21 research outputs found

    Recursion Schemes and the WMSO+U Logic

    Get PDF
    We study the weak MSO logic extended by the unbounding quantifier (WMSO+U), expressing the fact that there exist arbitrarily large finite sets satisfying a given property. We prove that it is decidable whether the tree generated by a given higher-order recursion scheme satisfies a given sentence of WMSO+U

    Typing weak MSOL properties

    Get PDF
    International audienceWe consider non-interpreted functional programs: the result of the execution of a program is its normal form, that can be seen as the tree of calls to built-in operations. Weak monadic second-order logic (wMSO) is well suited to express properties of such trees. This is an extension of first order logic with quantification over finite sets. Many behavioral properties of programs can be expressed in wMSO. We use the simply typed lambda calculus with the fixpoint operator, λY\lambda Y-calculus, as an abstraction of functional programs that faithfully represents the higher-order control flow. We give a type system for ensuring that the result of the execution of a λY\lambda Y-program satisfies a given wMSO property. The type system is an extension of a standard intersection type system with both: the least-fixpoint rule, and a restricted version of the greatest-fixpoint rule. In order to prove soundness and completeness of the system we construct a denotational semantics of λY\lambda Y-calculus that is capable of computing properties expressed in wMSO. The model presents many symmetries reflecting dualities in the logic and has also other applications on its own. The type system is obtained from the model following the domain in logical form approach

    Cost Automata, Safe Schemes, and Downward Closures

    Get PDF
    Higher-order recursion schemes are an expressive formalism used to define languages of possibly infinite ranked trees. They extend regular and context-free grammars, and are equivalent to simply typed ?Y-calculus and collapsible pushdown automata. In this work we prove, under a syntactical constraint called safety, decidability of the model-checking problem for recursion schemes against properties defined by alternating B-automata, an extension of alternating parity automata for infinite trees with a boundedness acceptance condition. We then exploit this result to show how to compute downward closures of languages of finite trees recognized by safe recursion schemes

    Higher-Order Nonemptiness Step by Step

    Get PDF
    We show a new simple algorithm that checks whether a given higher-order grammar generates a nonempty language of trees. The algorithm amounts to a procedure that transforms a grammar of order n to a grammar of order n-1, preserving nonemptiness, and increasing the size only exponentially. After repeating the procedure n times, we obtain a grammar of order 0, whose nonemptiness can be easily checked. Since the size grows exponentially at each step, the overall complexity is n-EXPTIME, which is known to be optimal. More precisely, the transformation (and hence the whole algorithm) is linear in the size of the grammar, assuming that the arity of employed nonterminals is bounded by a constant. The same algorithm allows to check whether an infinite tree generated by a higher-order recursion scheme is accepted by an alternating safety (or reachability) automaton, because this question can be reduced to the nonemptiness problem by taking a product of the recursion scheme with the automaton. A proof of correctness of the algorithm is formalised in the proof assistant Coq. Our transformation is motivated by a similar transformation of Asada and Kobayashi (2020) changing a word grammar of order n to a tree grammar of order n-1. The step-by-step approach can be opposed to previous algorithms solving the nonemptiness problem "in one step", being compulsorily more complicated

    Cost Automata, Safe Schemes, and Downward Closures

    Full text link
    Higher-order recursion schemes are an expressive formalism used to define languages of possibly infinite ranked trees. They extend regular and context-free grammars, and are equivalent to simply typed λY\lambda Y-calculus and collapsible pushdown automata. In this work we prove, under a syntactical constraint called safety, decidability of the model-checking problem for recursion schemes against properties defined by alternating B-automata, an extension of alternating parity automata for infinite trees with a boundedness acceptance condition. We then exploit this result to show how to compute downward closures of languages of finite trees recognized by safe recursion schemes.Comment: accepted at ICALP'2

    A Type System Describing Unboundedness

    Get PDF
    We consider nondeterministic higher-order recursion schemes as recognizers of languages of finite words or finite trees. We propose a type system that allows to solve the simultaneous-unboundedness problem (SUP) for schemes, which asks, given a set of letters A and a scheme G, whether it is the case that for every number n the scheme accepts a word (a tree) in which every letter from A appears at least n times. Using this type system we prove that SUP is (m-1)-EXPTIME-complete for word-recognizing schemes of order m, and m-EXPTIME-complete for tree-recognizing schemes of order m. Moreover, we establish the reflection property for SUP: out of an input scheme G one can create its enhanced version that recognizes the same language but is aware of the answer to SUP

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF

    Proceedings of the 8th Scandinavian Logic Symposium

    Get PDF
    corecore