101 research outputs found

    Planning for steerable needles in neurosurgery

    Get PDF
    The increasing adoption of robotic-assisted surgery has opened up the possibility to control innovative dexterous tools to improve patient outcomes in a minimally invasive way. Steerable needles belong to this category, and their potential has been recognised in various surgical fields, including neurosurgery. However, planning for steerable catheters' insertions might appear counterintuitive even for expert clinicians. Strategies and tools to aid the surgeon in selecting a feasible trajectory to follow and methods to assist them intra-operatively during the insertion process are currently of great interest as they could accelerate steerable needles' translation from research to practical use. However, existing computer-assisted planning (CAP) algorithms are often limited in their ability to meet both operational and kinematic constraints in the context of precise neurosurgery, due to its demanding surgical conditions and highly complex environment. The research contributions in this thesis relate to understanding the existing gap in planning curved insertions for steerable needles and implementing intelligent CAP techniques to use in the context of neurosurgery. Among this thesis contributions showcase (i) the development of a pre-operative CAP for precise neurosurgery applications able to generate optimised paths at a safe distance from brain sensitive structures while meeting steerable needles kinematic constraints; (ii) the development of an intra-operative CAP able to adjust the current insertion path with high stability while compensating for online tissue deformation; (iii) the integration of both methods into a commercial user front-end interface (NeuroInspire, Renishaw plc.) tested during a series of user-controlled needle steering animal trials, demonstrating successful targeting performances. (iv) investigating the use of steerable needles in the context of laser interstitial thermal therapy (LiTT) for maesial temporal lobe epilepsy patients and proposing the first LiTT CAP for steerable needles within this context. The thesis concludes with a discussion of these contributions and suggestions for future work.Open Acces

    Robotics-Assisted Needle Steering for Percutaneous Interventions: Modeling and Experiments

    Get PDF
    Needle insertion and guidance plays an important role in medical procedures such as brachytherapy and biopsy. Flexible needles have the potential to facilitate precise targeting and avoid collisions during medical interventions while reducing trauma to the patient and post-puncture issues. Nevertheless, error introduced during guidance degrades the effectiveness of the planned therapy or diagnosis. Although steering using flexible bevel-tip needles provides great mobility and dexterity, a major barrier is the complexity of needle-tissue interaction that does not lend itself to intuitive control. To overcome this problem, a robotic system can be employed to perform trajectory planning and tracking by manipulation of the needle base. This research project focuses on a control-theoretic approach and draws on the rich literature from control and systems theory to model needle-tissue interaction and needle flexion and then design a robotics-based strategy for needle insertion/steering. The resulting solutions will directly benefit a wide range of needle-based interventions. The outcome of this computer-assisted approach will not only enable us to perform efficient preoperative trajectory planning, but will also provide more insight into needle-tissue interaction that will be helpful in developing advanced intraoperative algorithms for needle steering. Experimental validation of the proposed methodologies was carried out on a state of-the-art 5-DOF robotic system designed and constructed in-house primarily for prostate brachytherapy. The system is equipped with a Nano43 6-DOF force/torque sensor (ATI Industrial Automation) to measure forces and torques acting on the needle shaft. In our setup, an Aurora electromagnetic tracker (Northern Digital Inc.) is the sensing device used for measuring needle deflection. A multi-threaded application for control, sensor readings, data logging and communication over the ethernet was developed using Microsoft Visual C 2005, MATLAB 2007 and the QuaRC Toolbox (Quanser Inc.). Various artificial phantoms were developed so as to create a realistic medium in terms of elasticity and insertion force ranges; however, they simulated a uniform environment without exhibiting complexities of organic tissues. Experiments were also conducted on beef liver and fresh chicken breast, beef, and ham, to investigate the behavior of a variety biological tissues

