricted to certain CDMA

systems in order to be beneficial. These systems must use short spreading sequences, such as

16 chip codes, e.g. UMTS [3]. Because long codes, e.g. as used in IS-95, are less ISI affected

(in the Head and Tail chips) hence the ISI free middle part (Centre) provides the receiver with

sufficient information in order to detect the transmitted bit.

All multipath simulations exploit a bank of RAKEs based on the MRC, because MRC performs

better than EGC [37]. Since each RAKE branch is weighted by a channel coefficient, the

noise of the combined signal no longer has a white characteristic. The simulations showed

that the CLB RBF performs much better than the PPB RBF. This is because the Mahalanobis

distance measure rests upon the assumption that all signals have the same properties described

by the multivariate normal distribution. In order to enhance performance, the output of each

RAKE finger may be fed into the receiver structure. This increases the dimensionality of the

preprocessed signal to (number of RAKE fingers
& 4

) which is still a moderate number since
� � 4

.
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Chapter 7
Alternative receivers

This chapter presents alternative receiver structures which are based on linear programming

(LP).

An introduction presents a brief summary of preprocessing stages and looks at a simplified pre-

processing technique. Ideas taken from pattern recognition and previously proposed equaliser

schemes are applied to CDMA. Two different receiver structures based on LP are presented,

both of which can be extended for use with other preprocessing schemes. Finally, this chapter

ends with a discussion.

7.1 Introduction

It has been mentioned that the optimum (MUD) receiver has a prohibitive computational com-

plexity and sub-optimum (MUD) receivers are the subject of current research. Most of these

receivers can process either the MRC filter bank output (Figure 7.1(a)) or its MF version (Fig-

ure 7.1(b)), where the first structures do not eliminate the effect of MAI on channel estimation.

Junatti and Glisic [175] concluded that MUD receivers, which process the MF bank output are

often more desirable in practice. Reasons which back this statement were drawn from the res-

ults presented in section 6.4. There, the PPB RBF with MRC preprocessing did not perform as

well as the CLB RBF.

However, while investigating preprocessed sequences and their pattern structures, some inter-

esting pattern features were found. From the patterns obtained from a bank of MFs (synchron-

ised at the symbol rate) two CDMA receiver structures were developed. Both structures can be

extended and applied to the preprocessing schemes in Figure 7.1.

7.1.1 Simplified preprocessing (SPP)

Although it has been stated that a simple bank of MFs will perform poorly, it shall be used in the

first instance to create nonlinearly separable scenarios [173]. Because the preprocessing stage is
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Figure 7.1: Two different preprocessing concepts for MUD receiver structures.

synchronised with the symbol rate, its output is strongest only if the first multipath component

(
� �

) is the biggest. The simplified preprocessing (SPP) stage is shown in Figure 7.2.
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Figure 7.2: A simplified preprocessing technique where the preprocessing stage consists of
MFs which do not take multipath delay into account.

It was also found that Walsh sequences have a strong tendency to form nonlinearly separable

scenarios. This is basically due to the fact that Walsh spreading codes have highly coloured

spectral characteristics [55, 176]. This problem is circumvented in communication systems, e.g.

IS-95 [16], by employing randomisation. In nonlinearly separable scenarios, the performance

of linear receiver structures is dominated by the number of points which lie on the wrong side

of the hyperplane. Only nonlinear receiver structures can resolve such problems, resulting in

zero classification errors for the noise free case.
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7.1.2 System description

The output 3 �<F�� in Figure 7.2 is given from the input sequences �
� F��

. This simplified pre-

processing scheme takes only half of the ISI into account, the ISI induced from the previous

symbol. Thus the number of possible received sequences (points) is 3 5 7 � 9 for antipodal

signalling, and the matrix containing all sequences for the simplified preprocessing scheme is

defined according to 2.10 as:

* � ��� 5 ? � � � 
 0 =
(7.1)

where the
� 3 & 7 � �

code matrix
? � � �

contains all combinations of the spreading codes over

two symbols, and the
� � & 7 � �

matrix



represents the channel characteristics. So for a
� 5 �

tap channel and
� 5�� , 
 is defined as:


 5

���������������
�

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

����������������
�

�
(7.2)

After all possible received sequences are defined (in
* � ���

), the signals are derived, which are

fed into the receiver structure. All possible preprocessed signals are given in a
� 3 & 4 �

matrix
/ � ���

, derived from:

/ � ��� 5 * � � � ? 0
(7.3)

5 ? � � � 
 0 ? 0 5 L � 2 � � � � 0 % ? 0 M 0 
 0 ? 0

5
�
�

�
� 2��2��

�
� %

�
� ?
�? �

�
�

�
�
0


 0 ? 0

5

����
� 2��

����
�
A 0 �
...
A 0
9

�����
� 2��

����
�
A 0 �
...
A 0
9

�����
�

�����
� 
 0 ? 0 =

(7.4)
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where the
� 3 & 7 4 � combination matrix

2 � � �
contains all combinations for two adjacent

symbols, and
?

is a
� 4 & � �

partitioned code matrix.

7.1.3 Linearly separable scenario

Assume there is a
� 3 & 4 �

matrix
/

of real numbers and each row defines a single pattern.

This pattern matrix consists of two sets of patterns, say subset � / � � and � / � � , which contain

the patterns belonging to

 C>D

and �
CED

respectively. LP finds a plane in the
4

-dimensional

Euclidean space
J 9 , such that each subset lies on one side of a plane (hyperplane) if and only

if � / � � and � / � � are linearly separable. The plane will then satisfy the equations:

/ � � �
� � � �

(7.5)

/ � � �
� � � � =

(7.6)

whereas the plane is determined by:

� 0 � �
� 5 � =

(7.7)

where � is a
4

-dimensional vector representing a point in
J 9 , � is a

4
-dimensional vector of

constants and
�

is a scalar constant (threshold) such that (7.5) and (7.6) hold. There,
�

and
�

are

3 � 7 -dimensional column vector of ones. A definition and proof for linear separability is given

in [138] which is examined briefly. Two sets of patterns � / � � and � / � � are linearly separable,

if and only if there exists a
4

-dimensional column vector of constants � and constant scalars
�

and
�

such that:

/ � � �
��� � �

�
/ � � 
 � � � �

�
�

� � �
� � � �

�
� =

where
�

is a vector of ones. Since LP finds a separating plane based on the
� �

distance measure

criterion, it could be used to determine the filter weights of the decorrelating receiver. If the

subsets are not linearly separable, then LP fails to provide a single plane and other techniques

must be used.
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Figure 7.3: A two user CDMA nonlinearly separable scenario obtained from the simplified
preprocessing scheme, with multipath channel

� �� ��� � 5 �� 7 � 
 ��� � � � � 
 � � � .

7.1.4 Nonlinearly separable scenario

As a consequence of the improper treatment of the ISI due to the simple preprocessing scheme

used, nonlinearly separable scenarios are possible. However, it must be acknowledged that

these scenarios are rare. Nevertheless, it has been shown that non-minimum phase channels

can create such hard to resolve and therefore demanding equalisation scenarios [90, 99].

A
4 5 7 user DS-CDMA system is assumed. The channel impulse response is

� �� � � � 5
��� 7 � 
 ��� � � � � 
 � � � and the spreading codes were randomly generated with length

� 5 � .
The scenario’s points (patterns) are presented in Figure 7.3. This example shows that it is

not possible to linearly separate the two groups of points. This also becomes evident from

the optimum separation boundary depicted in Figure 7.3(b). Thus, simple linear filters must be

replaced by more complex structures, such as ML based receivers. Another promising structure

in order to classify patterns is based on LP.
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7.2 A linear programming based technique

The LP algorithm rests upon Dantzig’s simplex algorithm [177] and is a common technique

used in game theory [178] and operations research for optimisation [96]. It also can be used to

construct convex hulls from a set of points in a G -dimensional space [146, 147].

Basically LP does the following [1]. Find the column vector � , which minimises (or maximises)

a linear function

� 5 A 0 � =

subject to some constraints, such as

" � 5 �
and � � ���

Figure 7.4 illustrates such an example for two independent variables in a 7 -dimensional space.

The region which contains all possible solutions is called the feasible region. The feasible

region (grey) is defined by the constraints, depicted as dashed lines. Some feasible vectors

(solutions) are depicted as bullets, and one of them is the optimum solution, the optimal feasible

vector.

In order to find the optimum solution, the LP algorithm has only to look at the vertices of the

feasible region. Thus, only the points which are part of the convex hull are of interest, since

the optimum solution is a vertex [96]. The example given in Figure 7.4 shows several parallel

lines across the feasible region, where each line corresponds to a constant value of the solution
�

, e.g.
� � = � � = � � � = � � . Hence, LP starts at one vertex and computes the corresponding solution.

Then LP takes one of the adjacent vertices and proceeds in the same manner, until the optimum

solution is found, defined as a maximisation or minimisation problem.

Therefore, only the vertices, which are part of the convex hull are of interest to determine the

optimum solution. However, LP is not always efficient, since the computational time grows ex-

ponentially with the number of vertices. Thus, other algorithms are known, which can construct

the convex hull [146, 157] faster. Nevertheless, LP is still popular and has been applied over

the last forty years to many applications, and integer and nonlinear programming techniques

are also available [179]. LP also has been used for training and constructing NNs [180–182].

Even nonlinearly separable problems can be solved with the LP algorithm, if it is combined with
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Figure 7.4: The basic concept of linear programming. A feasible region (shaded) contain-
ing the optimum solution at one vertex is bounded by the constraints, depicted as
dashed lines. LP finds the optimum solution by computing

�
for a vertex and its

adjacent vertices, hence it will converge to the optimum vertex.

the multisurface method [183, 184]. With the multisurface method it is possible to construct a

piecewise linear separation boundary [185–187] or slabs [188]. The vertices in Figure 7.4 are

given by the points given for

 C �

or �
C1�

, which form two overlapping hulls.

7.2.1 The SLAB algorithm

This algorithm constructs slabs in a multi dimensional space which can separate sets of points.

