828 research outputs found

    Synchronization recovery and state model reduction for soft decoding of variable length codes

    Get PDF
    Variable length codes exhibit de-synchronization problems when transmitted over noisy channels. Trellis decoding techniques based on Maximum A Posteriori (MAP) estimators are often used to minimize the error rate on the estimated sequence. If the number of symbols and/or bits transmitted are known by the decoder, termination constraints can be incorporated in the decoding process. All the paths in the trellis which do not lead to a valid sequence length are suppressed. This paper presents an analytic method to assess the expected error resilience of a VLC when trellis decoding with a sequence length constraint is used. The approach is based on the computation, for a given code, of the amount of information brought by the constraint. It is then shown that this quantity as well as the probability that the VLC decoder does not re-synchronize in a strict sense, are not significantly altered by appropriate trellis states aggregation. This proves that the performance obtained by running a length-constrained Viterbi decoder on aggregated state models approaches the one obtained with the bit/symbol trellis, with a significantly reduced complexity. It is then shown that the complexity can be further decreased by projecting the state model on two state models of reduced size

    Iterative Detection of Three-Stage Concatenated FFH-MFSK

    No full text
    Serially concatenated and iteratively decoded Irregular Variable Length Coding (IrVLC) combined with precoded Fast Frequency Hopping (FFH) M-ary Frequency Shift Keying (MFSK) is considered. We employ EXtrinsic Information Transfer (EXIT) charts to investigate the 3-stage concatenation of the FFH-MFSK demodulator, the rate-1 decoder and the outer IrVLC decoder. The proposed joint source and channel coding scheme is capable of operating at low Signal-to-Noise Ratio (SNR) in Rayleigh fading channels contaminated by Partial Band Noise Jamming (PBNJ). The IrVLC scheme is comprised of a number of component Variable Length Coding (VLC) codebooks employing different coding rates for encoding particular fractions of the input source symbol stream. These fractions may be chosen with the aid of EXIT charts in order to shape the inverted EXIT curve of the IrVLC codec so that it can be matched with the EXIT curve of the inner decoder. We demonstrate that using the proposed scheme an infinitesimally low bit error ratio may be achieved at low SNR values

    Extreme Learning Machine Based Non-Iterative and Iterative Nonlinearity Mitigation for LED Communications

    Full text link
    This work concerns receiver design for light emitting diode (LED) communications where the LED nonlinearity can severely degrade the performance of communications. We propose extreme learning machine (ELM) based non-iterative receivers and iterative receivers to effectively handle the LED nonlinearity and memory effects. For the iterative receiver design, we also develop a data-aided receiver, where data is used as virtual training sequence in ELM training. It is shown that the ELM based receivers significantly outperform conventional polynomial based receivers; iterative receivers can achieve huge performance gain compared to non-iterative receivers; and the data-aided receiver can reduce training overhead considerably. This work can also be extended to radio frequency communications, e.g., to deal with the nonlinearity of power amplifiers

    Error concealment using motion field interpolation

    Get PDF

    New architecture for MPEG video streaming system with backward playback support

    Get PDF
    2007-2008 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Analysis and design of three-stage concatenated color-shift keying

    No full text
    Visible Light Communication (VLC) relies on abundant unlicensed bandwidth resources. As an attractive high-data-rate modulation scheme designed for VLC, Color Shift Keying (CSK) assisted modulation is analysed. We commence our study from an uncoded M-CSK scheme relying on the joint Maximum Likelihood (ML) Hard-Detection (HD) of three colors, when communicating over an AWGN channel, where both empirical and analytical results are provided. We invoke EXtrinsic Information Transfer (EXIT) charts for designing a Maximum A-posteriori Probability (MAP) based Soft-Detection (SD) aided iterative receiver jointly detecting the three colors. Based on the EXIT characteristics of M-CSK, we design different signal labeling strategies for diverse color constellations and detection schemes, which are capable of achieving a substantially improved Bit Error Ratio (BER) performance. Thus, given a fixed transmission power, a CSK system using our proposed signal labeling is capable of increasing the reliable data transmission distance by about 30%