    Closed-Loop Planning and Control of Steerable Medical Needles

    Get PDF
    Steerable needles have the potential to increase the effectiveness of needle-based clinical procedures such as biopsy, drug delivery, and radioactive seed implantation for cancer treatment. These needles can trace curved paths when inserted into tissue, thereby increasing maneuverability and targeting accuracy while reaching previously inaccessible targets that are behind sensitive or impenetrable anatomical regions. Guiding these flexible needles along an intended path requires continuously inserting and twisting the needle at its base, which is not intuitive for a human operator. In addition, the needle often deviates from its intended trajectory due to factors such as tissue deformation, needle-tissue interaction, noisy actuation and sensing, modeling errors, and involuntary patient motions. These challenges can be addressed with the assistance of robotic systems that automatically compensate for these perturbations by performing motion planning and feedback control of the needle in a closed-loop fashion under sensory feedback. We present two approaches for efficient closed-loop guidance of steerable needles to targets within clinically acceptable accuracy while safely avoiding sensitive or impenetrable anatomical structures. The first approach uses a fast motion planning algorithm that unifies planning and control by continuously replanning, enabling correction for perturbations as they occur. We evaluate our method using a needle steering system in phantom and ex vivo animal tissues. The second approach integrates motion planning and feedback control of steerable needles in highly deformable environments. We demonstrate that this approach significantly improves the probability of success compared to prior approaches that either consider uncertainty or deformations but not both simultaneously. We also propose a data-driven method to estimate parameters of stochastic models of steerable needle motion. These models can be used to create realistic medical simulators for clinicians wanting to train for steerable needle procedures and to improve the effectiveness of existing planning and control methods. This dissertation advances the state of the art in planning and control of steerable needles and is an important step towards realizing needle steering in clinical practice. The methods developed in this dissertation also generalize to important applications beyond medical needle steering, such as manipulating deformable objects and control of mobile robots.Doctor of Philosoph

    Characterisation and State Estimation of Magnetic Soft Continuum Robots

    Get PDF
    Minimally invasive surgery has become more popular as it leads to less bleeding, scarring, pain, and shorter recovery time. However, this has come with counter-intuitive devices and steep surgeon learning curves. Magnetically actuated Soft Continuum Robots (SCR) have the potential to replace these devices, providing high dexterity together with the ability to conform to complex environments and safe human interactions without the cognitive burden for the clinician. Despite considerable progress in the past decade in their development, several challenges still plague SCR hindering their full realisation. This thesis aims at improving magnetically actuated SCR by addressing some of these challenges, such as material characterisation and modelling, and sensing feedback and localisation. Material characterisation for SCR is essential for understanding their behaviour and designing effective modelling and simulation strategies. In this work, the material properties of commonly employed materials in magnetically actuated SCR, such as elastic modulus, hyper-elastic model parameters, and magnetic moment were determined. Additionally, the effect these parameters have on modelling and simulating these devices was investigated. Due to the nature of magnetic actuation, localisation is of utmost importance to ensure accurate control and delivery of functionality. As such, two localisation strategies for magnetically actuated SCR were developed, one capable of estimating the full 6 degrees of freedom (DOFs) pose without any prior pose information, and another capable of accurately tracking the full 6-DOFs in real-time with positional errors lower than 4~mm. These will contribute to the development of autonomous navigation and closed-loop control of magnetically actuated SCR

