Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

EVALUATING THE ECONOMIC FEASIBILITY OF THERMAL SCREENS IN NEW ZEALAND USING A MATHEMATICAL MODEL

A thesis

submitted in partial fulfilment

of the requirements for the degree

of

Master of Horticultural Science

in

Horticultural Engineering

at

Massey University

Todd Litchfield Newman

ABSTRACT

A mathematical model of the greenhouse environment was developed to ascertain the annual savings in heating expenditure achieved by thermal screens. Thirteen materials with thermal screening potential were investigated. Each material was modelled within glass, *Agphane*, and twin skin *Agphane* covered greenhouses, 300m² and 1000m² in floor area, heated with diesel, coal, electricity, natural gas, or L.P.G., to set points of 15°C and 20°C, in Auckland and Christchurch.

The model consisted of two phases. Phase 1 was a steady state model of the greenhouse environment based on a series of energy and mass balances. The temperatures within the greenhouse and the quantity of heat required to hold the house at a specified set point were predicted by solving these balances simultaneously. This process enabled the average U-value for each greenhouse to be estimated.

In Phase 2 of the model the annual heat load for combinations of each house size and type, cover, screen, set point, and location were estimated using average Uvalues from Phase 1 and meterological data indicative of Auckland and Christchurch. Using current fuel prices, annual heat loads were converted into annual heating expenditures.

Using annual heating expenditure, screen life expectancy, and screen installation cost an economic analysis was conducted using internal rate of return as a measure of thermal screen feasibility.

In terms of savings in heating expenditure, Black Polythene, *Infrane*, and Clear Polythene recorded the highest internal rate of return. It was decided that before a formal recommendation could be made further research was required to evaluate screens as summer shading or photoperiod control devices and to consider the practical problems associated with some of the screens. It was shown that returns from thermal screening were greater in Christchurch than Auckland, greater at a 20 °C set point than at a 15 °C set point, greater for a $1000m^2$ house than a $300m^2$ house, greatest with diesel heating in Auckland, and greatest with diesel and L.P.G. heating in Christchurch.

TABLE OF CONTENTS

PAGE

TABL	E OF	CONTENTS	i
LIST	OF FIG	GURES	i
LIST	OF TA	vii vii	i
LIST	OF PL	ATES	i
LIST	OF FR	REQUENTLY USED SYMBOLS xi	i
ACKI	NOWLI	EDGEMENTS	v
Ι	INTI	RODUCTION	1
	1.1	BACKGROUND	1
	1.2	STATEMENT OF THE PROBLEM	5
	1.3	SCOPE OF THE STUDY	6
Π	LITE	ERATURE REVIEW	9
	2.1	HEAT MOVEMENT IN GREENHOUSES	0
	2.2	SCREENING MATERIALS	4
		2.2.1 Polyethylene	4
		2.2.2 Polypropylene	15
		2.2.3 Polyester	15
		2.2.4 Acrylic	15
		2.2.5 Ethylene Vinyl Acetate	16
		2.2.6 Polyvinyl Chloride	16
		2.2.7 Aluminium	16
	2.3	MATERIAL CONSTRUCTION	17
		2.3.1 Film	18
		2.3.2 Fibre	18
		2.3.2.1 Woven fabric	18
		2.3.2.2 Non-woven fabric	18
		2.3.2.3 Knitted fabric	19
	2.4	SCREEN PROPERTIES	19
		2.4.1 Flexibility	19

		2.4.2	Durability and Life Expectancy	21
		2.4.3	Long wave transmission	24
		2.4.4	Permeability	27
	2.5	OPER	RATION	28
		2.5.1	Towing and Support	28
		2.5.2	Control	32
	2.6	EFFE	ECTS IMPOSED BY THERMAL SCREENS	33
		2.6.1	Light transmission and shading	34
		2.6.2	Leaf temperature	35
		2.6.3	Humidity and Condensation	36
		2.6.4	Wind Speed and Heat Loss	37
		2.6.5	Indirect Effects	39
	2.7	ECON	NOMICS OF THERMAL SCREENS	40
	2.8	REVI	IEW OF GREENHOUSE MODELS	41
		2.8.1	Black-Box Models	42
		2.8.2	Steady-State Single Component Models	43
		2.8.3	Steady-State Multiple Component Models	44
		2.8.4	Dynamic Models	46
		2.8.5	Models Including Carbon Dioxide	48
	2.9	CON	CLUSIONS	49
III	OBJ	ECTI	VES	52
IV	THE	e mo	DEL	53
	4.1	THE	PHASE 1 MODEL	54
		4.1.1	Phase 1 Equations for the Standard Greenhouse	62
			4.1.1.1 Greenhouse cover energy balance	63
			4.1.1.2 Plant energy balance	63
			4.1.1.3 Floor energy balance	64
			4.1.1.4 Soil layer 1 energy balance	65
			4.1.1.5 Soil layer 2 energy balance	65
			4.1.1.6 Soil layer 3 energy balance	66
			4.1.1.7 Soil layer 4 energy balance	66
			4.1.1.8 Inside airspace energy balance	67
			4.1.1.9 Inside airspace mass balance	68
		4.1.2	Phase 1 Equations for the Screened Greenhouse	69
			4.1.2.1 Greenhouse cover energy balance	69