Each slab consists of (at least) two planes or hyperplanes, which bound it. A slab with zero

thickness is a single hyperplane. It is well known that such hyperplanes can be constructed with

perceptrons, since a hyperplane is defined by a linear function [93, 132]. A (neural) network

which can incorporate this slab structure is the common MLP network, where the neurons are

McCulloch-Pitts units [93]. The unit’s activation function is a step function defined as:

��� 3 � 5 ���
�

� 
 � if 3 0 � � �  � � =

� � if 3 0 � � �  � � = (7.8)

where 3 is the received vector, � is the weight vector of a unit and �  is its threshold. A

possible MLP structure with
�

units is presented in Figure 7.5.
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Figure 7.5: A MLP network, which can construct hyperplanes. Each unit in the hidden layer
constructs one plane and the output unit combines their outputs and makes the final
decision.

It is assumed that two sets of points in
. 9 are available. Both sets � / � � and � / � � correspond

to the desired user bit sign
C>D 5 
 � and

C>D 5 � � respectively. The SLAB algorithm should

construct a classifier that separates points in � / � � from those in � / � � and can be described

by:

Start with � / � � 5 � / � � and � / � �O5 � / � � , and iterate the steps

 � � :

1. Construct a slab:
� � 5 � 3 � . 9 � � � � 3 0 � � � � � �

where � � � =�� � � � .
,
� � � � � , � � � . 9 , �

� �5 �
, such that:

(a)
/ �� � ��� � 3 � . 9 � � � � 3 0 � � � , / �� � ��� � 3 � . 9 � 3 0 � � � � � � and

(b) the width of the slab is minimal.

2. If
/ �� � ��� � � 5 � � and

/ �� � ��� � � 5 � � 1 then stop,

else
/ �� 5 / �� � ��� � � , / �� 5 / �� � ��� � � and

goto 1) and increment


.

1This means the set is empty.
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LP can find the slabs by minimising the width of a slab, which means:

� If � / �� � � � and � / �� � � � are linearly separable, then
� � must be a hyperplane such that� / �� � ��� / �� � � � � � � 5 � � ,

� else minimise the number of elements in � � / �� � � � / �� � � � � � � � .
For the case of a linearly separable scenario, the SLAB algorithm yields a single hyperplane,

otherwise, there are
� � = � � = � � � = � , � � slabs (

( � � ). If � � 
 � (
, each

� � specifies a pair of

units in the hidden layer. Each pair has weights
L � �� � �� � � � � �9 M with threshold � � 5 � � , and

L
� � �� � � �� � � � � � �9 M with threshold � � 5 �

� � .

The output layer consists of a single unit, see Figure 7.5. The weights for the two hidden units

corresponding to
� � are � � 7 � and � � � 7 � . Both units combine to contribute � � 7 � to the output

unit from the points in � / �� � ��� � � � , and � � � 7 � to the output unit from the points in � / �� � ��� � � �
and zero from the points in ��� / �� � � � / �� � � � � � � � , � � 
 � ( . The last unit in the hidden layer

is a separating hyperplane (slab with zero thickness):

� , � � 5 � 3 � . 9 � 3 0 � , �
�
5 � , � � 5 � , � � �

where
/ �, � � 3 � . 9 � 3 0 � , �

�
� � , � � � and

/ �, � � 3 � . 9 � 3 0 � , �
�

� � , � � � .
The weights of this unit are

L � , � �� � , � �� � � � � , � �9
M

with threshold � � 5 � , � � , and the corres-

ponding weight for the output unit is � � 7 , �
�
. The threshold �  of the output unit is � � 7 , � � .

The weights assignment for the output layer is appropriate since the weights of the output unit

are based on a geometric series. Therefore, since
( � � and � � 
 � (

, points in � / �� � � � � � �
and � / �� � � � � � � are classified by a pair of units corresponding to

� � and will not be misclassified

by the addition of further hidden layer units.

The number of hidden units is finite because it can be ensured that at least one point in � / �� � � �
/ �� � � � is excluded from the slab

� � at each iteration step. If the number of hidden units is

very large, then multiple threshold elements can be used in order to reduce network complex-

ity [189].

116



Alternative receivers

7.2.1.1 The SLAB algorithm in steps

First, the SLAB tries to separate � / �� � � � from � / �� � � � with a single hyperplane

� � 5 � 3 � . 9 � � � 5 3 0 � � 5 � � �
such that

/ �� � � 5 � 3 � . 9 � 3 0 � � � � � � and
/ �� � � 5 � 3 � . 9 � 3 0 � � � � � �

The LP constraints are linear inequalities, but not strict inequalities. A separating slab of non-

zero thickness is given by

���� 5 � 3 � . 9 � � � � 3 0 � � � G � �
where � � � = G � � � .

,
� � � 
 � � 5 G � , � � � . 9 and �

� �5 �
, such that:

/ �� � � � � 3� . 9 � 3 0 � � � G � � and
/ �� � � � � 3 � . 9 � 3 0 � � � � � �

The constraints are

� 3 0 � � � G � if 3 � / �� � �

� 3 0 � � � � � if 3 � / �� � �

� � � � G � �
� � � � �

and the function to minimise is
� � � � G � � . Start the algorithm by setting �

� 5 �
and

� � 58G � 5 �
,

and if the two sets are linearly separable (by LP), then a separating slab
� �� can be found such

that
� � � 
 � � 5 G � and �

� �5 �
. Then set

� � 5 � 3 � . 9 � � � � 
 G � � � 7 5 3 0 � � �
and all points are classified. Alternatively, if the two sets are nonlinearly separable and the first

trial fails, then find a slab

� �� 5 � 3 � . 9 � � �� � 3 0 � � � � �� �
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where � � �� = � �� � � .
,
� � �� 
 � � 5 � �� , � � � . 9 and �

� �5 �
, and

/ �� � � � � 3 � . 9 � 3 0 � � � � �� � and
/ �� � � � � 3 � . 9 � 3 0 � � � � �� �

containing as few elements as possible in set � / �� � � � / �� � � � . The constraints are

� 3 0 � � � � �� if 3 � / �� � �

� 3 0 � � � � �� if 3 � / �� � �

� � �� �
� �� 5 �

and the function to minimise is

�
�

� ����� � � �
3 0 � � 
 � ! / �� � � ! & � �� � 
 �

� ��� �� � �
3 0 � � �

� ! / �� � � ! & � �� �

where
! / � � � ! represents the number of points in set � / � � � � . Start with � 5 �

and
� �� 5 � �� 5 �

,

which will yield a slab

� �� 5 � 3 � . 9 � � �� � 3 0 � � � � �� �
with an upper bound (hyperplane) � 3 � . 9 � 3 0 � � 5 � �� � containing elements in � / �� � � � and

a lower bound � 3 � . 9 � 3 0 � � 5 � �� � which contains elements � / �� � � � . Since the data is

noise corrupted, the hyperplanes (bounds) must be adjusted (to maximise the distance between

the points close to the hyperplanes). Thus, if
/ �� � � � � � �5 � � , then let

� � �� 5 ������ � � ���� � � � � � 	 � 3 0 �
� �

and
� � 5 ��� �� 
 � � �� � � 7 , else

� � 5 ��� �� 
 � � 7 � . If
/ �� � � � � � �5 � � , then let

� � �� 5 � � �� � � � �� � � � � � 	 � 3 0 �
� �

and
� � 5 � � �� 
 � � �� � � 7 , else

� � 5 � � �� � � � 7 � .
Finally, specify slab

� � 5 � 3 � . 9 � � � � 3 0 � � � � � �
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Sometimes, one of a pair of hidden layer units may be eliminated. If � / �� � ��� � � � , then replace
� � by a single hyperplane � 3 � . 9 � 3 0 � � 5 � � � which corresponds to a single hidden unit

with weights �
�

and threshold � � 5 � � . The corresponding weight for the output unit is � � 7 � .
If � / �� � � � � � � , then replace

� � by a single hyperplane � 3 � . 9 � 3 0 � � 5 � � � corresponding

to a hidden unit with weights � �
�

and threshold � � 5 �
� � , with a corresponding output unit

weight of � � � 7 � .

7.2.1.2 The SLAB algorithm by example

It shall be assumed that there are two sets in
. � . Each set consists of points, depicted as filled

and hollow circles in Figure 7.6. Figure 7.6(a) shows the scenario. The aim is to classify the

sets with slabs or hyperplanes, where each slab has minimum width. LP starts with a slab of

zero thickness at the origin which is actually a hyperplane, see Figure 7.6(b). Obviously, the

two sets are not linearly separable. Thus, LP increases the width of the slab, and rotates the

hyperplanes. The width of this first slab is increased until LP can separate the two sets (outside

the slab) from each other, which is the case in Figure 7.6(c). The dashed lines in Figure 7.6(c)

mark where LP stops. Then, it can be calculated which points are closest to either side of

the hyperplane. This enables the algorithm to place the hyperplane perpendicularly between

them, which is the optimum place in terms of classifying noisy data. Thus, two hyperplanes

are constructed, which are depicted as solid lines
� � * � = � � * � in Figure 7.6(c). The next step is

to remove all points which can be classified (depicted with a cross in Figure 7.6); there are two

points in the given example.

Another iteration shall classify the remaining points. Again, LP starts as depicted in Fig-

ure 7.6(b). This time, LP stops after it exceeds the radius of an imaginary circle on which

lie the four points in the centre. Once more, the distance between the closest points on each

side of the hyperplane is measured and halved in order to place the hyperplanes
� � * � = � � * �

optimally. The slope of the hyperplane is given by the LP algorithm, but the threshold (
� � =�� � )

must be adjusted in order to place the hyperplane between the points which a slab
� � wants to

separate. Then, the classified points are removed from the set of points. Again, starting at the

origin (Figure 7.6(b)), LP immediately finds that the remaining four points are linearly separ-

able by a hyperplane
�1�

, through the origin. Thus, the threshold is zero since it is not a slab,

see Figure 7.6(e). The final result consists of five hyperplanes, see Figure 7.6(f). Clearly, both

sets are separated from each other. However, in order to show that the algorithm works with
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Figure 7.6: Steps made by the SLAB algorithm in order to separate a nonlinearly separable
scenario with hyperplanes.

real data, an example is presented. This example is the one whose optimum nonlinear boundary

was presented in Figure 7.3(b).

