In this paper, we compare three model order reduction methods: the proper
orthogonal decomposition (POD), discrete empirical interpolation method (DEIM)
and dynamic mode decomposition (DMD) for the optimal control of the convective
FitzHugh-Nagumo (FHN) equations. The convective FHN equations consists of the
semi-linear activator and the linear inhibitor equations, modeling blood
coagulation in moving excitable media. The semilinear activator equation leads
to a non-convex optimal control problem (OCP). The most commonly used method in
reduced optimal control is POD. We use DEIM and DMD to approximate efficiently
the nonlinear terms in reduced order models. We compare the accuracy and
computational times of three reduced-order optimal control solutions with the
full order discontinuous Galerkin finite element solution of the convection
dominated FHN equations with terminal controls. Numerical results show that POD
is the most accurate whereas POD-DMD is the fastest