13 research outputs found

    Use of multilayer feedforward neural networks in identification and control of Wiener model

    Get PDF
    Includes bibliographical references (page 258).The problem of identification and control of a Wiener model is studied. The proposed identification model uses a hybrid model consisting of a linear autoregressive moving average model in cascade with a multilayer feed forward neural network. A two-step procedure is proposed to estimate the linear and nonlinear parts separately. Control of the Wiener model can be achieved by inserting the inverse of the static nonlinearity in the appropriate loop locations. Simulation results illustrate the performance of the proposed method

    Continuous-time block-oriented nonlinear modeling with complex input noise structure

    Get PDF
    The continuous-time closed-form algorithms to sinusoidal input changes are proposed and presented for single-input, single-output (SISO) Hammerstein and Wiener systems with the first-order, second-order, and second-order plus lead dynamics. By simulation on theoretical Hammerstein and Wiener systems, the predicted responses agree exactly with the true process values. They depend on only the most recent input change. The algorithms to SISO Hammerstein and Wiener systems can be conveniently extended to the multiple-input, multiple-output (MIMO) systems as shown by the two-input, two-output examples and demonstrated by the simulated seven-input, five-output continuous stirred tank reactor (CSTR). The predictions and the simulated theoretical responses agree exactly and the predicted multiple CSTR outputs are close to the true process outputs. The proposed algorithms can predict the responses closer to the true values when comparing with the piece-wise step input approximation of the sinusoidal input changes on a simulated MIMO CSTR. In addition, as the noisy process input could be decomposed as summation of sinusoidal signals imposed on a step input change; the proposed algorithms can be employed to predict outputs for the noisy process inputs once the decomposition is done and the predicted noisy process outputs are shown to be close to the true ones, and are much better than the predictions based on the perfect filtering of the input signals.;The estimating equations based on the moment method are proposed for the Wiener dynamic process with stochastically correlated process input disturbances or noises and they work well for the parameter estimation. No one has ever proposed such method before. This approach has led to stable and robust estimators that have reasonable estimation errors and there is no need to measure the input disturbances or noises, or to calculate the time derivative of the observed output variable. Only the original process output observations over time are needed. The original model can be shifted to an approximate model under some conditions. This approximation is acceptable based on some analysis and derivation. The estimating equation methodology was shown to work well for the approximate model, while other existing methods do not work at all

    An Adaptive Learning Rate for RBFNN Using Time-Domain Feedback Analysis

    Get PDF
    Radial basis function neural networks are used in a variety of applications such as pattern recognition, nonlinear identification, control and time series prediction. In this paper, the learning algorithm of radial basis function neural networks is analyzed in a feedback structure. The robustness of the learning algorithm is discussed in the presence of uncertainties that might be due to noisy perturbations at the input or to modeling mismatch. An intelligent adaptation rule is developed for the learning rate of RBFNN which gives faster convergence via an estimate of error energy while giving guarantee to the l2 stability governed by the upper bounding via small gain theorem. Simulation results are presented to support our theoretical development

    System identification of a class of Wiener systems with hysteretic nonlinearities

    Get PDF
    Existing works on Wiener system identification have essentially been focused on the case where the output nonlinearity is memoryless. When memory nonlinearities have been considered, the focus has been restricted to backlash like nonlinearities. In this paper, we are considering Wiener systems where the output nonlinearity is a general hysteresis operator captured by the well-known Bouc-Wen model. The Wiener system identification problem is addressed by making use of a steady-state property, obtained in periodic regime, referred to as hysteretic loop assumption'. The complexity of this problem comes from the system nonlinearity as well as its unknown parameters that enter in a non-affine way in the model. It is shown that the linear part of the system is accurately identified using a frequency method. Then, the nonlinear hysteretic subsystem is identified, on the basis of a parameterized representation, using a prediction-error approach.Postprint (author's final draft

    The enhancement of a block-oriented modeling method to improve inference and prediction

