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Abstract. Existing works on Wiener system identification have essentially been focused on the case 

where the output nonlinearity is memoryless. When memory nonlinearities have been considered, the 

focus has been restricted to backlash like nonlinearities. In this paper, we are considering Wiener 

systems where the output nonlinearity is a general hysteresis operator captured by the well known 

Bouc-Wen model. The Wiener system identification problem is addressed by making use of steady-

state property, obtained in periodic regime, referred to as hysteretic loop assumption (HLA). The 

complexity of this problem comes from the system nonlinearity as well as its unknown parameters that 

enter in a nonaffine way in the model. It is shown that the linear part of the system is accurately 

identified using a frequency method. Then, the nonlinear hysteretic subsystem is identified, on the 

basis of a parameterized representation, using a prediction-error approach. 

1. INTRODUCTION 

Standard Wiener model is constituted of a linear dynamic subsystem and a memoryless nonlinearity 

connected in series as shown by Fig. 1. It is formally established that a wide range of nonlinear 

dynamic systems can be well approximated with parallel Wiener models (e.g. Boyd and Chua, 1985). 

Therefore, the problem of Wiener system identification has received a great deal of interest, especially 

during the last decade, and several solutions are now available. In the case of fully parametric systems, 

the proposed identification approaches include deterministic methods (e.g. Vörös, 1997, 2010; Bruls et 

al., 1999) as well as stochastic methods (e.g. Wigren, 1993, 1994; Westwick and Verhaegen, 1996; 

Vanbeylen et al., 2009; Lovera et al., 2000; Wills and Ljung, 2010; Vanbeylen and Pintelon, 2010; 

Wills et al., 2011). The available identification methods for nonparametric Wiener systems include 

stochastic methods (e.g. Greblicki and Pawlak, 2008; Mzyk, 2010) and frequency methods (e.g. Crama 

and Schoukens, 2001, 2005; Bai, 2003; Giri et al., 2009; Schoukens and Rolain, 2012). Identification 

methods have also been proposed for semiparametric Wiener systems, where only the linear part is 

parameterized (e.g. Hu and Chen, 2008; Bai and Reyland, 2009; Enqvist, 2010; Pelckmans, 2011). All 

existing identification methods rely on several assumptions on the system nonlinear part (invertible, 

odd), on the linear subsystem (finite impulse response (FIR), known structure), and on input signals 

(Gaussian, persistently exciting (PE)). In recent years, the research scope concerning Wiener system 

identification has been extended to nonstandard Wiener system structures including series-parallel 
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Wiener systems (Lyzell and Enqvist, 2012; Lyzell et al., 2012; Schoukens and Rolain, 2012) and 

Wiener systems with memory nonlinearities (Dong et al., 2009; Cerone et al., 2009; Giri et al., 2013, 

2014; Reyland and Bai, 2013).  

In the present study, we are interested in Wiener systems that contain memory nonlinearities. In (Dong 

et al., 2009), the nonlinearity is a backlash operator bordered by two straight lines and a recursive 

least-squares method is used to get estimates of the linear subsystem parameters and the nonlinearity 

characteristics (e.g. border line slopes). In (Cerone et al., 2009), the nonlinearity is also a backlash 

operator with straight line borders and a two-stage method is used to bound all system parameters. In 

(Giri et al., 2013), the nonlinearity is a nonparametric backlash operator and the identification problem 

is dealt with using a frequency method based on analytic geometry tools. Nonparametric backlash 

operators are also considered in (Reyland and Bai, 2013) where it is established that the parameters of 

the linear FIR subsystem can be separately identified. In (Giri et al., 2014), the class of nonlinearities 

dealt with include backlash and backlash-inverse operators with polynomial borders and the 

identification method indifferently applies to both categories.  

The above discussion shows that all existing works considering memory nonlinearities in Wiener 

system identification have been focused on backlash-like operators. Although the latter are more 

complex than memoryless nonlinearities, considered in earlier studies, their modelling capability is 

still not sufficient to capture all real-life memory components. One of their limitations lies in the fact 

that, the limit cycles spanned by their operating point (in steady-state periodic regimes) are laterally 

bordered by fixed functions independent on the input signal amplitude. Consequently, backlash-like 

models are unable to capture the more general hysteresis effect which leads to limit cycles (called 

hysteresis loops) whose border functions are depending on the input signal excursion. The hysteresis 

behaviour is encountered in several areas including biology, optics, electronics, ferroelectricity, 

magnetism, mechanics, structures, smart materials, and others. In mechanics and structures, hysteresis 

arises as a natural property of materials to supply restoring forces against movements and dissipate 

energy (Ikhouane and Rodellar, 2007). In recent years, the hysteresis effect has been deliberately 

introduced to design highly sophisticated equipments e.g. magnetorheological dampers (Aguirre et al., 

2012), piezoelectrical actuators (Gomis-Bellmunt et al., 2009), micro- and nano-positionners (Kiong 

and Sunan, 2014), Li-ion batteries (Hu et al., 2012). Therefore, much interest has been paid to 

modelling and analyzing hysteresis phenomena, especially over the last three decades. Dozens of 

hysteresis models have thus been proposed including Duhem, Dahl, Colman-Hodgon, Prandtl, 

Preisach, Jiles-Atherton, Krasnoselski-Pokrovski, and others (Mayergoyz, 2003). The control of 

systems involving hysteresis effect is also a challenging problem that has received interest, see 

(Ikhouane and Rodellar, 2007; Kiong and Sunan, 2014) and references therein. The proposed control 

designs require the values of the parameters that represent the hysteresis effect. Clearly, system 

http://www.google.co.ma/search?hl=fr&tbo=p&tbm=bks&q=inauthor:%22I.+D.+Mayergoyz%22
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identification constitutes a crucial part in such control designs because the parameters are generally 

unknown. 

 

 

Fig. 1.  Wiener model structure: )(sG  is a linear subsystem, [.]F  is a nonlinear operator. 

 

In this paper, the problem of Wiener system identification is addressed in presence hysteresis output 

nonlinearities. As mentioned above, this problem has yet to be solved since earlier works on Wiener 

system identification have essentially been focused on memoryless nonlinearities and the few works 

that dealt with memory nonlinearities have been restricted to backlash type operators. Referring to Fig. 

1, the output hysteretic operator, denoted ][F , may represent a sensor featuring hysteresis such as 

Hall effect sensors which are widely used by electrical engineers. Then, the complexity of the 

identification problem lies not only in the nonlinearity of the model dynamics, but also in its 

interconnected structure making its internal signals not accessible to measurements and its unknown 

parameters entering in the model nonlinearly. In this paper, we show that this complexity can be 

overcome if the hysteresis nonlinearity possesses the HLA property. Roughly, this property describes 

the steady-state behaviour of a hysteresis operator being excited by the so-called "loading-unloading" 

inputs (a class of periodic increasing-decreasing signals). HLA stipulates that the working point 

))(),(( tvtx  (see Fig. 1) spans a hysteresis loop, bordered by two strictly increasing lines only 

depending on the input excursion. Based on this property, the linear subsystem model is determined 

using a frequency identification approach. As long as the linear subsystem is concerned, no prior 

knowledge on the hysteresis subsystem is required at this first stage, except for the HLA property. The 

second stage of the identification method is devoted to parameter estimation of the hysteresis 

subsystem. Presently, this is illustrated considering the Bouc-Wen hysteresis model and parameter 

estimation is performed using nonlinear least-squares (LS) techniques. The developed identification 

method only involves periodic input signals. The required number of needed input signals depends on 

the properties of the linear subsystem and the available prior knowledge on it. In most favourable 

cases, two input signals are sufficient. The identification method enjoys the weak coupling between its 

two stages (which improves the accuracy of the estimated parameters) and the consistency of all 

involved estimators. The present paper is an extension of the authors' conference paper (Radouane et 

al., 2014) where the identification problem was dealt with for a reduced class of hysteresis systems. 

The latter were described by a simplified version of the Bouc-Wen model not involving the elastic 

term in the restoring force. Doing so, the identification problem becomes much simpler as it involves 
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less inaccessible signals and less non-affine parameters. Presently, a much wider class of hysteresis 

systems are accounted for making the problem much more complex. 

The paper is organized as follows: the identification problem is formulated in Section 2; Section 3 is 

devoted to describing the linear subsystem identification and Section 4 to the hysteresis subsystem 

identification method; the performances of the identification method are illustrated by simulation in 

Section 5. 

2. IDENTIFICATION PROBLEM FORMULATION 

In this section, the Wiener system under study is analytically modelled, making use of the hysteresis 

loop assumption. Then, the identification objectives are described and the identifiability issue is 

discussed. Finally, a signal pre-processing method based on period averaging is introduced. 

