311 research outputs found

    Condition trend prediction of aero-generator based on particle swarm optimization and fuzzy integral

    Get PDF
    In order to improve and enhance the prediction accuracy and efficiency of aero-generator running trend, grasp its running condition, and avoid accidents happening, in this paper, auto-regressive and moving average model (ARMA) and least squares support vector machine (LSSVM) which are used to predict its running trend have been optimized using particle swarm optimization (PSO) based on using features found in real aero-generator life test, which lasts a long period of time on specialized test platform and collects mass data that reflects aero-generator characteristics, to build new models of PSO-ARMA and PSO-LSSVM. And we use fuzzy integral methodology to carry out decision fusion of the predicted results of these two new models. The research shows that the prediction accuracy of PSO-ARMA and PSO-LSSVM has been much improved on that of ARMA and LSSVM, and the results of decision fusion based on fuzzy integral methodology show further substantial improvement in accuracy than each particle swarm optimized model. Conclusion can be drawn that the optimized model and the decision fusion method presented in this paper are available in aero-generator condition trend prediction and have great value of engineering application

    Moving Learning Machine Towards Fast Real-Time Applications: A High-Speed FPGA-based Implementation of the OS-ELM Training Algorithm

    Get PDF
    Currently, there are some emerging online learning applications handling data streams in real-time. The On-line Sequential Extreme Learning Machine (OS-ELM) has been successfully used in real-time condition prediction applications because of its good generalization performance at an extreme learning speed, but the number of trainings by a second (training frequency) achieved in these continuous learning applications has to be further reduced. This paper proposes a performance-optimized implementation of the OS-ELM training algorithm when it is applied to real-time applications. In this case, the natural way of feeding the training of the neural network is one-by-one, i.e., training the neural network for each new incoming training input vector. Applying this restriction, the computational needs are drastically reduced. An FPGA-based implementation of the tailored OS-ELMalgorithm is used to analyze, in a parameterized way, the level of optimization achieved. We observed that the tailored algorithm drastically reduces the number of clock cycles consumed for the training execution up to approximately the 1%. This performance enables high-speed sequential training ratios, such as 14 KHz of sequential training frequency for a 40 hidden neurons SLFN, or 180 Hz of sequential training frequency for a 500 hidden neurons SLFN. In practice, the proposed implementation computes the training almost 100 times faster, or more, than other applications in the bibliography. Besides, clock cycles follows a quadratic complexity O(N 2), with N the number of hidden neurons, and are poorly influenced by the number of input neurons. However, it shows a pronounced sensitivity to data type precision even facing small-size problems, which force to use double floating-point precision data types to avoid finite precision arithmetic effects. In addition, it has been found that distributed memory is the limiting resource and, thus, it can be stated that current FPGA devices can support OS-ELM-based on-chip learning of up to 500 hidden neurons. Concluding, the proposed hardware implementation of the OS-ELM offers great possibilities for on-chip learning in portable systems and real-time applications where frequent and fast training is required

    Data-driven solutions to enhance planning, operation and design tools in Industry 4.0 context

    Get PDF
    This thesis proposes three different data-driven solutions to be combined to state-of-the-art solvers and tools in order to primarily enhance their computational performances. The problem of efficiently designing the open sea floating platforms on which wind turbines can be mount on will be tackled, as well as the tuning of a data-driven engine's monitoring tool for maritime transportation. Finally, the activities of SAT and ASP solvers will be thoroughly studied and a deep learning architecture will be proposed to enhance the heuristics-based solving approach adopted by such software. The covered domains are different and the same is true for their respective targets. Nonetheless, the proposed Artificial Intelligence and Machine Learning algorithms are shared as well as the overall picture: promote Industrial AI and meet the constraints imposed by Industry 4.0 vision. The lesser presence of human-in-the-loop, a data-driven approach to discover causalities otherwise ignored, a special attention to the environmental impact of industries' emissions, a real and efficient exploitation of the Big Data available today are just a subset of the latter. Hence, from a broader perspective, the experiments carried out within this thesis are driven towards the aforementioned targets and the resulting outcomes are satisfactory enough to potentially convince the research community and industrialists that they are not just "visions" but they can be actually put into practice. However, it is still an introduction to the topic and the developed models are at what can be defined a "pilot" stage. Nonetheless, the results are promising and they pave the way towards further improvements and the consolidation of the dictates of Industry 4.0

