
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820213?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Efficient Monitoring of ω-languages

Marcelo d’Amorim and Grigore Roşu

Department of Computer Science
University of Illinois at Urbana-Champaign
201 N. Goodwin, Urbana, IL, 61801, USA

{damorim, grosu}@uiuc.edu

Abstract. We present a technique for generating efficient monitors for ω-regular-languages. We show
how Büchi automata can be reduced in size and transformed into special, statistically optimal non-
deterministic finite state machines, called binary transition tree finite state machines (BTT-FSMs),
which recognize precisely the minimal bad prefixes of the original ω-regular-language. The presented
technique is implemented as part of a larger monitoring framework and is available for download.

1 Introduction

There is increasing recent interest in the area of runtime verification [15, 29], which is an area which aims at
bridging testing and formal verification. In runtime verification, monitors are generated from system require-
ments. These monitors observe online executions of programs and check them against requirements. The
checks can be either precise, with the purpose of detecting existing errors in the observed execution trace, or
predictive, with the purpose of detecting errors that have not occurred in the observed execution but were
“close to happening” and could possibly occur in other executions of the (typically concurrent) system. Run-
time verification can be used either during testing, to catch errors, or during operation, to detect and recover
from errors. Since monitoring unavoidably adds runtime overhead to a monitored program, an important
technical challenge in runtime verification is that of synthesizing efficient monitors from specifications.

Requirements of systems can be expressed in a variety of formalisms, not all of them necessarily easily
monitorable. As perhaps best shown by the immense success of programming languages like Perl and Python,
regular patterns can be easily devised and understood by ordinary software developers. ω-regular-languages
[4, 30] add infinite repetitions to regular languages, thus allowing one to specify properties of reactive systems
[22]. The usual acceptance condition in finite state machines (FSM) needs to be modified in order to recognize
infinite words, thus leading to Büchi automata [7]. Logics like linear temporal logics (LTL) [22] often provide
a more intuitive and compact means to specify system requirements than ω-regular patterns. It is therefore
not surprising that a large amount of work has been dedicated to generating (small) Büchi automata from,
and verifying programs against, LTL formulae [13, 30, 8, 11].

Based on the belief that ω-languages represent a powerful and convenient formalism to express require-
ments of systems, we address the problem of generating efficient monitors from ω-languages expressed as
Büchi automata. More precisely, we generate monitors that recognize the minimal bad prefixes [21] of such
languages. A bad prefix is a finite sequence of events which cannot be the prefix of any accepting trace. A
bad prefix is minimal if it does not contain any other bad prefix. Therefore, our goal is to develop efficient
techniques that read events of the monitored program incrementally, and precisely detect when a bad prefix
has occurred. Dual to the notion of bad prefix is that of a good prefix, meaning that the trace will be accepted
for any infinite extension of the prefix.

We present a technique that transforms a Büchi automaton into a special (nondeterministic) finite state
machine, called a binary transition tree finite state machine (BTT-FSM), that can be used as a monitor:
by maintaining a set of possible states which is updated as events are available. A sequence of events is
a bad prefix iff the set of states in the monitor becomes empty. One interesting aspect of the generated
monitors is that they may contain a special state, called neverViolate, which, once reached, indicates that
the specification is not monitorable from that moment on. That can mean either that the specification has
been fulfilled (e.g., a specification �(x > 0) becomes fulfilled when x is first seen larger than 0), or that

from that moment on, there will always be some possible continuation of the execution trace. For example,
the monitor generated for �(a → �b) will have exactly one state, neverViolate, reflecting the intuition that
liveness properties cannot be monitored.

As usual, a program state is abstracted as a set of relevant atomic predicates that hold in that state.
However, in the context of monitoring, the evaluation of these atomic predicates can be the most expensive
part of the entire monitoring process. One predicate, for example, can say whether the vector v[1...1000] is
sorted. Assuming that each atomic predicate has a given evaluation cost and a given probability to hold,
which can be estimated apriori either by static or by dynamic analysis, the BTT-FSM generated from a
Büchi automaton executes a “conditional program”, called a binary transition tree (BTT), evaluating atomic
predicates by need in each state in order to statistically optimize the decision to which states to transit. One
such BTT is shown in Fig. 2.

The work presented in this paper is part of a larger project focusing on monitoring-oriented programming
(MOP) [5, 6] which is a tool-supported software development framework in which monitoring plays a foun-
dational role. MOP aims at reducing the gap between specification and implementation by integrating the
two through monitoring: specifications are checked against implementations at runtime, and recovery code is
provided to be executed when specifications are violated. MOP is specification-formalism-independent: one
can add one’s favorite or domain-specific requirements formalism via a generic notion of logic plug-in, which
encapsulates a formal logical syntax plus a corresponding monitor synthesis algorithm. The work presented
in this paper is implemented and provided as part of the LTL logic plugin in our MOP framework. It is also
available for online evaluation and download on the MOP website [1].
Some Background and Related Work. Automata theoretic model-checking is a major application of
Büchi automata. Many model-checkers, including most notably SPIN [17], use this technique. So a significant
effort has been put into the construction of small Büchi automata from LTL formulae. Gerth et al. [13] show
a tableaux procedure to generate on-the-fly Büchi automata of size 2O(|ϕ|) from LTL formulae ϕ. Kesten
et al. [19] describe a backtracking algorithm, also based on tableaux, to generate Büchi automata from
formulae involving both past and future modalities (PTL), but no complexity results are shown. It is known
that LTL model-checking is PSPACE-complete [28] and PTL is as expressive and as hard as LTL [23],
though exponentially more succinct [23]. Recently, Gastin and Oddoux [11] showed a procedure to generate
standard Büchi automata of size 2O(|ϕ|) from PTL via alternating automata. Several works [8, 13] describe
simplifications to reduce the size of Büchi automata. Algebraic simplifications can also be applied apriori
on the LTL formula. For instance, a U b ∧ c U b ≡ (a ∧ c) U b is a valid LTL congruence that will reduce
the size of the generated Büchi automaton. All these techniques producing small automata are very useful
in our monitoring context because the smaller the original Büchi automaton for the ω-language, the smaller
the BTT-FSM. Simplifications of the automaton with respect to monitoring are the central subject of this
paper.