    Irregular Variable Length Coding

    Get PDF
    In this thesis, we introduce Irregular Variable Length Coding (IrVLC) and investigate its applications, characteristics and performance in the context of digital multimedia broadcast telecommunications. During IrVLC encoding, the multimedia signal is represented using a sequence of concatenated binary codewords. These are selected from a codebook, comprising a number of codewords, which, in turn, comprise various numbers of bits. However, during IrVLC encoding, the multimedia signal is decomposed into particular fractions, each of which is represented using a different codebook. This is in contrast to regular Variable Length Coding (VLC), in which the entire multimedia signal is encoded using the same codebook. The application of IrVLCs to joint source and channel coding is investigated in the context of a video transmission scheme. Our novel video codec represents the video signal using tessellations of Variable-Dimension Vector Quantisation (VDVQ) tiles. These are selected from a codebook, comprising a number of tiles having various dimensions. The selected tessellation of VDVQ tiles is signalled using a corresponding sequence of concatenated codewords from a Variable Length Error Correction (VLEC) codebook. This VLEC codebook represents a specific joint source and channel coding case of VLCs, which facilitates both compression and error correction. However, during video encoding, only particular combinations of the VDVQ tiles will perfectly tessellate, owing to their various dimensions. As a result, only particular sub-sets of the VDVQ codebook and, hence, of the VLEC codebook may be employed to convey particular fractions of the video signal. Therefore, our novel video codec can be said to employ IrVLCs. The employment of IrVLCs to facilitate Unequal Error Protection (UEP) is also demonstrated. This may be applied when various fractions of the source signal have different error sensitivities, as is typical in audio, speech, image and video signals, for example. Here, different VLEC codebooks having appropriately selected error correction capabilities may be employed to encode the particular fractions of the source signal. This approach may be expected to yield a higher reconstruction quality than equal protection in cases where the various fractions of the source signal have different error sensitivities. Finally, this thesis investigates the application of IrVLCs to near-capacity operation using EXtrinsic Information Transfer (EXIT) chart analysis. Here, a number of component VLEC codebooks having different inverted EXIT functions are employed to encode particular fractions of the source symbol frame. We show that the composite inverted IrVLC EXIT function may be obtained as a weighted average of the inverted component VLC EXIT functions. Additionally, EXIT chart matching is employed to shape the inverted IrVLC EXIT function to match the EXIT function of a serially concatenated inner channel code, creating a narrow but still open EXIT chart tunnel. In this way, iterative decoding convergence to an infinitesimally low probability of error is facilitated at near-capacity channel SNRs

    Robust decoder-based error control strategy for recovery of H.264/AVC video content

    Get PDF
    Real-time wireless conversational and broadcasting multimedia applications offer particular transmission challenges as reliable content delivery cannot be guaranteed. The undelivered and erroneous content causes significant degradation in quality of experience. The H.264/AVC standard includes several error resilient tools to mitigate this effect on video quality. However, the methods implemented by the standard are based on a packet-loss scenario, where corrupted slices are dropped and the lost information concealed. Partially damaged slices still contain valuable information that can be used to enhance the quality of the recovered video. This study presents a novel error recovery solution that relies on a joint source-channel decoder to recover only feasible slices. A major advantage of this decoder-based strategy is that it grants additional robustness while keeping the same transmission data rate. Simulation results show that the proposed approach manages to completely recover 30.79% of the corrupted slices. This provides frame-by-frame peak signal-to-noise ratio (PSNR) gains of up to 18.1%dB, a result which, to the knowledge of the authors, is superior to all other joint source-channel decoding methods found in literature. Furthermore, this error resilient strategy can be combined with other error resilient tools adopted by the standard to enhance their performance.peer-reviewe
    corecore