    Prognostic and health management of critical aircraft systems and components: an overview

    Get PDF
    This article belongs to the Special Issue Feature Papers in Fault Diagnosis & Sensors 2023Prognostic and health management (PHM) plays a vital role in ensuring the safety and reliability of aircraft systems. The process entails the proactive surveillance and evaluation of the state and functional effectiveness of crucial subsystems. The principal aim of PHM is to predict the remaining useful life (RUL) of subsystems and proactively mitigate future breakdowns in order to minimize consequences. The achievement of this objective is helped by employing predictive modeling techniques and doing real-time data analysis. The incorporation of prognostic methodologies is of utmost importance in the execution of condition-based maintenance (CBM), a strategic approach that emphasizes the prioritization of repairing components that have experienced quantifiable damage. Multiple methodologies are employed to support the advancement of prognostics for aviation systems, encompassing physics-based modeling, data-driven techniques, and hybrid prognosis. These methodologies enable the prediction and mitigation of failures by identifying relevant health indicators. Despite the promising outcomes in the aviation sector pertaining to the implementation of PHM, there exists a deficiency in the research concerning the efficient integration of hybrid PHM applications. The primary aim of this paper is to provide a thorough analysis of the current state of research advancements in prognostics for aircraft systems, with a specific focus on prominent algorithms and their practical applications and challenges. The paper concludes by providing a detailed analysis of prospective directions for future research within the field.European Union funding: 95568

    A Comprehensive Review of Digital Twin -- Part 1: Modeling and Twinning Enabling Technologies

    Full text link
    As an emerging technology in the era of Industry 4.0, digital twin is gaining unprecedented attention because of its promise to further optimize process design, quality control, health monitoring, decision and policy making, and more, by comprehensively modeling the physical world as a group of interconnected digital models. In a two-part series of papers, we examine the fundamental role of different modeling techniques, twinning enabling technologies, and uncertainty quantification and optimization methods commonly used in digital twins. This first paper presents a thorough literature review of digital twin trends across many disciplines currently pursuing this area of research. Then, digital twin modeling and twinning enabling technologies are further analyzed by classifying them into two main categories: physical-to-virtual, and virtual-to-physical, based on the direction in which data flows. Finally, this paper provides perspectives on the trajectory of digital twin technology over the next decade, and introduces a few emerging areas of research which will likely be of great use in future digital twin research. In part two of this review, the role of uncertainty quantification and optimization are discussed, a battery digital twin is demonstrated, and more perspectives on the future of digital twin are shared

    Towards a more efficient and cost-sensitive extreme learning machine: A state-of-the-art review of recent trend

    Get PDF
    In spite of the prominence of extreme learning machine model, as well as its excellent features such as insignificant intervention for learning and model tuning, the simplicity of implementation, and high learning speed, which makes it a fascinating alternative method for Artificial Intelligence, including Big Data Analytics, it is still limited in certain aspects. These aspects must be treated to achieve an effective and cost-sensitive model. This review discussed the major drawbacks of ELM, which include difficulty in determination of hidden layer structure, prediction instability and Imbalanced data distributions, the poor capability of sample structure preserving (SSP), and difficulty in accommodating lateral inhibition by direct random feature mapping. Other drawbacks include multi-graph complexity, global memory size, one-by-one or chuck-by-chuck (a block of data), global memory size limitation, and challenges with big data. The recent trend proposed by experts for each drawback is discussed in detail towards achieving an effective and cost-sensitive mode

    A Review: Prognostics and Health Management in Automotive and Aerospace

    Get PDF
    Prognostics and Health Management (PHM) attracts increasing interest of many researchers due to its potentially important applications in diverse disciplines and industries. In general, PHM systems use real-time and historical state information of subsystems and components of the operating systems to provide actionable information, enabling intelligent decision-making for improved performance, safety, reliability, and maintainability. Every year, a substantial number of papers in this area including theory and practical applications, appear in academic journals, conference proceedings and technical reports. This paper aims to summarize and review researches, developments and recent contributions in PHM for automotive- and aerospace industries. It can also be considered as the starting point for researchers and practitioners in general to assist them through PHM implementation and help them to accomplish their work more easily.Algorithms and the Foundations of Software technolog
    • …
    corecore