			4.1.2.2	Thermal screen energy balance	70
			4.1.2.3	Plant energy balance	71
			4.1.2.4	Floor energy balance	72
			4.1.2.5	Soil layer 1 energy balance	73
			4.1.2.6	Soil layer 2 energy balance	73
			4.1.2.7	Soil layer 3 energy balance	73
			4.1.2.8	Soil layer 4 energy balance	73
			4.1.2.9	Quiescent airspace energy balance	73
			4.1.2.10	Greenhouse airspace energy balance	74
			4.1.2.11	Quiescent airspace mass balance	76
			4.1.2.12	Greenhouse airspace mass balance	77
	4.2	THE	PHASE	2 MODEL	78
		4.2.1	Estimat	ing the Overall Energy Need	78
			4.2.1.1	Estimating the day and night-time temperatur	e
				distribution	78
			4.2.1.2	Estimating night-time energy need	80
			4.2.1.3	Estimating daytime energy need	82
		4.2.2	Estimat	ing the Solar Contribution	83
			4.2.2.1	Solar energy collected	83
			4.2.2.2	Useful solar energy	84
		4.2.3	Auxilia	ry Heating Loads	89
	4.3	ECO	NOMIC	ANALYSIS	90
		4.3.1	Screen	and Fuel Costs	92
		4.3.2	Fuel Us	se and Cost Calculations	93
			4.3.2.1	Diesel	93
			4.3.2.2	Coal	94
			4.3.2.3	Electricity	94
			4.3.2.4	Natural gas	94
			4.3.2.5	L.P.G	94
7	RES	ULTS	S AND	OBSERVATIONS	96
	5.1	PHAS	SE 1 RE	SULTS	96
	5.2	PHAS	SE 2 RES	SULTS	98
	0.0006360002	5.2.1	Annual	Heating Loads	98
		5.2.2	Fuel U	sage and Cost	102
			5.2.2.1	Diesel	102
			5.2.2.2	Coal	103
					1.000

VI	5.2.3 DISCUS 6.1 SCF 6.2 SEC	5.2.2.3 Electricity 5.2.2.4 Natural gas 5.2.2.5 L.P.G. 3 Internal Rates of Return SION SION CONDARY ISSUES	103 104 104 115 130 134
	6.2.	Cover Type	137
	6.2.2	2 Greenhouse Size	138
	6.2.3	3 Set Point	138
	6.2.4	Location	138
	6.2.5	5 Fuel Type	139
VII	SUMMA	RY AND CONCLUSIONS	140
VIII	RECOM	MENDATIONS FOR FUTURE RESEARCH	I 143
REF	ERENCE	S	144
APP	ENDICE	S	156
	APPENDI	X 1: HEAT TRANSFER	156
	A1.	Conduction	156
	A1.2	2 Convection	157
	A1.1		137
		3 Radiation	161
	APPENDI	Radiation	161 168
	APPENDI A2.	3 Radiation	161 168 169
	APPENDI A2. A2.	3 Radiation	157 161 168 169 170
	APPENDI A2. A2. A2.	3 Radiation 3 Radiation X 2: RADIATION SOURCES 1 Atmospheric Transmission of Solar Radiation 2 Solar Transmission at the Ground 3 Effects of Clouds	161 168 169 170 171
	APPENDI A2. A2. A2. A2.	3 Radiation	157 161 168 169 170 171 171
	APPENDI A2. A2. A2. A2. A2. A2.	3 Radiation	157 161 168 169 170 171 171 171 173
	APPENDI A2. A2. A2. A2. A2. A2. A2. A2.	3 Radiation 3 Radiation X 2: RADIATION SOURCES 1 Atmospheric Transmission of Solar Radiation 2 Solar Transmission at the Ground 3 Effects of Clouds 4 Radiation from the Atmosphere 5 Terrestrial Radiation X 3: PHASE 1 DERIVATIONS	157 161 168 169 170 171 171 171 173 174
	APPENDI A2. A2. A2. A2. A2. A2. A2. A2. A2. A2.	3 Radiation 3 Radiation X 2: RADIATION SOURCES 1 Atmospheric Transmission of Solar Radiation 2 Solar Transmission at the Ground 3 Effects of Clouds 4 Radiation from the Atmosphere 5 Terrestrial Radiation X 3: PHASE 1 DERIVATIONS 1 Cover Energy Balance	157 161 168 169 170 171 171 171 173 174 174
	APPENDI A2. A2. A2. A2. A2. A2. A2. A2. A2. A2.	3 Radiation 3 Radiation X 2: RADIATION SOURCES 1 Atmospheric Transmission of Solar Radiation 2 Solar Transmission at the Ground 3 Effects of Clouds 4 Radiation from the Atmosphere 5 Terrestrial Radiation X 3: PHASE 1 DERIVATIONS 1 Cover Energy Balance 2 The Plant Energy Balance	157 161 168 169 170 171 171 171 173 174 174 190
	APPENDI A2. A2. A2. A2. A2. A2. A2. A2. A2. A2.	3 Radiation 3 Radiation X 2: RADIATION SOURCES 1 Atmospheric Transmission of Solar Radiation 2 Solar Transmission at the Ground 2 Solar Transmission at the Ground 3 Effects of Clouds 4 Radiation from the Atmosphere 5 Terrestrial Radiation 5 Terrestrial Radiation 6 Terrestrial Radiation 7 Solar Energy Balance 7 The Plant Energy Balance 8 The Floor Energy Balance 9 The Floor Energy Balance	157 161 168 169 170 171 171 171 173 174 174 190 192