    Get PDF
    In process identification (i.e., dynamic model development) information on the precision and reliability of a parameter estimate is conveyed by a confidence interval. The best confidence interval is the one with the shortest width for a given level of confidence. Confidence interval widths widen as the standard error increases or as the number of estimated parameters increases. This thesis focuses on minimizing the width of confidence intervals by reducing the number of estimated dynamic parameters in the context of block-oriented modeling. This objective is accomplished by the development of a procedure that finds parameter equivalencies within (intra) and between (inter) the functional forms for the responses (i.e., outputs). It is important to recognize that the least squares estimation criterion is not valid under inter-parameter equivalency. However, the multiresponse criterion does not have this limitation and is used in this work

    System Engineering Applied to Fuenmayor Karst Aquifer (San Julián de Banzo, Huesca) and Collins Glacier (King George Island, Antarctica)

    Get PDF
    La ingeniería de sistemas, definida generalmente como arte y ciencia de crear soluciones integrales a problemas complejos, se aplica en el presente documento a dos sistemas naturales, a saber, un sistema acuífero kárstico y un sistema glaciar, desde una perspectiva hidrológica. Las técnicas de identificación, desarrolladas típicamente en ingeniería para representar sistemas artificiales por medio de modelos lineales y no lineales, pueden aplicarse en el estudio de los sistemas naturales donde se producen fenómenos de acoplamiento entre el clima y la hidrosfera. Los métodos evolucionan para afrontar nuevos campos de identificación donde se requieren estrategias para encontrar el modelo idóneo adaptado a las peculiaridades del sistema. En este sentido, se han considerado especialmente las herramientas basadas en la transformada wavelet utilizadas en la preparación de series temporales, suavizado de señales, análisis espectral, correlación cruzada y predicción, entre otros. Bajo este enfoque, una aplicación a mencionar entre las tratadas en esta tesis, es la determinación analítica del núcleo efectivo estacional (SEC) a través del estudio de la coherencia wavelet entre temperatura del aire y la descarga del glaciar, que establece un conjunto de períodos de muestreo aceptablemente coherentes, a partir del cual se crearán los modelos del sistema glacial. El estudio está dirigido específicamente a estimar la influencia de la precipitación sobre la descarga del acuífero kárstico de Fuenmayor, en San Julián de Banzo, Huesca, España. De la misma manera, se ocupa de las consecuencias de la temperatura del aire en la fusión del hielo glaciar, que se manifiesta en la corriente de drenaje del glaciar Collins, isla King George, Antártida. En el proceso de identificación paramétrica y no paramétrica se buscan los modelos que mejor representen la dinámica interna del sistema. Eso conduce a pruebas iterativas, donde se van creando modelos que se verifican sistemáticamente con los datos reales del muestreo, de acuerdo a un criterio de eficiencia dado. La solución mejor valorada según los resultados obtenidos en los casos tratados apuntan a estructuras de modelos en bloques. Esta tesis significa una exposición formal de la metodología de identificación de sistemas propios de la ingeniería en el contexto de los sistemas naturales, que mejoran los resultados obtenidos en muchos casos de la hidrología kárstica que comúnmente usaban métodos ad hoc ocasionales de carácter estadístico; así mismo, los enfoques propuestos en los casos de glaciología con el análisis wavelet y los modelos orientados a datos raramente considerados en la literatura, revelan información esencial ante la imposibilidad de precisar la totalidad de la física que rige el sistema. Notables resultados se derivan en la caracterización de la respuesta del manantial de Fuenmayor y su correlación con la precipitación, desde la perspectiva de un sistema lineal, que se complementa con los métodos de identificación basados en técnicas no lineales. Así mismo, la implementación del modelo para el glaciar Collins, obtenido también mediante métodos de identificación de caja negra, puede revelar una inestabilidad de los límites de los periodos activos de la descarga, y consecuentemente la variabilidad en la tendencia actual en el cambio climático global
    corecore