2.1 System Modelling 

Standard Wiener systems consist of a linear dynamic subsystem )(sG  followed in series by a 

memoryless nonlinear element ][F , see Fig. 1. Presently, this element is allowed to be memory of 

hysteretic type. The overall Wiener system is analytically described by the following equations: 

 usGx )(   (1a) 

 ][xFv   (1b) 

 )()()( ttvty                        (1c) 

where u  and y  denote the system input and output; x  and v  are internal signals not accessible to 

measurement. The signal   is a zero-mean ergodic noise featuring periodic stationarity, a property to 

be defined below (see Subsection 2.3). The transfer function )(sG  assumes no particular structure but 

it must be asymptotically stable to make possible open-loop system identification. Also, the element 

][F  is any memory operator that is BIBO stable satisfying the hysteretic loop assumption (see 

hereafter). To describe this assumption, the following definition  is needed (see e.g. Ikhouane and 

Rodellar, 2007): 

Definition 1. A periodic signal z  is said to be loading-unloading if it is continuous, periodic (with 

some period 0T ), and there exists a scalar 10    so that u  is 1C  increasing on the interval 

 T,0  and 1C  decreasing on the interval  TT , .  

Assumption HLA (Hysteretic Loop Assumption). Let the signal x  in (1b) be loading-unloading, with 

maxmin )( xtxx   for some scalars  maxmin xx . Then, the following properties hold with the 

resulting hysteresis output ][xFv  : 

1) There exist two strictly-increasing 
1C  functions 

V  and 
V  such that, one has in steady-state: 

 ))(()( txVtv   for ))(,[ TmmTt  ,  Nm   (2a) 
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 ))(()( txVtv   for ))1(,)[( TmTmt      (2b) 

 ))(())(( mTxVmTxV    and    ))())(( TmxVTmxV       (2c) 

where T  and   are as in Definition 1. 

2) The functions ),(  VV  depend on the excursion interval ],[ maxmin xx  of the signal x , but not on its 

period T . This property is commonly referred to as rate-independence. 

3) Just as x , the signal v  is T -periodic loading-unloading and the set  0;))(),(( ttvtx  is an oriented 

closed locus referred to as ),( vx -hysteresis loop and ),(  VV  are its border functions. 

Example 1. Consider the Bouc-Wen hysteresis model which is defined as follows: 

 )()()( twtxtv wx     (3a) 

 
  wxwwxxw   

 
1

   (3b) 

with 0 , 0  , 0  , 0x , 0w  and 1 , where w  is an internal state variable. In 

the context of mechanical systems, )(tx  is a displacement and )(tv  a restoring force which appears as 

the superposition of an elastic component )(txx  and a purely hysteretic component )(tww . The 

parameters ),,(   determine the shape and the size of the hysteresis loop, while the scalar   

determines the smoothness of the transition from elastic to plastic response. Clearly, equations (3a-b) 

entails a series-parallel structure of the Bouc-Wen hysteresis model, see also Fig. A1 in Appendix A. 

An extensive analysis can be found in chapters 2 and 3 of (Ikhouane and Rodellar, 2007) where it is 

formally shown that this hysteresis model is BIBO stable and satisfies Assumption HLA. Figs. 2a-b 

illustrate the hysteresis loops that can be generated by this model. Finally, note that the identification 

problem for the Wiener system (1a-c) in presence of a Bouc-Wen hysteresis, has already been 

considered in (Radouane et al., 2014) where an identification method has been designed. However, the 

study made there was limited to the case where 0x  and 1w  which entails the absence of elastic 

effect in the restoring force. In such a case, the model can only produce hysteresis loops centred on the 

origin which limits its practical applicability. On the other hand, the assumptions 0x and 1w  

makes the identification problem much simpler as the number of unknown parameters is smaller. 

Furthermore, these assumptions imply that )()( txtv   leading to a reduced number of inaccessible 

signals. Moreover, the model structure boils down to a series interconnection, while it is a series-

parallel in the general model (3a-b), see Fig. A1 in Appendix A. These model simplifications make the 

present identification problem much more complex compared to (Radouane et al., 2014). 

2.2 System identification objective and identifiability issue.  

The identification problem at hand is to accurately determine the two components of the system model 

i.e. the transfer function )(sG  and the hysteretic operator ][F . When )(sG  assumes no a priori 



 

 

 

 

6 

known structure, the identification purpose amounts to estimate its frequency response )( jG , for a 

set of frequencies selected by the user. In case )(sG  assumes a known parameterized structure, the 

involved parameters must also be accurately estimated. A key feature of the presently proposed 

identification method is that the linear subsystem identification is coped with based only on 

Assumption HLA, i.e. the model structure of ][F  needs not to be a priori known. A parameterized 

model of ][F  is only needed in the second stage (of the identification method) which is devoted to 

the estimation of the hysteretic parameters. Presently, this stage will be illustrated in Section 4 

considering the Bouc-Wen hysteresis model (3a-d).  

As the internal signals ),( vx  are inaccessible to measurements (see Fig. 1), system identification must 

only make use of the input and output signals ),( yu . It turns out that the model  ][),( FsG  is not 

uniquely determined by the Wiener model (1a-c). Indeed, any pair  ][),( 11 FsG , with )()(1 skGsG   

and ]/[][1 kxFxF  , is also a model, whatever the scalar 0k . This identifiability issue is overcome 

by imposing additional constraints on the Wiener model. Simple constraints are: 

1)()( 11

1   jkGjG  and   )(0 1

1 jG , with 1  any fixed frequency that is selected so that 

0)( 1 jG  (see Remark 1). Clearly, these constraints define a unique model corresponding to 

)(/1 1jGk   and: 

  1)sgn( k  if ),0[)( 1   jG      and     1)sgn( k  if )2,[)( 1   jG  (modulo  ).  

Now, to avoid introducing additional notations, the particular model ])[),(( 11 xFsG  satisfying the 

above constraints will continue to be denoted  ][),( xFsG  and the corresponding internal signals will 

still be denoted x  and v . It turns out that the system model (1a-c) is completed with Assumption HLA 

and the following property: 

 1)( 1 jG  and   )(0 1jG     (modulo )  (4) 

Remark 1. 1) Under conditions (4) and Assumption HLA, a consistent estimator of the frequency 

response )( jG  will be designed in Section 3. This proves that (4) and HLA are sufficient conditions 

for frequency response identifiability. The identification of the hysteretic element ][F  will be dealt 

with in Section 4 based on the model (3a-b). There, an additional identifiability issue concerning only 

(3a-b) will be pointed out and coped with. 

2) In (4), the frequency 1  is arbitrarily chosen by the user bearing in mind the condition 0)( 1 jG . 

Now, let the sinusoidal input )cos()( 11 tUtu   be applied to the Wiener system and let the resulting 

steady-state output of the linear subsystem be denoted  )(cos )()( 1111, 11
 jGtjGUtxU  . If 

0)( 1 jG  then 
11 ,Ux  is a nonzero loading-unloading signal. Therefore, by Assumption HLA the 
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hysteresis output, denoted )(
11 , tvU  , is also non-zero loading-unloading signal. On the other hand, if 

0)( 1 jG  then the resulting (steady-state) internal signal 
11 ,Ux  will be zero leading to (a steady-

state) constant signal 
11,Uv . That is, the case 0)( 1 jG  can be easily detected by just monitoring 

11,Uv . To get benefit of this result, one needs an accurate estimator of the (inaccessible) undisturbed 

output 
11,Uv  relying only on the system output 

11,Uy . This is the subject of the next subsection. 

2.3. Signal Pre-Processing 

When system identification is performed in presence of periodic signals, with the same period T , the 

following T -periodic averaging process proves to be useful in coping with noise (Ljung, 1999, p.232):   

  





1

0

1
)(

N

k

N kTtz
N

tz ,  for Tt 0       (5a) 

 )()( Ttztz NN  ,  otherwise               (5b) 

with 1N , where z  is any signal and Nz  is referred to as its T -periodic average signal. It readily 

follows that zzN   whenever z  is itself  T -periodic. In the present identification method, the signals 

),,( vxu  will be T -periodic and so all three are equal (in steady-state) to their T -periodic average 

versions obtained by (5a-b). Then, it follows from (1c) that (in steady-state): 

 )()()( ttvty NN          (6) 

Accordingly, it is supposed that the noise )(t  is zero-mean ergodic and features the T -periodic 

stationarity i.e.  

   ))(()( tEkTtE   ; for all t  and Nk   (7) 

As )(t  zero mean ergodic, one gets from (7): 

 0))(()( 


kTtEt
N

N     (w.p. 1)         (8) 

Then, it immediately follows from (6) that, in steady-state (i.e. when )(tv  becomes periodic): 

 0)()(



N

N tvty   (w.p. 1)       (9) 

3. LINEAR SUBSYSTEM PARAMETER IDENTIFICATION 

In this section, it is shown that the linear subsystem )(sG  can be identified first. To this end, it is 

proved that, within specific operating conditions inspired by Assumption HLA, a ),( vx -hysteresis loop 

can be accurately estimated. Then, an accurate estimator of the linear subsystem output )(tx  is 

constructed and used to estimate )(sG . 

