780 research outputs found

    Database recovery

    Get PDF
    Recovery techniques are an important aspect of database systems. They are essential to ensure that data integrity is maintained after any type of failure occurs. The recovery mechanism must be designed so that the availability and performance of the system are not unacceptably impacted by the recovery algorithms running during normal execution. On the other hand, enough information must be stored so that the database can be restored or transactions backed out in a reasonable amount of time. Concepts, techniques, and problems associated with database recovery will be presented in this thesis. The recovery issues for both centralized and distributed systems will be discussed, along with the tradeoffs of different recovery tools. The database recovery schemes in IMS/VS, DB2 and SDD-1 will be described to show approaches in existing systems

    Speculation in Parallel and Distributed Event Processing Systems

    Get PDF
    Event stream processing (ESP) applications enable the real-time processing of continuous flows of data. Algorithmic trading, network monitoring, and processing data from sensor networks are good examples of applications that traditionally rely upon ESP systems. In addition, technological advances are resulting in an increasing number of devices that are network enabled, producing information that can be automatically collected and processed. This increasing availability of on-line data motivates the development of new and more sophisticated applications that require low-latency processing of large volumes of data. ESP applications are composed of an acyclic graph of operators that is traversed by the data. Inside each operator, the events can be transformed, aggregated, enriched, or filtered out. Some of these operations depend only on the current input events, such operations are called stateless. Other operations, however, depend not only on the current event, but also on a state built during the processing of previous events. Such operations are, therefore, named stateful. As the number of ESP applications grows, there are increasingly strong requirements, which are often difficult to satisfy. In this dissertation, we address two challenges created by the use of stateful operations in a ESP application: (i) stateful operators can be bottlenecks because they are sensitive to the order of events and cannot be trivially parallelized by replication; and (ii), if failures are to be tolerated, the accumulated state of an stateful operator needs to be saved, saving this state traditionally imposes considerable performance costs. Our approach is to evaluate the use of speculation to address these two issues. For handling ordering and parallelization issues in a stateful operator, we propose a speculative approach that both reduces latency when the operator must wait for the correct ordering of the events and improves throughput when the operation in hand is parallelizable. In addition, our approach does not require that user understand concurrent programming or that he or she needs to consider out-of-order execution when writing the operations. For fault-tolerant applications, traditional approaches have imposed prohibitive performance costs due to pessimistic schemes. We extend such approaches, using speculation to mask the cost of fault tolerance.:1 Introduction 1 1.1 Event stream processing systems ......................... 1 1.2 Running example ................................. 3 1.3 Challenges and contributions ........................... 4 1.4 Outline ...................................... 6 2 Background 7 2.1 Event stream processing ............................. 7 2.1.1 State in operators: Windows and synopses ............................ 8 2.1.2 Types of operators ............................ 12 2.1.3 Our prototype system........................... 13 2.2 Software transactional memory.......................... 18 2.2.1 Overview ................................. 18 2.2.2 Memory operations............................ 19 2.3 Fault tolerance in distributed systems ...................................... 23 2.3.1 Failure model and failure detection ...................................... 23 2.3.2 Recovery semantics............................ 24 2.3.3 Active and passive replication ...................... 24 2.4 Summary ..................................... 26 3 Extending event stream processing systems with speculation 27 3.1 Motivation..................................... 27 3.2 Goals ....................................... 28 3.3 Local versus distributed speculation ....................... 29 3.4 Models and assumptions ............................. 29 3.4.1 Operators................................. 30 3.4.2 Events................................... 30 3.4.3 Failures .................................. 31 4 Local speculation 33 4.1 Overview ..................................... 33 4.2 Requirements ................................... 35 4.2.1 Order ................................... 35 4.2.2 Aborts................................... 37 4.2.3 Optimism control ............................. 38 4.2.4 Notifications ............................... 39 4.3 Applications.................................... 40 4.3.1 Out-of-order processing ......................... 40 4.3.2 Optimistic parallelization......................... 42 4.4 Extensions..................................... 44 4.4.1 Avoiding unnecessary aborts ....................... 44 4.4.2 Making aborts unnecessary........................ 45 4.5 Evaluation..................................... 47 4.5.1 Overhead of speculation ......................... 47 4.5.2 Cost of misspeculation .......................... 50 4.5.3 Out-of-order and parallel processing micro benchmarks ........... 53 4.5.4 Behavior with example operators .................... 57 4.6 Summary ..................................... 60 5 Distributed speculation 63 5.1 Overview ..................................... 63 5.2 Requirements ................................... 64 5.2.1 Speculative events ............................ 64 5.2.2 Speculative accesses ........................... 69 5.2.3 Reliable ordered broadcast with optimistic delivery .................. 72 5.3 Applications .................................... 75 5.3.1 Passive replication and rollback recovery ................................ 75 5.3.2 Active replication ............................. 80 5.4 Extensions ..................................... 82 5.4.1 Active replication and software bugs ..................................... 82 5.4.2 Enabling operators to output multiple events ........................ 87 5.5 Evaluation .................................... 87 5.5.1 Passive replication ............................ 88 5.5.2 Active replication ............................. 88 5.6 Summary ..................................... 93 6 Related work 95 6.1 Event stream processing engines ......................... 95 6.2 Parallelization and optimistic computing ................................ 97 6.2.1 Speculation ................................ 97 6.2.2 Optimistic parallelization ......................... 98 6.2.3 Parallelization in event processing .................................... 99 6.2.4 Speculation in event processing ..................... 99 6.3 Fault tolerance .................................. 100 6.3.1 Passive replication and rollback recovery ............................... 100 6.3.2 Active replication ............................ 101 6.3.3 Fault tolerance in event stream processing systems ............. 103 7 Conclusions 105 7.1 Summary of contributions ............................ 105 7.2 Challenges and future work ............................ 106 Appendices Publications 107 Pseudocode for the consensus protocol 10