    Robotic-assisted approaches for image-controlled ultrasound procedures

    Get PDF
    Tese de mestrado integrado, Engenharia Biomédica e Biofísica (Engenharia Clínica e Instrumentação Médica), Universidade de Lisboa, Faculdade de Ciências, 2019A aquisição de imagens de ultrassons (US) é atualmente uma das modalidades de aquisição de imagem mais implementadas no meio médico por diversas razões. Quando comparada a outras modalidades como a tomografia computorizada (CT) e ressonância magnética (MRI), a combinação da sua portabilidade e baixo custo com a possibilidade de adquirir imagens em tempo real resulta numa enorme flexibilidade no que diz respeito às suas aplicações em medicina. Estas aplicações estendem-se desde o simples diagnóstico em ginecologia e obstetrícia, até tarefas que requerem alta precisão como cirurgia guiada por imagem ou mesmo em oncologia na área da braquiterapia. No entanto ao contrário das suas contrapartes devido à natureza do princípio físico da qual decorrem as imagens, a sua qualidade de imagem é altamente dependente da destreza do utilizador para colocar e orientar a sonda de US na região de interesse (ROI) correta, bem como, na sua capacidade de interpretar as imagens obtidas e localizar espacialmente as estruturas no corpo do paciente. De modo para tornar os procedimentos de diagnóstico menos propensos a erros, bem como os procedimentos guiados por imagem mais precisos, o acoplamento desta modalidade de imagem com uma abordagem robótica com controlo baseado na imagem adquirida é cada vez mais comum. Isto permite criar sistemas de diagnóstico e terapia semiautónomos, completamente autónomos ou cooperativos com o seu utilizador. Esta é uma tarefa que requer conhecimento e recursos de múltiplas áreas de conhecimento, incluindo de visão por computador, processamento de imagem e teoria de controlo. Em abordagens deste tipo a sonda de US vai agir como câmara para o interior do corpo do paciente e o processo de controlo vai basear-se em parâmetros tais como, as informações espaciais de uma certa estrutura-alvo presente na imagem adquirida. Estas informações que são extraídos através de vários estágios de processamento de imagem são utilizadas como realimentação no ciclo de controlo do sistema robótico em questão. A extração de informação espacial e controlo devem ser o mais autónomos e céleres possível, de modo a conseguir produzir-se um sistema com a capacidade de atuar em situações que requerem resposta em tempo real. Assim, o objetivo deste projeto foi desenvolver, implementar e validar, em MATLAB, as bases de uma abordagem para o controlo semiautónomo baseado em imagens de um sistema robótico de US e que possibilite o rastreio de estruturas-alvo e a automação de procedimentos de diagnóstico gerais com esta modalidade de imagem. De modo a atingir este objetivo foi assim implementada nesta plataforma, um programa semiautónomo com a capacidade de rastrear contornos em imagens US e capaz de produzir informação relativamente à sua posição e orientação na imagem. Este programa foi desenhado para ser compatível com uma abordagem em tempo real utilizando um sistema de aquisição SONOSITE TITAN, cuja velocidade de aquisição de imagem é de 25 fps. Este programa depende de fortemente de conceitos integrados na área de visão por computador, como computação de momentos e contornos ativos, sendo este último o motor principal da ferramenta de rastreamento. De um modo geral este programa pode ser descrito como uma implementação para rastreamento de contornos baseada em contornos ativos. Este tipo de contornos beneficia de um modelo físico subjacente que o permite ser atraído e convergir para determinadas características da imagem, como linhas, fronteiras, cantos ou regiões específicas, decorrente da minimização de um funcional de energia definido para a sua fronteira. De modo a simplificar e tornar mais célere a sua implementação este modelo dinâmico recorreu à parametrização dos contornos com funções harmónicas, pelo que as suas variáveis de sistema são descritoras de Fourier. Ao basear-se no princípio de menor energia o sistema pode ser encaixado na formulação da mecânica de Euler-Lagrange para sistemas físicos e a partir desta podem extrair-se sistemas de equações diferenciais que descrevem a evolução de um contorno ao longo do tempo. Esta evolução dependente não só da energia interna do contorno em sim, devido às forças de tensão e coesão entre pontos, mas também de forças externas que o vão guiar na imagem. Estas forças externas são determinadas de acordo com a finalidade do contorno e são geralmente derivadas de informação presente na imagem, como intensidades, gradientes e derivadas de ordem superior. Por fim, este sistema é implementado utilizando um método explícito de Euler que nos permite obter uma discretização do sistema em questão e nos proporciona uma expressão iterativa para a evolução do sistema de um estado prévio para um estado futuro que tem em conta os efeitos externos da imagem. Depois de ser implementado o desempenho do programa semiautomático de rastreamento foi validado. Esta validação concentrou-se em duas vertentes: na vertente da robustez do rastreio de contornos quando acoplado a uma sonda de US e na vertente da eficiência temporal do programa e da sua compatibilidade