3.1. Hysteresis Loop Estimation 

By Assumption HLA, the hysteretic operator (1b) enjoys the rate-independence property. Accordingly, 

the ),( vx -hysteresis loop, generated by any loading-unloading signal )(tx , only depends on the 
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excursion interval ],[ maxmin xx  of )(tx . All loading-unloading signals )(tx  with the same excursion 

interval lead to the same ),( vx -hysteresis loop, whatever their shapes and their frequencies. In this 

subsection, we aim at identifying the ),( vx -hysteresis loop that is obtained by all signals )(tx  

spanning a given interval ], [ 11 UU , where 01 U  is arbitrarily chosen by the user. To this end,  we 

make use of the data collected on the Wiener system (1a-c) being excited by the simple sinusoidal 

input )cos()( 111 tUtu   where the frequency 1  is as in property (4), so that one gets benefit from 

that property. Doing so, the steady-state behaviour of the Wiener system (1a-c) turns out to be 

described by the following equalities: 

  )(cos )( 111, 11
 jGtUtxU    (10a) 

 ][
1111 ,,  UU xFv    (10b) 

 )()()(
1111 ,, ttvty UU                  (10c) 

where the index ),( 11 U  emphasizes the dependence (in steady-state) of all signals on the 

amplitude/frequency couple ),( 11 U . The most important feature of the linear subsystem output 

)(
11 , txU   is that it is loading-unloading and is spanning the interval ], [ 11 UU . Then, by Assumption 

HLA, the resulting signal )(
11 , tvU   is 1C  and  1/2  -periodic loading-unloading, in steady-state. 

Furthermore, )(
11 , tvU   is related to )(

11 , txU   by the hysteresis border functions. The latter are presently 

denoted 
1UV  and 

1UV  where the index 1U  emphasizes the fact that these functions only depend on the 

excursion interval ],[ 11 UU  of the signal )(
11 , txU   (not on its frequency). By Assumption HLA, the 

relationship between the hysteresis input/output signals express as follows: 

. On the half period 






 

1

1

1

1 )(2
,

)(2





 jGkjGk

, where 0)(
11 , txU   and  0)(

11 , tvU  , one 

has: 

  ))(()(
11111 ,, txVtv UUU 

 .  (11a) 

. On 






 




1

1

11

1 2)(2
,

)(2








 jGkjGk

, where 0)(
11 , txU   and 0)(

11, tvU  , one has: 

  ))(()(
11111 ,, txVtv UUU 

 .  (11b) 

We will now make use of these properties to determine successively: (i) the  phase )( 1jG  so that 

the signal )(
11 , txU   becomes fully known and; (ii) the two functions ),(

11


UU VV  so that one can use them 

to build up an estimator of the hysteresis input signal )(tx  whenever this spans ],[ 11 UU .  

3.1.1 Estimation of the phase )( 1jG   
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Since ),(
11


UU VV  are strictly increasing (by Assumption HLA), it follows from (11a-b) that )(

11 , tvU   is 

in phase with )(
11 , txU  . Then, within any 1/2  -length time-interval, these two signals have a unique 

couple of extrema (one maximum and one minimum) that they achieve simultaneously (see Fig. 2a). 

Letting kt  )( Nk  denote the instants where those extrema are achieved, it readily follows from (10a) 

that  kjGtk  )( 11 , Nk . Then, bearing in mind (4), one gets the relationship: 

 








otherwiset

tift
jG

k

kk





1

11

1

),0[
)(  , modulo 2 ,  Nk       (12) 

This shows that, )( 1jG  can be computed from one of the instants where the (undisturbed) output 

)(
11 , tvU   achieves an extremum. As )(

11 , tvU   is not accessible to measurement, it is replaced by its 

estimated signal )(,, 11
ty NU  , obtained by operating the 1/2  -periodic averaging (5a-b) on )(

11 , tyU  . 

Then, (12) suggests the following phase estimator: 

 










)2,[

),0[
)(ˆ

,,1,,1

,,1,,1

1

1111

1111









NUNU

NUNU

N
tift

tift
jG    (modulo 2 ) (13) 

where ]/2,0[ 1,, 11
 NUt  denotes any instant where )(,, 11

ty NU   achieves a maximum. Then, (10a) 

suggests the following estimator of  )(
11 , txU  : 

  )(ˆcos )(ˆ
111,, 11

 jGtUtx NNU    (14) 

Proposition 1. The estimators )(ˆ
1jGN  and )(ˆ

,, 11
tx NU   defined by (13) and (14), respectively, are 

consistent in the sense that one has w.p.1: 

 0)()(ˆ
11 


N
N jGjG  , modulo 2         (15a) 

  0)()(ˆ
1111 ,,, 


N

UNU txtx    (15b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2a. Steady-state response )(
11 , tvU   (dashed) of a Bouc-
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Fig. 2b. Hysteresis loop described by the working point 
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Wen hysteresis model (3a-b) to a sinusoidal signal )(
11 , txU   

(solid). The hysteretic parameters are ,4.0,1,2    

1x  and 5.1  (see Section 5). 

Fig. 2a. 

Proof of Proposition 1. By property (9), )(,, 11
ty NU   is constructively 1/2  -periodic and 

)()(
1111 ,,, tvty UNU   , w.p.1 as N . Then, w.p.1 as N , there exists a unique couple of times 

in ]/2,0[ 1  where )(,, 11
ty NU   has extrema. Letting NUt ,, 11 

 denote any one of these two times, it 

follows from (9) that that NUt ,, 11 
 converges, w.p.1 as N , to one of the kt 's where )(

11 , tvU   

achieves its extrema. Then, (15a) is obtained by comparing (12) and (13) . In turn, Property (15b) is 

got by comparing (14) and (10a) ■ 

3.1.2 Estimation of the hysteresis loop border functions ),(
11


UU VV   

By Assumption HLA, we know that the hysteresis working point ))(),((
1111 ,, tvtx UU   generates a 

hysteresis loop, when t  spans any interval of length 1/2   (see Fig. 2b). As pointed out by (11a-b), 

the two lateral bordering lines of this loop determine the border functions ),(
11


UU VV . Then, substituting 

))(),(ˆ( ,,,, 1111
tytx NUNU   to ))(),((

1111 ,, tvtx UU  in (11a-b), one gets an accurate estimate )ˆ,ˆ( ,, 11


NUNU VV  of 

the couple of functions ),(
11


UU VV . Specifically, the estimated functions are defined as follows: 
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11,

)(ˆ2
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)(ˆ
),()(ˆ

  )(max, )(min , :ˆ

1111
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jGjG
ttytx

tytyUUV
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NUNU

NUNUNU

 (16a) 
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)(ˆ
,

)(ˆ
),()(ˆ

  )(max, )(min , :ˆ

1111

11111











jGjG
ttytx

tytyUUV

NN
NUNU

NUNUNU

  (16b) 

where again we have used the fact that )(,, 11
ty NU   is constructively 1/2  -periodic.  

Proposition 2. The estimator defined by (16a-b) is consistent: 

 ),()ˆ,ˆ(
1111 ,,





  UU
N

NUNU VVVV  (w.p.1)  (17) 

Proof. By Proposition 1, one knows that )(ˆ
1jGN  and )(ˆ

,, 11
tx NU   are consistent estimators of 

)(
11 , txU   and )( 1jG . Also, by (9), )(,, 11

ty NU   is a consistent estimator of )(
11 , tvU  . Then, 

Proposition 2 follows directly from the comparison of (16a-b) and (11a-b) ■ 

3.2. Linear Subsystem Output Estimator 
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The estimation of the border functions ),(
11


UU VV  constitutes a key achievement because these 

functions characterize all hysteresis loops generated by ][F  when this is excited by any input signal 

)(tx  that is loading-unloading spanning the interval ], [ 11 UU . In the present context, the hysteresis 

input )(tx  is also the output of the Wiener system (1a). Since the function ),(
11


UU VV  are strictly 

increasing, it becomes possible to accurately estimate the linear subsystem output )(tx  and, therefore, 

estimate the transfer function )(sG . Based on these observations, we let the Wiener system (1a-c) be 

excited by any input signal )(tu  such that the resulting (steady-state) signal )(tx  is T -periodic 

loading-unloading and spanning ], [ 11 UU  (whatever the period T ). It immediately follows from 

Assumption HLA that, in turn the resulting (steady-state) signal )(tv  is T -periodic loading-unloading 

and in phase with )(tx . More specifically, the two signals are related by expressions (2a-b) with 

),(),(
11

  UU VVVV , the two functions identified in the previous subsection. Since these functions are 

invertible (because they are strictly increasing), equations (2a-b) entail the following relationship: 

    )()(
2

))(sgn(1
)()(

2

))(sgn(1
)( 11

11
tvV

tv
tvV

tv
tx UU

 






 (18) 

This relation holds whenever )(tx  is loading-unloading spanning the interval ], [ 11 UU . This suggests 

the following estimator for the signal )(tx : 

    )()ˆ(
2

))(sgn(1
)()ˆ(

2

))(sgn(1
)(ˆ 1

,

1

, 11
tyV

ty
tyV

ty
tx NNU

N
NNU

N
N

 






     (19) 

where )(tyN  is obtained by applying (5a-b) to the output signal )(ty  of the Wiener system (1a-c) 

being excited by the above input )(tu . 

Proposition 3. Consider the Wiener system (1a-c) subject to Assumptions HLA and (4). If the system 

input )(tu  is selected so that the resulting (steady-state) internal signal )(tx  is T -periodic loading-

unloading and spanning the (known) interval ], [ 11 UU  then, the estimator (19) is consistent, i.e. 