iv

A3.5	Soil Layer 2 Energy Balance	193
A3.6	Soil Layer 3 Energy Balance	193
A3.7	Soil Layer 4 Energy Balance	193
A3.8	Inside Airspace Energy Balance	194
A3.9	Inside Airspace Mass Balance	203
APPENDIX	4: PHASE 1 INPUTS	207
A4.1	Parameters	207
A4.2	Independent Variables	223
APPENDIX	5: CALCULATED VALUES	224
A5.1	Convective Heat Transfer Coefficients	224
A5.2	Advective Heat Transfer Coefficients	224
A5.3	Evaporative Heat Transfer Coefficients	224
A5.4	Permeance	226
APPENDIX	6: LONG WAVE TEST	227

۷

LIST OF FIGURES

FIGURE

PAGE

2.1	Heat transfers of a screenless greenhouse at night	12
2.2	Heat transfers of a screened greenhouse at night.	13
2.3	Strip structure of an aluminised polyester Ludvig Svensson screen	
	(Ludvig Svensson International, 1989)	17
2.4	Tomato yields across a screened and unscreened house (Hurd and	
	Sheard, 1981)	20
2.5	A track type thermal screen with side and end curtains (Badger	
	and Poole, 1979)	29
2.6	Curtain system for a clear span greenhouse (Breuer, 1985a)	31
2.7	Details of the mechanical system (Mayer, 1981)	31
2.8a	PAR transmission of a multi-span glasshouse (Bailey, 1981b)	35
2.8b	PAR transmission of a single span glasshouse (Bailey, 1981b)	35
2.9	Influence of glass temperature on the dew point of glasshouse air	
	(Bailey and Cotton, 1977)	37
2.10	Heat loss coefficient (U-value) of glasshouses at night (Bailey,	
	1979b)	38
4.1	Simplified representation of the standard greenhouse	56
4.2	Simplified representation of the screened greenhouse	56
4.3	Three cover shapes with a CAI of 1.6	57
4.4	A system with a LAI of 2.1	59
4.5	Variation in the stored energy as a function of collected solar	
	energy in a tomato crop (Jolliet, 1988)	86
4.6	Daytime utilisation factor (UF ^d) as a function of daytime GLR	
	(Jolliet, 1988)	89
A1.1	Spectrum of electromagnetic radiation (Incropera and DeWitt,	
	1985)	163
A1.2	Spectral blackbody emissive power (Incropera and DeWitt, 1985).	164
A1.3	Absorption, reflection, and transmission of radiation for a	
	translucent medium	166
A2.1	Directional natural of solar radiation outside the atmosphere	
	(Incropera and DeWitt, 1985)	168
A2.2a	Estimated atmospheric emission downward at the earth's surface	
	and ground emission upwards (Monteith and Unsworth, 1990)	170