    Speculation in Parallel and Distributed Event Processing Systems

    Get PDF
    Event stream processing (ESP) applications enable the real-time processing of continuous flows of data. Algorithmic trading, network monitoring, and processing data from sensor networks are good examples of applications that traditionally rely upon ESP systems. In addition, technological advances are resulting in an increasing number of devices that are network enabled, producing information that can be automatically collected and processed. This increasing availability of on-line data motivates the development of new and more sophisticated applications that require low-latency processing of large volumes of data. ESP applications are composed of an acyclic graph of operators that is traversed by the data. Inside each operator, the events can be transformed, aggregated, enriched, or filtered out. Some of these operations depend only on the current input events, such operations are called stateless. Other operations, however, depend not only on the current event, but also on a state built during the processing of previous events. Such operations are, therefore, named stateful. As the number of ESP applications grows, there are increasingly strong requirements, which are often difficult to satisfy. In this dissertation, we address two challenges created by the use of stateful operations in a ESP application: (i) stateful operators can be bottlenecks because they are sensitive to the order of events and cannot be trivially parallelized by replication; and (ii), if failures are to be tolerated, the accumulated state of an stateful operator needs to be saved, saving this state traditionally imposes considerable performance costs. Our approach is to evaluate the use of speculation to address these two issues. For handling ordering and parallelization issues in a stateful operator, we propose a speculative approach that both reduces latency when the operator must wait for the correct ordering of the events and improves throughput when the operation in hand is parallelizable. In addition, our approach does not require that user understand concurrent programming or that he or she needs to consider out-of-order execution when writing the operations. For fault-tolerant applications, traditional approaches have imposed prohibitive performance costs due to pessimistic schemes. We extend such approaches, using speculation to mask the cost of fault tolerance.:1 Introduction 1 1.1 Event stream processing systems ......................... 1 1.2 Running example ................................. 3 1.3 Challenges and contributions ........................... 4 1.4 Outline ...................................... 6 2 Background 7 2.1 Event stream processing ............................. 7 2.1.1 State in operators: Windows and synopses ............................ 8 2.1.2 Types of operators ............................ 12 2.1.3 Our prototype system........................... 13 2.2 Software transactional memory.......................... 18 2.2.1 Overview ................................. 18 2.2.2 Memory operations............................ 19 2.3 Fault tolerance in distributed systems ...................................... 23 2.3.1 Failure model and failure detection ...................................... 23 2.3.2 Recovery semantics............................ 24 2.3.3 Active and passive replication ...................... 24 2.4 Summary ..................................... 26 3 Extending event stream processing systems with speculation 27 3.1 Motivation..................................... 27 3.2 Goals ....................................... 28 3.3 Local versus distributed speculation ....................... 29 3.4 Models and assumptions ............................. 29 3.4.1 Operators................................. 30 3.4.2 Events................................... 30 3.4.3 Failures .................................. 31 4 Local speculation 33 4.1 Overview ..................................... 33 4.2 Requirements ................................... 35 4.2.1 Order ................................... 35 4.2.2 Aborts................................... 37 4.2.3 Optimism control ............................. 38 4.2.4 Notifications ............................... 39 4.3 Applications.................................... 40 4.3.1 Out-of-order processing ......................... 40 4.3.2 Optimistic parallelization......................... 42 4.4 Extensions..................................... 44 4.4.1 Avoiding unnecessary aborts ....................... 44 4.4.2 Making aborts unnecessary........................ 45 4.5 Evaluation..................................... 47 4.5.1 Overhead of speculation ......................... 47 4.5.2 Cost of misspeculation .......................... 50 4.5.3 Out-of-order and parallel processing micro benchmarks ........... 53 4.5.4 Behavior with example operators .................... 57 4.6 Summary ..................................... 60 5 Distributed speculation 63 5.1 Overview ..................................... 63 5.2 Requirements ................................... 64 5.2.1 Speculative events ............................ 64 5.2.2 Speculative accesses ........................... 69 5.2.3 Reliable ordered broadcast with optimistic delivery .................. 72 5.3 Applications .................................... 75 5.3.1 Passive replication and rollback recovery ................................ 75 5.3.2 Active replication ............................. 80 5.4 Extensions ..................................... 82 5.4.1 Active replication and software bugs ..................................... 82 5.4.2 Enabling operators to output multiple events ........................ 87 5.5 Evaluation .................................... 87 5.5.1 Passive replication ............................ 88 5.5.2 Active replication ............................. 88 5.6 Summary ..................................... 93 6 Related work 95 6.1 Event stream processing engines ......................... 95 6.2 Parallelization and optimistic computing ................................ 97 6.2.1 Speculation ................................ 97 6.2.2 Optimistic parallelization ......................... 98 6.2.3 Parallelization in event processing .................................... 99 6.2.4 Speculation in event processing ..................... 99 6.3 Fault tolerance .................................. 100 6.3.1 Passive replication and rollback recovery ............................... 100 6.3.2 Active replication ............................ 101 6.3.3 Fault tolerance in event stream processing systems ............. 103 7 Conclusions 105 7.1 Summary of contributions ............................ 105 7.2 Challenges and future work ............................ 106 Appendices Publications 107 Pseudocode for the consensus protocol 10

    Building global and scalable systems with atomic multicast

    Get PDF
    The rise of worldwide Internet-scale services demands large distributed systems. Indeed, when handling several millions of users, it is common to operate thousands of servers spread across the globe. Here, replication plays a central role, as it contributes to improve the user experience by hiding failures and by providing acceptable latency. In this thesis, we claim that atomic multicast, with strong and well-defined properties, is the appropriate abstraction to efficiently design and implement globally scalable distributed systems. Internet-scale services rely on data partitioning and replication to provide scalable performance and high availability. Moreover, to reduce user-perceived response times and tolerate disasters (i.e., the failure of a whole datacenter), services are increasingly becoming geographically distributed. Data partitioning and replication, combined with local and geographical distribution, introduce daunting challenges, including the need to carefully order requests among replicas and partitions. One way to tackle this problem is to use group communication primitives that encapsulate order requirements. While replication is a common technique used to design such reliable distributed systems, to cope with the requirements of modern cloud based ``always-on'' applications, replication protocols must additionally allow for throughput scalability and dynamic reconfiguration, that is, on-demand replacement or provisioning of system resources. We propose a dynamic atomic multicast protocol which fulfills these requirements. It allows to dynamically add and remove resources to an online replicated state machine and to recover crashed processes. Major efforts have been spent in recent years to improve the performance, scalability and reliability of distributed systems. In order to hide the complexity of designing distributed applications, many proposals provide efficient high-level communication abstractions. Since the implementation of a production-ready system based on this abstraction is still a major task, we further propose to expose our protocol to developers in the form of distributed data structures. B-trees for example, are commonly used in different kinds of applications, including database indexes or file systems. Providing a distributed, fault-tolerant and scalable data structure would help developers to integrate their applications in a distribution transparent manner. This work describes how to build reliable and scalable distributed systems based on atomic multicast and demonstrates their capabilities by an implementation of a distributed ordered map that supports dynamic re-partitioning and fast recovery. To substantiate our claim, we ported an existing SQL database atop of our distributed lock-free data structure. Here, replication plays a central role, as it contributes to improve the user experience by hiding failures and by providing acceptable latency. In this thesis, we claim that atomic multicast, with strong and well-defined properties, is the appropriate abstraction to efficiently design and implement globally scalable distributed systems. Internet-scale services rely on data partitioning and replication to provide scalable performance and high availability. Moreover, to reduce user-perceived response times and tolerate disasters (i.e., the failure of a whole datacenter), services are increasingly becoming geographically distributed. Data partitioning and replication, combined with local and geographical distribution, introduce daunting challenges, including the need to carefully order requests among replicas and partitions. One way to tackle this problem is to use group communication primitives that encapsulate order requirements. While replication is a common technique used to design such reliable distributed systems, to cope with the requirements of modern cloud based ``always-on'' applications, replication protocols must additionally allow for throughput scalability and dynamic reconfiguration, that is, on-demand replacement or provisioning of system resources. We propose a dynamic atomic multicast protocol which fulfills these requirements. It allows to dynamically add and remove resources to an online replicated state machine and to recover crashed processes. Major efforts have been spent in recent years to improve the performance, scalability and reliability of distributed systems. In order to hide the complexity of designing distributed applications, many proposals provide efficient high-level communication abstractions. Since the implementation of a production-ready system based on this abstraction is still a major task, we further propose to expose our protocol to developers in the form of distributed data structures. B- trees for example, are commonly used in different kinds of applications, including database indexes or file systems. Providing a distributed, fault-tolerant and scalable data structure would help developers to integrate their applications in a distribution transparent manner. This work describes how to build reliable and scalable distributed systems based on atomic multicast and demonstrates their capabilities by an implementation of a distributed ordered map that supports dynamic re-partitioning and fast recovery. To substantiate our claim, we ported an existing SQL database atop of our distributed lock-free data structure