 0)()(ˆ



N

N txtx    (20) 

Proof. The proposition follows by comparing (19) and (18), using (9) and Proposition 2  ■ 

Remark 2. a) It is worth noting that the estimator (19) is applicable, whatever the shape of the input 

signal )(tu , provided the resulting internal signal )(tx  is T -periodic loading-unloading spanning the 

interval ], [ 11 UU , whatever the value of the period T . 

b) The estimator (19) involves the derivative of Ny . The derivative exists w.p.1 because Ny  is a 

consistent estimator of )(tv  which is differentiable. As Ny  is bounded T -periodic, its derivative is 
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accurately approximated by the filtered signal Ny
MTs

Ts

/1
 with 1M . The larger M the better 

the approximation. 

3.3. Frequency Estimation of the Transfer Function )(sG  

As )(sG  is of unknown structure, a frequency approach is proposed to estimate the frequency response 

)( ijG  , for a set of frequencies i )2( ni  . The proposed approach entails the definition of a class 

a  of admissible input signals. 

Definition 2. An input signal )(tu  is said to belong to a  if it meets the following requirements: 

a) )(tu  is T -periodic spanning  a symmetrical interval i.e. max)(min)(max Ututu
def

tt
 . 

b) The resulting linear subsystem output )(tx  is T -periodic loading-unloading and 

max)(min)(max Xtxtx
def

tt
 . Furthermore, maxX   is a strictly increasing continuous function of 

maxU . 

Remark 3. From Definition 2 it follows that the set a  depends on the system transfer )(sG . 

Consequently, one should get benefit of any available prior knowledge on the system to determine 

elements the set a . This is illustrated in the next examples. 

Example 2. a) When the transfer function )(sG  has finite-order and all its poles are with negative real 

parts, the set a  includes (but is not limited to) all sinusoidal signals. 

b) Let )(sG  be finite-order, strictly proper, with all poles and zeros being real negative scalars. 

Transfer functions satisfying these properties are asymptotically stable, minimum phase and non-

oscillating. Then, the set a  includes (in addition to those of Part a) all 0C  T -periodic signals such 

that: (i) there exists a scalar 10    so that u  is 1C  strictly increasing  on the open interval  T,0  

and 1C  strictly decreasing on the open interval  TT , ; (ii) the period T  is sufficiently large 

(compared to the system rise-time). Among usual signals meeting these requirement, we can cite 

square waves with large periods compared to the system risetime. 

In the rest of this section, it is assumed that the input signal au  . Then, with the notation of 

Definition 2, the steady-state internal signal )(tx  is loading-unloading spanning a symmetrical interval 

],[ maxmax XX  and maxX  is a continuous strictly increasing function of  maxU . The key idea is to select 

the input amplitude maxU  so that ],[ maxmax XX  coincides with ], [ 11 UU  (the known interval 

introduced in subsection 3.1). Doing so, one can then make use of the estimator (19) to get an estimate 

of the inaccessible  signal )(tx . By Assumption HLA, one can check that )(tx  spans ], [ 11 UU  by 
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verifying whether the undisturbed output )]([)( txFtv   spans )](, )([ 11 UVUV   . Based on these 

observations, we let the input amplitude maxU  be selected so that the following statement holds: 

 )(tyN  exactly spans the interval  )](ˆ, )(ˆ[ 1,1, 11
UVUV NUNU

    (21) 

where )(tyN  is the constructively T -periodic signal obtained by operating (5a-b) on the system output 

)(ty . Practically, the search for the value of maxU  that meets the above requirement can be performed 

using the dichotomy rule of Table I, where the expression " )(tyN  spans a wider interval" means 

"wider than )](ˆ, )(ˆ[ 1,1, 11
UVUV NUNU

  . Analogous sense is given for "spans a narrower interval". 

Table I. Selection of input amplitude maxU   

Let ),( 10 UU  denotes a pair of auxiliary real variables. Set 1
0

max UUU   where 1U  is as in (10a). Apply an input 

signal au   with amplitude maxU  and compute )(ty
N

 by operating (5a-b) on )(ty . Execute the following dichotomy 

procedure to tune the value of 
max

U : 

1. If  )(ty
N

 exactly spans )](ˆ, )(ˆ[
1,1, 11

UVUV
NUNU

  , keep on the value of 
max

U  and quit the search procedure. 

2. If )(ty
N

 spans a wider interval, let 2/
maxmax

UU  , and go to Step 4. 

3. If )(ty
N

 spans a narrower interval, let 
maxmax

2UU   and go to Step 4.  

4. If  )(ty
N

 exactly spans )](ˆ, )(ˆ[
1,1, 11

UVUV
NUNU

  , keep on the value of  
max

U  and quit the search procedure. 

5. If )(ty
N

 spans a wider interval and 0

max
UU  , let 

max

0 UU   and 2/
maxmax

UU  , and go back to Step 4.  

6. If )(ty
N

 spans a wider interval and 0

max
UU  , let  

max

1 UU  , 2/)( 0

maxmax
UUU  , 10 UU  and go to Step 4. 

7. If )(ty
N

 spans a narrower interval and 
0

max
UU  , let 

max

1 UU  , 2/)( 0

maxmax
UUU  , 

10 UU   and go to Step 4. 

8. If )(ty
N

 spans narrower interval and 0

max
UU  , let 

max

0 UU   and 
maxmax

2UU  , and go to Step 4. 

Once the input amplitude maxU  is selected, one gets an accurate estimate )(ˆ txN  of the internal signal 

)(tx , using (19) which (by Proposition 3) is consistent. As )(tx  is T -periodic (because au  ), it 

follows that )(ˆ txN  admits a Fourier series expansion of the form: 

   )(ˆcosˆ)(ˆ
0

,, ttkXtx N

k

NkNkN  




,  with 
T

 2
             (22) 

where 0)( tN , w.p.1 as N . Also, the T -periodic input )(tu  has a Fourier series of the form:  

  





0

cos)(
k

kk tkUtu         (23) 

Then,  the following frequency response estimator is considered: 

 ))(ˆexp()(ˆ)(ˆ  jkGjjkGjkG NN

def

N    (24) 

with 
T

 2
  and where: 

  
ˆ

)(ˆ ,

k

Nk

N
U

X
jkG  ,   kNkN jkG   ,

ˆ)(ˆ ,  Nk   (25) 
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Proposition 4. 1) The statement (21) defines a unique value of maxU  and the iterative search procedure 

of Table I converges to that value, w.p.1 as the number of iterations and N  tends to infinity.  

2) The frequency response estimator, defined by (24)-(25), is consistent: 

 )()(ˆ  jkGjkG
N

N 
 ,   w.p.1,  Nk   (26) 

See proof in Appendix B. 

Remark 4. a) In addition to the estimates )(ˆ jkGN  ( Nk ) that one obtains using a given T -periodic 

input au  , other estimates can be obtained following similar steps, using another admissible input 

with different period. 

b) As noticed in Example 2, in case where no prior knowledge on )(sG  is available, one can only use 

sinusoidal inputs )cos()( tUtu i , ni 2 . As a matter of fact, applying the above method with 

)cos()( tUtu i  only yields the frequency response estimate )(ˆ
iN jG  . Additional estimates are 

obtained by applying the identification method repeatedly with the different frequencies. Inversely, in 

the case where )(sG  meets the conditions of Example 2 (part b), one periodic input signal is 

sufficient to determine several frequency response estimates using (24)-(25). 

c) Based on the above observations, it turns out that the identification of )(sG  only involves periodic 

input signals. Furthermore, the number of needed input signals depends on the properties of )(sG  

and the available prior knowledge on it. The minimum number of input signals equals two: one sine 

input to construct the )(tx -estimator (19) and one periodic (not sine) signal to estimate the frequency 

response by (24)-(25). This is the case in the conditions of Example 2 (part b). 

At this point, a set of frequency response values is available. Let it be denoted )(ˆ
iN jG   )11( n , 

where 1  is as in (4). Now, suppose that the transfer function )(sG  is of known structure 

),()( LsGsG  where L  is a vector including all unknown parameters. The aim is to estimate L  

using the available frequency data )(ˆ
iN jG  . This problem has extensively been studied in past years 

and a number of solutions have been proposed, e.g. (Pintelon et al., 1994; Schoukens et al., 1998; 

Ljung, 1999). An example of such solutions is presented in Appendix C  providing an estimate 

LNL  ,
ˆ , w.p.1 as N . 

The transfer function identification method thus constructed is recapitulated in Table II, where the 

following power norm is used: 

  

2/1

0

2)(
1

)( 





 

Tdef

dttz
T

tz   ( )(tz any T -periodic signal)    (27) 

Table II. Summary  of Transfer Function Identification Method  
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Step 1. Hysteresis Loop Identification  

Data collection 

1.1 Select a sine input )cos()( 11 tUtu  , with 0,0
11
 U , and choose a threshold 10   . The amplitude 

1
U  

must be selected not too small so that a usable output is obtained despite noise. Apply the input signal )(tu  to the 

Wiener system (1a-c) and collect the steady-state output )(
11, tyU   over a sufficiently large interval, say 

1/20 Nt   (with N  large enough).  

1.2. Generate the two periodic signals )(
1,, 11

ty
NU   and )(

,, 11

ty
NU  , by applying (5a-b) to )(

11, tyU  , and compute the 

following relative errors, using the power norm defined by (27) letting there 1/2 T :  

      )(/)()()(
,,1,,,,1 111111

tytytyNe
NUNUNU

def

      and   )(/)/2()()( ,,1,,,,2 111111
tytytyNe NU

def

NUNU   . 

