3,483 research outputs found

    On the trace of branching random walks

    Full text link
    We study branching random walks on Cayley graphs. A first result is that the trace of a transient branching random walk on a Cayley graph is a.s. transient for the simple random walk. In addition, it has a.s. critical percolation probability less than one and exponential volume growth. The proofs rely on the fact that the trace induces an invariant percolation on the family tree of the branching random walk. Furthermore, we prove that the trace is a.s. strongly recurrent for any (non-trivial) branching random walk. This follows from the observation that the trace, after appropriate biasing of the root, defines a unimodular measure. All results are stated in the more general context of branching random walks on unimodular random graphs.Comment: revised versio

    Recurrence of random walk traces

    Full text link
    We show that the edges crossed by a random walk in a network form a recurrent graph a.s. In fact, the same is true when those edges are weighted by the number of crossings.Comment: Published at http://dx.doi.org/10.1214/009117906000000935 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Scalable Verification of Markov Decision Processes

    Get PDF
    Markov decision processes (MDP) are useful to model concurrent process optimisation problems, but verifying them with numerical methods is often intractable. Existing approximative approaches do not scale well and are limited to memoryless schedulers. Here we present the basis of scalable verification for MDPSs, using an O(1) memory representation of history-dependent schedulers. We thus facilitate scalable learning techniques and the use of massively parallel verification.Comment: V4: FMDS version, 12 pages, 4 figure

    Quantum Markov chains associated with open quantum random walks

    Get PDF
    In this paper we construct (nonhomogeneous) quantum Markov chains associated with open quantum random walks. The quantum Markov chain, like the classical Markov chain, is a fundamental tool for the investigation of the basic properties such as reducibility/irreducibility, recurrence/transience, accessibility, ergodicity, etc, of the underlying dynamics. Here we focus on the discussion of the reducibility and irreducibility of open quantum random walks via the corresponding quantum Markov chains. Particularly we show that the concept of reducibility/irreducibility of open quantum random walks in this approach is equivalent to the one previously done by Carbone and Pautrat. We provide with some examples. We will see also that the classical Markov chains can be reconstructed as quantum Markov chains.Comment: 30 page

    The Embedding Capacity of Information Flows Under Renewal Traffic

    Full text link
    Given two independent point processes and a certain rule for matching points between them, what is the fraction of matched points over infinitely long streams? In many application contexts, e.g., secure networking, a meaningful matching rule is that of a maximum causal delay, and the problem is related to embedding a flow of packets in cover traffic such that no traffic analysis can detect it. We study the best undetectable embedding policy and the corresponding maximum flow rate ---that we call the embedding capacity--- under the assumption that the cover traffic can be modeled as arbitrary renewal processes. We find that computing the embedding capacity requires the inversion of very structured linear systems that, for a broad range of renewal models encountered in practice, admits a fully analytical expression in terms of the renewal function of the processes. Our main theoretical contribution is a simple closed form of such relationship. This result enables us to explore properties of the embedding capacity, obtaining closed-form solutions for selected distribution families and a suite of sufficient conditions on the capacity ordering. We evaluate our solution on real network traces, which shows a noticeable match for tight delay constraints. A gap between the predicted and the actual embedding capacities appears for looser constraints, and further investigation reveals that it is caused by inaccuracy of the renewal traffic model rather than of the solution itself.Comment: Sumbitted to IEEE Trans. on Information Theory on March 10, 201
    • …
    corecore