Kupferman et al. [21] classify safety according to the notion of informativeness. Informative prefixes are
those that “tell the whole story”: they witness the violation (or validation) of a specification. Unfortunately,
not all bad prefixes are informative; e.g., the language denoted by �(q ∨ ◦(�(p))) ∧ �(r ∨ ◦(�(¬p))) does not
include any word whose prefix is {q, r}, {q}, {!p}. This is a (minimal) bad but not informative prefix, since it
does not witness the violation taking place in the next state. One can use the construction described in [21]
to build an automaton of size O(22|ϕ|

) which recognizes all bad prefixes but, unfortunately, this automaton
may be too large to be stored. Our fundamental construction is similar in spirit to theirs but we do not
need to apply a subset construction on the input Büchi since we already maintain the set of possible states
that the running program can be in. Geilen [12] shows how Büchi automata can be turned into monitors.
The construction builds a tableaux similar to [13] in order to produce an FSM of size O(2|ϕ|) for recognizing
informative good prefixes. Here we detect all the minimal bad prefixes, rather than just the informative
ones. Unlike model-checking where a user hopes to see a counter-example that witnesses the violation, when
monitoring critical applications one might want to observe a problem as soon as it occurs.

The technique illustrated here is implemented as a plug-in in the MOP runtime verification (RV) frame-
work [5, 6]. Other RV tools include Java-MaC [20], JPaX [14], JMPaX [27], and Eagle [3]. Java-MaC
uses a special interval temporal logic as the specification language, while JPaX and JMPaX support vari-
ants of LTL. These systems instrument the Java bytecode to emit events to an external monitor observer.
JPaX was used to analyze NASA’s K9 Mars Rover code [2]. JMPaX extends JPaX with predictive capa-

2

bilities. Eagle is a finite-trace temporal logic and tool for runtime verification, defining a logic similar to
the µ-calculus with data-parameterization.

2 Preliminaries: Büchi Automata

Büchi automata and their ω-languages have been studied extensively during the past decades. They are well
suited to program verification because one can check satisfaction of properties represented as Büchi automata
statically against transition systems [30, 7]. LTL is an important but proper subset of ω-languages.

Definition 1. A (nondeterministic) standard Büchi automaton is a tuple 〈Σ, S, δ, S0,F〉, where Σ is an
alphabet, S is a set of states, δ : S × Σ → 2S is a transition function, S0 ⊆ S is the set of initial
states, and F ⊆ S is a set of accepting states.

In practice, Σ typically refers to events or actions in a system to be analyzed.

Definition 2. A Büchi automaton A = 〈Σ, S, δ, S0,F〉 is said to accept an infinite word τ ∈ Σω iff there
is some accepting run in the automaton, that is, a map ρ : Nat → S such that ρ0 ∈ S0, ρi+1 ∈ δ(ρi, τi) for
all i ≥ 0, and inf(ρ) ∩F = ∅, where inf(ρ) contains the states occurring infinitely often in ρ. The language
of A, L(A), consists of all words it accepts.

Fig. 1. Büchi automaton recognizing the ω-regular
expression (a + b)∗bω

Therefore, ρ can be regarded as an infinite path in the
automaton that starts with an initial state and contains
at least one accepting state appearing infinitely often in
the trace. Fig. 1 shows a nondeterministic Büchi automa-
ton for the ω-regular expression (a + b)∗bω that contains
all the infinite words over a and b with finitely many as.

Definition 3. Let L(A) be the language of a Büchi automaton A=〈Σ, S, δ, S0,F〉. A finite word x ∈ Σ∗ is a
bad prefix of A iff for any y ∈ Σω the concatenation xy �∈ L(A). A bad prefix is minimal if no other bad
prefix is a prefix of it.

Therefore, no bad prefix of the language of a Büchi automaton can be extended to an accepted word.
Similarly to [7], from now on we may tacitly assume that Σ is defined in terms of propositions over atoms.
For instance, the self-transitions of s1 in Fig. 1 can be represented as one self-transition, a ∨ b.

3 Multi-Transitions and Binary Transition Trees

Büchi automata cannot be used unchanged as monitors. For the rest of the paper we explore structures
suitable for monitoring as well as techniques to transform Büchi automata into such structures. Deterministic
multi-transitions (MT) and binary-transition trees (BTTs) were introduced in [16, 26]. In this section we
extend their original definitions with nondeterminism.

Definition 4. Let S and A be sets of states and atomic predicates, respectively, and let PA denote
the set of propositions over atoms in A, using the usual boolean operators. If {s1, s2, ..., sn} ⊆ S and
{p1, p2, ..., pn} ⊆ PA, we call the n-tuple [p1: s1, p2: s2,..., pn: sn] a (nondeterministic) multi-transition
(MT) over PA and S. Let MT (PA, S) denote the set of MTs over PA and S.

Intuitively, if a monitor is in a state associated to an MT [p1:s1, p2:s2, ... , pn:sn] then p1, p2, ..., pn can be
regarded as guards allowing the monitor to nondeterministically transit to one of the states s1, s2, ..., sn.