    Many-Task Computing and Blue Waters

    Full text link
    This report discusses many-task computing (MTC) generically and in the context of the proposed Blue Waters systems, which is planned to be the largest NSF-funded supercomputer when it begins production use in 2012. The aim of this report is to inform the BW project about MTC, including understanding aspects of MTC applications that can be used to characterize the domain and understanding the implications of these aspects to middleware and policies. Many MTC applications do not neatly fit the stereotypes of high-performance computing (HPC) or high-throughput computing (HTC) applications. Like HTC applications, by definition MTC applications are structured as graphs of discrete tasks, with explicit input and output dependencies forming the graph edges. However, MTC applications have significant features that distinguish them from typical HTC applications. In particular, different engineering constraints for hardware and software must be met in order to support these applications. HTC applications have traditionally run on platforms such as grids and clusters, through either workflow systems or parallel programming systems. MTC applications, in contrast, will often demand a short time to solution, may be communication intensive or data intensive, and may comprise very short tasks. Therefore, hardware and software for MTC must be engineered to support the additional communication and I/O and must minimize task dispatch overheads. The hardware of large-scale HPC systems, with its high degree of parallelism and support for intensive communication, is well suited for MTC applications. However, HPC systems often lack a dynamic resource-provisioning feature, are not ideal for task communication via the file system, and have an I/O system that is not optimized for MTC-style applications. Hence, additional software support is likely to be required to gain full benefit from the HPC hardware

    Secure Time-Aware Provenance for Distributed Systems

    Get PDF
    Operators of distributed systems often find themselves needing to answer forensic questions, to perform a variety of managerial tasks including fault detection, system debugging, accountability enforcement, and attack analysis. In this dissertation, we present Secure Time-Aware Provenance (STAP), a novel approach that provides the fundamental functionality required to answer such forensic questions – the capability to “explain” the existence (or change) of a certain distributed system state at a given time in a potentially adversarial environment. This dissertation makes the following contributions. First, we propose the STAP model, to explicitly represent time and state changes. The STAP model allows consistent and complete explanations of system state (and changes) in dynamic environments. Second, we show that it is both possible and practical to efficiently and scalably maintain and query provenance in a distributed fashion, where provenance maintenance and querying are modeled as recursive continuous queries over distributed relations. Third, we present security extensions that allow operators to reliably query provenance information in adversarial environments. Our extensions incorporate tamper-evident properties that guarantee eventual detection of compromised nodes that lie or falsely implicate correct nodes. Finally, the proposed research results in a proof-of-concept prototype, which includes a declarative query language for specifying a range of useful provenance queries, an interactive exploration tool, and a distributed provenance engine for operators to conduct analysis of their distributed systems. We discuss the applicability of this tool in several use cases, including Internet routing, overlay routing, and cloud data processing

    Attributes of fault-tolerant distributed file systems

    Get PDF
    Fault tolerance in distributed file systems will be investigated by analyzing recovery techniques and concepts implemented within the following models of distributed systems: pool-processor model and user-server model. The research presented provides an overview of fault tolerance characteristics and mechanisms within current implementations and summarizes future directions for fault tolerant distributed file systems
    • …
    corecore