2,326 research outputs found

    Recursive Sketching For Frequency Moments

    Full text link
    In a ground-breaking paper, Indyk and Woodruff (STOC 05) showed how to compute FkF_k (for k>2k>2) in space complexity O(\mbox{\em poly-log}(n,m)\cdot n^{1-\frac2k}), which is optimal up to (large) poly-logarithmic factors in nn and mm, where mm is the length of the stream and nn is the upper bound on the number of distinct elements in a stream. The best known lower bound for large moments is Ω(log⁥(n)n1−2k)\Omega(\log(n)n^{1-\frac2k}). A follow-up work of Bhuvanagiri, Ganguly, Kesh and Saha (SODA 2006) reduced the poly-logarithmic factors of Indyk and Woodruff to O(log⁥2(m)⋅(log⁥n+log⁥m)⋅n1−2k)O(\log^2(m)\cdot (\log n+ \log m)\cdot n^{1-{2\over k}}). Further reduction of poly-log factors has been an elusive goal since 2006, when Indyk and Woodruff method seemed to hit a natural "barrier." Using our simple recursive sketch, we provide a different yet simple approach to obtain a O(log⁥(m)log⁥(nm)⋅(log⁥log⁥n)4⋅n1−2k)O(\log(m)\log(nm)\cdot (\log\log n)^4\cdot n^{1-{2\over k}}) algorithm for constant Ï”\epsilon (our bound is, in fact, somewhat stronger, where the (log⁥log⁥n)(\log\log n) term can be replaced by any constant number of log⁥\log iterations instead of just two or three, thus approaching log∗nlog^*n. Our bound also works for non-constant Ï”\epsilon (for details see the body of the paper). Further, our algorithm requires only 44-wise independence, in contrast to existing methods that use pseudo-random generators for computing large frequency moments

    Towards Optimal Moment Estimation in Streaming and Distributed Models

    Get PDF
    One of the oldest problems in the data stream model is to approximate the p-th moment ||X||_p^p = sum_{i=1}^n X_i^p of an underlying non-negative vector X in R^n, which is presented as a sequence of poly(n) updates to its coordinates. Of particular interest is when p in (0,2]. Although a tight space bound of Theta(epsilon^-2 log n) bits is known for this problem when both positive and negative updates are allowed, surprisingly there is still a gap in the space complexity of this problem when all updates are positive. Specifically, the upper bound is O(epsilon^-2 log n) bits, while the lower bound is only Omega(epsilon^-2 + log n) bits. Recently, an upper bound of O~(epsilon^-2 + log n) bits was obtained under the assumption that the updates arrive in a random order. We show that for p in (0, 1], the random order assumption is not needed. Namely, we give an upper bound for worst-case streams of O~(epsilon^-2 + log n) bits for estimating |X |_p^p. Our techniques also give new upper bounds for estimating the empirical entropy in a stream. On the other hand, we show that for p in (1,2], in the natural coordinator and blackboard distributed communication topologies, there is an O~(epsilon^-2) bit max-communication upper bound based on a randomized rounding scheme. Our protocols also give rise to protocols for heavy hitters and approximate matrix product. We generalize our results to arbitrary communication topologies G, obtaining an O~(epsilon^2 log d) max-communication upper bound, where d is the diameter of G. Interestingly, our upper bound rules out natural communication complexity-based approaches for proving an Omega(epsilon^-2 log n) bit lower bound for p in (1,2] for streaming algorithms. In particular, any such lower bound must come from a topology with large diameter

    Quantized Compressive K-Means

    Full text link
    The recent framework of compressive statistical learning aims at designing tractable learning algorithms that use only a heavily compressed representation-or sketch-of massive datasets. Compressive K-Means (CKM) is such a method: it estimates the centroids of data clusters from pooled, non-linear, random signatures of the learning examples. While this approach significantly reduces computational time on very large datasets, its digital implementation wastes acquisition resources because the learning examples are compressed only after the sensing stage. The present work generalizes the sketching procedure initially defined in Compressive K-Means to a large class of periodic nonlinearities including hardware-friendly implementations that compressively acquire entire datasets. This idea is exemplified in a Quantized Compressive K-Means procedure, a variant of CKM that leverages 1-bit universal quantization (i.e. retaining the least significant bit of a standard uniform quantizer) as the periodic sketch nonlinearity. Trading for this resource-efficient signature (standard in most acquisition schemes) has almost no impact on the clustering performances, as illustrated by numerical experiments

    Approximating Subadditive Hadamard Functions on Implicit Matrices

    Get PDF
    An important challenge in the streaming model is to maintain small-space approximations of entrywise functions performed on a matrix that is generated by the outer product of two vectors given as a stream. In other works, streams typically define matrices in a standard way via a sequence of updates, as in the work of Woodruff (2014) and others. We describe the matrix formed by the outer product, and other matrices that do not fall into this category, as implicit matrices. As such, we consider the general problem of computing over such implicit matrices with Hadamard functions, which are functions applied entrywise on a matrix. In this paper, we apply this generalization to provide new techniques for identifying independence between two vectors in the streaming model. The previous state of the art algorithm of Braverman and Ostrovsky (2010) gave a (1±ϔ)(1 \pm \epsilon)-approximation for the L1L_1 distance between the product and joint distributions, using space O(log⁥1024(nm)ϔ−1024)O(\log^{1024}(nm) \epsilon^{-1024}), where mm is the length of the stream and nn denotes the size of the universe from which stream elements are drawn. Our general techniques include the L1L_1 distance as a special case, and we give an improved space bound of O(log⁥12(n)log⁥2(nmÏ”)ϔ−7)O(\log^{12}(n) \log^{2}({nm \over \epsilon})\epsilon^{-7})

    Sketching for Large-Scale Learning of Mixture Models

    Get PDF
    Learning parameters from voluminous data can be prohibitive in terms of memory and computational requirements. We propose a "compressive learning" framework where we estimate model parameters from a sketch of the training data. This sketch is a collection of generalized moments of the underlying probability distribution of the data. It can be computed in a single pass on the training set, and is easily computable on streams or distributed datasets. The proposed framework shares similarities with compressive sensing, which aims at drastically reducing the dimension of high-dimensional signals while preserving the ability to reconstruct them. To perform the estimation task, we derive an iterative algorithm analogous to sparse reconstruction algorithms in the context of linear inverse problems. We exemplify our framework with the compressive estimation of a Gaussian Mixture Model (GMM), providing heuristics on the choice of the sketching procedure and theoretical guarantees of reconstruction. We experimentally show on synthetic data that the proposed algorithm yields results comparable to the classical Expectation-Maximization (EM) technique while requiring significantly less memory and fewer computations when the number of database elements is large. We further demonstrate the potential of the approach on real large-scale data (over 10 8 training samples) for the task of model-based speaker verification. Finally, we draw some connections between the proposed framework and approximate Hilbert space embedding of probability distributions using random features. We show that the proposed sketching operator can be seen as an innovative method to design translation-invariant kernels adapted to the analysis of GMMs. We also use this theoretical framework to derive information preservation guarantees, in the spirit of infinite-dimensional compressive sensing
    • 

    corecore