Definition 5. Maps θ : A → {true, false} are called A-events, or simply events. Given an A-
event θ, we define its multi-transition extension as the map θMT : MT (PA, S) → 2S, where
θMT ([p1 : s1, p2 : s2, ..., pn : sn]) = {si | θ |= pi}.

3

The role of A-events is to transmit the monitor information regarding the running program. In any
program state, the map θ assigns atomic propositions to true iff they hold in that state, otherwise to false.
Therefore, A-events can be regarded as abstractions of the program states. Moreover, technically speaking,
A-events are in a bijective map to PA. For an MT µ, the set of states θMT (µ) is often called the set of possible
continuations of µ under θ.

Example 1. If µ = [a ∨ ¬b : s1,¬a ∧ b : s2, c : s3], and θ(a)=true, θ(b)=false, and θ(c)=true, then the set of
possible continuations of µ under θ, θMT (µ), is {s1, s3}.

Definition 6. A (nondeterministic) binary transition tree (BTT) over A and S is inductively defined
as either a set in 2S or a structure of the form a ? β1 : β2, for some atom a and for some binary transition
trees β1 and β2. Let BTT (A, S) denote the set of BTTs over the set of states S and atoms A.

Definition 7. Given an event θ, we define its binary transition tree extension as the map
θBTT : BTT (A, S) → 2S, where:

θBTT (Q) = Q for any set of states Q ⊆ S,
θBTT (a ? β1 : β2) = θBTT (β1) if θ(a) = true, and
θBTT (a ? β1 : β2) = θBTT (β2) if θ(a) = false.

Definition 8. A BTT β implements an MT µ, written β |= µ, iff for any event θ, it is the case that
θBTT (β) = θMT (µ).

Example 2. The BTT b? (a? (c? s1 s3 : s1) : (c? s2 : ∅)) : (c? s1 s3 : s3) implements the multi-transition shown
in Example 1.

Fig. 2. BTT corresponding to the MT in Ex-
ample 1

Fig. 2 represents this BTT graphically. The right branch of
the node labeled with b corresponds to the BTT expression
(c ? s1s3 : s3), and similarly for the left branch and every other
node. Atomic predicates can be any host programming language
boolean expressions. For example, one may be interested if a
variable x is positive or if a vector v[1...100] is sorted. Some
atomic predicates typically are more expensive to evaluate than
others. Since our purpose is to generate efficient monitors, we need to take the evaluation costs of atomic
predicates into consideration. Moreover, some predicates can hold with higher probability than others; for
example, some predicates may be simple “sanity checks”, such as checking whether the output of a sorting
procedure is indeed sorted. We next assume that atomic predicates are given evaluation costs and probabilities
to hold. These may be estimated apriori, either statically or dynamically.

Definition 9. If ς : A → R+ and π : A → [0, 1] are cost and probability functions for events in A, respec-
tively, then let γς,π : BTT (A, S) → R+ defined as:

γς,π(Q) = 0 for any Q ⊆ S, and
γς,π(a ? β1 : β2) = ς(a) + π(a) ∗ γς,π(β1) + (1 − π(a)) ∗ γς,π(β2),

be the expected (evaluation) cost function on BTTs in BTT (A,S).

Example 3. Given ς = {(a, 10), (b, 5), (c, 20)} and π = {(a, 0.2), (b, 0.5), (c, 0.5)}, the expected evaluation cost of
the BTT defined in Example 2 is 30.

With the terminology and motivations above, the following problem develops as an interesting and important
problem in monitor synthesis:

Problem: Optimal BTT (A,S).
Input: A multi-transition µ = [p1 : s1, p2 : s2, ..., pn : sn] with associated cost ς : A → R+ and probability
π : A → [0, 1].
Output: A minimal cost BTT β with β |= µ.

Binary decision trees (BDTs) and diagrams (BDDs) have been studied as models and data-structures for
several problems in artificial intelligence [24] and program verification [7]. Appendix B discusses BDTs and
how they relate to BTTs. Moret [24] shows that a simpler version of this problem, using BDTs, is NP-hard.

4

In spite of this result, in general the number of atoms in formulae is relatively small, so it is not impractical
to exhaustively search for the optimal BTT. We next informally describe a backtracking algorithm that we
are currently using in our implementation to compute the minimal cost BTT by exhaustive search. Start
with the sequence of all atoms in A. Pick one atom, say a, and make two recursive calls to this procedure,
each assuming one boolean assignment to a. In each call, pass the remaining sequence of atoms to test, and
simplify the set of propositions in the multi-transition according to the value of a. The product of the BTTs
is taken when the recursive calls return in order to compute all BTTs starting with a. This procedure repeats
until no atom is left in the sequence. We select the minimal cost BTT amongst all computed.

4 Binary Transition Tree Finite State Machines

We next define an automata-like structure, formalizing the desired concept of an effective runtime monitor.
The transitions of each state are all-together encoded by a BTT, in practice the statistically optimal one, in
order for the monitor to efficiently transit as events take place in the monitored program. Violations occur
when one cannot further transit to any state for any event. A special state, called neverViolate, will denote
a configuration in which one can no longer detect a violation, so one can stop the monitoring session if this
state is reached.

Definition 10. A binary transition tree finite state machine (BTT-FSM) is a tuple 〈A, S, btt, S0〉,
where A is a set of atoms, S is a set of states potentially including a special state called “neverViolate”, btt
is a map associating a BTT in BTT(A,S) to each state in S where btt(neverViolate)={neverViolate} when
neverViolate ∈ S, and S0 ⊆ S is a subset of initial states.

