10,859 research outputs found

    Geometry-Aware Network for Non-Rigid Shape Prediction from a Single View

    Get PDF
    We propose a method for predicting the 3D shape of a deformable surface from a single view. By contrast with previous approaches, we do not need a pre-registered template of the surface, and our method is robust to the lack of texture and partial occlusions. At the core of our approach is a {\it geometry-aware} deep architecture that tackles the problem as usually done in analytic solutions: first perform 2D detection of the mesh and then estimate a 3D shape that is geometrically consistent with the image. We train this architecture in an end-to-end manner using a large dataset of synthetic renderings of shapes under different levels of deformation, material properties, textures and lighting conditions. We evaluate our approach on a test split of this dataset and available real benchmarks, consistently improving state-of-the-art solutions with a significantly lower computational time.Comment: Accepted at CVPR 201

    Deconstruction of compound objects from image sets

    Full text link
    We propose a method to recover the structure of a compound object from multiple silhouettes. Structure is expressed as a collection of 3D primitives chosen from a pre-defined library, each with an associated pose. This has several advantages over a volume or mesh representation both for estimation and the utility of the recovered model. The main challenge in recovering such a model is the combinatorial number of possible arrangements of parts. We address this issue by exploiting the sparse nature of the problem, and show that our method scales to objects constructed from large libraries of parts

    What Is Around The Camera?

    Get PDF
    How much does a single image reveal about the environment it was taken in? In this paper, we investigate how much of that information can be retrieved from a foreground object, combined with the background (i.e. the visible part of the environment). Assuming it is not perfectly diffuse, the foreground object acts as a complexly shaped and far-from-perfect mirror. An additional challenge is that its appearance confounds the light coming from the environment with the unknown materials it is made of. We propose a learning-based approach to predict the environment from multiple reflectance maps that are computed from approximate surface normals. The proposed method allows us to jointly model the statistics of environments and material properties. We train our system from synthesized training data, but demonstrate its applicability to real-world data. Interestingly, our analysis shows that the information obtained from objects made out of multiple materials often is complementary and leads to better performance.Comment: Accepted to ICCV. Project: http://homes.esat.kuleuven.be/~sgeorgou/multinatillum

    SMP Prototype Design and Fabrication for Thermo-responsive Façade Elements

    Get PDF
    The aim to attain sustainability in the built environment introduced the innovative application of advanced material technologies for low-energy, but aesthetically intriguing, building design strategies. Adaptive and responsive building skins as embedded and intrinsic control systems can be delivered with smart materials, and thus have the potential to minimise the energy consumption of buildings by maximising the natural and passive adjustment of façade components for shading, air-flow, daylight, and view. The dynamic smart material façade, adaptable to changing outdoor environments, is considered to be a holistic design approach that integrates the behavioural performance effects with the appearance and aesthetics of kinetic ability provided by smart materials acting as actuators, by adjusting their properties according to external stimuli. Of the various environmental inputs sensed by, and actuating, active and dynamic building façade systems, this research focuses on temperature as the stimulus to activate a dynamic shading device with the mechanism of opening and closing, specifically considering Seoul’s climate. Among currently available thermo-responsive smart materials, the shape memory polymer (SMP) is investigated as an activator of shading devices to be implemented to adaptive building skin strategies. As the first stage of SMP prototype design and fabrication study toward the thermo-responsive building façade elements, SMP prototypes are proposed in cell types. Among the general thermo-mechanical cycle of thermo-responsive SMP, only programming of the permanent shape via additive manufacturing and recovery at the activation temperature are focused upon in this research. This study proposes a design-to-fabrication workflow integrating computational tools, 3d printing and recalibration of relevant variables in digital design process, G code generation, and manufacturing using commercially available SMP filaments. To verify the 3d printing process, and to demonstrate the shape-changing behaviour of SMP actuators, reproduction of a referenced prototype was conducted, in addition to fabrication experiments of SMP surfaces with various thicknesses and SMP hinges with customised rotating angles. In addition, a base-line prototype combining the static ABS plate and the active SMP hinge is developed to set up the heat test and a digital motion simulation from data of shape changing behaviour acquired from a hands-on model test. After the demonstration of the baseline prototype in design and additive manufacturing process, various SMP prototypes were designed with reference to kinetic prototype researches, but with the consistent 100mm-diameter circular surface, in a scale of 1:3. They were also fabricated with a 3d printer for both open and closed positions to testify to their constructability, and thus to comparatively evaluate the design and fabrication outcomes. Furthermore, after conducting radiation and thermal simulation analysis, shading performance validation is noted for selecting potential prototypes. Lastly, the needs to further develop reversible reiterative shape-changing materials or systems are briefly discussed

    Evaluating the economic feasibility of thermal screens in New Zealand using a mathematical model : a thesis presented in partial fulfilment of requirements for the degree of Master of Horticultural Science in Horticultural Engineering at Massey University