7.2.1.3 The SLAB algorithm in DS-CDMA

A
4 5 7 user scenario is given, where the points were obtained from the simplified prepro-

cessing technique. Randomly generated spreading codes with length
� 5 � were used, and

the channel impulse response was
� �� ��� � 5 �� 7 � 
 �� � � � � 
 � � � . The optimum classifica-

tion is given by the boundary depicted in Figure 7.3(b). The SLAB algorithm constructs three

hyperplanes and an MLP can classify the points correctly in the noise free case, see Figure 7.7.

As Figure 7.7 shows, the distance between hyperplane
� �

and the points between
� �

and
� �

is small. Hence, the performance in a noisy environment will be degraded since the distance is

short and so misclassifications will occur. Because the scenario is symmetric some misclassi-

fications will cancel each other. Thus, instead of a residual BER corresponding to 4 points out
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Figure 7.7: A nonlinearly separable scenario for two users and its three separating hyperplanes.

of 16 equals 	 & � � � � 5 � � 	 , the residual BER converges to 	 & ��� � & � � � � 5 � � � as the SNR

increases. However, this leads to another receiver structure which combines the simplicity of

the SLAB based receiver and the excellent classification capabilities of the RBF network.

7.3 Hybrid receiver

In order to improve the receiver performance, a combined SLAB and RBF receiver is presented,

giving a hybrid structure. The hybrid receiver exploits the knowledge given from the position

of a slab, i.e. the region between two hyperplanes, which causes most classification errors.

Therefore, it runs the SLAB algorithm first and finds all hyperplanes. Then, the hybrid re-

ceiver determines the two hyperplanes, between which most misclassifications may occur. The

simplest criterion is the width of a slab, thus, all points within the narrowest slab are taken to

become the RBF centres of the hybrid structure. Next, it constructs a RBF network, which has

these points within this slab as centres. A major drawback with RBF networks is its complex-

ity, when it has many centres. This might also be the case for this proposed hybrid structure.

However, since it is difficult to generate nonlinearly separable scenarios in CDMA, no gener-

ally valid complexity figures are available. It may be assumed that the number of points will

be between 25% and 50% of the total number of points, since the region where the two sets

overlap may be considered to be small.
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Figure 7.8: The hybrid receiver.

The hybrid receiver implementation is presented in Figure 7.8. The received signal 3 �<F�� is

processed by the MLP. If 3 �<F�� lies between the hyperplanes, then 3 �<F�� is processed by the RBF,

otherwise the MLP shall determine
	C D �<F��

.

7.4 Simulation results

The performance has been obtained from Monte-Carlo simulations for different receiver struc-

tures. The channel impulse response is
� �� ��� � 5 ��� 7 � 
 ��� � � � � 
 � � � , which is a non-minimum

phase channel. Different scenarios are presented for two preprocessing schemes. Throughout

this work, an LP algorithm has been used in the SLAB algorithm from a commercially avail-

able package. The nage04.h from libnagc is a standard NAG 2 library and the LP function

embedded is e04mfc.

The first results were obtained with the SPP technique of subsection 7.1.1 and show that the LP

based techniques perform well. Four receivers exploit the SPP preprocessed signals, whereas

the fifth is the chip level based MRC (RAKE). The other four receivers are an MMSE (where the

filter weights were obtained with the LMS algorithm [48]), a Mahalanobis based RBF receiver

(MRBF), a slab based receiver (LP) and the hybrid receiver (Hybrid). There are no results given

for a simple MF receiver since its performance is very poor. Then results are presented which

were obtained with the PPB based technique, introduced in chapter 6. Results are given for the

MRC (RAKE), the MMSE [109], the LP and Hybrid receiver, and the SRBF and MRBF.

2NAG: Numerical Algorithms Group Ltd, Oxford, UK. C-code for Sun (SPARC) Solaris, implementation code
CLSOL04DA, Mark 4
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7.4.1 Results for the SPP technique

The first scenario is a two user CDMA system with randomly generated spreading sequences of

length
� 5�� . It is a nonlinearly separable scenario as depicted in Figure 7.7 and 7.3. Figure 7.9

shows the corresponding performance results for the five receivers. Figure 7.9 shows that the

MRC outperforms all other receiver structures. This is due to the fact that the MRC takes the

channel into account and MAI is low. As anticipated, the MMSE performance converges to the

final value of 0.125 (
��� � & 	 & � � � � ) which corresponds to 4 misclassified points out of 16.

The MRBF performs best among the four PPB receivers due to the fact that it implements the

optimum decision boundary for this 16 point scenario. The proposed slab based receiver (LP)

clearly shows its superiority over the simpler linear MMSE receiver. The BER tends to zero as

the SNR increases, since it can classify the points correctly. The Hybrid receiver consists of an

RBF with four centres out of 16. The graph reveals that the Hybrid receiver outperforms the LP

receiver, moreover, it converges to the MRBF’s performance. This means that most errors occur

within the slabs near the middle hyperplane (
� �

in Figure 7.7) where the distance between the

points and their bounding hyperplanes is short.
 

0.1

3 3325215 9 13 17
E  / N  in dB

1

0.01

0.001

0.0001

B
E

R

11 19 23 27 317 15 29

MMSE

MRC MRBF

LP

Hybrid

0b

Figure 7.9: BER against SNR for a two user scenario with randomly generated spreading codes
of length seven and channel

� �� ��� � 5 ��� 7 � 
 �� � ��� � 
 ��� � .

A similar scenario but for three users is given in Figure 7.10. The major difference is the fact

that the MRC performs as badly as the MMSE. This is due to the fact that this scenario is non-

linearly separable for both the preprocessed and the simple MRC case. The MRC performance

converges to 0.125 (
��� � & � 7�� & � � � � 7 ) which corresponds to 128 misclassified points out of
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512 points3. The MRBF performs best, followed by the Hybrid and the LP receiver. The Hy-

brid consists of 24 centres out of 64 possible points. The LP consists of five units and hence

hyperplanes. The performance of both the LP and Hybrid is not much worse than the MRBF

with 64 centres.
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Figure 7.10: BER against SNR for a three user scenario with randomly generated spreading
codes of length seven.

Another two simulations were made for CDMA scenarios with seven chip Gold codes. Fig-

ure 7.11 shows the performance for three users and Figure 7.12 for five users. The three user

scenario has 3 hyperplanes and the Hybrid receiver has 16 centres out of 64 points. The MRC

performs best since the scenario is linearly separable in the MRC domain, followed by the

MRBF, the Hybrid and LP receiver. The MMSE performance converges to the value 0.125

(
��� � & � � & � � � 	 ) which corresponds to 16 misclassified points out of 64.

Figure 7.12 shows the results for a five user scenario. This scenario is nonlinearly separable

in the SPP and MRC preprocessed domain. Figure 7.12 illustrates that the MRC fails to out-

perform the SPP based receivers. The MRC performance converges to 0.1, which corresponds

to about 6554 misclassified points out of 32768. The LMS based SPP MMSE receiver con-

verges to a BER of 0.137 which corresponds to about 280 misclassified points out of 1024. The

LP receiver has five hyperplanes and the Hybrid receiver has 512 centres out of 1024 points.

The LP outperforms the MRC and the MMSE at around 31dB, and converges to zero as the

SNR further increases. The poor performance of the LP is due to the fact that many points lie

3For the MRC, the total number of points equals
��� �

and not
� � �

.
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Figure 7.11: A three user scenario with 7 chip Gold codes.

near hyperplanes since one slab is thin which results in many misclassifications. The Hybrid

performs nearly as well as the SPP MRBF mainly because of the large number of centres.
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Figure 7.12: A five user scenario with 7 chip Gold codes.

7.4.2 Results for the PPB technique

A four user scenario with randomly generated 7 chip spreading codes was found to be non-

linearly separable. Figure 7.13 shows the performance for six different receivers. The MRC

converges to a BER of 0.133 which suggests that 544 points are misclassified, out of 4096. The
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MMSE receiver which exploits the MRC preprocessed signals, converges to a BER of 0.0056

which is 24 misclassified points. The LP consists of 5 hyperplanes and can classify the points

correctly, provided that the SNR is sufficiently high such that the distance between hyperplane

and point is greater than the noise spread. Correct classification occurs at 48dB for the LP and

Hybrid (not shown in Figure 7.13). The RBF of the hybrid receiver has 112 centres out of

4096. The other two receivers are the MRBF with 4096 centres and the SRBF with 16 centres.

Surprisingly, Figure 7.13 shows that even the SRBF can cope with this nonlinearly separable

scenario. This means that the clusters do not intersect but are ordered in space in such a manner,

that no single hyperplane exists which can separate all points.
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Figure 7.13: A four user scenario with randomly generated spreading codes of length seven.

Also the five user scenario was found to be nonlinearly separable which is presented in Fig-

ure 7.14. In this scenario, the points of the clusters intersect. The LP structure has three

hyperplanes and the RBF of the Hybrid structure consists of 15872 centres out of 32768. Since

this number is not a power of two the hyperplanes do not separate clusters, moreover, hyper-

planes divide clusters. Therefore the distance between the points and the hyperplanes is short

and many classification errors occur at low SNR, yielding to a high SNR requirement in order

to classify the points perfectly. Figure 7.14 shows that the MRC converges to a BER of 0.145

and the MMSE to a BER of 0.0068. It also reveals that LP and Hybrid do not perform well at

low SNR. A high SNR is required to outperform the MMSE. The MRBF performs best since it

is the only structure which can perfectly classify the points. Because of the fact that the clusters

intersect, the SRBF converges to a BER of 0.00026. This means that only a symbol by symbol
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based receiver, which takes all points into consideration, can resolve this scenario.
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Figure 7.14: A five user scenario with randomly generated spreading codes of length seven.

The last graph, Figure 7.15, presents results for a five user scenario with 7 chip Gold codes.