Definition 11. Let 〈A, S, btt, S0〉 be a BTT-FSM. For an event θ and Q, Q′ ⊆ S, we write Q
θ→Q

′
and call

it a transition between sets of states, whenever Q
′
=

⋃
s∈Q θBTT (btt(s)). A trace of events θ1θ2...θj

generates a sequence of transitions Q0
θ1→Q1

θ2→...
θj→Qj in the BTT-FSM, where Q0 = S0 and Qi

θi+1→ Qi+1,
for all 0≤i<j. The trace is rejecting iff Qj={}.

Note that no finite extension of a trace θ1θ2...θj will be rejected if neverViolate ∈ Qj. The state
neverViolate denotes a configuration in which violations can no longer be detected for any finite trace
extension. This means that the set Qk will not be empty, for any k > j, when neverViolate ∈ Qj . Therefore,
the monitoring session can stop at event j if neverViolate ∈ Qj, because we are only interested in violations
of requirements.

5 Generating a BTT-FSM from a Büchi automaton

Not any property can be monitored. For example, in order to check a liveness property one needs to ensure
that certain propositions hold infinitely often, which cannot be verified at runtime. This section describes
how to transform a Büchi automaton into an efficient BTT -FSM that rejects precisely the minimal bad
prefixes of the denoted ω-language.

Definition 12. A monitor FSM (MFSM) is a tuple 〈Σ, S, δ, S0〉, where Σ = PA is an alphabet, S is a
set of states potentially including a special state “neverViolate”, δ : S × Σ → 2S is a transition function with
δ(neverViolate, true) = {neverViolate} when neverViolate ∈ S, and S0 ⊆ S are initial states.

Note that we take Σ to be PA, the set of propositions over atoms in A. Like BTT -FSMs, MFSMs may
also have a special neverViolate state.

Definition 13. Let Q0
θ1→Q1

θ2→...
θj→Qj be a sequence of transitions in the MFSM 〈Σ, S, δ, S0〉, generated from

t=θ1θ2...θj, where Q0=S0 and Qi+1=
⋃

s∈Qi
{δ(s, σ) | θi+1 |= σ}, for all 0≤i<j. We say that the MFSM rejects

t iff Qj = {}.

No finite extension of t will be rejected if neverViolate ∈ Qj .
From Büchi to MFSM. We next describe two simplification procedures on a Büchi automaton that are
sound w.r.t. monitoring, followed by the construction of an MFSM. The first procedure identifies segments

5

of the automaton which cannot lead to acceptance and can therefore be safely removed. As we will show
shortly, this step is necessary in order to guarantee the soundness of the monitoring procedure. The second
simplification identifies states with the property that if they are reached then the corresponding requirement
cannot be violated by any finite extension of the trace, so monitoring is ineffective from there on. Note that
reaching such a state does not necessarily mean that a good prefix has been recognized, but only that the
property is not monitorable from there on.

Definition 14. Let 〈Σ, S, δ, S0,F〉 be a Büchi automaton, C a connected component of its associated graph,
and nodes(C) the states associated to C. We say that C is isolated iff for any s ∈ nodes(C) and σ ∈ Σ, it
is the case that δ(s, σ) ⊆ nodes(C). We say that C is total iff for any s ∈ nodes(C) and event θ, there are
transitions σ such that θ |= σ and δ(s, σ) ∩ nodes(C) = ∅.

Therefore, there is no way to escape from an isolated connected component, and regardless of the up-
coming event, it is always possible to transit from any node of a total connected component to another node
in that component.
Removing Bad States. The next procedure removes states of the Büchi automaton which cannot be part of
any accepting run (see Definition 2). Note that any state appearing in such an accepting run must eventually
reach an accepting state. This procedure is fundamentally inspired by strongly-connected-component-analysis
[19, 30], used to check emptiness of the language denoted by a Büchi automaton. Given a Büchi automaton A
= 〈Σ, S, δ, S0,F〉, let U ⊆ S be the largest set of states such that the language of 〈Σ, S, δ, U,F〉 is empty. The
states in U are unnecessary in A, because they cannot change its language. Fortunately, U can be calculated
effectively as the set of states that cannot reach any cycle in the graph associated to A which contains at
least one accepting state in F . Fig. 3 shows an algorithm to do this.

INPUT : A Büchi automaton A
OUTPUT : A smaller Büchi automaton A′ such that L(A′) = L(A).
REMOVE BAD STATES :

for each maximal connected component C of A
if (C is isolated and nodes(C) ∩F=∅) then mark all states in C “bad”

DFS MARK BAD ; REMOVE BAD

Fig. 3. Removing bad states

The loop identifies maximal isolated connected components which do not contain any accepting states.
The nodes in these components are marked as “bad”. The procedure DFS MARK BAD performs a depth-first-
search in the graph and marks nodes as “bad” when all outgoing edges lead to a “bad” node. Finally, the
procedure REMOVE BAD removes all the bad states. The runtime complexity of this algorithm is dominated
by the computation of maximal connected components. In our implementation, we used Tarjan’s O(V + E)
double DFS [7]. The proof of correctness is simple and it appears in Appendix A. The Büchi automaton A′

produced by the algorithm in Fig. 3 has the property that there is some proper path from any of its states
to some accepting state. One can readily generate an MFSM from a Büchi automaton A by first applying
the procedure REMOVE BAD STATES in Fig. 3, and then ignoring the acceptance conditions.
Theorem 1. The MFSM generated from a Büchi automaton A as above rejects precisely the minimal bad
prefixes of L(A).
Proof. Let A=〈Σ, S, δ, S0,F〉 be the original Büchi automaton, let A′= 〈Σ, S′, δ′, S′

0,F〉 be the Büchi au-
tomaton obtained from A by applying the algorithm in Fig. 3, and let 〈Σ, S′, δ′, S′

0〉 be the corresponding
MFSM of A′. For any finite trace t = θ1...θj , let us consider its corresponding sequence of transitions in the
MFSM Q0

