20,247 research outputs found

    Efficient Monitoring of ??-languages

    Get PDF
    We present a technique for generating efficient monitors for Omega-regular-languages. We show how Buchi automata can be reduced in size and transformed into special, statistically optimal nondeterministic finite state machines, called binary transition tree finite state machines (BTT-FSMs), which recognize precisely the minimal bad prefixes of the original omega-regular-language. The presented technique is implemented as part of a larger monitoring framework and is available for download

    Highly Undecidable Problems For Infinite Computations

    Get PDF
    We show that many classical decision problems about 1-counter omega-languages, context free omega-languages, or infinitary rational relations, are Π21\Pi_2^1-complete, hence located at the second level of the analytical hierarchy, and "highly undecidable". In particular, the universality problem, the inclusion problem, the equivalence problem, the determinizability problem, the complementability problem, and the unambiguity problem are all Π21\Pi_2^1-complete for context-free omega-languages or for infinitary rational relations. Topological and arithmetical properties of 1-counter omega-languages, context free omega-languages, or infinitary rational relations, are also highly undecidable. These very surprising results provide the first examples of highly undecidable problems about the behaviour of very simple finite machines like 1-counter automata or 2-tape automata.Comment: to appear in RAIRO-Theoretical Informatics and Application

    Finitary languages

    Full text link
    The class of omega-regular languages provides a robust specification language in verification. Every omega-regular condition can be decomposed into a safety part and a liveness part. The liveness part ensures that something good happens "eventually". Finitary liveness was proposed by Alur and Henzinger as a stronger formulation of liveness. It requires that there exists an unknown, fixed bound b such that something good happens within b transitions. In this work we consider automata with finitary acceptance conditions defined by finitary Buchi, parity and Streett languages. We study languages expressible by such automata: we give their topological complexity and present a regular-expression characterization. We compare the expressive power of finitary automata and give optimal algorithms for classical decisions questions. We show that the finitary languages are Sigma 2-complete; we present a complete picture of the expressive power of various classes of automata with finitary and infinitary acceptance conditions; we show that the languages defined by finitary parity automata exactly characterize the star-free fragment of omega B-regular languages; and we show that emptiness is NLOGSPACE-complete and universality as well as language inclusion are PSPACE-complete for finitary parity and Streett automata

    Boundedness in languages of infinite words

    Full text link
    We define a new class of languages of ω\omega-words, strictly extending ω\omega-regular languages. One way to present this new class is by a type of regular expressions. The new expressions are an extension of ω\omega-regular expressions where two new variants of the Kleene star L∗L^* are added: LBL^B and LSL^S. These new exponents are used to say that parts of the input word have bounded size, and that parts of the input can have arbitrarily large sizes, respectively. For instance, the expression (aBb)ω(a^Bb)^\omega represents the language of infinite words over the letters a,ba,b where there is a common bound on the number of consecutive letters aa. The expression (aSb)ω(a^Sb)^\omega represents a similar language, but this time the distance between consecutive bb's is required to tend toward the infinite. We develop a theory for these languages, with a focus on decidability and closure. We define an equivalent automaton model, extending B\"uchi automata. The main technical result is a complementation lemma that works for languages where only one type of exponent---either LBL^B or LSL^S---is used. We use the closure and decidability results to obtain partial decidability results for the logic MSOLB, a logic obtained by extending monadic second-order logic with new quantifiers that speak about the size of sets

    Parenthetical 'I say (you)' in Late Medieval Greek vernacular: a message structuring discourse marker rather than a message conveying verb

    Get PDF
    In this paper, I argue that the first-person singular of the "ordinary" verb lambda epsilon gamma omega/lambda alpha lambda(omega) over tilde ('I say') in the thirteenth-to fourteenth-century political verse narratives Chronicle of Morea and War of Troy does not always carry its "normal", representational content ('I inform/assure [you]'). Frequently, lambda epsilon gamma omega/lambda alpha lambda(omega) over tilde structures the discourse rather than conveying conceptual meaning and, thus, has procedural meaning. In this respect, the verb can be compared to modern discourse markers (i.e., semantically reduced items which abound in spoken language). An important-yet not decisive-criterion to distinguish the conceptual from the procedural use is the position of lambda epsilon gamma omega/lambda alpha lambda(omega) over tilde: all "DM-like" examples are parenthetical. As for their precise pragmatic function, these forms are used, in particular, to signal a clarification towards the listener ("I mean") or, more generally, to grab the attention of the audience. Applied to the modern binary distinction between interpersonal and textual discourse markers, they thus belong to the former category. Finally, I tentatively relate the observation that the procedural parenthetical examples show a marked preference for pre-caesural position to the concept of "filled pauses", which makes sense given the adopted oral style of the Late Medieval Greek political verse narratives

    The FC-rank of a context-free language

    Full text link
    We prove that the finite condensation rank (FC-rank) of the lexicographic ordering of a context-free language is strictly less than ωω\omega^\omega

    On first-order expressibility of satisfiability in submodels

    Full text link
    Let κ,λ\kappa,\lambda be regular cardinals, λ≤κ\lambda\le\kappa, let φ\varphi be a sentence of the language Lκ,λ\mathcal L_{\kappa,\lambda} in a given signature, and let ϑ(φ)\vartheta(\varphi) express the fact that φ\varphi holds in a submodel, i.e., any model A\mathfrak A in the signature satisfies ϑ(φ)\vartheta(\varphi) if and only if some submodel B\mathfrak B of A\mathfrak A satisfies φ\varphi. It was shown in [1] that, whenever φ\varphi is in Lκ,ω\mathcal L_{\kappa,\omega} in the signature having less than κ\kappa functional symbols (and arbitrarily many predicate symbols), then ϑ(φ)\vartheta(\varphi) is equivalent to a monadic existential sentence in the second-order language Lκ,ω2\mathcal L^{2}_{\kappa,\omega}, and that for any signature having at least one binary predicate symbol there exists φ\varphi in Lω,ω\mathcal L_{\omega,\omega} such that ϑ(φ)\vartheta(\varphi) is not equivalent to any (first-order) sentence in L∞,ω\mathcal L_{\infty,\omega}. Nevertheless, in certain cases ϑ(φ)\vartheta(\varphi) are first-order expressible. In this note, we provide several (syntactical and semantical) characterizations of the case when ϑ(φ)\vartheta(\varphi) is in Lκ,κ\mathcal L_{\kappa,\kappa} and κ\kappa is ω\omega or a certain large cardinal
    • …
    corecore