The LP has five hyperplanes and the RBF of the Hybrid structure consists of 256 centres out of

7
���

. The SRBF has 32 centres where each super centre replaces 1024 centres, and the MRBF

has 7
���

centres. The number of centres in the Hybrid suggests that the LP does not separate

clusters but individual points, otherwise the number would be a multiple of 1024. Moreover,

if the clusters intersect then the SRBF would not be able to classify them, but it does. The

SRBF classifies the points correctly as the noise reduces. Both LP and Hybrid suffer from the

fact that LP separates points and not clusters. If a hyperplane is placed through a cluster, then

the distance between a point and a hyperplane is short and at low SNR many misclassifications

occur. The results show that MRBF and SRBF perform best followed by the Hybrid and LP

structure. Both linear receivers, MRC and MMSE, converge to their BER floor of of 0.108 and

0.002 respectively. The LP and Hybrid outperform the MMSE at 12dB. Between a SNR of

30dB and 48dB (not shown), LP and Hybrid have a constant BER before they tend to a zero

BER. This means that the hyperplanes lie close to the points and a high SNR is required in

order to classify them correctly.

In a further step, the LP (SLAB) algorithm was fed with all super centres. The SLAB could

separate the super centres with a single hyperplane. This means that the clusters, or in other

words, the ISI induced spread, is responsible for nonlinear separability. It would be of interest

to prove that the super centres are vertices of a hypersphere and linearly separable.
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7.5 Discussion

This chapter presented two novel DS-CDMA receiver structures tailored for nonlinearly sep-

arable scenarios. A brief review introduced linear programming and the definition of linear

separability followed by the formulation of the preprocessing stage used. The object was not

to focus on receivers with this preprocessing stage but on techniques which can resolve nonlin-

early separable scenarios. Then these techniques may be used in a modified version to enhance

the performance of the established linear receivers further, such as the decorrelating and MMSE

receiver.

Before introducing the SLAB algorithm, the well known linear programming algorithm was re-

viewed. The SLAB algorithm computes hyperplanes which can classify the two sets of points

correctly in the absence of noise. A very simple MLP based NN is used for implementation,

where each unit constructs a hyperplane. The Hybrid receiver consists of a reduced MLP NN

and an RBF with a small number of centres. The RBF is constructed in conjunction with the

narrowest slab, and has as its centres all points which lie between the two hyperplanes. This

shall ensure that the points which are most difficult to classify are processed by the optimum

method for classification. First, the received signal is analysed to determine if it lies within this

slab. If so, the RBF processes it, otherwise the MLP computes the receiver output. Usually,

most points lie outside this slab thus the RBF structure is not always used. Thus, the RBF

complexity may not be a significant drawback, because there is more time left for signal pro-

cessing at the RBF. In the examples presented, the RBF processed between 25% and 50% of

the received signals with a smaller network. Simulation results showed that both structures out-

perform the equivalent linear receivers. In the given examples, the Hybrid receiver is superior

to LP and often performed as well as the MRBF. It can even happen that the LP and Hybrid

receiver outperform the MRC which takes the channel into account but suffers from MAI. The

simulation results also reveal some weaknesses of the two proposed receiver structures, LP and

Hybrid. In general, a high SNR is essential in order to classify the received signals correctly.

On one hand, this is due to the poor preprocessing scheme applied (SPP), on the other hand,

the SLAB is designed to separates points and not clusters. This suggests a reformulation of the

SLAB algorithm in order to separate clusters rather than points. This might result in a better

overall performance since the distance between the clusters is larger than the distance between

the points within a cluster. The short distance between points and hyperplanes affects the LP

more than the Hybrid since the LP relies fully on the predetermined hyperplanes and can not
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adjust them in order to optimise performance. The Hybrid takes all critical points as centres and

thus enhances its performance. The cost of this performance improvement may be the number

of centres selected based on a criterion. There might be some room for improvements, such

as optimising the criterion for selecting the RBF centres of the Hybrid structure. Alternatively,

all points could be selected which have a certain distance to a hyperplane which is less than a

predefined threshold, dependent on the expected noise spread.

In order to improve established linear CDMA receivers, it may be worth considering combin-

ing them with RBF. Such a sub-optimum linear boundary or a part thereof, which may consists

of many linear boundaries, may be first computed with the decorrelating detector (or MMSE),

instead with LP due to its growing complexity. Further, this technique can also be used to con-

struct a nonlinear receiver which consists of piecewise linear decision boundaries, or a hybrid

structure with a simple linear decision boundary and a RBF which has all the critical points as

its centres.
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Chapter 8
Conclusions

This thesis began with an introduction to mobile communications and DS-CDMA, reviewed

established receiver structures and introduced pattern recognition techniques. Then the main

novelty of this thesis suboptimum nonlinear receivers for DS-CDMA, was introduced and ana-

lysed.

8.1 Summary

Chapter 1 surveyed current trends in mobile communications and the efforts to establish a

global standard for mobile systems. The requirements for a cellular mobile system were dis-

cussed, with the focus on mobile handsets. Problems which arise in a cellular system were

addressed and briefly discussed. Finally, the thesis structure was outlined.

Chapter 2 was concerned with spread spectrum communications and its application for cellu-

lar DS-CDMA systems. The downlink of a DS-CDMA system is considered because of the

constraints associated with mobile handsets. A description of the downlink in a cellular DS-

CDMA was presented from the viewpoint of set theory. Each possible noise free signal state

is interpreted as a pattern, or point, in a G -dimensional space and stored in a generation matrix.

This analysis was conducted for two receiver concepts, the chip rate based receiver and the

symbol rate based receiver. A receiver’s task is then to classify the received pattern and thus

estimate the transmitted user bit sign. Then a brief description was given for the DS-CDMA

mobile standard IS-95.

Chapter 3 reviewed equalisers and DS-CDMA receiver structures. First, linear and nonlin-

ear equalisers were discussed. Simulation results revealed their performance and showed that

nonlinear structures can outperform linear structures. Then DS-CDMA receivers were invest-

igated. The autocorrelation matrix of the symbol rate MMSE receiver was derived because the

result can be used in the succeeding chapters. Again, linear and nonlinear receivers were com-

pared against each other and Monte-Carlo simulations showed that nonlinear receivers can be

superior.
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Chapter 4 introduced some pattern recognition techniques which may be unfamiliar to the

communications engineer. First, linear and nonlinear pattern classification techniques were

discussed. Examples showed different classification tasks and possible separation boundaries.

Once more, nonlinear techniques were shown to be better than linear techniques in most cases.

However, linear techniques are simpler and thus more attractive for implementation. Decision

boundaries were presented for two and three user DS-CDMA scenarios for a linear and the

Bayesian structure. They showed that the optimum decision boundary is nonlinear and gave

reasons for the limited performance of linear receivers. Finally, a brief introduction to approx-

imation theory was given.

In Chapter 5 a novel nonlinear receiver was presented for DS-CDMA. Its structure depends

upon the Volterra series expansion, which is well known from channel equalisation applica-

tions. The proposed receiver is a chip rate based structure which consists of an expansion stage

and a filter stage, implemented by a FIR filter. The filter weights are derived from the Wiener-

Hopf equation, which has been extended to the nonlinear Volterra sequence. It was shown that

only odd order Volterra structures can be applied to DS-CDMA receivers since the even order

crosscorrelation terms are zero. This adds additional complexity to the receiver since the Vol-

terra structure becomes computationally expensive due to the binomial growth of the number

of Volterra coefficients and the requirement for a matrix inversion. The expansion process also

introduces higher order terms, which has hampered attempts to derive either the theoretical per-

formance or an algorithm which computes the required autocorrelation matrix. Alternatively, an

estimation technique was presented which computes the autocorrelation matrix. Monte-Carlo

simulations compared the proposed receiver against established linear and nonlinear receivers.

The simulations showed that in AWGN the Volterra receiver outperforms the MMSE, because

the MMSE corresponds to the first order Volterra structure, which is a subset of the proposed

higher order Volterra receiver. The performance gain achieved in multipath over the MMSE

is even bigger due to the additional nonlinearity of the scenario. Decision boundaries were

presented for the symbol rate Volterra receiver. They showed that low order Volterra structures

are unable to closely approximate the optimum decision boundary, which results in limited

performance improvement over the MMSE for symbol rate systems.

In Chapter 6 the established chip rate based RBF receiver was introduced and extended to the

symbol rate. Since the preprocessing is conducted with matched filters instead of whitening fil-

ters, the Euclidean distance measure is not optimum. Thus the Mahalanobis distance measure
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was introduced. Simulation results confirmed that the Mahalanobis distance measure is op-

timum for symbol rate based RBF receivers. However, this RBFN is too complex when used in

multipath. A RBFN with reduced complexity was proposed. It exploits the fact that ISI causes

clustering of the patterns. By replacing each cluster of points with a single point, the num-

ber of RBF centres is reduced from 7
�
9 to 7 9 and hence the RBFN complexity is also reduced.

Monte-Carlo simulations compared this novel DS-CDMA receiver against established receivers

and different RBF structures. The proposed RBFN which exploits super centres was shown to

be an excellent compromise between performance and complexity, since an 8 user DS-CDMA

system only requires 256 centres instead of 7 � � . The SRBF outperformed the MMSE and can

have little performance loss against the full RBF which consists of all possible centres. The

results showed that the centre reduction may not significantly affect the performance, com-

pared with an equivalent RBF which has 7
�
9 centres. The SRBF was also shown to be less

susceptible to nonlinearly separable scenarios than the MMSE.

In Chapter 7 a novel hybrid receiver was presented. It is tailored for nonlinearly separable

scenarios which can arise when short spreading sequences are used. It combines the good

features of the RBFN and the simple structure of an MLP with linear nodes. The weights

of the MLP are computed with linear programming and used to construct hyperplanes which

enable the network to classify the received signals perfectly in the noise free transmission case.