θ1→...
θj→Qj , where Q0 is S′

0. Note that the trace t can also be regarded as a sequence of letters in
the alphabet Σ of A, because we assumed Σ is PA and because there is a bijection between propositions
in PA and A-events. All we need to show is that t is a bad prefix of A′ if and only if Qj=∅. Recall that A′

has the property that there is some non-empty path from any of its states to some accepting state. Thus,
one can build an infinite path in A′ starting with any of its nodes, with the property that some accepting
state occurs infinitely often. In other words, Qj is not empty iff the finite trace t is the prefix of some infinite
trace in L(A′). This is equivalent to saying that Qj is empty iff the trace t is a bad prefix in A′. Since Qj

6

empty implies Qj′ empty for any j>j′, it follows that the MFSM rejects precisely the minimal bad prefixes
of A. ��

Theorem 1 says that the MFSM obtained from a Büchi automaton as above can be used as a monitor
for the corresponding ω-language. Indeed, one only needs to maintain a current set of states Q, initially S′

0

, and transform it accordingly as new events θ are generated by the observed program: if Q
θ→Q′ then set Q

to Q′; if Q ever becomes empty then report violation. Theorem 1 tells us that a violation will be reported
as soon as a bad prefix is encountered.

Collapsing Never-Violate States. Reducing runtime overhead is crucial in runtime verification. There
are many situations when the monitoring process can be safely stopped, because the observed finite trace
cannot be finitely extended to any bad prefix. The following procedure identifies states in a Büchi automaton
which cannot lead to the violation of any finite computation. For instance, the Büchi automaton in Fig. 4 can
only reject infinite words in which the state s2 occurs finitely many times; moreover, at least one transition
is possible at any moment. Therefore, the associated MFSM will never report a violation, even though there
are infinite words that are not accepted. We call such an automaton non-monitorable. This example makes
it clear that if a state like s1 is ever reached by the monitor, it does not mean that we found a good prefix,
but that we could stop looking for bad prefixes.

Fig. 4. Non-monitorable automaton

Let A=〈Σ, S, δ, S0,F〉 be a Büchi automaton simplified
with REMOVE BAD STATES. The procedure in Fig. 5 finds states
which, if reached by a monitor, then the monitor can no
longer detect violations regardless of what events will be
observed in the future. The procedure first identifies the
total connected components. According to the definition of
totality, once a monitor reaches a state of a total connected
component, the monitor will have the possibility to always
transit within that connected component, thus never getting a chance to report violation. All states of a
total component can therefore be marked as “never violate”. Other states can also be marked as such if, for
any events, it is possible to transit from them to states already marked “never violate”; that is the reason
for the disjunction in the second conditional. The procedure finds such nodes in a depth-first-search. Finally,
COLLAPSE-NEVER VIOLATE collapses all components marked “never violate”, if any, to a distinguished node,
neverViolate, having just a true transition to itself. If any collapsed node was in the initial set of states,
then the entire automaton is collapsed to neverViolate. The procedure GENERATE MFSM produces an MFSM by
ignoring accepting conditions.

INPUT : A Büchi automaton A, cost function ς, and probability function π.
OUTPUT : An effectiveBTT -FSM monitor rejecting the bad prefixes of L(A).
COLLAPSE NEVER VIOLATE :

for each maximal connected component C of A
if (C is total) then mark all states in C as “never violate”

for each s in depth-first-search visit

if (
∨
{σ | δ(s, σ) contains some state marked “never violate”})

then mark s as “never violate”
COLLAPSE-NEVER VIOLATE ; GENERATE MFSM ; GENERATE BTT-FSM

Fig. 5. Collapsing non-monitorable states

Taking as input this MFSM, say 〈Σ, S′, δ′, S′
0〉, cost function ς, and probability function π, GENERATE BTT-FSM

constructs a BTT -FSM 〈A, S′, btt, S′
0〉, where A corresponds to the set of atoms from which the alphabet Σ

is built, and the map btt, here represented by a set of pairs, is defined as follows:
btt = {(neverViolate, {neverViolate}) | neverViolate ∈ S′} ∪

{(s, βs) | s ∈ S′-{neverViolate} ∧ βs |= µs}, where
βs optimally implements µs w.r.t. ς and π, with µs = ⊕(

⋃
{[σ : s′] | s′ ∈ δ′(s, σ)})

The symbol ⊕ denotes concatenation on a set of multi-transitions. Optimal BTTs βs are generated like in
Section 3. Proof of correctness appears in Appendix A.

6 Monitor Generation and MOP
We have shown that one can generate from a Büchi automaton a BTT -FSM recognizing precisely its bad
prefixes. However, it is still necessary to integrate the BTT -FSM monitor within the program to be observed.

7

Monitoring-oriented programming (MOP) [6] aims at merging specification and implementation through
generation of runtime monitors from specifications and integration of those within implementation. In MOP,
the task of generating monitors is divided into defining a logic engine and a language shell. The logic engine
is concerned with the translation of specifications given as logical formulae into monitoring (pseudo-)code.
The shell is responsible for the integration of the monitor within the application.

Fig. 6. Generation of monitors in MOP

Fig. 6 captures the essence of the synthesis process
of LTL monitors in MOP using the technique described
in this paper. The user defines specifications either as
annotations in the code or in a separate file. The spec-
ification contains definitions of events and state pred-
icates, as well as LTL formulae expressing trace requirements. These formulae treat events and predicates
as atomic propositions. Handlers are defined to track violation or validation of requirements. For instance,
assume the events a and b denote the login and the logoff of the same user, respectively. Then the formula
�(a → ◦(¬a U b)) states that the user cannot be logged in more than once. A violation handler could be
declared to track the user who logged in twice. The logic engine is responsible for the translation of the
formulae ϕ and ¬ϕ into two BTT -FSM monitors. One detects violation and the other validation of ϕ. Note
that if the user is just interested in validation (no violation handler), then only the automaton for negation
is generated. Finally, the language shell reads the definition of events and instruments the code so that the
monitor will receive the expected notifications.