com sistemas de aquisição de imagem em tempo real. Antes de se proceder com a validação este sistema de aquisição foi primeiro calibrado espacialmente de forma simples, utilizando um fantoma de cabos em N contruído em acrílico capaz de produzir padrões reconhecíveis na imagem de ultrassons. Foram utilizados padrões verticais, horizontais e diagonais para calibrar a imagem, para os quais se consegue concluir que os dois primeiros produzem melhores valores para os espaçamentos reais entre pixéis da imagem de US. Finalmente a robustez do programa foi testada utilizando fantomas de 5%(m/m) de agar-agar incrustados com estruturas hipoecogénicas, simuladas por balões de água, construídos especialmente para este propósito. Para este tipo de montagem o programa consegue demonstrar uma estabilidade e robustez satisfatórias para diversos movimentos de translação e rotação da sonda US dentro do plano da imagem e mostrando também resultados promissores de resposta ao alongamento de estruturas, decorrentes de movimentos da sonda de US fora do plano da imagem. A validação da performance temporal do programa foi feita com este a funcionar a solo utilizando vídeos adquiridos na fase anterior para modelos de contornos ativos com diferentes níveis de detalhe. O tempo de computação do algoritmo em cada imagem do vídeo foi medido e a sua média foi calculada. Este valor encontra-se dentro dos níveis previstos, sendo facilmente compatível com a montagem da atual da sonda, cuja taxa de aquisição é 25 fps, atingindo a solo valores na gama entre 40 e 50 fps. Apesar demonstrar uma performance temporal e robustez promissoras esta abordagem possui ainda alguns limites para os quais a ainda não possui solução. Estes limites incluem: o suporte para um sistema rastreamento de contornos múltiplos e em simultâneo para estruturas-alvo mais complexas; a deteção e resolução de eventos topológicos dos contornos, como a fusão, separação e auto-interseção de contornos; a adaptabilidade automática dos parâmetros do sistema de equações para diferentes níveis de ruido da imagem e finalmente a especificidade dos potenciais da imagem para a convergência da abordagem em regiões da imagem que codifiquem tipo de tecidos específicos. Mesmo podendo beneficiar de algumas melhorias este projeto conseguiu atingir o objetivo a que se propôs, proporcionando uma implementação eficiente e robusta para um programa de rastreamento de contornos, permitindo lançar as bases nas quais vai ser futuramente possível trabalhar para finalmente atingir um sistema autónomo de diagnóstico em US. Além disso também demonstrou a utilidade de uma abordagem de contornos ativos para a construção de algoritmos de rastreamento robustos aos movimentos de estruturas-alvo no a imagem e com compatibilidade para abordagens em tempo-real.Ultrasound (US) systems are very popular in the medical field for several reasons. Compared to other imaging techniques such as CT or MRI, the combination of low-priced and portable hardware with realtime image acquisition enables great flexibility regarding medical applications, from simple diagnostics tasks to high precision ones, including those with robotic assistance. Unlike other techniques, the image quality and procedure accuracy are highly dependent on user skills for spatial ultrasound probe positioning and orientation around a region of interest (ROI) for inspection. To make diagnostics less prone to error and guided procedures more precise, and consequently safer, the US approach can be coupled to a robotic system. The probe acts as a camera to the patient body and relevant imaging information can be used to control a robotic arm, enabling the creation of semi-autonomous, cooperative and possibly fully autonomous diagnostics and therapeutics. In this project our aim is to develop a semi-autonomous tool for tracking defined structures of interest within US images, that outputs meaningful spatial information of a target structure (location of the centre of mass [CM], main orientation and elongation). Such tool must accomplish real-time requirements for future use in autonomous image-guided robotic systems. To this end, the concepts of moment-based visual servoing and active contours are fundamental. Active contours possess an underlying physical model allowing deformation according to image information, such as edges, image regions and specific image features. Additionally, the mathematical framework of vision-based control enables us to establish the types of necessary information for controlling a future autonomous system and how such information can be transformed to specify a desired task. Once implemented in MATLAB the tracking and temporal performance of this approach is tested in built agar-agar phantoms embedded with water-filled balloons, for stability demonstration, probe motion robustness in translational and rotational movements, as well as promising capability in responding to target structure deformations. The developed framework is also inside the expected levels, being compatible with a 25 frames per second image acquisition setup. The framework also has a standalone tool capable of dealing with 50 fps. Thus, this work lays the foundation for US guided procedures compatible with real-time approaches in moving and deforming targets