The RBFN is then constructed from these hyperplanes and takes as centres those points which

cause the scenario to be nonlinearly separable. Thus, all sequences which are responsible for

the failure of a linear receiver become RBF centres. Simulation results compared the receiver

against established receivers and showed that it outperforms the MMSE. However, due to the

fact that these points are close to each other in the G -dimensional space, a high SNR is required

in order to achieve a reasonable performance such as would be required for DS-CDMA.

8.2 Conclusions

This thesis shows that a DS-CDMA system can be interpreted and described as a pattern recog-

nition problem. Each received noise free state is a pattern made up of the spreading sequences

of the active users. A single user receiver’s task is to choose between two classes whereas

a multiuser detector has more options, dependent on the defined classification scheme. The

classification task can be accomplished either by constructing or approximating the optimum

decision boundary, or by assigning the received signal to the class of points to which it most
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likely belongs to. It is shown that both techniques work successfully in DS-CDMA. To the

authors best knowledge, there is no other publication which connects DS-CDMA and pattern

recognition, as has been done in this work.

Moreover, not many people working with DS-CDMA seem to be aware of the fact that DS-

CDMA is a nonlinear separation problem. Thus it is worth emphasising this fact. However, a

nonlinear problem requires a nonlinear solution. Nonlinear techniques are known to be com-

putationally expensive, not as tractable as linear techniques, and difficult to understand. Never-

theless, increasing DSP power will enable the engineer to apply nonlinear techniques.

It was shown that only odd order Volterra structures can be applied to DS-CDMA. Simulations

showed that the Volterra receiver outperforms the MMSE, and the performance gain achieved

in multipath is even bigger.

It was shown that the Mahalanobis distance measure is the optimum distance measurement for

the symbol rate RBF with MF preprocessing. The proposed SRBF was shown to be an excellent

compromise between complexity and performance. The SRBF outperformed the MMSE and is

also less susceptible to nonlinearly separable scenarios.

It was shown that the LP based hybrid receiver outperforms the MMSE.

To conclude, DS-CDMA is a pattern recognition problem thus pattern recognition techniques

can be applied in order to enhance receiver performance.

8.3 Future work

The basic problem in developing a DS-CDMA receiver which has better performance than any

linear receiver is to find an appropriate approximation technique. Such a technique has two

constraints: it should have a simple receiver structure with little computational overhead and

provide a good approximation. The receivers reported in this thesis also have scope for further

work.

The Volterra receiver’s filter weights were computed by an estimation technique which intro-

duces an error. Thus there is room to search for an algorithm which computes the filter weights

directly, and to derive the theoretical receiver performance. Although it does not suit practical

considerations in the presented form, its adaptive version may be of practical interest.
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The proposed SRBF has been investigated for stationary scenarios. Thus it is worth looking

at its performance in a fading environment which requires a continuous centre update. Since a

mobile receiver must be adaptive, the SRBF should be made adaptive.

The proposed LP and hybrid receiver performed well in terms of signal classification. However,

further investigation is needed to prove that nonlinear separable scenarios are frequent in the

real mobile environment. The author’s empirical experience is that long spreading codes reduce

the likelihood of nonlinearly separable scenarios (or maybe prohibit it). It was also shown

that the required RBFN can be large in terms of the number of centres while in addition its

performance can also be poor at low SNR. Thus the presented LP and hybrid receivers may not

suit practical applications. However, in a further step, LP could be used to compute hyperplanes

which approximate the optimum decision boundary, for instance with three hyperplanes for the

depicted scenario in Figure 4.6(b).

Other attempts in this direction have been proposed in [190] and in [191] for DS-CDMA, both

techniques being based upon the Voronoi diagram [192]. The problem is to find the points

which are (mainly) responsible for the performance, which are the points near the optimum

decision boundary. One attempt may be to start off with a linear boundary and search for the

critical points close to it, which is a nearest neighbour search problem [146, 148–150, 193].

Another path is to look at NNs in order to construct their network [180–182, 194–196] instead

of using some sort of training which is time consuming. Also of interest might be a polynomial

structure (e.g. [153]), where the signal which is fed into the receiver is orthogonalised [197, 198]

or processed with an orthogonalising preprocessor.
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Appendix A
Distribution functions

The pdf � � & � of a � rd-order Volterra expansion sequence � for different values of � and
�

. The

derivation is given in subsection 5.2.1.
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If
# � � � � = � � � , then the moments are:

K/L # @ M 5 �� � �
if
�

odd

� � � � � � � � � � � � @ if
�

even
(A.7)

The odd moments of
#

are zero because
���

�
#� 5 ����#�

[165].
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Appendix B
Investigation of VS algorithm

The problem encountered with designing an algorithm which computes
/ ���

and 3 4 � for higher-

order Volterra systems is considered. Since the spreading sequence length can be assumed to

be constant, the VS expansion length is fixed, hence, the algorithm is only required to compute
/ � �

and 3 4 � for a varying number of users. First, some definitions are reviewed, then the

technique used to develop an algorithm is presented. This technique is first applied to the 7 nd

order Volterra system, since it is less complex and then for the � rd order system. However, it

seems to be the case that there is no straightforward way to compute
/ ���

and 3 4 � . It would be

desirable to develop an algorithm which works for any number of users and for any term within
/ � �

and 354 � .

B.1 Review

The received signal �
�<F��

for bit
F

and spread code length
� 5 � (

� 5 � = 7 = � � � = � ) has

elements
L & � & � � � � & �

M 0
. Index

F
is not relevant for the derivation and is no longer stated.

According to (2.6), vector � is for
4

users:

� 5 L & � & � & � M 0 5
� 9�
��� � C � � � * � 
 � � � � 9�

��� � C � � � * � 
 � � 7 � 9�
��� � C � � � * � 
 � � � ��� 0 =

where � � � � is the uncorrelated noise with zero mean,
C �

the data bit which is equally probable

of being

 � or � � and

� � * @ the
�

th chip of the
�

th users spreading sequence. Thus for a two

user system (
4 5 7 ), the vector elements � & @ � are:

& � 5 C1����� * � 
 C � � � * � 
 � � � �
& � 5 C1����� * � 
 C � � � * � 
 � � 7 �
& � 5 C � � � * � 
 C � � � * � 
 � � � � =
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The Volterra expansion performs a mapping from
�

space onto 3 space (see equation 5.4)

where � is derived from � .

B.2 Second-order Volterra system

For a 7 nd-order Volterra system, elements � � 	 � , for
� 5 � = 7 = � � � = 3 with 3 5 3 � � 5

� 
 � 5 � are:

� � 5 C � ��� * � 
 C � � � * � 
 � � � �
� � 5 C � � � * � 
 C � � � * � 
 � � 7 �
� � 5 C � ��� * � 
 C � � � * � 
 � � � �
� � 5 � C1� ��� * � 
 C � � � * � 
 � � � � � �
� � 5 � C1� ��� * � 
 C � � � * � 
 � � � � � � C1� ��� * � 
 C � � � * � 
 � � 7 � �
� � 5 � C1� ��� * � 
 C � � � * � 
 � � � � � � C1� ��� * � 
 C � � � * � 
 � � � � �
� � 5 � C1� ��� * � 
 C � � � * � 
 � � 7 � � �
� � 5 � C1� ��� * � 
 C � � � * � 
 � � 7 � � � C1� ��� * � 
 C � � � * � 
 � � � � �
� � 5 � C � � � * � 
 C � � � * � 
 � � � � � � = (B.1)

The VS expansion also introduces terms with higher-orders. So for instance, there are three

groups of them within the expansion vector (B.1) of a 7 nd-order system:

��� 5 � � � = � � = � � � � K � & � � � � 5 � � � = � � = � � � � K � & �� � � � 5 � � � = � � = � � � � K � & � & , �
with


 = ( � � � = 7 = � � � = � � , and each group has its unique statistics. The expected value for

each group
���

(
�

is an index with no special meaning) consists of two components, the signal

and the noise. Group
� �

has the noise statistics of the received signal, which is Gaussian. The

square law applies to group
� � , since the input noise is Gaussian, hence noise becomes Chi-

square distributed [163]. Finally, there is no noise component in
� �

, because the noise terms are

uncorrelated to each other and therefore the expected value is zero [165]. Since
/ ��� 5 K/L � � 0 M ,

products among
� �

arise which consist of even higher-orders. Again, these terms can be grouped
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according to their statistics as:

� � 5 K � & � & , � � � 5 K � & �� � � � 5 K � & �� �
� � 5 K � & �� � � � 5 K � & �� & , � ��� 5 K � & �� & , �

� � 5 K � & � & , & � � � � 5 K � & �� & �, �
� � 5 K � & �� & , & � �

(B.2)

with

 = ( = � � � � = 7 = � � � = � � . The resulting matrix

/ ���
which shows all possible expected

values
� �

is presented in Figure B.1.
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Figure B.1:
/����

of a 7 nd-order Volterra system, each colour represents an expected value.
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� 5 L � � � � � � � � �
�

�
�
� � � � � � M 0 5

L � C1� 
 C � 
 � � 
 � �
� C1� 
 C � 
 � � ( � �
� C1� 
 C � 
 � � � � �
� � C � 
 C � 
 � � 
 � � � �
� � C � 
 C � 
 � � 
 � � � C1� 
 C � 
 � � ( � � �
� � C � 
 C � 
 � � 
 � � � C1� 
 C � 
 � � � � � �
� � C � 
 C � 
 � � ( � � � �
� � C � 
 C � 
 � � ( � � � C1� 
 C � 
 � � � � � �
� � C � 
 C � 
 � � � � � � � M 0 � (B.3)

Next, the idea used for developing an algorithm to compute
/ ���

is presented. In order to sim-

plify the notation used, the signal component
� � * @ are no longer stated, since the probabilistic

variables
C �

and � � � � determine if a product between
C � � � * @ and � � � � is part of the expected

value
K/L � � M

or not. Thus, vector � is rewritten in a simpler form, where the chips
� � * @ are

discarded. Further, � � 	 � shall list all possible product terms and it shall not be merged and

simplified, as it is common practice for binomial series. The notation becomes very complex if
4

is large. Thus only the two and the three user scenarios are presented. � is restated without

the signal components in (B.3) with

 = ( = � � � � = 7 = � � � = � � . Terms of the three different main

products evolve and are (see also Figure 5.3):
� Linear-linear products, which are known from the MMSE solution [108].
� Linear-quadratic products, products between the linear terms � � � = � � = � � � = � � � and the quad-

ratic terms � � �
�
� = �
�
� � = � � � = � � � which result in the most general term:

