
Speculation in Parallel and Distributed Event
Processing Systems

Dissertation
zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingerichtet von

M.Sc. Andrey Brito

geboren am 21.05.1979 in Campina Grande, Brasilien

Gutachter: Prof. Christof Fetzer, Ph.D. Prof. Pascal Felber, