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ABSTRACT 

A mathematical model of the greenhouse environment was developed to ascertain 

the annual savings in heating expenditure achieved by thermal screens. Thirteen 

materials with thermal screening potential were investigated. Each material was 

modelled within glass, Agphane, and twin skin Agphane covered greenhouses, 300m2 

and lOOOm2 in floor area, heated with diesel , coal, electricity, natura l gas, or L.P.G. , 

to set points of 15 ° C and 20 ° C, in Auckland and Christchurch. 

The model consisted of two phases. Phase l was a steady state model of the 

greenhouse environment based on a series of energy and mass balances. The 

temperatures within the greenhouse and the quantity of heat required to hold the 

house at a specified set point were predicted by solving these balances 

simultaneously. This process enabled the average U-value for each greenhouse to 

be estimated. 

In Phase 2 of the model the annual heat load for combinations of each house size 

and type, cover, screen, set point, and location were estimated using average U­

values from Phase 1 and meterological data indicative of Auckland and 

Christchurch. Using current fuel prices, annual heat loads were converted into 

annual heating expenditures. 

Using annual heating expenditure, screen life expectancy, and screen installation 

cost an economic analysis was conducted using internal rate of return as a measure 

of thermal screen feasibility. 

In terms of savings in heating expenditure, Black Polythene, lnfrane, and Clear 

Polythene recorded the highest internal rate of return. It was decided that before 

a formal recommendation could be made further research was required to evaluate 

screens as summer shading or photoperiod control devices and to consider the 

practical problems associated with some of the screens. 



It was shown that returns from thermal screening were greater in Christchurch than 

Auckland, greater at a 20 ° C set point than at a 15 ° C set point, greater for a lOOOm2 

house than a 300m2 house, greatest with diesel heating in Auckland, and greatest 

with diesel and L.P.G. heating in Christchurch. 
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CHAPTER I 

INTRODUCTION 

1.1 BACKGROUND 

A greenhouse is a structure designed to facilitate the control or modification of 

environmental factors affecting plant growth. By controlling the environment, 

variations and hazards associated with weather are eliminated Temperature, 

humidity, day length, gas composition (carbon dioxide and oxygen), and light can 

be regulated with varying degrees of precision; damage from wind and rain is 

avoided; and injury from plant diseases and insects is reduced. Growing media, 

moisture content, nutrition, and fertility levels can also be adjusted to meet plant 

requirements. Consequently crops can be produced for specific market dates; 

grown more rapidly with greater uniformity, and yield a product with less variation 

in quality. 

Compared to field production, greenhouse crop culture is characterised by high 

capital, labour and fuel costs. The cost of erecting a manually controlled plastic 

covered house was around 40-55 $ /m2 in 1990; the cost for a glass covered house 

was around 80-100 $ /m2 (Faber, 1990; Tailor, 1990; Williams, 1990; and Young, 

1990). To offset capital cost of this magnitude, efficient and intensive year round 

production are important management strategies. 

As heating is a major component of greenhouse management (Burit et al, 1978), 



2 

intensive production effectuates a high heating cost It follows that price premiums 

arising from superior quality and timing production to coincide with the short or 

non-existent supplies from field sources, are intrinsic when justifying greenhouse 

heating cost (Breuer, I 985a). 

Fuel cost in New Zealand stands out as the one economic factor which is expected 

to escalate at a rate higher than inflation (Breuer 1985a). The price of oil based 

fuels flu ctuate depending on political action in oil producing countries. Recent 

events in the Middle East have caused the price of petrol in New Zealand to 

increase by about 20 %. By improving both energy efficiency and independence, 

New Zealand 's greenhouse industry will become increasingly cost competitive and 

more able to withstand shortfalls or discontinuity in energy supply. 

Modern glass or plastic covered houses have been designed for maximum light 

transmission without particular regard for heat conservation. They are usually 

leaky structures, having thin walls with high U-value (overall heat loss). As a result 

they tend to be expensive to heat especially in windy conditions (Hurd and Sheard, 

1981 ). 

Measures which reduce the heating requirement of a greenhouse include: 

a) Self-evident measures: The grower may delay planting or lower the 

heating set point of the greenhouse. Such measures however may cause reduced 

and later yields (Hurd and Sheard, 1981). Other options include converting to a 

more economic heating system, insulating heating pipe work, checking thermostats 

regularly for proper operation, using reflectors behind pipe work, regularly checking 

flue gas temperature and carbon dioxide to maintain combustion efficiency, and 

constant monitoring of temperature levels (Hurd and Sheard, 1981; and Winspear, 

1978). 

b) Greenhouse shape: Since heat loss is directly proportional to surface area, 

greenhouse geometry has a marked affect on heat loss. Small houses and houses 
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rectangular in plan have relatively large surface to plan area ratios. Large houses 

domical in shape minimize heat loss. Paraboloid is the next best shape followed 

hy square (Burit et al, 1978). 

c) Shelter: The rate of heat loss from a glasshouse is given by: 

where H = rate of heat loss (Wm-2 ) 

u = the overall heat loss coefficient for the glasshouse (Wm·2 
0 c-1

) 

T; = air temperature inside the glasshouse ( ° C) 

T
0 

= air temperature outside the glasshouse ( C) 

(Burit et al, 1978) 

Sheard ( 1978) investigated the effects of wind on greenhouse heat loss and came 

up with the following U-value relationships: 

Glasshouses 

Single skin plastic 

Inflated two skin plastic 

U-4.04+0.65W 

U- 4.76 + 0.52W 

U- 4.06 + 0.25W 

where W = wind speed (ms·1
) 

It follows that the heat loss of an exposed greenhouse is reduced be installing 

suitable windbreaks. 

d) Alternative or renewable heat sources: Solar storage, geothermal energy 

sources, and waste heat recovery are possible approaches for achieving resilience 

to conventional fuel pricing and availability (Breuer 1985a). 

Internationally, solar heat storage has been shown to reduce annual energy 

consumption by 5-20% (Breuer, 1985a). Bellamy and Ward (1984) examined the 
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application of solar storage to New Zealand greenhouses and concluded that an 

attractive option was solar storage coupled with heat pumps. 

Geothermal energy is a New Zealand resource which is well suited to greenhouse 

heating (Breuer l 985a). In general most geothermal bores produce water at 90-

150 ° C. Although its use has been long-standing for water and space heating in the 

Taupo-Rotorua region, geothermal energy is now used to heat a number of 

commercial greenhouses in this region. 

The use of recovered waste heat is an economic heating method. Many industries 

recover heat for internal re-use, but cannot easily accommodate an ancillafy 

industry. Power generation stations however, provide an ideal host since land is 

often available in their buffer zone. More than half of the energy generated by a 

thermal power station is rejected as low grade heat in the condenser cooling water. 

Internationally most stations have large flows of cooling water available at 

temperatures from 22-80° C. In this country cooling water seldom exceeds ambient 

by 15 ° C. This combined with our mild climate highlights technical and economic 

shortcomings (Breuer, 1985a). 

e) Increasing thermal resistance: Increasing the thermal resistance of a 

greenhouse reduces heat loss. The resistance must be increased in a controlled 

manner so that transmission of solar radiation is not impeded (White, 1980). 

Increased thermal resistance is achieved by reducing air leakage, layering the 

cladding, or installing a thermal screen. 

Air leakage is a significant heat loss mechanisms in New Zealand greenhouses. Air 

leakage rates as high as 4 air changes per hour are not atypical (Breuer, 1985a). 

Up to 12 % of the total heat loss may arise from air leakage (Burit et al, 1978). 

Mending torn plastic, erecting wind breaks, sealing glass laps with transparent 

adhesive sealing compounds, and restricting leakage around loose fitting doors and 

vents, are management strategies for reducing air leakage. Fuel saving from lap 

sealing alone range from 5 % to 30 %, depending on the original condition of the 
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roof (Breuer, 1985a). 

The use of twin covering materials offer energy savings of up to 40 % (White, 1980; 

Winspear, 1978). Benefits are often offset hy the loss in revenue from delayed or 

reduced cropping caused by light loss (Winspear, 1978). With the exception of 

shade-loving ornamental plants the benefi ts of twin-skinning are often not justified 

(White, 1980). Tests in New Zealand (Levin) show a 15 % reduction in annual fuel 

consumption with minimal effects on greenhouse lighting and yields when a clear 

polyethylene sheet is attached to the interior end and side walls of a greenhouse. 

Attaching clear polyethylene to the ceiling gives a 24 % reduction in annual heating 

hut a IO% light transmission reduction (Breuer, 1985b). 