� C �� 
 C1� C � 
 C1� � � � � 
 C1� C � 
 C �� 
 C � � � � � 
 C1� � � ( � 
 C � � � ( � 
 � � ( � � � � ��� &
L#C1� 
 C � 
 � � 
 � M 5 �

(B.4)

Thus all linear-quadratic terms are zero and do not have to be computed.
� Quadratic-quadratic products, where it turns out that the terms of the right column in (B.2)
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reduce to the more general form:

LIC � 
 C � 
 � � 
 � M � & L � C � 
 C � 
 � � ( � � � C � 
 C � 
 � � � � � M � (B.5)

Since this is a quadratic function, it makes sense to apply a graphical representation to find

the expected value � � � = ��� = � �B= � � � in (B.2).
K/L � � M

is computed by adding up all products

occurring in equation (B.5) which are not zero. Product terms whose result is not equal to zero

are referred to as
� ����� � �	�����

. Again, according to the rule that
C �

D D� 5 �
, � � 
 � �

D D
5 �

and

that � � 
 � � � ( � 5 �
for


 �5 (
. Thus, only a few true terms remain in (B.5) which are denoted by

crosses in Figure B.2 and B.3.

The expected values of a 7 nd-order VS system with two users can be computed by adding up

the products which are marked by a cross in the following figures, taking the associated signal

term
� � * @ into account. Figures B.2 and B.3 show the pattern for the two user scenario, where

each group has its own pattern of crosses. This means that the expected value for each
� �

has

to be computed separately. Figures B.5, B.6, B.7 and B.8 show the resulting products for the

three user case. Again, no joint pattern appears. Moreover, the step from two users to three

users shows that no regularity exists among the groups in terms of a pattern which could be

exploited in order to construct an algorithm. In a further step (trial), matrix
/ � �

was split into

a signal and a noise matrix,
/ ��� 5 6 
��

.

Figure B.4 shows the steps used to compute the matrix
6

and
�

respectively. Figure B.9 shows

the signal matrix
6

, where the noise terms � ����� are set to zero for the two, three and the four

user scenario. It appears that within these rasters a joint pattern exists, which is independent

of the group
� �

membership and the number of users. By rearranging the order of the terms

(
C1� = C � = � � � = C 9 ) at the top and left side, all crosses appear as a square of crosses, because

the crosses form patterns due to the binomial nature of the signals
C �

and
C � . The algorithm

found which computes the value which the crosses represent in this special scenario does the

following. First, the chips of the spreading codes are multiplied with all possible chips. This is

called VS expansion in Figure B.4 and the result (
�8& �

terms) is stored in an expansion matrix

V. Two rows of this expansion matrix are copied into sub-matrices A,B, see Figure B.4, and

multiplied with each other in order to compute the value each cross represents. This process

exploits the fact that each square in Figure B.9 can be divided into
4$&E4

sub-squares, and each

sub-square has a pattern related to the number of users which can be described by an algorithm.

Thus, the terms in
6

(or
/�� �

respectively) can be computed according the rule stated as:
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Figure B.3: The true terms for the groups a)
� �

and b)
� �

.

1. Compute a VS expansion matrix V[M][U*U] derived from a spreading code matrix

C[U][N].

2. Copy sequences V[m][U*U] into A[U][U] and V[n][U*U] into B[U][U]

3. Compute
/����

from matrix A[U][U] and B[U][U].

4. Goto 2 until (n == M) and (m == M)

A possible implementation in C is presented on page 145.
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VS expansion

VS expansion matrixC V

RAutocorrelation matrix
yy

Compute true terms
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c
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c
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21

Matrix A

Matrix B

Figure B.4: The steps proposed for computing the autocorrelation matrix of a Volterra receiver.

The noise matrix
�

, depicted in Figure B.10, deals only with the noise terms. It also bears a

structure which could be exploited to construct an algorithm. However, the structure found is

dependent on the noise indices. This makes the algorithm inflexible if applied to the groups
� �

.

This means that many more terms have to be computed separately.

It may be concluded that due to the uncorrelated nature of the noise, it is not straightforward

to develop an algorithm to construct the terms
K)L � � � , M for


 = ( 5 � � = 7 = � � � = 3 � of
/����

, for a

7 nd-order Volterra autocorrelation matrix.
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The algorithm in C:
/*

* start Volterra expansion: C[U][N] -> V[M][U*U]

*/

U = user*user;

for(a=0; a < N ;a++) /* linear sequence */

for(b=0; b < U ;b++)

if( b < user )

V[a][b] = code[b*N + a];

else

V[a][b] = 0.0;

m = 0;

for(a=0; a < N ;a++) /* quadratic sequence */

for(b=a; b < N ;b++)

{

for(i=0; i < user ;i++)

for(n=0; n < user ;n++)

V[N + m][i*user + n] = code[i*N + a] * code[n*N + b];

m++;

}

/* compute R_yy , first the linear-linear products (Wiener-Hopf)

*/

for(i=0; i < N ;i++)

for(j=0; j < N ;j++)

for(u=0; u < U ;u++)

Ryy[i][j] += V[i][u]*V[j][u] + V[i][u]*V[j][U - 1 - u];

/* then the quadratic-quadratic products

*/

for(m=N; m < M ;m++)

{

for(i=0; i < user ;i++)

for(j=0; j < user ;j++)

A[i][j] = V[m][i*user + j];

for(n=N; n < M ;n++)

{

for(i=0; i < user ;i++)

for(j=0; j < user ;j++)

B[i][j] = V[n][i*user + j];

for(i=0 ; i < user ;i++)

for(j=0; j < user ;j++)

Ryy[m][n] += A[i][i] * B[j][j];

for(i=0 ; i < user ;i++)

for(j=0; j < user ;j++)

if( i != j )

Ryy[m][n] += A[i][j]*B[i][j] + A[i][j]*B[j][i];

}

}
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B.3 Third-order Volterra system

The investigation for the � rd-order Volterra systems has been carried out in the same manner

as for a 7 nd-order system. Due to the large number of terms, the investigation is limited to one

and two users, which is sufficient for an analysis.
� The crosscorrelation representation is presented in Figure B.11(a) and B.11(b) for one and

two users respectively. The three different possible combinations among the noise terms are

marked by a cross, circle and a square. It turns out that the crosscorrelation must be computed

separately for each number of users due to the noise terms.
� The linear-cubic terms for all possible expected values are given in Figure B.11(c) for one

user and in Figure B.11(d) for two users. Again, no straightforward algorithm was found which

matches the pattern obtained from the theoretical calculations.
� The cubic-cubic pattern is shown in Figure B.12 for the single user scenario. For visual-

isation purposes, the possible products of equation (5.15) given the noise indices

 = ( = � �

� � = 7 = � � � = � � were denoted by three symbols. In order to search for a useful pattern, the

graphical investigation has also been done for the noise free case. Thus, Figure B.13(a) shows

the result for the two user, and Figure B.13(b) for the three user scenario. However, it turned

out that within each scenario, several patterns exist. Hence, to determine each term in
/ � �

,

different ways to compute the (quadratic) product must be used. This is a tedious task if
4

is large. Thus, it may be concluded that no straightforward algorithm exists to compute the

autocorrelation matrix and crosscorrelation vector.

One solution could be suggested for stable systems (
4 5 ��$�� � �

) with look-up tables, where

beforehand the computation for each terms has been specified and then stored in a memory as a

rule. So for different noise scenarios, the expected value is determined by the rule given in the

look-up table. However, this is an impractical solution for real DS-CDMA scenarios where
4

changes with time.
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Figure B.12: The true terms for a � rd-order Volterra system with one user.
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Appendix C
DS-CDMA scenarios and their points

This appendix presents the construction and the resulting points for different DS-CDMA scen-

arios. The expected signals (points) for a two user scenario is given for different channel mod-

els.

It is assumed that the matrix
*

is a ( 3 & �
) matrix, with 3 5 7 9 for the dispersive free

AWGN channel (
� 5 � ), where each point should be in the

�
-dimensional space, as defined

in equation (2.10) is available. This matrix has 3 rows, each row represents one point in the
4

-dimensional space. In order to compute all 3 preprocessed points, each row in
*

is fed

into a preprocessing stage and the output is stored in matrix
/

as defined in equation (2.13),

where each row is a point in the
4

-dimensional space. The preprocessing for the non-dispersive

(AWGN) channel is conducted by a bank of matched filters, illustrated in Figure C.1. The
�

th

row of
*

is fed into the preprocessing stage and the output vector 3 � � � is stored in
/

.

p(m)
MF

MF

MF

r (m)

r (m)

r  (m)
U

1

2

Figure C.1: The preprocessing stage used for dispersive free AWGN channels.

In multipath scenarios, the bank of MFs is replaced by a bank of RAKEs. Figure C.2 presents

a single RAKE1 structure used to resolve the multipath components. Since real data has been

considered, the output of the
�
th RAKE finger is weighted by its corresponding

�
th channel

1Note that the RAKE presented here is not necessarily equivalent to the RAKE used in IS-95 systems. Here it is
assumed that the channel coefficients are adjacent, whereas the IS-95 RAKE takes the three strongest components
which do not have to be adjacent.

155



DS-CDMA scenarios and their points

coefficient (
� �� 5 L � � � � � � � ����M ). This RAKE structure corresponds to the MRC receiver, and

if all weights are equal then the RAKE corresponds to the EGC receiver.

p(m)

r (m)
u

h
1

2

3

MF

MF

MF

Σ
Delay

Delay h

h

Figure C.2: A three finger RAKE. If all coefficients
� �

are unity, the receiver structure corres-
ponds to an EGC. If the coefficients correspond to the channel impulse response,
the the RAKE is termed MRC.

