106 research outputs found

    CAIR: Using Formal Languages to Study Routing, Leaking, and Interception in BGP

    Full text link
    The Internet routing protocol BGP expresses topological reachability and policy-based decisions simultaneously in path vectors. A complete view on the Internet backbone routing is given by the collection of all valid routes, which is infeasible to obtain due to information hiding of BGP, the lack of omnipresent collection points, and data complexity. Commonly, graph-based data models are used to represent the Internet topology from a given set of BGP routing tables but fall short of explaining policy contexts. As a consequence, routing anomalies such as route leaks and interception attacks cannot be explained with graphs. In this paper, we use formal languages to represent the global routing system in a rigorous model. Our CAIR framework translates BGP announcements into a finite route language that allows for the incremental construction of minimal route automata. CAIR preserves route diversity, is highly efficient, and well-suited to monitor BGP path changes in real-time. We formally derive implementable search patterns for route leaks and interception attacks. In contrast to the state-of-the-art, we can detect these incidents. In practical experiments, we analyze public BGP data over the last seven years

    Compact routing on the Internet AS-graph

    Get PDF
    Compact routing algorithms have been presented as candidates for scalable routing in the future Internet, achieving near-shortest path routing with considerably less forwarding state than the Border Gateway Protocol. Prior analyses have shown strong performance on power-law random graphs, but to better understand the applicability of compact routing algorithms in the context of the Internet, they must be evaluated against real- world data. To this end, we present the first systematic analysis of the behaviour of the Thorup-Zwick (TZ) and Brady-Cowen (BC) compact routing algorithms on snapshots of the Internet Autonomous System graph spanning a 14 year period. Both algorithms are shown to offer consistently strong performance on the AS graph, producing small forwarding tables with low stretch for all snapshots tested. We find that the average stretch for the TZ algorithm increases slightly as the AS graph has grown, while previous results on synthetic data suggested the opposite would be true. We also present new results to show which features of the algorithms contribute to their strong performance on these graphs

    Anatomy of an internet hijack and interception attack: A global and educational perspective

    Get PDF
    The Internet’s underlying vulnerable protocol infrastructure is a rich target for cyber crime, cyber espionage and cyber warfare operations. The stability and security of the Internet infrastructure are important to the function of global matters of state, critical infrastructure, global e-commerce and election systems. There are global approaches to tackle Internet security challenges that include governance, law, educational and technical perspectives. This paper reviews a number of approaches to these challenges, the increasingly surgical attacks that target the underlying vulnerable protocol infrastructure of the Internet, and the extant cyber security education curricula; we find the majority of predominant cyber security education frameworks do not address security for the Internet’s critical communication system, the Border Gateway Protocol (BGP). Finally, we present a case study as an anatomy of such an attack. The case study can be implemented ethically and safely for educational purposes

    Anatomy of an Internet Hijack And Interception Attack: A Global And Educational Perspective

    Get PDF
    The Internet’s underlying vulnerable protocol infrastructure is a rich target for cyber crime, cyber espionage and cyber warfare operations. The stability and security of the Internet infrastructure are important to the function of global matters of state, critical infrastructure, global e-commerce and election systems. There are global approaches to tackle Internet security challenges that include governance, law, educational and technical perspectives. This paper reviews a number of approaches to these challenges, the increasingly surgical attacks that target the underlying vulnerable protocol infrastructure of the Internet, and the extant cyber security education curricula; we find the majority of predominant cyber security education frameworks do not address security for the Internet’s critical communication system, the Border Gateway Protocol (BGP). Finally, we present a case study as an anatomy of such an attack. The case study can be implemented ethically and safely for educational purposes

    Border Gateway Protocol Anomaly Detection Using Machine Learning Techniques

    Get PDF
    As the primary protocol used to exchange routing information between network domains, Border Gateway Protocol (BGP) plays a central role in the functioning of the Internet. Border Gateway Protocol is a standardized router protocol used to initiate and maintain communication between domains, or autonomous systems, on the Internet. This protocol can exhibit anomalous behavior caused by improper provisioning, malicious attacks, traffic or equipment failure, and network operator error. At large internet service providers, many BGP issues are not immediately seen or explicitly monitored by network operations centers. This possible blind spot is due to the enormous number of BGP handshakes that occur throughout the network along with the fact that there are many of these sub-interfaces associated to a single physical connection. We will present machine learning methods for anomaly detection using unsupervised learning techniques and create a data pipeline to quickly collect and trigger on these anomalies when they occur. Clustering techniques including k-means and DBSCAN were successfully implemented and able to detect known anomalies for historical events. This approach could incur soft savings by triggering early detection warnings of anomalous BGP events, but human intervention may still be required in order to address possible false positives

    Compact routing for the future internet

    Get PDF
    The Internet relies on its inter-domain routing system to allow data transfer between any two endpoints regardless of where they are located. This routing system currently uses a shortest path routing algorithm (modified by local policy constraints) called the Border Gateway Protocol. The massive growth of the Internet has led to large routing tables that will continue to grow. This will present a serious engineering challenge for router designers in the long-term, rendering state (routing table) growth at this pace unsustainable. There are various short-term engineering solutions that may slow the growth of the inter-domain routing tables, at the expense of increasing the complexity of the network. In addition, some of these require manual configuration, or introduce additional points of failure within the network. These solutions may give an incremental, constant factor, improvement. However, we know from previous work that all shortest path routing algorithms require forwarding state that grows linearly with the size of the network in the worst case. Rather than attempt to sustain inter-domain routing through a shortest path routing algorithm, compact routing algorithms exist that guarantee worst-case sub-linear state requirements at all nodes by allowing an upper-bound on path length relative to the theoretical shortest path, known as path stretch. Previous work has shown the promise of these algorithms when applied to synthetic graphs with similar properties to the known Internet graph, but they haven't been studied in-depth on Internet topologies derived from real data. In this dissertation, I demonstrate the consistently strong performance of these compact routing algorithms for inter-domain routing by performing a longitudinal study of two compact routing algorithms on the Internet Autonomous System (AS) graph over time. I then show, using the k-cores graph decomposition algorithm, that the structurally important nodes in the AS graph are highly stable over time. This property makes these nodes suitable for use as the "landmark" nodes used by the most stable of the compact routing algorithms evaluated, and the use of these nodes shows similar strong routing performance. Finally, I present a decentralised compact routing algorithm for dynamic graphs, and present state requirements and message overheads on AS graphs using realistic simulation inputs. To allow the continued long-term growth of Internet routing state, an alternative routing architecture may be required. The use of the compact routing algorithms presented in this dissertation offer promise for a scalable future Internet routing system

    Measuring routing tables in the internet

    Get PDF
    International audienceThe most basic function of an Internet router is to decide, for a given packet, which of its interfaces it will use to forward it to its next hop. To do so, routers maintain a routing table, in which they look up for a prefix of the destination address. The routing table associates an interface of the router to this prefix, and this interface is used to forward the packet. We explore here a new measurement method based upon distributed UDP probing to estimate this routing table for Internet routers
    corecore