If  )(1 Ne   and  )(2 Ne  then, go to Step 1.3. Otherwise, increase N  and repeat Step 1.2. 

Hysteresis loop estimation 

1.3. To estimate )(ˆ
,, 11

tx NU  , let 1,,
/20

11
 

NU
t  be any time instant where )(,, 11

ty NU   achieves an extremum. Using 

(13) get the estimate  )(ˆ
1jGN  and by (14) get  )(ˆcos )(ˆ

111,, 11

 jGtUtx
NNU

 . 

1.4. Using )/20());(),(ˆ( 1,,,, 1111
  ttytx NUNU , construct the hysteresis loop border functions )ˆ,ˆ( ,, 11


NUNU VV  by 

applying (16a-b). Then, construct the estimator (19) of the linear subsystem output. 
 

Step 2. Transfer Function Estimation. 

2.1. With the notations of Definition 2, select an admissible input signal 
a

u  , with period 0T  and amplitude 
max

U . 

Tune the latter using the search procedure of Table I.  

2.2. Using (19), get )(ˆ tx
N

 and, using (22)-(25), get  the estimates )3,2,1()(ˆ kjkG
N

 . 

2.3. If )(sG  is of known structure, get the parameter vector estimate 
NL ,

̂  using e.g. the method in Appendix C. 

Remark 5. a) In Step 1.2 of Table II, the tests on )(1 Ne  and )(2 Ne  are resorted for searching a 

suitable averaging horizon N  to be used in (5a-b). By (9), the search in Step 1.2, is guaranteed to 

converge in finite time. Similarly, Part 1 of Proposition 4 guarantees that the search of input 

amplitude maxU   in Step 2.1 does converges as the number of iterations goes to  . To ensure a 

convergence after a finite number of iterations, it suffices to replace in Table I 

)](ˆ, )(ˆ[ 1,1, 11
UVUV NUNU

   by ])(ˆ, -)(ˆ[ 1,1, 11
   UVUV NUNU , for some 10  . 

b) Suppose the transfer function ),( LsG   is of known structure and the available prior knowledge on it  

is such that one can select an admissible input au   not limited to sine type. This is e.g. the case in 

Part b of Example 2. Then, the parameter identification of ),( LsG   can be directly performed 

without passing by the estimation of frequency response values )(ˆ jkGN . For instance, assume that  

usGx L ),(   is equivalent to )(),()(),( tusBtxsA LL   , where ),( LsA   and ),( LsB   are 

polynomials of known structure and L  is the vector including their coefficients. Then, L  enters 

linearly in the previous autoregressive representation making the standard LS estimator usable. 

Obviously, the inaccessible signal )(tx  should be replaced by its consistent estimate )(ˆ txN , leading 

to a consistent parameter estimator of NL,̂ . In this regard, note that )(tu  is persistently exciting 

because it is T -periodic (By Definition 2) and, as emphasized by (23), its power spectrum includes 

an infinite number of frequencies. 
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4. HYSTERESIS PARAMETER IDENTIFICATION 

The result of Section 3 is a quite useful as it shows that the linear subsystem with transfer function 

)(sG  can be identified first. As long as the identification of )(sG  is concerned, no prior knowledge is 

required on the hysteretic operator ][F  except for Assumption HLA. In this section, it is shown that 

the inverse is (almost) true. Specifically, the nonlinear hysteretic operator can be identified without 

using the available estimate of )(sG , except for (the estimate of) its static gain  )0(G . This is 

illustrated by considering the Bouc-Wen hysteresis model (3a-b). Of course, one could alternately use 

more standard methods making full use of (the estimate of) )(sG . Such identification methods are 

available e.g. for Bouc-Wen model (Ikhouane and Gomis-Bellmunt, 2008), Prandtl-Ishlinkskii model 

(Kuhnen, 2003), and Preisach model (Tan X. and J.S. Baras, 2005). 

4.1 Bouc-Wen Model Re-Parameterization 

Without loss of generality the Bouc-Wen model (3a-b) entails an equivalent representation of the form: 

 
  )()( )()()()()(

1
twtxtwtwtxtxtw   

   (28) 

 )()()( twtxtv x      (29) 

This representation features a smaller number of unknown parameters as the coefficient w  in (3b) is 

set to 1 in (29). Of course, the parameters ),,(   and the internal signal )(tw  in (28)-(29) are not 

identical to the corresponding parameters and internal signal in (3a-b). The same symbols are used in 

(28)-(29) just to avoid introducing extra notation. Also, to alleviate the presentation, the derivation of 

(28)-(29) is placed in Appendix A. The following proposition completes the model (28)-(29). 

Proposition 5. The  Bouc-Wen model (28)-(29) satisfies Assumption HLA. Furthermore, the 

hysteresis internal state )(tw  has similar steady-state properties as )(tv  in HLA. In particular, )(tw  is 

T -periodic loading-unloading and the set  0;))(),(( ttwtx  is an oriented closed locus, referred to as 

),( wx -hysteresis loop, bordered by strictly increasing border functions ),(  WW .  

See proof in (Ikhouane and Rodellar, 2007, ch. 2). Additional properties are found in Appendix A 

where Fig. A1 emphasizes the system series-parallel structure of the Wiener system (1a-c) and (28)-

(29), making the parameters ),,,,( x  enter nonlinearly because ))(),(),(( twtvtx  are inaccessible. 

4.2 Estimation of the parameter x  

We will again make use of the (steady-state) system output )(
11 , tyU   to the input )cos()( 111 tUtu   

(see Subsection 3.1). These signals are related by equations (10a-c) where (10b) must now be replaced 

by (28)-(29). For convenience, the expressions of interest are rewritten: 

  )(cos )( 111, 11
 jGtUtxU     (30a) 
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  1111, (in)(
11

 jGtsUtxU       (30b) 

 






 
11111111111111 ,,,

1

,,,,  UUUUUUU wxwwxxw  


 (30c) 

 )()()(
111111 ,,, twtxtv UUxU    ,     (30d) 

 )()()(
1111 ,, ttvty UU     (30e) 

Presently, an additional experiment is performed considering the shifted input 

sh

sh UtUtu  )cos()( 111  , with 0shU  is freely chosen by the user, where the script 'sh' refers to 

'shifted' signals and scalars. Letting ),,,(
11111111 ,,,,

sh

U

sh

U

sh

U

sh

U yvwx   denote the associated responses, the 

following expressions (analogous to (30a), (30d) and (30e)) are readily obtained from (1a), (1c) and 

(29): 

   shUsh

sh

U UGtxUGjGtUtx )0()()0()(cos )(
1111 ,111,      (31a) 

 )()()(
111111 ,,, twtxtv sh

U

sh

Ux

sh

U         (31b) 

 )()()(
1111 ,, ttvty shsh

U

sh

U                (31c) 

where )(tsh  denotes the realization of the output noise during the new experiment. Subtracting (30d) 

from (31b) and (30e) from (31c), one gets: 

  shxU

sh

U UGtvtv )0()()(
1111 ,,          (32a) 

 ))()(()0()()(
1111 ,, ttUGtyty sh

shx

sh

U

sh

U         (32b) 

Operating the periodic averaging (5a-b) on both sides of (32b), one gets: 

 ))()(()0()()( ,,,, 1111
ttUGtyty N

sh

NshxNU

sh

NU       (32c) 

Averaging both sides of (32c) over the interval ],0[ 1T , with 11 /2 T , gives:  

   11

1111 0
1

0
,,,,

1

))()((
1

)0(

1
))()((

1

)0(

1 T

N

sh

N

sh

T

NU

sh

NU

sh

x dttt
TUG

dttyty
TUG

   (33a) 

This suggests the following estimator of x : 

   1

11110
,,,,

1

, ))()((
1

)0(ˆ
1ˆ T

NU

sh

NU

shN

Nx dttyty
TUG

 ;     (33b) 

where )0(ˆ
NG  is readily obtained letting 0s  in the transfer function estimate )ˆ,( ,NLsG   obtained in 

Section 3.3. Comparing (33a) and (33b), it is readily seen that: 

 x
N

Nx 


,
ˆ    (w.p. 1)       (34) 

where we have used the zero-mean ergodicity of output noise )(t  and the fact that )0(ˆ
NG  is a 

consistent estimator of )0(G  (because NL,̂  is a consistent estimator of L  (see Proposition C1 in 

Appendix C). 
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Remark 6. Equation (32b) shows that the parameter x  is identifiable provided that 0)0( G . 

Practically, this assumption is not very restrictive because real-life systems with zero static-gain are 

rather the exception than the rule. 

4.2 Estimation of the parameters ),,,(   

The estimation of the parameters ),,,(   will now be performed on the basis of equation (30c). 