The resulting points for three different preprocessing stages are presented. Each series of res-

ults presents the points for different channel coefficients and spreading codes. The left columns

shows the resulting points for seven chip randomly generated spreading codes. The right

column presents results obtained from seven chip Gold codes. The rows represent the chosen

channel model (from the top to the bottom), where the normalised impulse response of these

channels has been used.

Row 1 Minimum phase with
� �� ���:� 5 � � � 
 �������� � �

�

 ��� � � � ��� �

Row 2 Mixed phase with
� �� ��� � 5 ��� 	 � � 
 ��� � � � � � � 
 ��� 	 � � � � �

Row 3 Mixed phase with
� �� ��� � 5 ��� ��	�� 7 
 ��� � � � 	 � �

�

 ��� ��	�� 7 � � �

Row 4 Maximum phase with
� �� ��� � 5 ��� � � � � 
 �������� � � �

�

 � � �

The spreading codes are listed in appendix D.
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DS-CDMA scenarios and their points

Figure C.3 presents the points obtained with a three finger MRC preprocessing stage. In Fig-

ure C.4, a three finger EGC preprocessing stage has been applied, with equal filter coefficients,

set to unity. Figure C.5 shows the points when a MF is taken to preprocess the received signals.

The points form clusters where the right clusters belong to the class representing

 C �

and the

left clusters represent �
C �

. It can be seen that MRC and EGC preprocessing creates four clear

clusters, whereas MF preprocessing creates clusters which are more in a line. Moreover, in

some cases the clusters tend to overlap each other.
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DS-CDMA scenarios and their points

r

0 20

1
-20

-20

20

0
r
2

Figure C.3: The patterns of the received signal when the preprocessor consists of a bank of
MRC receivers. The rows correspond to four different multipath channels, and the
two columns correspond to two different spreading codes with

� 5�� .
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r
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20
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-20
1
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Figure C.4: The patterns of the received signal when the preprocessor consists of a bank of
EGC receivers. The rows correspond to four different multipath channels, and the
two columns correspond to two different spreading codes with

� 5�� .
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DS-CDMA scenarios and their points
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20-20
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Figure C.5: The patterns of the received signal when the preprocessor consists of a bank of MF.
The rows correspond to four different multipath channels, and the two columns
correspond to two different spreading codes with

� 5�� .
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Appendix D
Simulation parameters

This appendix lists the parameters used in the simulation results presented in all chapters.

The randomly generated seven chip spreading code A � for user
�

:

A � 5 L
� � � � � � � � � � � � M 0

A � 5 L
� � � � � � � � � � M 0

A � 5 L
� � � � � � � � � M 0

A � 5 L
� � � � � � � � � � M 0

A � 5 L
� � � � � � � � � � � M 0

A � 5 L � � � � � � � � � M 0
A � 5 L � � � � � � � � � M 0

The seven chip Gold spreading code A � for user
�

:

A � 5 L
� � � � � � � � � � � M 0

A � 5 L
� � � � � � � � � � � M 0

A � 5 L � � � � � � � � � M 0
A � 5 L

� � � � � � � � � � � M 0
A � 5 L

� � � � � � � � � M 0
A � 5 L � � � � � � � � � M 0
A � 5 L

� � � � � � � � � � � � � M 0
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Simulation parameters

The randomly generated 16 chip spreading code A � for user
�

:

A � 5 L
� � � � � � � � � � � � � � � � � � � � � � � � � � M 0

A � 5 L
� � � � � � � � � � � � � � � � � � � � � M 0

A � 5 L
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � M 0

A � 5 L � � � � � � � � � � � � � � � � � � � � � � � � M 0
A � 5 L � � � � � � � � � � � � � � � � � � � � � � � M 0
A � 5 L

� � � � � � � � � � � � � � � � � � � � � � � � � � M 0
A � 5 L

� � � � � � � � � � � � � � � � � � � � � � M 0
A � 5 L � � � � � � � � � � � � � � � � � � � � � � M 0

Different channel impulse responses for the stationary multipath channel:

model2
� � �� ���:� 5 ��� � � � 
 ������� � � �

�

 � � �

model3
� � �� ���:� 5 ��� ��	�� 7 
 ��� ��� � 	 � �

�

 �� ��	�� 7 � � �

model10
� � �� ���:� 5 ��� 	 � � 
 ��� � � � � � � 
 �� 	 � � � � �

model12
� � �� ���:� 5 � � � 
 �������� � �

�

 �� � � � � � �

modelz
� � �� ���:� 5 ��� 7 � 
 ��� � � � � 
 � � �

Note, during the simulation, the
� �� was normalised to unity, e.g.

� �� 
 � �� 
 � �� 5 � .
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Appendix E
Publications

List of publications:

� R. Tanner, D. G. M. Cruickshank;

“Nonlinear Volterra Filter Receiver for DS-CDMA”,

Proceedings 4th International Conference on Mathematics in Signal Processing, IMA,

University of Warwick, UK, IEE, December 1996.

� R. Tanner, D. G. M. Cruickshank;

”Volterra Based Receivers for DS-CDMA”,

Proceedings International Symposium on Personal, Indoor and Mobile Radio Commin-

ications, Helsinki, Finland, IEEE, September 1997.

� R. Tanner, D. G. M. Cruickshank, C. Z. W. Hassell Sweatman, B. Mulgrew;

”Receivers for nonlinearly separable scenarios in DS-CDMA”,

IEE Electronics Letters, 33, pp2103-2105, December 1997.

� R. Tanner, D. G. M. Cruickshank;

”RBF Based Receivers for DS-CDMA with Reduced Complexity”,

Accepted for International Symposium on Spread Spectrum Techniques and Applica-

tions, Sun City, South Africa, IEEE, 1998.
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���/�m���Y�B�Y�E�-�F�{�E�{�E�3�{�������M�  �¡X¢M¢M£f¤a¥F�Y¦��{�m§b�©¨Y�B�{�XªI«Y¬m�{�E�
�M��{�/�Q�{�X¦��E�m®b�E�¤a§��*�hª3�m�{�X¦��@¯@�{�X°�¥/�E�i¦���¯{¦�§/ªL��¯{ª3�m®3�m�{�m§b�3¯
± ¥F¬²�{�m�F¬²��³L¯{�b¦E¦��E�{�0´@µ�¶b¯{·�µ�¸k¹�ºi�{»3�{�{� ±5¼ �t�F���E�3®3�m���B½b�Xª�M�F�/¬m�¾¦E�M�{�m§b�^¿
§b¥/¬¾ª�¨Y�Q¦��E¬m¬²¥F¬¾�M�o�{�E¬m�E�F�/§b�L»3À�¿��/�E�{�5�{�/�
�{�X¦��E�m®b�g�>¿��m¬m¬M¨Y���{�X°�¥/�m�{�Xª��{§�¨Y�
�bªF�M�F�{�²®��\ªL¥/�0�{§�¦{�Y�B�/�F�E¬
��Áq�X¦��{� ¼ ���F�o�{�E�{¥/¬m�{��§�¨/���M�m�F�Xªk¤K�{§ ± �{�F�*���M�  �¡X¢B¢M£k«i¬ ¯
�{�E���M�{��¦�§ ± �Y�B�{�Xªk�B½3�M�m�/�{�
�{�F��¬²�m�F�X�M� ± �m�/� ± ¥ ± ¯ ± �X�M�L¯��°b¥i�M�{��¯@�E�{�{§���´@¸¸*¶FÂ\º�«i¬²�{�g�t�B�Yªo�{�F�-�/§b�F¬m�²�F�X�M�����bªL�¾�M¬ ¯
¨Y�B�{�²�@¯K¤K¥F�Y¦��{�m§b�Ã´@Ä-Å
Æ>ºf�/�E�@¿
§b�{Ç��²�h�5�{���M�{�m§b�Y�B�{» ± ¥F¬ ¯�{�m�Y�M�{�f¦{�Y�M�F�/�E¬ ¼ Æ/¥F�{�{�/�E�XÀ��{�/�-¦�§ ± �/¥F���M�{�m§b�i�M¬b¦�§ ± �/¬m��³L¯�m�@»È¿��m¬m¬�¨Y�Q�²�L®b�E�{�{�m½3�B�{�XªÃ�M�Yª�¦�§ ± �Y�B�{�XªÈ�B½3�M�m�/�{�©�{�/�¸*¸¶/Â ¼

ÉLÊË�5��Ì�ÍhÎË�5�*ÉFÌ�Ê
���/�ª3� ± �B�Yª¤a§����{�/�{�X��ªb¯@�{�i�X¦��{�{¥ ± ´@¶/¶Fºo¦�§ ±I± ¥/�F�Ï¦E�<¯�{�m§b�/�©�M�Yª��{�F�H�m�3�{�{§/ªL¥Y¦��{�m§��s§M¤��F�E¿ ± §�¨/�m¬m�I�{»3�{�{� ± �XÀ�{�Y��¦����M�iªI½b�{§�¥/�Yª�¨Y�B�{�Xª�Ài�{¥/�F�Y§b�{�{�-�{�g�{�X�M��¦{�H�m� ± ¥/¬m�{� ¯¥/�{�g��¦�§ ±I± ¥F�/�¾¦E�M�{�m§b�F�XÀX�i�M�{�{�¾¦�¥/¬¾�M�{¬m»o�m�*µ�¶�¯{·�µ�¸k¹ ¼
�>§©§M®b�E��¦�§ ± � ± ¥F¬m�{�²¥F�{�E���m�3�{�E�@¤K�E�{�E�i¦��H´@¸k¹-Ð{ºEÀ ± �B�3»�{�X¦��E�m®b�g�{�k�Y�<®b�k¨i�E�E�h�/�{§b�i§b�{�XªqÀ��{�E��ÑmÒMÀ
ÓEÔ ¼ ¸k§��{�Iª3��¯�{�X¦��{§��{�I¤K§b� ± ¥F¬m�{�²¥F�{�E�o�/¥F�{�Y§��{�Õ�M�{�¬m�²�F�X�M�o�{�{�{¥i¦��{¥/�{�g� ¼�0���bª3�m�{�m§b�i�M¬Y�{§�¬m¥/�{�m§b�/���B�{��¨Y�M�{�Xª©§b� ± �M��¦{�/�<ª�«Y¬m�{�E�{�m�/½iÀ¿��m�{���tÄ�¹�Ö�Â©�{�{�{¥Y¦��{¥F�{���M�YªF×M§b��¦E�M�i¦��E¬m¬¾�M�{�m§b� ¼ ¹-�/§��{�/�E��M�F�/�{§3��¦{�k�m�����Y§�¬²»L�/§ ± �¾�M¬3¬m�m�/�X�B�tªL�E�{�X¦��{§��XÀY¨i�M�{�Xª©§b�k��Y§�¬m»3�/§ ± �¾�M¬3��³F�Y�B�/�{�m§b��À/�F�{§b�Y§��{�Xªk�m�HÑ ØEÔ ¼
¹-�/�/�{§L�b¦{�F�E��¥F�{�²�F½Ù�{�/�Ú�/§b�F¬m�²�F�X�M�Û���bª3�¾�M¬ ¯@¨i�M�{�m�@¯