We used LTL2BA [25] to generate standard Büchi automata from LTL formulae. The described pro-
cedures are implemented in Java. This software and a WWW demo are available from the MOP website
[1].

6.1 Evaluation

Table 1 shows BTT -FSM monitors for some LTL formulae. The BTT definition corresponding to a state
follows the arrow (�). Initial states appear in brackets. For producing this table, we used the same cost
and probabilities for all events and selected the smallest BTT. The first formula cannot be validated by
monitoring and presents the permanent possibility to be violated; that is why its BTT -FSM does not have
a neverViolate state. The second formula can never be violated since event a followed by event b can always
occur in the future, so its BTT -FSM consists of just one state neverViolate. The last formula shows that our
procedure does not aim at distinguishing validating from non-violating prefixes.

Temporal Formula BTT -FSM

�(a → b U c) [s0] � c ? (b ? s0s1 : s0) : (a ? (b ? s1 : ∅) : (b ? s0s1 : s0))
s1 � b ? (c ? s0s1 : s1) : (c ? s0 : ∅)

�(a → �b) [neverViolate] � {neverViolate}
a U b U c [s0]� c ? neverViolate : (a ? (b ? s0s1 : s0) : (b ? s1 : ∅))

s1 � c ? neverViolate : (b ? s1 : ∅)
neverViolate � {neverViolate}

Table 1. BTT -FSMs generated from temporal formulae

Table 2 shows that our technique can not only identify non-monitorable formulae, but also reduce the
cost of monitoring by collapsing large parts of the Büchi automaton. We use the symbols ♥, ♣, and
♠ to denote, respectively, the effectiveness of REMOVE BAD STATES, the first, and the second loop of
COLLAPSE NEVER VIOLATE. The first group contains non-monitorable formulae. The next contains formu-
lae where monitor size could not be reduced by our procedures. The third group shows formulae where our
simplifications could significantly reduce the monitor size. The last group shows examples of “accidentally”
safe and “pathologically” safe formulae from [21]. A formula ϕ is accidentally safe iff not all bad prefixes
are “informative” [21] (i.e., can serve as a witness for violation) but all computations that violate ϕ have an
informative bad prefix. A formula ϕ is pathologically safe if there is a computation that violates ϕ and has
no informative bad prefix. Since we detect all minimal bad prefixes, informativeness does not play any role
in our approach. Both formulae are monitorable. For the last formula, in particular, a minimal bad prefix
will be detected as soon as the monitor observes a ¬a, having previously observed a ¬b. One can generate
and visualize the BTT -FSMsof all these formulae, and many others, online at [1].

8

Temporal Formula # states # transitions symplif.

�a 2 , 1 3 , 1 ♣
a U ◦(�b) 3 , 1 5 , 1 ♣♠

�(a ∧ b → �c) 2 , 1 4 , 1 ♣
a U (b U (c U (�d))) 2 , 1 3 , 1 ♣

a U (b U (c U �(d → �e))) 5 , 1 15 , 1 ♣♠
¬ a U (b U (c U �(d → �e))) 12 , 1 51 , 1 ♣

¬ �a 1 , 1 1 , 1
�(a → b U c) 2 , 2 4 , 4

a U (b U (c U d)) 4 , 4 10 , 10

a ∧ ◦(�b) ∧ �(�(e)) 5 , 4 11 , 6 ♣
a ∧ ◦(�b) ∧ ◦(�c) ∧ �(�(e)) 9 , 6 29 , 12 ♣

a ∧ ◦(�b) ∧ ◦(�c) ∧ ◦(�d) ∧ �(�(e)) 17 , 10 83 , 30 ♣
a ∧ ◦(¬(�(b → c U d))) ∧ �(�(e)) 7 , 5 20 , 10 ♣
�(a ∨ ◦(�(c))) ∧ �(b ∨ ◦(�(¬c))) 3 , 3 5 , 5

(�(a ∨ �(�(c)))∧�(b ∨ �(�(¬c)))) ∨ �(a) ∨ �(b) 12 , 6 43 , 22 ♥♣
Table 2. Number of states and transitions before and after monitoring simplifications

7 Conclusions

Not all properties a Büchi automaton can express are monitorable. This paper describes transformations
that can be applied to extract the monitorable components of Büchi automata, reducing their size and the
cost of runtime verification. The resulting automata are called monitor finite state machines (MFSMs). The
presented algorithms have polynomial running time in the size of the original Büchi automata and have
already been implemented. Another contribution of this paper is the definition and use of binary transition
trees (BTTs) and corresponding finite state machines (BTT -FSMs), as well as a translation from MFSMs to
BTT -FSMs. These special-purpose state machines encode optimal evaluation paths of boolean propositions
in transitions.

We used LTL2BA [25] to generate Büchi automata from LTL, and Java to implement the presented
algorithms. Our algorithms, as well as a graphical HTML interface, are available at [1]. This work is motivated
by, and is part of, a larger project aiming at promoting monitoring as a foundational principle in software
development, called monitoring-oriented programming (MOP). In MOP, the user specifies formulae, atoms,
cost and probabilities associated to atoms, as well as violation and validation handlers. Then all these are
used to automatically generate monitors and integrate them within the application.