Accordingly, no additional data acquisition will be required (those already collected in Subsection 3.1, 

using the input signal )cos()( 11 tUtu  , will prove to be sufficient). Now, to make use of (30c) one 

needs to replace all inaccessible signals involved there by their estimates. Equation (30d), suggests the 

following estimator of )(
11 , twU  : 

 )(ˆˆ)()(ˆ
,,,,,,, 111111

txtytw NUNxNUNU     (35) 

with  )(ˆcos )(ˆ
111,, 11

 jGtUtx NNU   where )(,, 11
ty NU   is obtained by (5a-b). Clearly, )(ˆ

,, 11
tw NU   is 

a consistent estimator of )(
11 , twU   because, )(,, 11

ty NU  , Nx,̂  and )(ˆ
1jGN  are known (by (9), (34), 

and (15a)) to be consistent estimators of )(
11 , tvU  , x , and )( 1jG , respectively. The point is that 

equation (30c) also involves the derivative of )(
11 , twU  . This derivative cannot be obtained from (35) 

because this involves )(,, 11
ty NU   which, by (5a-b) and (30e), depends on the noise )(t  which is not 

necessarily differentiable. To get around this difficulty, equation (30c) is transformed by operating the 

filter )1/(1)( sTsD D  on both sides of it, with 1/20  DT . Doing so, one gets: 

 












 





 
11111111111111 ,,,

1

,,,, )()( UUUUU

D

U

D

U wxsDwwxsDxw        

 H

T
def

t  ),(   (36a) 

with 

 ])[(
1111 ,,  U

D

U wssDw  ,    ][)(
1111 ,,  U

D

U xssDx      (36b) 

where the parameter vector 3
RH  and the regressor 3),( Rt  are defined by: 

  T

H     (36c) 

 
T

UUUUU

D

U wxsDwwxsDx 


 


])[(])[(,.)(
111111111111 ,,,

1

,,,







      (36d) 

To see the benefit of equation (36a) (over (30c)), let the signals )(
11 , txU  , )(

11 , txU  , 

)()()(
111111 ,,, txtvtw UxUU    be temporarily assumed to be known (i.e. accessible to measurements). 

Then, it follows from (36b) that all quantities in (36a) can be computed because the filters 

)1/(1)( sTsD D  and )1/()( sTsssD D  are realizable (as both are known and proper).  
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On the other hand, it is readily seen that equation (36a) involves two unknown quantities, the vector 

H  and the scalar 1 . Furthermore, the former has the properties 0 , 0,0   , 0   

and 0   (see Example 1). It follows that: 

  CH  with   0,0,0][ 32321

3

321   R
T

C     (37) 

Clearly, C  is a convex set. The above observations motivate the introduction of the following 

optimization problem: 

 ),(min
,1




J
C

     (38a) 

with 

   


 1

1
11

/)1(2

/2

2

, ),()(),(


  
k

k

TD

U dtttwJ  (38b) 

where Nk  is any sufficiently large integer (recall that )(
11 , twU   is steady-state 1/2  -periodic). It 

readily follows from (36a) and (38b) that 0),( HJ  , i.e. ),( J  does achieve its global minimum 

at ),(),( H  . The question is whether this global minimum is solely achieved with ),( H . The 

uniqueness of this global minimum is formally established in Proposition 6 (see hereafter). So, it will 

remain to design a search method for determining the unique solution ),( H  of this optimisation 

problem. The main difficulty is that the function ),( J  is quadratic in   but not in   (this is clearly 

seen in (36d)). Then, the optimization problem (38a-b) will be coped with using the separable least-

squares technique which, in fact, is a form of relaxation. Accordingly, one temporarily assumes that   

is known in (38b) so that (38a) becomes a least-squares problem, whose solution is, 

 







 1

1
11

1

1

/)1(2

/2
,

1
/)1(2

/2
),()(),(),()(



 






k

k

D

U

k

k

T

LS dtttwdttt  (39) 

where Nk is as in (38b). At this point, it is worth noticing that, if   is substituted to   in (39) then 

one gets H , using (36b). Specifically, one has: 

 







 1

1
11

1

1

/)1(2

/2
,

1
/)1(2

/2
),()(),(),()(



 






k

k

D

U

k

k

T

LSH dtttwdttt  (40) 

Now, let us go back to (38b) and replace there   by )(LS  using (39). Doing so, one gets a one-

dimensional optimisation problem, that only involves the variable  : 

 )(min
1




I


  (41a) 

  





  
/)1(2

/2

2

, ),()()())(,()(
11

k

k

T

LS

D

ULS

def

dtttwJI      (41b) 

Note that, for this problem to be well posed, the function )(LS  must be well defined which 

presently means that the matrix (that needs to be inversed) on the right side of (39) is actually 

invertible, whatever 1 . The invertibility of that matrix is formally proved in the proof of 
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Proposition 6 (Part 2). This makes it possible to apply the separable least-squares technique which 

operates this way: first, minimize )(I  and denote ̂  the value where the minimum is reached; then 

substituting ̂  to   in (40) one gets an estimate )ˆ(ˆ  LSH   of H .  

Proposition 6. 1) The optimization problem (38a-b), involving the cost function ),( J  has a unique 

solution, namely: ),(),(minarg
,1

H
C

J 





. 

2) In turn, the optimization problem (41a-b), involving the cost function )(I , has a unique solution, 

namely: 





)(minarg
1

I . 

See proof in Appendix D. The above result is quite important. But, it still is not quite practical because 

the function )(I  involves unavailable signals, i.e. )(
11 , twD

U   and ),( t  (see (41a-b)). Nevertheless, a 

practical cost function is readily obtained by replacing in )(I  the unavailable signals by their 

estimates. Doing so, one gets the following cost function:  
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where we have used the fact that all involved signals are 1/2  -periodic (by (5a-b)), letting the 

integrals in (44) be computed on ]/2,0[ 1 . With the above notations, the ),( H -estimator is 

expressed as follows: 

 )(minargˆ
1




NN I


   (46a) 

 ))ˆ((ˆ
,, NNLSNH P   C   (46b) 

where the operator (.)CP  denotes the orthogonal projection on the set C . This projection improves the 

quality of the estimates NH ,̂  because CH  and C  is convex, ensuring 

HNNLSHNH   )ˆ(ˆ
,, . 

Proposition 7. The estimator (46a-b) is consistent i.e. )ˆ,ˆ( ,NHN   converges to ),( H , w.p.1, as 

N . 
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Proof. The key fact is that the estimators NUy ,, 11 
 and )(ˆ

1jGN , respectively defined by (5a-b) and 

(13), are consistent in the sense that the former converges (by (9)) to )(
11 , tvU   and the latter converges 

(by (15a)) to )( 1jG , w.p.1 as  N . Then, comparing the quantities in (36a-d) and (39) with the 

corresponding quantities in (42)-(45b), it follows that  ),( tN   and )(, NLS  converge (w.p.1 as 

N ) to ),( t  and )(LS , respectively. Then, comparing (41b) and (42), one sees that )(NI  

converges to )(I  (w.p.1 as  N ). Then, it follows using Proposition 6 that, N̂  converges to   

and NH ,̂  to HLS   )( , w.p.1 as N  ■ 

The hysteretic subsystem identification method thus designed is summarized in Table III. 

Table III. Hysteretic subsystem identification method   

Step 1. Data collection. 

1.1 Again, consider the data collected in Table II (Step 1). 

1.2 Collect also the system output )(*

, 11
tyU   to the input signal 

sh

sh
UtUtu  )cos()(

111
 , over 1/20 Nt  , and 

compute the associated signal )(
,, 11

ty sh

NU   using (5a-b). 

Step 2. Estimation of the parameter x . Compute the estimate Nx,̂  using the estimator (33b) 

Step 3. Estimation of the parameter vector  TH   . 

3.1. Compute  )(ˆin)(ˆ
1111, 11

 jGtsUtx
NU

  and the filtered signals D

NU

D

NU wx ,,,, 1111

ˆ,ˆ   using (43) and (45b). 

3.2. Construct the vector function )(, NLS  using (44) and the scalar function )(NI  using (42). 

3.3. Determine the global minimum of )(NI , e.g. by plotting )(NI  vs 1 . 

3.4. Compute the parameter estimates  TNNNNH  ˆˆˆˆ
,   using (46b). 

5. SIMULATION 

Let the system (1a-c) be characterized by )2.0)(5.0/(1.0)(  sssG  and a hysteretic operator  [.]F  

described by (28)-(29) with the parameters 1,4.0,1,2  x  and 5.1 . The noise )(t  is 

a normally distributed random signal, with zero mean and standard deviation 1.0 .  

5.1 Identification of the linear subsystem transfer function )(sG  

Following Table II, the system transfer function )(sG  is identified in two main steps. 

Hysteresis loop identification. According to Table II, the first step consists in identifying the 

hysteresis loop produced when the Wiener system is excited with a sine input )cos()( 11 tUtu  . 

Presently, the choice 11 U   and srd /02.01   is made. The resulting steady-state output signal 

)(
11 , tyU   is shown by Fig. 3a and its filtered version )(,, 11

ty NU  , obtained by applying (5a-b) to )(
11 , tyU   

with 200N , is plotted in Fig. 3b. This shows that )(,, 11
ty NU   achieves an extremum at time 

st NU 5.7,, 11
 . Applying (13), one gets the phase estimate 15.0)(ˆ

1  jGN )(rad  and the estimated 

(linear subsystem output) signal  )(ˆcos )(ˆ
111,, 11

 jGtUtx NNU  . Then, plotting the locus 
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)/20());(),(ˆ( 1,,,, 1111
  ttytx NUNU , one gets the hysteresis loop of Fig. 4. The borders of this 

hysteresis loop define two functions )(ˆ
,1

xVv NU

  and )(ˆ
,1

xVv NU

 . One needs the corresponding 

inverse functions, )()ˆ( 1

,1
vVx NU

  and )()ˆ( 1

,1
vVx NU

 . Presently, the inverse functions are captured 

through an orthogonal function series expansion, involving Legendre orthogonal polynomials, on 

1 1, 1 , 1
ˆ ˆ(  ), ( ) [ 2.21,2.21]U N U NV U V U      . The obtained inverse functions serve to construct the (linear 

subsystem) output estimator (19), used in the next subsection. 