A2.2b	IR transmission of the earth's atmosphere (Monteith and	
	Unsworth, 1990)	170
A3.1	1st order PAR absorption by the cover	175
A3.2	2nd order PAR absorption by the cover	175
A3.3	3rd order PAR absorption by the cover	176
A3.4	Diagrammatic representation of equation A3.2a	179
A3.5	Diagrammatic representation of equation A3.2b	180
A3.6	Diagrammatic representation of equation A3.2c	181
A3.7	Diagrammatic representation of equation A3.2d	182
A3.8	Penman-Monteith transformation I	188
A3.9	Equivalent Temperature	196
A3.10	Penman-Monteith Transformation II	200
A6.1	Radiative heat exchanges for the measurements of reflectivity	
	and transmissivity	228
A6.2	Radiative heat exchanges for measurement of emissivity	228
A6.3	Equipment for measuring transmissivity and reflectivity of	
	screen materials	232
A6.4	Equipment for emissivity measurement	233

vii

LIST OF TABLES

TABLE

2.1	Economic life in years of selected thermal screen materials	
	(Meinders et al, 1984)	23
2.2	Effect of abrasion on emissivity of aluminised screen materials	
	(Bailey, 1981a)	24
2.3	Long wave properties of selected screen and cover materials	26
2.4	Reported fuel savings by thermal screens	33
2.5	U-values for common greenhouse coverings (Breuer, 1985a)	38
2.6	Percentage reduction in U-value by thermal screening	39
4.1a	Dependent variables for the standard greenhouse	60
4.1b	Dependent variables for the screened greenhouse	60
4.2a	T_x , T_m , and solar radiation (H) for Christchurch (from NZMS,	
	1980)	79
4.2b	T_x , T_m , and solar radiation (H) for Auckland (from NZMS,	
	1980)	79
4.3	Economic life, screen cost, and complete cost (screen material +	
	labour + fittings + hardware) in 1990 dollars	92
4.4	Fuels: cost (in 1990 dollars), calorific value and efficiency in 1990	93
5.1	Average U-values in Wm ⁻² floor [°] K ⁻¹ for screen and cover	
	combinations	97
5.2a	Annual auxiliary heating loads for Auckland in MJm ⁻² floor	100
5.2b	Annual auxiliary heating loads for Christchurch in MJm ² floor	101
5.3a	Diesel usage (in $1/m^2$) and cost (in $1/m^2$) for screened and non-	
	screened greenhouses in Auckland at set points of 15°C and	
	20°C	107
5.3b	Coal usage (in kg/m^2) and cost (in s/m^2) for screened and non-	
	screened greenhouses in Auckland at set points of 15°C and	
	20°C	108
5.3c	Electricity cost (in \$/m ²) for screened and non-screened	
	greenhouses in Auckland at set points of $15^{\circ}C$ and $20^{\circ}C$	109
5.3d	Natural gas cost (in \$/m ²) for screened and non-screened	
	greenhouses in Auckland at set points of 15°C and 20°C	110
5.4a	Diesel usage (in $1/m^2$) and cost (in $1/m^2$) for screened and non-	
	screened greenhouses in Christchurch at set points of 15°C and	

	20°C	111
5.4b	Coal usage (in kg/m^2) and cost (in s/m^2) for screened and non-	
	screened greenhouses in Christchurch at set points of 15°C and	
	20°C	112
5.4c	Electricity cost (in \$/m ²) for screened and non-screened	
	greenhouses in Christchurch at set points of 15°C and 20°C	113
5.4d	L.P.G. usage (in kg/m ²) and cost (in \$/m ²) for screened and non-	
	screened greenhouses in Christchurch at set points of 15°C and	
	20°C	114
5.5a	AHC, AS, and IRR of 300m ² and 1000m ² screened greenhouse	
	in Auckland, for diesel heating, at T _s =15°C	117
5.5b	AHC, AS, and IRR of 300m ² and 1000m ² screened greenhouse	
	in Auckland, for coal heating, at $T_{a} = 15^{\circ}C$	118
5.5c	AHC, AS, and IRR of 300m ² and 1000m ² screened greenhouse	
	in Auckland, for electrical heating, at $T_{a}=15^{\circ}C$	119
5.5d	AHC, AS, and IRR of 300m ² and 1000m ² screened greenhouse	
	in Auckland, for natural gas heating, at $T_a = 15^{\circ}C$	120
5.6a	AHC, AS, and IRR of 300m ² and 1000m ² screened greenhouse	
	in Auckland, for diesel heating, at T _s =20°C	121
5.6b	AHC, AS, and IRR of 300m ² and 1000m ² screened greenhouse	
	in Auckland, for coal heating, at $T_{a}=20^{\circ}C$	122
5.6c	AHC, AS, and IRR of 300m ² and 1000m ² screened greenhouse	
	in Auckland, for electrical heating, at $T_a=20^{\circ}C$	123
5.6d	AHC, AS, and IRR of 300m ² and 1000m ² screened greenhouse	
	in Auckland, for natural gas heating, at $T_s = 20^{\circ}C$	124
5.7a	AHC, AS, and IRR of 300m ² and 1000m ² screened greenhouse	
	in Christchurch, for diesel heating, at $T_a = 15^{\circ}C$	125
5.7b	AHC, AS, and IRR of 300m ² and 1000m ² screened greenhouse	
	in Christchurch, for coal heating, at $T_4 = 15^{\circ}C$	126
5.7c	AHC, AS, and IRR of 300m ² and 1000m ² screened greenhouse	
	in Christchurch, for electrical heating, at $T_s = 15^{\circ}C$	127
5.7d	AHC, AS, and IRR of 300m ² and 1000m ² screened greenhouse	
	in Christchurch, for L.P.G. heating, at T_=15°C	128
6.1a	Investment feasibility of thermal screens in Auckland at 15°C	131
6.1b	Investment feasibility of thermal screens in Auckland at 20°C	132
6.1c	Investment feasibility of thermal screens in Christchurch at 15°C.	133
A4.1a	PAR absorptivity	208

ix

A4.1b	PAR transmissivity	209
A4.1c	PAR reflectivity	210
A4.2a	NIR absorptivity	212
A4.2b	NIR transmissivity	213
A4.2c	NIR reflectivity	214
A4.3a	FIR absorptivity	216
A4.3b	FIR transmissivity	217
A4.3c	FIR reflectivity	218
A4.4	Convective heat transfer coefficients in Wm^{2} °K ⁻¹	219
A4.5	Advective heat transfer coefficients in Wm ⁻² °K ⁻¹ and symbolised	
	$\Phi_{{}_{\mathbf{so}}}$ for advective heat transfer through standard greenhouse covers	219
A4.6a	Advective heat transfer coefficients in Wm ⁻² °K ⁻¹ and symbolised	
	$\Phi_{\mbox{\tiny qo}}$ for advective heat transfer through screened greenhouse covers	
	(with the screen in its drawn position)	219
A4.6b	Advective heat transfer coefficients in Wm ⁻² °K ⁻¹ and symbolised	
	Φ_{sq} for advective heat transfer through thermal screens	220
A4.7	Evaporative heat transfer coefficients in Wm ² °K ¹	220
A4.8	Conductive heat transfer coefficients in Wm ⁻² °K ⁻¹	220
A4.9	Permeance figures for cover and screen materials in gvap s-1 m-2 Pa-1	
	(symbolised ø)	221
A4.10	Phase 1 constants	222
A4.11	Known variables of Phase 1	223

х

LIST OF PLATES

		-	-
Ы	A		H
			-

PAGE

2.1	Three aluminised polyester materials. From left to right: LS 13,	
	LS 15, and LS 18	22
2.2	Aluminised Ludvig Svensson screen in parked position	22
2.3	Reversible electric motor, torque tube, and cable support system .	30

LIST OF FREQUENTLY USED SYMBOLS

advective heat transfer (Wm⁻²) Α Al aluminium AUX auxiliary heating or cooling (Wm⁻²floor) cloud fraction, conductive heat flux density (Wm⁻²) С °C degrees Celsius cover area index CAI specific heat capacity of dry air at 20°C (1.01Jg_{pa}⁻¹°C⁻¹) Cp diffusive heat transfer (Wm⁻²) D e water vapour pressure (Pa) energy of one photon (J), evaporative heat transfer coefficient (Wm⁻² [°]K⁻¹) E total emissive power of a blackbody (Wm⁻²) Eb EMF evaporative cooling, misting, or fogging $(g_s^{-1}m^{-2})$ EVA ethylene vinyl acetate ERR external rate of return (%) ·f frequency (s⁻¹) F FIR FIR far infra-red radiation g gram convective heat transfer coefficient (Wm⁻² $^{\circ}$ K⁻¹), Plank's constant (6.63 × 10⁻³⁴ h Js^{-1}) rate of heat loss (Wm⁻²), solar radiation (MJm⁻²day⁻¹), convective heat flux H density (Wm⁻²) enthalpy of moist air (Jg_{DA}^{-1}) H IR infra-red (long wave) radiation IRR internal rate of return (%) J joule thermal conductivity (Wm⁻¹°K⁻¹) k thermal conductance (Wm⁻²°K⁻¹) K °к degrees Kelvin latent heat of vaporization of water at 20°C (2454Jg,-1) L latent heat loss (Wm⁻²) L LAI leaf area index m metre millimetre mm molecular mass (gmol⁻¹), mass transfer (g_xs⁻¹m⁻²) M

N	NIR, number of air changes per second (s ⁻¹)				
NIR	near infra-red radiation				
Ø	permeance $(g_v s^{-1} m^{-2} P a^{-1})$				
Ρ	PAR				
PAR	photosynthetically active radiation				
PE	polyethylene				
PVC	polyvinyl chloride				
q	conductive heat flux density (Wm ⁻²)				
r	resistance (sm ⁻¹)				
R	Universal gas constant (8.314Jmol ⁻¹ °K ⁻¹)				
S	second				
S	solar radiation (Wm ⁻²)				
Т	temperature				
U	overall heat loss coefficient, thermal transmittance, U-value (Wm ⁻² floor °C ⁻				
	or Wm ⁻² floor [°] K ⁻¹)				
UV	ultra-violet				
v	velocity of light in a vacuum $(3 \times 10^6 \text{ ms}^{-1})$				
v	greenhouse volume (m ⁻³)				
VA	vinyl acetate				
W	watt				
x	direction of heat flow (m)				

xiii

Z water vapour flux density (g_vs⁻¹m⁻²)

GREEK ALPHABET

· · · · · · · · · · · · · · · · · · ·
ty
ļ

- ∈ emissivity
- γ slope of enthalpy lines on the psychometric chart (Pa[°]K⁻¹)
- δ slope of the saturated vapour pressure curve (Pa[°]K⁻¹)
- θ equivalent temperature (°C)
- λ wavelength (m)

µm micrometre

- ρ reflectivity, density of gas (gm⁻³)
- σ Stefan-Boltzmann constant (5.67 × 10⁻⁸ Wm⁻² K⁻⁴)
- au transmissivity
- Φ advective heat transfer coefficient (Wm⁻² °K⁻¹)

- χ water vapour density or absolute humidity (g, m_{DA}^{-3})
- ω humidity ratio $(g_v g_{DA}^{-1})$
- Ω diffusive heat transfer coefficient (Wm⁻² [°]K⁻¹)

SUBSCRIPTS

a	inside air
с	cover
DA	dry air
f	floor
F	FIR
i	inside air
1	lower surface of thermal screen
N	NIR
0	outside air
р	plant
Р	PAR
q	quiescent airspace
S	thermal screen
sky	sky
s 1	soil layer 1
s2	soil layer 2
s3	soil layer 3
s4	soil layer 4
v	water vapour
vap	water vapour
u	upper surface of thermal screen
w	wet bulb

ACKNOWLEDGEMENTS

The author wishes to express sincere gratitude to his supervisors, Dr. Gavin Wall, Acting H.O.D (Agricultural Engineering) and Mr. Colin Wells. Their assistance and advice throughout this study were gratefully appreciated.

The author also wishes to acknowledge Mr. Ian Painter, Mr. Leo Bolter, and Mr. Paul Turner for the construction of experimental apparatus and technical advice, Kitrina Shapleske for her help collecting and collating data, and to other postgraduates and staff of the Agricultural Engineering Department for assistance when needed.

The competitiveness and assistance of masterate colleague Phil Heatley was appreciated. Phil's humour, sanity and conversation kept wearisome moments to the minimum and his companionship and consolation during times of frustration and personal stress will be remembered. Thanks also to my long suffering room mate, landlord, and friend Richard, and the flatties and frequent visitors of 21 Glasgow St for friendship and laughs. Special thanks goes to Leigh Mitchell for her help in typing this thesis and to Roy for his devoted Thursday night therapy on the squash court.

The financial support of the New Zealand Fruitgrowers Federation, the C. Almar Baker Trust, the Robert Gibson Methodist Trust, the Frank Sydenham Scholarship and the J.A. Anderson Scholarship are gratefully acknowledged.

Finally, I wish to acknowledge my parents for their love, support and prayers, and Basil and Nancy Christensen and family, whose hospitality, amazing meals, and friendship have made my stay in Palmerston North truly memorable. To these people I dedicate this thesis.

CHAPTER I

INTRODUCTION

1.1 BACKGROUND

A greenhouse is a structure designed to facilitate the control or modification of environmental factors affecting plant growth. By controlling the environment, variations and hazards associated with weather are eliminated. Temperature, humidity, day length, gas composition (carbon dioxide and oxygen), and light can be regulated with varying degrees of precision; damage from wind and rain is avoided; and injury from plant diseases and insects is reduced. Growing media, moisture content, nutrition, and fertility levels can also be adjusted to meet plant requirements. Consequently crops can be produced for specific market dates; grown more rapidly with greater uniformity, and yield a product with less variation in quality.

Compared to field production, greenhouse crop culture is characterised by high capital, labour and fuel costs. The cost of erecting a manually controlled plastic covered house was around 40-55 m^2 in 1990; the cost for a glass covered house was around 80-100 m^2 (Faber, 1990; Tailor, 1990; Williams, 1990; and Young, 1990). To offset capital cost of this magnitude, efficient and intensive year round production are important management strategies.

As heating is a major component of greenhouse management (Burit et al, 1978),

intensive production effectuates a high heating cost. It follows that price premiums arising from superior quality and timing production to coincide with the short or non-existent supplies from field sources, are intrinsic when justifying greenhouse heating cost (Breuer, 1985a).

Fuel cost in New Zealand stands out as the one economic factor which is expected to escalate at a rate higher than inflation (Breuer 1985a). The price of oil based fuels fluctuate depending on political action in oil producing countries. Recent events in the Middle East have caused the price of petrol in New Zealand to increase by about 20%. By improving both energy efficiency and independence, New Zealand's greenhouse industry will become increasingly cost competitive and more able to withstand shortfalls or discontinuity in energy supply.

Modern glass or plastic covered houses have been designed for maximum light transmission without particular regard for heat conservation. They are usually leaky structures, having thin walls with high U-value (overall heat loss). As a result they tend to be expensive to heat especially in windy conditions (Hurd and Sheard, 1981).

Measures which reduce the heating requirement of a greenhouse include:

a) Self-evident measures: The grower may delay planting or lower the heating set point of the greenhouse. Such measures however may cause reduced and later yields (Hurd and Sheard, 1981). Other options include converting to a more economic heating system, insulating heating pipe work, checking thermostats regularly for proper operation, using reflectors behind pipe work, regularly checking flue gas temperature and carbon dioxide to maintain combustion efficiency, and constant monitoring of temperature levels (Hurd and Sheard, 1981; and Winspear, 1978).

b) Greenhouse shape: Since heat loss is directly proportional to surface area, greenhouse geometry has a marked affect on heat loss. Small houses and houses

rectangular in plan have relatively large surface to plan area ratios. Large houses domical in shape minimize heat loss. Paraboloid is the next best shape followed by square (Burit et al, 1978).

c) Shelter: The rate of heat loss from a glasshouse is given by:

 $H - U(T_i - T_o)$

where	Н	= rate of heat loss (Wm^{-2})
	U	= the overall heat loss coefficient for the glasshouse $(Wm^{-2} C^{-1})$
	T _i	= air temperature inside the glasshouse ($^{\circ}$ C)
	T _o	= air temperature outside the glasshouse (°C)
		(Burit et al, 1978)

Sheard (1978) investigated the effects of wind on greenhouse heat loss and came up with the following U-value relationships:

Glasshouses	U = 4.04 + 0.65W
Single skin plastic	U = 4.76 + 0.52W
Inflated two skin plastic	U = 4.06 + 0.25W

where $W = wind speed (ms^{-1})$

It follows that the heat loss of an exposed greenhouse is reduced be installing suitable windbreaks.

d) Alternative or renewable heat sources: Solar storage, geothermal energy sources, and waste heat recovery are possible approaches for achieving resilience to conventional fuel pricing and availability (Breuer 1985a).

Internationally, solar heat storage has been shown to reduce annual energy consumption by 5-20% (Breuer, 1985a). Bellamy and Ward (1984) examined the

application of solar storage to New Zealand greenhouses and concluded that an attractive option was solar storage coupled with heat pumps.

Geothermal energy is a New Zealand resource which is well suited to greenhouse heating (Breuer 1985a). In general most geothermal bores produce water at 90-150°C. Although its use has been long-standing for water and space heating in the Taupo-Rotorua region, geothermal energy is now used to heat a number of commercial greenhouses in this region.

The use of recovered waste heat is an economic heating method. Many industries recover heat for internal re-use, but cannot easily accommodate an ancillafy industry. Power generation stations however, provide an ideal host since land is often available in their buffer zone. More than half of the energy generated by a thermal power station is rejected as low grade heat in the condenser cooling water. Internationally most stations have large flows of cooling water available at temperatures from 22-80°C. In this country cooling water seldom exceeds ambient by 15°C. This combined with our mild climate highlights technical and economic shortcomings (Breuer, 1985a).

e) Increasing thermal resistance: Increasing the thermal resistance of a greenhouse reduces heat loss. The resistance must be increased in a controlled manner so that transmission of solar radiation is not impeded (White, 1980). Increased thermal resistance is achieved by reducing air leakage, layering the cladding, or installing a thermal screen.

Air leakage is a significant heat loss mechanisms in New Zealand greenhouses. Air leakage rates as high as 4 air changes per hour are not atypical (Breuer, 1985a). Up to 12% of the total heat loss may arise from air leakage (Burit et al, 1978). Mending torn plastic, erecting wind breaks, sealing glass laps with transparent adhesive sealing compounds, and restricting leakage around loose fitting doors and vents, are management strategies for reducing air leakage. Fuel saving from lap sealing alone range from 5% to 30%, depending on the original condition of the

roof (Breuer, 1985a).