¤K¥/�i¦��{�m§b�H�F�E�@¿
§b�{ÇsÑ ÜYÀ�ÝXÔ
�{�F§M¿���³Y¦��g¬²¬m�E�L���Y�E�@¤K§b� ± �M�Y¦�� ¼¶3�m�i¦����²�h�Y�B�Ã�{� ± �²¬¾�M���{�{�{¥Y¦��{¥F�{�$�{§��{�/� ± �X³/� ± ¥ ± ¯¬m�²Ç��E¬m�²�F§3§Fª�´@¸*Þ�ºo�{�X¦��E�²®��E�XÀ��m�{�I¦�§ ± �/¬m��³/�m�@»Õ�B¬²�{§Q½b�{§B¿t���³/�i§b�F�E�3�{�¾�M¬m¬m»��M�Yª�ªL§3�E���/§��V�{¥F�m� ± §�¨/�m¬m�V�{�E� ± �²�i�M¬m�Y�{¥i¦{��M�-�F�/§b�F�E� ¼�ß §M¿
�E®��E�XÀY�{�F�E�{� ± �<»o¨Y���f�/§b�F¬m�²�F�X�M�
«Y¬m�{�E�¿��/�¾¦{�o�m�
��½b§L§/ª�¦�§ ± �/�{§ ± �²�{��¨i�E�@¿
�E�E�*¦�§ ± �/¬m��³F�²�@»��B�Yª½b§L§/ªo�i�E�@¤K§b� ± �B�Y¦�� ¼
�t�F�m���Y�M�i�E���m�-�{�{�{¥Y¦��{¥F�{�XªÕ�B�t¤K§�¬²¬m§M¿��XÀ�«Y�{�{��¿
���m�3�{�{§B¯

ª3¥i¦����{�/��µ�¶�¯à·�µ�¸©¹s¦�§ ±I± ¥F�/�¾¦E�M�{� §b�-�{»3�{�{� ± ÀE¤K§b¬m¬m§M¿
�Xª¨3»Ã�Q�{¥/�{®b�E»Ã§B¤�§b�{�/�E��{�X¦��E�m®b�E�{��´¾«Y¬m�{�E�{��º ¼ ���F�E�VÀ�¿
��/�{�g�{�E�3���{�F�o���M�  �¡X¢M¢M£f«Y¬m�{�E� ¼ ���/�m�-�m��¤K§b¬m¬²§B¿
�XªI¨3»��{� ± ¯¥/¬¾�M�{�m§��I�{�E�{¥/¬m�{���M�iªI�o¦�§��Y¦�¬m¥/�{�m§b� ¼

�
áÃ���Hâkã �ÕÌ�Ê��
É3Íhâk�^�k�*ÉFÌ�Ê
äQ�o��³Y� ± �m�/�I�ª3§M¿��F¬m�²�FÇHµ�¶�¯à·�µ�¸©¹$�{»3�{�{� ± ¿t�m�{�^å
�m�YªL�E�i�E�YªL�E�3�
�b¦��{�m®b�
¥F�{�E�{�XÀYÒbæ�Ó/æXçXç<ç/æEå ¼ äÕ�
�B¬²¬m§/¦g�M�{�0¤a§���E®��E�{»I¥F�{�E����¥/�F�Ï°�¥/�-�{�F�{�X�bª3�m�F½o¦�§/ªL��§M¤0¬²�E�F½b�{�kèé¿��²�{�
êFæXÒbæXçXç<ç/æ�è^ëkÒ
¦{�F�²�F� ¼ Â\��¦{��¥/�{�E���m�0�{���M�/� ± �²�{�{�m�F½��-µ�¶�¯·�µ�¸©¹ì�{�<°b¥/�E�i¦��o¿��F�Ï¦{�©�²��¦{�F�m�H�M�iªI¨/�m�-�{»L�Y¦{�/�{§��/§�¥/�XÀ
�B�Yªo�B¬²¬F¥/�{�E�{���M�{���{���B�/� ± �m�{�{�m�/½�¿��m�{���X°b¥i�M¬i�Y§M¿
�E� ¼ ���F�ªF�M����¨F�²�
�{���B�/� ± �m�{�{�Xªo¨L»I¥/�{�g�îíª3¥F�{�²�F½��{� ± ��ïo¿��m¬m¬Y¨i�ªL�E�/§��{�Xª*�M�-ðI´@ïFº@ñ*�B�YªI�m���E�m�{�/�E��ò�Ò�§���ë�Ò�¿��²�{���X°b¥i�M¬
�F�{§b¨Y�B¨/�m¬m�²�@» ¼ �t�F�H�{�F�{�X�bªL�²�F½È¦�§/ª3�5�{�E�k¥F�{�XªÃ�²���{�E®b�E�¦{�F�m�/�
¬m§b�/½��B�Yª����B�Yª3§ ± ¬m»-½b�E�F�E���M�{�XªqÀYªL�E�/§b�{�<ªI�M�
ó
ñ3ô õ ¼ÆF§b¬m¬m§M¿��²�F½��{�/�m��ªL��«Y�F�²�{�m§b��ÀF¿7�o¦g�M�ÕªL�E�{�m®b���{�F���{�X¦��E�m®b�Xª
�{�X°�¥/�E�i¦��*¤K§b�f�Hµ�¶b¯{·�µ�¸©¹��{»3�{�{� ± �M�Yª^�M�^�bªFª3�m�{�²®���¯
¿��F�²�{��¯{ö�£LíY÷X÷<øK£3ù/¯@�F§b�m�{�*´K¹�äÈú�û-º�¦{�i�M�F�/�E¬@À0¿��/�E�{�©ü �m�
�{�F���{�X¦��E�m®b�Xª5�{�m½b�Y�B¬\´K�m�k®��X¦��{§b�-¤K§b� ± º
§M¤�¬²�E�F½b�{�QèÕÀL¤a§��¦{�F�m�*ùkýhê/æXÒ�æXçXçXçFæ�è$ësÒ ¼

ü3´@ï/è$ò�ù�º�ýÿþ�ñ���� ðI´@ïFº@ñYó
ñ3ô õ�ò��/´@ï/è$ò�ù�º ´�Ò<º
�F´@ï/è òÃù�ºpª3�E�F§b�{�E���{�F�k�/§��²�{��¦�§ ± �i§b�F�E�3��¿
�k�bªFªH�{§�E®��E�{»H¦{�F�²� ¼ û�§M¿�¿
��¦�§b�F�{�ÏªL�E���o�{���M�{�m§��Y�M�{» ± ¥/¬m�{�m�Y�M�{�¦{�i�M�F�/�E¬ ¼ �t�F�k¦{�i�M�/�F�E¬�� ± �/¥F¬²�{�f�{�E�{�Y§��/�{�*�m���M�{�{¥ ± �Xª�{§�¨Y��Ç3�F§M¿��VÀiªL¥/���{§o�F�²¬m§��î¦{�i�M�F�/�E¬0�E�{�{� ± �M�{�m§b��À/�B�
¤a§����³i� ± �F¬m�>�m��Ð{¶b¯���Ý/ÀM�B�Yª��m�
	H´��bº�ýÃê/ç ØMÜ��Ó/ò�êFç ��bêMÜ���� � òêFç ØBÜ�bÓ������ ¼ ¹-¬m¬>�{�m½b�i�M¬m�-�Y�M�{���{�F�{§b¥F½b�H�{�F����� ± ��¦{�Y�M�L¯�F�E¬ ¼ ¶3§I�{�F���{�X¦��E�m®b�Xª5�{�m½b�Y�B¬>�B�-�{�/���{� ± ��§M¤�ªF�M����¨F�²��ï�B�Yªk¦{�F�m�*ù*¨i�X¦�§ ± �E���
�����������! #"%$'& (*)'+�,.-0/�1*24365 1 �7�� �8 1�9 :

�;$<& +�=�$>)?-@/�1*2!3 5 1 �7�� �8 1�9 :<A!3 �7,B 

�;$<& (*)<+B,C- /� 1*2!3D5 1 �7�� �8 1�9 :<A�E �GF��7�������4 
ÐK¤�ù�ë�H��m�
�/�g½3�M�{�m®b���{�F�E�k�{�/�-�{�g� ± ð ñ ´@ï/º{ó ñLô õ �6I �m�
�{��¯�F¬Ï��¦��Xª�¨L»�ð ñ ´@ï0ëoÒXº{ó ñ3ô J;KYõ �6I �M�iª�� ¤Yùo§��>ù�ëLH��m�NMsè�{�F�E�oð�ñY´@ïFº{ó
ñ3ô õ �DI �m���{�E�/¬¾�b¦��Xª�¨3»�ð�ñi´@ï�òoÒ<º{ó7ñLô õ � J �DI ¼Ð@���{�F§M¿��-¦�¬²�<�M�{¬m»I�{�/���F�{�E�{�E�Y¦���§M¤�¦{�Y�M�F�/�E¬��m�YªL¥Y¦��Xª�Ð{¶3Ð ¼
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