This work is concerned with monitoring violations of requirements. In the particular case of LTL, vali-
dations of formulae can also be checked using the same technique by monitoring the negation of the input
formula. Further work includes implementing the algorithm defined in [11] for generating Büchi automata
of size 2O(|ϕ|) from PTL, combining multiple formulae in a single automaton as showed by Ezick [9] so as
to reduce redundancy of proposition evaluations, and applying further (standard) NFA simplifications to
MFSM.

References

1. MOP website, LTL plugin. http://fsl.cs.uiuc.edu/mop/logic-plugins/ltl.

2. C. Artho, D. Drusinsky, A. Goldberg, K. Havelund, M. Lowry, C. Păsăreanu, G. Roşu, W. Visser, and R. Wash-
ington. Automated Testing using Symbolic Execution and Temporal Monitoring. Theoretical Computer Sci., to
appear, 2005.

3. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-Based Runtime Verification. In Proceedings of
VMCAI’04, volume 2937 of LNCS, pages 44–57, 2004.

4. J. R. Büchi. On a Decision Method in Restricted Second Order Arithmetic. Logic, Methodology and Philosophy
of Sciences. Stanford University Press, 1962.

5. F. Chen, M. d’Amorim, and G. Roşu. A Formal Monitoring-Based Framework for Software Development and
Analysis. In Proceedings of ICFEM’04, volume 3308 of LNCS, pages 357–372, 2004.

6. F. Chen and G. Roşu. Towards Monitoring-Oriented Programming: A Paradigm Combining Specification and
Implementation. In Proceedings of RV’03, volume 89 of ENTCS, pages 106–125, 2003.

7. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, Cambridge, Massachusetts, 1999.

8. K. Etessami and G. Holzmann. Optimizing Büchi Automata. In Proc. of Int. Conf. on Concurrency Theory,
volume 1877 of LNCS, pages 153–167. Springer, 2000.

9

9. J. Ezick. An Optimizing Compiler for Batches of Temporal Logic Formulas. In Proceedings of ISSTA’04, pages
183–194. ACM Press, 2004.

10. M. Garey. Optimal Binary Identification Procedures. SIAM Journal on Applied Mathematics, 23(2):173–186,
1972.

11. P. Gastin and D. Oddoux. LTL with Past and Two-Way Very-Weak Alternating Automata. In Proceedings of
MFCS’03, number 2747 in LNCS, pages 439–448. Springer, 2003.

12. M. Geilen. On the Construction of Monitors for Temporal Logic Properties. In Proceedings of RV’01, volume 55
of ENTCS. Elsevier Science, 2001.

13. R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly Automatic Verification of Linear Temporal
Logic. In Proceedings of the 15th IFIP WG6.1 International Symposium on Protocol Specification, Testing and
Verification XV, pages 3–18. Chapman & Hall, Ltd., 1996.

14. K. Havelund and G. Roşu. Monitoring Java Programs with Java PathExplorer. In Proceedings of RV’01, volume 55
of ENTCS. Elsevier Science, 2001.

15. K. Havelund and G. Roşu. Workshops on Runtime Verification (RV’01, RV’02, RV’04), volume 55, 70(4), to
appear of ENTCS. Elsevier, 2001, 2002, 2004.

16. K. Havelund and G. Roşu. Synthesizing Monitors for Safety Properties. In Proceedings of TACAS’02, volume
2280 of LNCS, pages 342–356. Springer, 2002.

17. G. Holzmann. The Model Checker SPIN. IEEE Transactions on Software Engineering, 23(5):279–295, 1997.
18. L. Hyafil and R. L. Rivest. Computing Optimal Binary Decision Trees is NP-complete. Information Processing

Letters, 5(1):15–17, 1976.
19. Y. Kesten, Z. Manna, H. McGuire, and A. Pnueli. A Decision Algorithm for Full Propositional Temporal Logic.

In Proceedings of CAV’93, volume 697 of LNCS, pages 97–109. Springer, 1993.
20. M. Kim, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: a Run-time Assurance Tool for Java. In Proceedings of

RV’01, volume 55 of ENTCS. Elsevier Sci., 2001.
21. O. Kupferman and M. Y. Vardi. Model Checking of Safety Properties. In Proceedings of CAV ’99, volume 1633

of LNCS, pages 172–183. Springer, 1999.
22. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety. Springer, New York, 1995.
23. N. Markey. Temporal Logic with Past is Exponentially more Succinct. EATCS Bulletin, 79:122–128, 2003.
24. B. Moret. Decision Trees and Diagrams. ACM Comp. Surv., 14(4):593–623, 1982.
25. D. Oddoux and P. Gastin. LTL2BA. http://www.liafa.jussieu.fr/˜oddoux/ltl2ba/.
26. G. Roşu and K. Havelund. Rewriting-Based Techniques for Runtime Verification. Journal of Automated Software

Engineering, 2005. to appear.
27. K. Sen, G. Roşu, and G. Agha. Online Efficient Predictive Safety Analysis of Multithreaded Programs. In

Proceedings of TACAS’04, volume 2988 of LNCS, pages 123–138. Springer, 2002.
28. A. P. Sistla and E. M. Clarke. The Complexity of Propositional Linear Temporal Logics. Journal of the ACM,

32(3):733–749, 1985.
29. O. Sokolsky and M. Viswanathan. Workshop on Runtime Verification (RV’03), volume 89 of ENTCS. Elsevier,

2003.
30. P. Wolper. Constructing Automata from Temporal Logic Formulas: a Tutorial. volume 2090 of LNCS, pages

261–277. Springer, 2002.