    Robotic control of deformable continua and objects therein

    Get PDF

    Investigating Ultrasound-Guided Autonomous Assistance during Robotic Minimally Invasive Surgery

    Get PDF
    Despite it being over twenty years since the first introduction of robotic surgical systems in common surgical practice, they are still far from widespread across all healthcare systems, surgical disciplines and procedures. At the same time, the systems that are used act as mere tele-manipulators with motion scaling and have yet to make use of the immense potential of their sensory data in providing autonomous assistance during surgery or perform tasks themselves in a semi-autonomous fashion. Equivalently, the potential of using intracorporeal imaging, particularly Ultrasound (US) during surgery for improved tumour localisation remains largely unused. Aside from the cost factors, this also has to do with the necessity of adequate training for scan interpretation and the difficulty of handling an US probe near the surgical sight. Additionally, the potential for automation that is being explored in extracorporeal US using serial manipulators does not yet translate into ultrasound-enabled autonomous assistance in a surgical robotic setting. Motivated by this research gap, this work explores means to enable autonomous intracorporeal ultrasound in a surgical robotic setting. Based around the the da Vinci Research Kit (dVRK), it first develops a surgical robotics platform that allows for precise evaluation of the robot’s performance using Infrared (IR) tracking technology. Based on this initial work, it then explores the possibility to provide autonomous ultrasound guidance during surgery. Therefore, it develops and assesses means to improve kinematic accuracy despite manipulator backlash as well as enabling adequate probe position with respect to the tissue surface and anatomy. Founded on the acquired anatomical information, this thesis explores the integration of a second robotic arm and its usage for autonomous assistance. Starting with an autonomously acquired tumor scan, the setup is extended and methods devised to enable the autonomous marking of margined tumor boundaries on the tissue surface both in a phantom as well as in an ex-vivo experiment on porcine liver. Moving towards increased autonomy, a novel minimally invasive High Intensity Focused Ultrasound (HIFUS) transducer is integrated into the robotic setup including a sensorised, water-filled membrane for sensing interaction forces with the tissue surface. For this purpose an extensive material characterisation is caried out, exploring different surface material pairings. Finally, the proposed system, including trajectory planning and a hybrid-force position control scheme are evaluated in a benchtop ultrasound phantom trial

    Realistic tool-tissue interaction models for surgical simulation and planning

    Get PDF
    Surgical simulators present a safe and potentially effective method for surgical training, and can also be used in pre- and intra-operative surgical planning. Realistic modeling of medical interventions involving tool-tissue interactions has been considered to be a key requirement in the development of high-fidelity simulators and planners. The soft-tissue constitutive laws, organ geometry and boundary conditions imposed by the connective tissues surrounding the organ, and the shape of the surgical tool interacting with the organ are some of the factors that govern the accuracy of medical intervention planning.\ud \ud This thesis is divided into three parts. First, we compare the accuracy of linear and nonlinear constitutive laws for tissue. An important consequence of nonlinear models is the Poynting effect, in which shearing of tissue results in normal force; this effect is not seen in a linear elastic model. The magnitude of the normal force for myocardial tissue is shown to be larger than the human contact force discrimination threshold. Further, in order to investigate and quantify the role of the Poynting effect on material discrimination, we perform a multidimensional scaling study. Second, we consider the effects of organ geometry and boundary constraints in needle path planning. Using medical images and tissue mechanical properties, we develop a model of the prostate and surrounding organs. We show that, for needle procedures such as biopsy or brachytherapy, organ geometry and boundary constraints have more impact on target motion than tissue material parameters. Finally, we investigate the effects surgical tool shape on the accuracy of medical intervention planning. We consider the specific case of robotic needle steering, in which asymmetry of a bevel-tip needle results in the needle naturally bending when it is inserted into soft tissue. We present an analytical and finite element (FE) model for the loads developed at the bevel tip during needle-tissue interaction. The analytical model explains trends observed in the experiments. We incorporated physical parameters (rupture toughness and nonlinear material elasticity) into the FE model that included both contact and cohesive zone models to simulate tissue cleavage. The model shows that the tip forces are sensitive to the rupture toughness. In order to model the mechanics of deflection of the needle, we use an energy-based formulation that incorporates tissue-specific parameters such as rupture toughness, nonlinear material elasticity, and interaction stiffness, and needle geometric and material properties. Simulation results follow similar trends (deflection and radius of curvature) to those observed in macroscopic experimental studies of a robot-driven needle interacting with gels
    corecore