Identification of )(sG . First, no prior knowledge on )(sG  is supposed to be available. As pointed out 

in Example 2 (Part a) and Remark 4 (Part b), sinusoidal input signals )cos()( tUtu ii  )1( ni   are 

resorted to get the estimates of a set of frequency response )( ijG  . The frequencies are freely chosen, 

while the input amplitudes are selected using the search procedure of Table I. Then, the estimates 

)(ˆ
iN jG   are obtained using (19) and (22)-(25). Let us illustrate the method (in Step 2 of Table II) for 

2 2( , ) (1.03 , 0.05 / )U rd s  . The output )(
22 , tyU   is collected, on 2/20 Nt   (with 200N  ), 

and its filtered version )(,, 22
ty NU   is obtained applying (5a-b). Both signals are depicted in Fig. 5a-b. 

Notice that )(,, 22
ty NU   exactly spans the interval 

1 1, 1 , 1
ˆ ˆ[ ( ) , ( )] [ 2.21,2.21]U N U NV U V U    . In fact, the 

value 2 1.03U    has been selected (using Table I) so that full spanning of the above interval by 

)(,, 22
ty NU   is observed. Using (19), one gets the estimate )(ˆ

,, 22
tx NU   of the internal signal )(

22 , txU  . The 

true and estimated signals are plotted in Fig. 6. Then, the frequency response estimate )(ˆ
2jGN  is 

obtained using (24)-(25) letting there 1k  and 2  . This procedure is repeated with various 

couples ),( iiU  . A sample of the estimates )(ˆ
iN jG   thus obtained is shown in Table IV. This shows 

that all estimates are quite close to their true values. Now, let us assume the structure of )(sG  to be 

known. Then, the corresponding parameter vector is T

L ]1.01.07.0[ . Applying the estimation 

method of Appendix C, one gets the estimate T

NL ]105.0103.068.0[ˆ
,  . 

Estimation of the hysteretic subsystem parameters 

In the second stage of the identification method, the hysteresis parameters are estimated. Following 

Table III, the input signal )cos()( 11 tUtu   and the corresponding system output )(
11 , tyU   are used 

again. These are completed with new data including the (shifted-amplitude) input signal 

sh

sh UtUtu  )cos()( 11   and the corresponding system output )(
11, ty sh

U  . All signals are collected over 

the interval  1/20 Nt   with 200N . Using these data, an estimate of the parameter x  is 

readily obtained using (33b). Doing so, one gets 97.0ˆ
, Nx which is close to the true value 1x . 
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Then, the filtered signals D

NU

D

NU wx ,,,, 1111
ˆ,ˆ   are computed using (43) and (45b) with )1/(1)( ssD  . For 

the sake of illustration, both D

Uw
11 ,  and D

NUw ,, 11
ˆ   are plotted in Fig. 7 which confirms the satisfactory 

quality of the estimation. Then, the vector function )(, NLS  is constructed using (44) and the scalar 

function )(NI  using (42). The latter is plotted in Fig. 8 which confirms that )(NI  features a global 

minimum, achieved at ˆ 1.55N  . Then, using (46b), one gets the hysteresis parameter estimate 

   TT

NNNNH 403.004.105.2ˆˆˆˆ
,    which is close to the true vector  T

H 4.012 . 
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Fig. 3a. Steady-state periodic output )(
11, tyU   over two 

periods. 
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Fig. 3b. Estimated undisturbed output )(,, 11
ty NU  over one 

period. 
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Fig. 5a. Steady-state output )(
22 , tyU   obtained with 

),( 22 U  over two periods. 
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Fig. 6. Steady-state internal signal )(
22 , txU   (solid) and its 

estimate )(ˆ
,, 22

tx NU   (dashed). The two signals are too 

close to be distinguished. 

 

350 400 450 500 550 600

-0.04

-0.02

0

0.02

0.04

0.06

 

Fig. 7. Steady-state signal D

Uw
11 ,  (solid) and its estimate 

D

NUw ,, 11

ˆ   (dashed); the latter is also recognizable due to 

noise  effect on it, unlike the former.  
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Fig. 8. Plot of )(NI  vs 1  

 

Table IV. Frequency response estimates )(ˆ
iN jG   

i 1 2 3 4 5 

iU  
1 1.03 1.16 1.47 3.45 

i (rd/s) 
0.02 0.05 0.1 0.2 0.5 

)( ijG   1 0.96 0.88 0.66 0.26 

)(ˆ
iN jG   1 0.97 0.85 0.69 0.29 

)( ijG   

(rd) 
0.14 0.34 0.66 1.97 2.48 

)(ˆ
iN jG   

(rd) 
0.15 0.32 0.68 1.94 2.45 

 

4. CONCLUSION 

The problem of system identification is addressed for Wiener systems containing nonlinear hysteretic 

elements. The system is represented by the model (1a-c) where the structure of )(sG  is not necessarily 

known. The proposed two-stage identification method is a combination of frequency and prediction-

error techniques. It features the ability of accurately estimating the linear subsystem )(sG  without 

requiring any prior knowledge on the hysteretic operator ][F , except for assumption HLA. 

Interestingly, this assumption is satisfied by several hysteretic models. The second stage of the 

identification method is devoted to parameter estimation of ][F  on the basis of the Bouc-Wen model. 

It is shown that, this estimation can be accurately performed without requiring any prior knowledge on 

)(sG , except for its static gain )0(G . The weak coupling between the two identification stages is 

another feature of the developed method. To the authors’ knowledge no previous study has dealt with 

the identification of Wiener systems involving hysteretic operators other than backlash. This study can 
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be continued in several directions including: (i) investigating the hysteresis parameter estimation stage 

(Section 4) for other hysteresis models e.g. Prandtl-Ishlinkskii model and Preisach model; (ii) 

investigating the possibility of developing a single stage identification scheme. 
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APPENDIX A. Further Information on Bouc-Wen Hysteresis Model. 

Part 1. Derivation of equations (28)-(29). 

Introduce the variable change )()(1 twktw w , where 0wk  is any constant scalar. Then, (3a-b) 

rewrites in term of )(1 tw  as follows: 

   )()()( 11 twtxtv wx     (A1) 

 


 )()( )()()()()( 111
1

1111 twtxtwtwtxtxtw  


  (A2) 
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)(tx

with www k/1   , wk 1 ,  11 /   wk ,  and 11 /   wk . It is readily seen that the parameters 

),( 11   are still satisfying the properties 011   , 011   , while the parameter   remains 

unchanged. That is, the couple of equations (A1)-(A2) is still defining a Bouc-Wen model, now 

denoted ][1 F , just as (3a-b) is defining ][F . A judicious choice of the free scalar wk  is wwk   

because this entails 11 w . Doing so, (A1)-(A2) boils down to (28)-(29). The latter together with (1a-

c) lead to the block-diagram of Fig. A1 of the whole Wiener system. 

Part 2. Additional properties of the Bouc-Wen model 

In the conditions of Proposition 5, the internal state )(tw  of the Bouc-Wen model (28)-(29) has the 

following properties, where the notations are similar to those used in Assumption HLA: 

a) There exist two strictly-increasing C  functions W  and W  such that, the steady-state signal 

)(tw  satisfies: 

  ))(()( txWtw   for all ))([ TmmTt   and all Nm  (A3) 

 ))(()( txWtw   for ))1()[( TmTmt    (A4) 

 ))(())(( mTxWmTxW    and    ))())(( TmxWTmxW     (A5) 

b) The functions (.)W  and (.)W  depend on the parameters ),,,(   in equation (28) and on the 

excursion length minmax xx   of the input signal )(tx , but not on its period T .  

c) Finally, in the case of centred inputs, i.e. when minmax xx  , the functions 
W  and 

W  have the 

property, )()( xWxW   , for all ],[ maxmin xxx . Then, the ),( wx -hysteresis loop turns out to 

be symmetric with respect to the origin. 

 

Fig. A1.  Wiener System (1a-c) with ][F  being a Bouc-Wen hysteresis 

 

 

APPENDIX B. Proof of Proposition 4.  

Part 1. By (5a-b), the statement (21) implies, w.p.1, that )(tv  spans exactly the interval  

)](, )([ 11 11
UVUV UU

  . Since ][xFv   and )(tx  is loading-unloading with amplitude maxX , it follows 

from Assumption HLA (Part 1) that 1max  UX  , w.p.1. By Definition 2 (Part 2), there is a unique input 

amplitude maxU  such that  maxX equals to the preceding value. 

u(t) 

)(t
 

)(tw )(ty
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Proof of Part 2. As )(tx  is T -periodic, let it be represented by its Fourier series: 

  





0

cos)(
k

kk tkXtx  ,  with 
T

 2
      (B1) 

The input )(tu  has also been represented by its Fourier series (23). Then, the relation usGx )(  

entails: 

  )(
k

k

U

X
jkG  ,   kkjkG   )(   (B2) 

On the other hand, it has already been pointed out (see proof of Part 1), that the input amplitude maxU  

is selected such that (w.p.1) )(tx  is T -periodic loading-unloading spanning the interval ], [ 11 UU . 