The use of twin covering materials offer energy savings of up to 40% (White, 1980; Winspear, 1978). Benefits are often offset by the loss in revenue from delayed or reduced cropping caused by light loss (Winspear, 1978). With the exception of shade-loving ornamental plants the benefits of twin-skinning are often not justified (White, 1980). Tests in New Zealand (Levin) show a 15% reduction in annual fuel consumption with minimal effects on greenhouse lighting and yields when a clear polyethylene sheet is attached to the interior end and side walls of a greenhouse. Attaching clear polyethylene to the ceiling gives a 24% reduction in annual heating but a 10% light transmission reduction (Breuer, 1985b).

The thermal screen; also known as thermal curtain, night curtain, thermal blanket or internal blind, is a relatively new technology aimed at increasing the thermal resistance of a greenhouse. The screen system consists of a flexible material constructed and supported so that it completely encloses the crop and heating system at night. The thermal screen is movable to enable storage during the day. The thermal effectiveness of a screen is related to the type of greenhouse used, the screen material, outside weather conditions, the way it is mechanised, the ratio of covered crop volume to unheated above screen volume, and the air tightness of the screen (Breuer, 1985b).

As 70-80% of the total heat loss occures at night, more is gained by insulating at night (Breuer, 1985b).

1.2 STATEMENT OF THE PROBLEM

Nocturnal heat loss is a problem facing many greenhouse growers. Although thermal screens are an accepted panacea in Europe, the United States, and Japan (Breuer, 1985b), their use has met much grower scepticism in New Zealand. As a rule New Zealand growers are reluctant to change from traditional practice until they have clear evidence of improved returns. Many continue to use relatively inefficient heating systems as they are not convinced the returns from thermal screens justify their installation. Unfortunately the environmental and economic conditions faced here prevent the application of overseas findings. At present thermal screen research in this country is sparse. As a result controversy over their economic effectiveness and the severity of their drawbacks limits widespread adoption. Under such conditions of uncertainty growers choose to minimise risk through inaction.

In short, as growers can not afford to experiment with new technologies, the heat saving potential of thermal screens in New Zealand will continue unnoticed unless research by a recognised institution for New Zealand conditions eventuates.

Conducting a real-life investigation of thermal screens in an actual greenhouse is both costly and time consuming. By modelling the greenhouse environment mathematically a large number of greenhouse, screen, and climate combinations can be simulated and evaluated without fitting screens to a actual greenhouses and running numerous trials. With this in mind a research programme was proposed aimed at developing a mathematical model to investigate the economic feasibility of thermal screens in New Zealand.

1.3 SCOPE OF THE STUDY

The economic feasibility of sixty two greenhouse and thermal screen combinations were assessed by performing an internal rate of return (IRR) analysis on thirteen materials with thermal screen potential within four different greenhouses. The greenhouses investigated were:

- 1. A small glasshouse (300m²)
- 2. A large glasshouse (1000m²)
- 3. A large single skin Agphane house (1000m²)
- 4. A large double skin Agphane house (1000m²)

Agphane is an ethylene vinyl acetate (EVA) film. In New Zealand EVA films are commonly used to cover greenhouses. In this study Agphane was assumed to be representative of EVA materials in general.

The screen materials investigated were:

- 1. LS 13
- 2. LS 15 (narrow strips of polyester and aluminised
- 3. LS 18 (polyester sewn together in varying ratios)
- 4. LS 18F)
- 5. Marix (spun bonded polyester fabric)
- 6. Clear Polythene $(125\mu m)$
- 7. Black Polythene $(125\mu m)$
- 8. Infrane X 30 (a $80\mu m$ single layer extrusion of infra-red absorbing Polythene, commonly known as Infrane)
- Infrasol (a 150µm three layer co-extrusion of infra-red absorbing Polythene, containing antifogging agents, antistatic additives, and ultra-violet stabilizers)
- Durafilm (a 150µm EVA containing slip additives, condensation inhibitors, and a HALS ultra-violet stabilizer)
- 11. **Duratherm** (a 150 μ m EVA containing a CIL antifog agent)
- 12. Hyerlyte (400µm, Polyvinyl chloride)
- 13. Agphane (150μm EVA)

Each combination was analysed for Auckland and Christchurch climates, since the majority of greenhouses are in this region, at heating set points of 15°C and 20°C. Economic analysis was based solely on the fuel savings achieved when diesel, electricity, coal, natural gas and L.P.G. were used as heating fuels. The analysis did not make allowance for the value thermal screens have as shade cloth or photoperiod control. Nor did it penalise combinations based on practical problems associated with humidity buildup beneath impermeable screens.

Screen life expectancy was taken from manufacturers' data. It was assumed that the strength and durability of the material and its support system enabled it to fulfil its role throughout this period.