    Get PDF
    A mathematical model of the greenhouse environment was developed to ascertain the annual savings in heating expenditure achieved by thermal screens. Thirteen materials with thermal screening potential were investigated. Each material was modelled within glass, Agphane, and twin skin Agphane covered greenhouses, 300m2 and 1000m2 in floor area, heated with diesel, coal, electricity, natural gas, or L.P.G., to set points of 15°C and 20°C, in Auckland and Christchurch. The model consisted of two phases. Phase 1 was a steady state model of the greenhouse environment based on a series of energy and mass balances. The temperatures within the greenhouse and the quantity of heat required to hold the house at a specified set point were predicted by solving these balances simultaneously. This process enabled the average U-value for each greenhouse to be estimated. In Phase 2 of the model the annual heat load for combinations of each house size and type, cover, screen, set point, and location were estimated using average U-values from Phase 1 and meterological data indicative of Auckland and Christchurch. Using current fuel prices, annual heat loads were converted into annual heating expenditures. Using annual heating expenditure, screen life expectancy, and screen installation cost an economic analysis was conducted using internal rate of return as a measure of thermal screen feasibility. In terms of savings in heating expenditure, Black Polythene, Infrane, and Clear Polythene recorded the highest internal rate of return. It was decided that before a formal recommendation could be made further research was required to evaluate screens as summer shading or photoperiod control devices and to consider the practical problems associated with some of the screens. It was shown that returns from thermal screening were greater in Christchurch than Auckland, greater at a 20°C set point than at a 15°C set point, greater for a 1000m2 house than a 300m2 house, greatest with diesel heating in Auckland, and greatest with diesel and L.P.G. heating in Christchurch

    Water, oceanic fracture zones and the lubrication of subducting plate boundaries - insights from seismicity

    Get PDF
    We investigate the relationship between subduction processes and related seismicity for the Lesser Antilles Arc using the Gutenberg-Richter law. This power lawdescribes the earthquakemagnitude distribution, with the gradient of the cumulative magnitude distribution being commonly known as the b-value. The Lesser Antilles Arc was chosen because of its alongstrike variability in sediment subduction and the transition from subduction to strike-slip movement towards its northern and southern ends. The data are derived from the seismicity catalogues from the Seismic Research Centre of The University of the West Indies and the Observatoires Volcanologiques et Sismologiques of the Institut de Physique du Globe de Paris and consist of subcrustal events primarily from the slab interface. The b-value is found using a Kolmogorov-Smirnov test for a maximum-likelihood straight line-fitting routine. We investigate spatial variations in b-values using a grid-search with circular cells as well as an along-arc projection. Tests with different algorithms and the two independent earthquake cataloges provide confidence in the robustness of our results. We observe a strong spatial variability of the b-value that cannot be explained by the uncertainties. Rather than obtaining a simple north-south b-value distribution suggestive of the dominant control on earthquake triggering being water released from the sedimentary cover on the incoming American Plates, or a b-value distribution that correlates with on the obliquity of subduction, we obtain a series of discrete, high b-value 'bull's-eyes' along strike. These bull's-eyes, which indicate stress release through a higher fraction of small earthquakes, coincide with the locations of known incoming oceanic fracture zones on the American Plates. We interpret the results in terms of water being delivered to the Lesser Antilles subduction zone in the vicinity of fracture zones providing lubrication and thus changing the character of the related seismicity. Our results suggest serpentinization around mid-ocean ridge transform faults, which go on to become fracture zones on the incoming plate, plays a significant role in the delivery of water into the mantle at subduction zones

    PCM enhanced ventilated window- Configuration and control strategy development

    Get PDF

    Sequential non-rigid structure from motion using physical priors

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.We propose a new approach to simultaneously recover camera pose and 3D shape of non-rigid and potentially extensible surfaces from a monocular image sequence. For this purpose, we make use of the Extended Kalman Filter based Simultaneous Localization And Mapping (EKF-SLAM) formulation, a Bayesian optimization framework traditionally used in mobile robotics for estimating camera pose and reconstructing rigid scenarios. In order to extend the problem to a deformable domain we represent the object's surface mechanics by means of Navier's equations, which are solved using a Finite Element Method (FEM). With these main ingredients, we can further model the material's stretching, allowing us to go a step further than most of current techniques, typically constrained to surfaces undergoing isometric deformations. We extensively validate our approach in both real and synthetic experiments, and demonstrate its advantages with respect to competing methods. More specifically, we show that besides simultaneously retrieving camera pose and non-rigid shape, our approach is adequate for both isometric and extensible surfaces, does not require neither batch processing all the frames nor tracking points over the whole sequence and runs at several frames per second.Peer ReviewedPostprint (author's final draft
    • …
    corecore