The thermal screen; also known as thermal curtain, night curtain, thermal blanket 

or internal blind, is a relatively new technology aimed at increasing the thermal 

resistance of a greenhouse. The screen system consists of a flexible material 

constructed and supported so that it completely encloses the crop and heating 

system at night The thermal screen is movable to enable storage during the day. 

The thermal effectiveness of a screen is related to the type of greenhouse used, the 

screen material, outside weather conditions, the way it is mechanised, the ratio of 

covered crop volume to unheated above screen volume, and the air tightness of the 

screen (Breuer, 1985b). 

As 70-80 % of the total heat loss occures at night, more is gained by insulating at 

night (Breuer, 1985b). 

1.2 STATEMENT OF THE PROBLEM 

Nocturnal heat loss is a problem facing many greenhouse growers. Although 

thermal screens are an accepted panacea in Europe, the United States, and Japan 

(Breuer, 1985b), their use has met much grower scepticism in New Zealand. As a 

rule New Zealand growers are reluctant to change from traditional practice until 
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they have clear evidence of improved returns. Many continue to use relatively 

inefficient heating systems as they are not convinced the returns from thermal 

screens justify their installation. Unfortunately the environmental and economic 

conditions faced here prevent the application of overseas findings. At present 

thermal screen research in this country is sparse. As a result controversy over their 

economic effectiveness and the severity of their drawbacks limits widespread 

adoption. Under such conditions of uncertainty growers choose to minimise risk 

through inaction. 

In short, as growers can not afford to experiment with new technologies, the heat 

saving potential of thermal screens in New Zealand will continue unnoticed unless 

research by a recognised institution for New Zealand conditions eventuates. 

Conducting a real-life investigation of thermal screens in an actual greenhouse is 

both costly and time consuming. By modelling the greenhouse environment 

mathematically a large number of greenhouse, screen, and climate combinations 

can be simulated and evaluated without fitting screens to a actual greenhouses and 

running numerous trials. With this in mind a research programme was proposed 

aimed at developing a mathematical model to investigate the economic feasibility 

of thermal screens in New Zealand. 

1.3 SCOPE OF THE STUDY 

The economic feasibility of sixty two greenhouse and thermal screen combinations 

were assessed by performing an internal rate of return (IRR) analysis on thirteen 

materials with thermal screen potential within four different greenhouses. The 

greenhouses investigated were: 

1. A small glasshouse (300m2
) 

2. A large glasshouse (1000m2
) 

3. A large single skin Agphane house (I 000m2
) 

4. A large double skin Agphane house (lOOOm2
) 
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Agphane is an ethylene vinyl acetate (EV A) film. In New Zealand EVA films are 

commonly used to cover greenhouses. In this study Agphane was assumed to be 

representative of EV A materials in general. 

The screen materials investigated were: 

l. LS 13 

2. 

3. 

LS 15 

LS 18 

4. LS 18F 

(narrow strips of polyester and aluminised 

polyester sewn together in varying ratios) 

5. Marix (spun bonded polyester fabric) 

6. Clear Polythene ( 125µm) 

7. Black Polythene (125µm) 

8. lnfrane X 30 (a 80µm single layer extrusion of infra-red absorbing 

Polythene, commonly known as lnfrane) 

9. lnfrasol (a 150µm three layer co-extrusion of infra-red absorbing 

Polythene, containing antifogging agents, antistatic additives, and ultra-violet 

stabilizers) 

10. Durafilm (a 150µm EVA containing slip additives, condensation inhibitors, 

and a HALS ultra-violet stabilizer) 

11. Duratherm (a 150µm EV A containing a CIL antifog agent) 

12. Hyerlyte (400µm, Polyvinyl chloride) 

13. Agphane (150JLm EV A) 

Each combination was analysed for Auckland and Christchurch climates, since the 

majority of greenhouses are in this region, at heating set points of 15 ° C and 20 ° C. 

Economic analysis was based solely on the fuel savings achieved when diesel, 

electricity, coal, natural gas and L.P. G. were used as heating fuels. The analysis did 

not make allowance for the value thermal screens have as shade cloth or 

photoperiod control. Nor did it penalise combinations based on practical problems 

associated with humidity buildup beneath impermeable screens. 
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Screen life expectancy was taken from manufacturers' data. It was assumed that 

the strength and durability of the material and its support system enabled it to fulfil 

its role throughout this period. 


