9,121 research outputs found

    On acceleration of Krylov-subspace-based Newton and Arnoldi iterations for incompressible CFD: replacing time steppers and generation of initial guess

    Full text link
    We propose two techniques aimed at improving the convergence rate of steady state and eigenvalue solvers preconditioned by the inverse Stokes operator and realized via time-stepping. First, we suggest a generalization of the Stokes operator so that the resulting preconditioner operator depends on several parameters and whose action preserves zero divergence and boundary conditions. The parameters can be tuned for each problem to speed up the convergence of a Krylov-subspace-based linear algebra solver. This operator can be inverted by the Uzawa-like algorithm, and does not need a time-stepping. Second, we propose to generate an initial guess of steady flow, leading eigenvalue and eigenvector using orthogonal projection on a divergence-free basis satisfying all boundary conditions. The approach, including the two proposed techniques, is illustrated on the solution of the linear stability problem for laterally heated square and cubic cavities

    Local Improvements to Reduced-Order Approximations of Optimal Control Problems Governed by Diffusion-Convection-Reaction Equation

    Full text link
    We consider the optimal control problem governed by diffusion convection reaction equation without control constraints. The proper orthogonal decomposition(POD) method is used to reduce the dimension of the problem. The POD method may be lack of accuracy if the POD basis depending on a set of parameters is used to approximate the problem depending on a different set of parameters. We are interested in the perturbation of diffusion term. To increase the accuracy and robustness of the basis, we compute three bases additional to the baseline POD. The first two of them use the sensitivity information to extrapolate and expand the POD basis. The other one is based on the subspace angle interpolation method. We compare these different bases in terms of accuracy and complexity and investigate the advantages and main drawbacks of them.Comment: 19 pages, 5 figures, 2 table

    The Generalized Graetz Problem in Finite Domains

    Get PDF
    We consider the generalized Graetz problem associated with stationary convection-diffusion inside a domain having any regular three-dimensional translationally invariant section and finite or semi-infinite extent. Our framework encompasses any previous “extended” and “conjugated” Graetz generalizations and provides theoretical bases for computing the orthogonal set of generalized two-dimensional Graetz modes. The theoretical framework includes both heterogeneous and possibly anisotropic diffusion tensors. In the case of semi-infinite domains, the existence of a bounded solution is shown from the analysis of two-dimensional operator eigenvectors which form a basis of L2 . In the case of finite domains a similar basis can be exhibited, and the mode’s amplitudes can be obtained from the inversion of newly defined finite domain operator. Our analysis includes both the theoretical and practical issues associated with this finite domain operator inversion as well as its interpretation as a multireflection image method. Error estimates are provided when numerically truncating the spectrum to a finite number of modes. Numerical examples are validated for reference configurations and provided in nontrivial cases. Our methodology shows how to map the solution of stationary convection-diffusion problems in finite three-dimensional domains into a two-dimensional operator spectrum, which leads to a drastic reduction in computational cost

    Reduced Order Optimal Control of the Convective FitzHugh-Nagumo Equation

    Full text link
    In this paper, we compare three model order reduction methods: the proper orthogonal decomposition (POD), discrete empirical interpolation method (DEIM) and dynamic mode decomposition (DMD) for the optimal control of the convective FitzHugh-Nagumo (FHN) equations. The convective FHN equations consists of the semi-linear activator and the linear inhibitor equations, modeling blood coagulation in moving excitable media. The semilinear activator equation leads to a non-convex optimal control problem (OCP). The most commonly used method in reduced optimal control is POD. We use DEIM and DMD to approximate efficiently the nonlinear terms in reduced order models. We compare the accuracy and computational times of three reduced-order optimal control solutions with the full order discontinuous Galerkin finite element solution of the convection dominated FHN equations with terminal controls. Numerical results show that POD is the most accurate whereas POD-DMD is the fastest
    corecore