10

Appendix A. Proof of Correctness
(Correctness of REMOVE BAD STATES) Let A = 〈Σ, S, δ, S0,F〉 be the input and A′ = 〈Σ, S′, δ′, S′

0,F〉 the
output Büchi automata of the procedure. We want to show that their denoted languages are the same. Let ρ
be an accepting run of A. Then ρ can be fragmented in ρ′ρ′′ where ρ′ is the prefix whose states appear only
finitely many times in ρ. Each state in ρ′′ is therefore reachable from any other and therefore must be in a
connected component where some states are in F . The converse is also true, i.e., any connected component
reachable from the set of initial states having at least one state in F generates accepting runs (from [7] pp.
129). It is then immediate to notice that no accepting run ρ contains states that can never reach a state in
F . It turns out that any state belonging to an isolated component with no accepting states can be trivially
removed as well as any state that can only make transitions to others which never reach an accepting state.
This reachability analysis is performed in a depth-first-search as usual. Since only states that will never
appear in accepting runs of A are removed, it follows that L(A)=L(A′). ��
(Correctness of COLLAPSE NEVER VIOLATE) First, we need to show that the MFSM produced by
GENERATE MFSM still detects bad prefixes of L(A), where A is the input Büchi automaton having the property
that all states can reach accepting states. From the observation thal all states that have been collapsed to
neverViolate can reach an accepting state, the proof of the first part is similar to that of Theorem 1 and is
omitted. So, the MFSM is still a monitor for the bad prefixes of L(A). In other words, this simplification is
sound w.r.t. monitoring minimal bad prefixes. In addition to this, we need to show that the state neverViolate
is reached only if violations of the requirement can no longer occur. We prove this second correctness criteria
by a case analysis on the shape of the MFSM associated to the input Büchi. Each case corresponds to a loop
in COLLAPSE NEVER VIOLATE.

(case 1) Let Q0
θ1→Q1

θ2→...
θj→Qj be a sequence of transitions on the trace θ1θ2...θj produced by the MFSM

corresponding to the input Büchi automaton A. Recall that we assume REMOVE BAD STATES is called before
COLLAPSE NEVER VIOLATE. That is, all states in the input automaton reach some state in F . If some node
in a total connected component C of the graph associated to A belongs to Qj then it is not possible for
any finite trace with prefix θ1θ2...θj to be rejected by the corresponding MFSM since it is always possible
to make a transition between nodes in C from the definition of totality. Those states in C can be marked as
“never violate” meaning that they denote the special neverViolate state.

(case 2) Let Q0
θ1→Q1

θ2→...
θj→Qj be a sequence of transitions produced on the trace θ1θ2...θj by the MFSM

defined as before. If any state belongs to Qj with the property that for further events θj+1 there exists a
transition to a state marked “never violate”, then there must exist some state marked “never violate” in
Qj+1. Such states can be found by checking the validity of the disjunction of propositions labeling the edges
of transitions to states marked “never violate”. Since the monitor will definitely reach a state marked “never
violate” in the trace θ1θ2...θjθj+1, it is therefore safe to reach “never violate” in Qj as well, since violations
are impossible from event j on.

The states marked with the “never violate” label can therefore be collapsed, since a violation cannot
occur if any of these states is reached. The BTT -FSM is generated from the MFSM according to the defined
construction. ��

Appendix B. Complexity Results
We use the definition of Binary Decision Trees (BDTs) due to Garey [10]. As we will show next, Garey’s
BDTs serve as a procedure to identify one among a set of possible objects characterizing some aspect of
interest. Hyafil and Rivest [18] proved the Optimal BDT problem NP-complete. Moret [24] shows that these
BDTs are a restricted form of decision trees similar to binary transition trees as defined here.

Let X = {x1, ..., xn} be a finite set of objects and T = {T1, ..., Tt} a finite set of tests. For each test Ti,
1 ≤ i ≤ t, and object xj , 1 ≤ j ≤ n, we either have Ti(xj) = true or Ti(xj) = false. A binary decision tree
associates tests in the root and all other internal nodes, and associates objects in X to terminal nodes. The
optimal decision tree problem is to determine whether there exists a decision tree with cost less than or
equal to w which completely identifies each element in X , given T and X . The cost of this tree is defined as
Σxi∈X p(xi), where p(xi) is the length of the path from the root to the terminal identifying xi.

One might think of the objects in X as possible answers to a question. The tests in T serve to prune the
data set of answers. A decision tree defines possible sequences of questions to ask in order to give a unique
answer among those in X . The table of Fig. 7 appears in [10] and denotes the set of tests available to use in
some binary decision tree.

11

x1 x2 x3 x4 x5 x6 x7

T1 T F T F T F F
T2 F T F F F T T
T3 T F F F F F F
T4 F F F F T F F
T5 F F F F F T F
T6 F F F F F F T

T1

T4 T6

x5 T3 x7 T5

x1 x3 x6 T2

x2 x4

Fig. 7. Table of tests and a possible BDT for this table

The definition above [10] and the NP-
completeness proof for the Optimal BDT problem
[18] assume the table provided as input is unambigu-
ous and completely identifies the objects in X . That
is, any object in X can be distinguished by applying
some sequence of tests. The decision tree in Fig. 7
appears in [10] as an identification procedure for the
tests and objects defined in the adjacent table. The
subtree to the left of a node denotes objects whose
answers to the test labeling that node are true and the result of all other tests applied in the path to the root
are consistent. The right subtree is similar. This is similar to binary transition trees. However, it is worth
noting that in order to identify xj one does not need to test all Ti having Ti(xj) = true. Observe this in
particular for x6 and x7. It means that decision trees prune the data set in each test they make. A decision
can be made whenever it is possible to identify an object. For instance, no object but x7 assigns false to T1

and true to T6. So this is a sufficient condition to identify x7. Moret showed that the construction of optimal
binary decision trees, similar to BTTs (where tests take the form of boolean proposition over a set of atoms)
is an NP-hard [24] problem. That implies that our BTT problem is also NP-hard.

12