Then, it follows from Proposition 3 that the estimated signal )()(ˆ txtxN  , w.p.1 as N . Then, it 

follows comparing (B1) and (22) that, kNk XX ,
ˆ  and kNk  ,

ˆ , w.p.1 as N . Comparing (B2) 

and (25) it follows that, )()(ˆ  jkGjkGN  , w.p.1 as N , which proves Proposition 4  ■ 

APPENDIX C. Parameter Estimation of )(sG from frequency data. 

Here, the transfer function )(sG  is supposed to be of known structure: 

  
),(

),(
),()(

L

L
def

L
sA

sB
sGsG


     (C1) 

with, 

 01

1

1),( asasassA na

na

na

L  
  ;  01

1

1),( bsbsbsB nb

nbL  
    (C2) 

 nbnaT

nbnaL bbbaaa 
  R][ 011011  ,    )( nbna    (C3) 

where the degrees ),( nbna  are known, but the parameter vector L  is not. The aim is to estimate L   

using a given set of frequency data )1()( nijG i  . To this end, consider the following least 

squares estimator: 

 )(minargˆ
, 

 NNL P  (C4) 

with 

 



n

i

iiiNN jBjAjG
n

P
1

2

),(),()(ˆ1
)(    (C5) 

where nbnan  . The expression of NL,̂  will be given later. First, its consistency is established.  

Proposition C1. Suppose the transfer function )(sG  is of known structure (28a-b) and assume the 

polynomials ),( LsA   and ),( LsB   are coprime and nbnan  . Then, the estimator (29a-b)  is 

consistent, i.e. LNL  ˆˆ
,  , w.p.1 as N . 

Proof. First, let us check that: 



 

 

 

 

31 

  0)( LNP  , w.p.1 as N .  (C6) 

Using (C1)-(C3) it follows from (C5) that: 
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which entails (C6), due to Proposition 4 which ensures that ),()(ˆ
LiiN jGjG   , w.p.1 as N . 

The second preliminary result is that L  is the only vector satisfying (C6). Specifically, the following 

statement holds: 

  0)( NP  (w.p.1 as N )  with nbnaR             L   (C7) 

To prove this, let us suppose that 0)( NP , w.p.1 as N . Then, it follows from (C5) that, w.p.1 

as N , 0),(),()(ˆ   iiiN jBjAjG  or, equivalently, 0),()(ˆ   iiN jGjG , using 

(C1)-(C2). But, it has already been noticed that ),()(ˆ
LiiN jGjG   . Then, one gets that, 

),(),( Lii jGjG    which, in view of (C1)-(C2), yields 

),(/),(),(/),( LiLiii jAjBjAjB    or, equivalently, 0),(),(),(),(   sAsBsAsB LL  

with )1( nijs i   . As the polynomial ),(),(),(),(  sAsBsAsB LL   is of degree nbna  , it 

has at most nbna   different zeros. Since the equality 0),(),(),(),(   sAsBsAsB LL  holds for 

nbnan   different values of Cs , namely )1( nij i  , it follows that the mentioned 

polynomial is zero. That is, one has the polynomial equality ),(),(),(),(  sAsBsAsB LL  , Cs . 

Since ),( LsA   and ),( LsB   are coprime, the previous polynomial equality implies that ),( LsA   

divides  ),( sA  and ),( LsB   divides ),( sB . This, together with the fact that ),( LsA   and ),( sA  

are of the same degree and monic (higher degree coefficient equals 1), it follows that 

),( LsA  = ),( sA , which also entails that ),( LsB  = ),( sB , implying that L   . Hence, the 

statement (C7) is proved. The statements (C6) and (C7) show that , w.p.1 as N , the function 

)(NP  possesses a global minimum equal to zero and this minimum is only achieved at L  . It 

follows that, w.p.1 as N , the estimator NL,̂  defined by (C4)-(C5) converges to L , which 

proves Proposition C1  ■  

To complete the analysis of (C4)-(C5), its explicit solution will now be derived. To this end, introduce 

the notation: 
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Then, the cost function )(NP  expresses as follows: 
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where the bar symbol refers to complex conjugate. The estimate )(minargˆ
, 

 NNL P  is the vector    

where the derivative 0/)(  ddPN . It is easily checked that: 
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APPENDIX D. Proof of Proposition 6. 

Proof of Part 1. One needs to show that ),(),(0),( HJ   . For convenience, introduce 

the notations 3

321 ][ R T  and 3

3,2,1, ][ R T

HHHH  . Then, (36a) writes: 
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  (D1) 

In turn, 0),( J  yields an equation like (D1), replacing there the iH , ’s by the i  ‘s and   by  : 
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  (D2) 

By Property (A5) (see Appendix A), the ),( wx -hysteresis loop is presently symmetrical with respect to 

the origin. Furthermore, by Properties (A3)-(A4), there is a sequence of time intervals, say 
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kktt kk  )( Nk , on which one has 0
11 , Uw , 0

11 , Uw , and 

)sgn()sgn(
1111 ,,  UU xw    with  )(in)( 1111, 11

 jGtsUtxU  , due to (30b). Then, (D1)-(D2) 

simplify to: 
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Suppose that    and introduce the notations: 

 
 ))(()(

11, twtz U ,   1* 

   (D5) 

Then, (D3)-(D4) imply: 

 
*

 )(  )( 3,2,1,321

 zz HHH  ,  ),(  zzz   (D6) 

where ),(  zz  denotes the image of ),( 
kk tt  by )(tz . Differentiating both sides of (D6) with respect to 

z , yields: 

 1

3,2,

*

32

*

 )( )(   zHH ,  ),(  zzz   

But, this cannot hold unless 1*  . It turns out that   . Then, (D6) implies: 
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  zz HHH  )(  )( 3,2,1,321   ,  ),(  zzz  

In turn, this yields: 

 1,1  H    and  )( )( 3,2,32 HH     (D7) 

Again, by symmetry of the ),( wx -hysteresis loop around the origin, there is a series of time intervals, 

say 
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),( kkkk  )( Nk , on which one has 0
11 , Uw  and 0

11, Uw . Then, (D1)-

(D2) simplify to: 
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where we have used the fact that    and 1H,1   . Comparing (D8) and (D9), gives: 

 3,2,32 HH     (D10) 

From (D7) and (D10), it follows that 2,2  H   and H,33    . We have thus proved that the equation 

0),( J  has a unique solution. This proves the statement ),(),(0),( * J  and 

establishes Part 1 of Proposition 6.  

Proof of Part 2. First, notice that )(LS  (defined by (39)) does exist provided the following 

(persistent excitation) condition holds: 
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Under this condition, )(I  turns out to be well defined due to (41b) and (39). To prove (D11), by the 

contrary, consider an arbitrary sequence 0i , such that 0i . If (D11) does not hold then, there 

exists a vector sequence, say 3
RiZ , with unit norm ( 1iZ ), such that: 
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for at least one k . It readily follows from (D12) that: 
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This immediately gives: 

 0),(suplim 


tZ T

i
i

 ,  (D14) 

almost everywhere on ]/)1(2,/2[ 11  kk . Using (36d) and the notation ][ 3,2,1, iii

T

i zzzZ  , it 

follows from (D14) that, one has almost everywhere on ]/)1(2,/2[ 11  kk : 
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Operating 1)]([ sD  on the left side of the above statement yields: 
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with   an exponentially vanishing term. Consider the time subintervals 
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)( Nk , already introduced in Part 1. On these subintervals, one has 0
11 , Uw , 0

11 , Uw  and 

0)(
11, txU  . It follows that (D15) simplifies, almost everywhere on the above subintervals,  to: 
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Then, the time-varying (loading-unloading) nature of 
11 ,Uw  yields: 
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Similarly, considering the subinterval 
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 kkkk , introduced in Part 1 of this 

appendix, it follows that (D15) simplifies (almost everywhere) on this interval to: 
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   (D18) 

Again, using the loading-unloading nature of 
11 ,Uw , one gets: 

 0)(limlim 3,2,1, 
 ii

i
i

i
zzz   (D19) 

It follows from (D17) and (D19) that all three components  ),,,( 3,2,1, iii zzz  converge to zero as i . 

But this contradicts the fact that 1iZ . Hence, (D11) holds. 

Now, to prove the result of Proposition 6 (Part 2), recall that from (41b) one has ))(,()(  LSJI  . 

This implies that ),())(,()( HLS JJI    (using (40)). As 0),( HJ  , one gets that 

0)( I . The question is whether this global minimum is unique. Suppose that there exists a second 

global minimum at   i.e. 0)( I . This implies that 0))(,(   LSJ  which, in view of Part 1 of this 

proposition, gives ),())(,( * LS . This proves the uniqueness of the global minimum of the 

function )(I   and completes the proof of Proposition 5 ■ 


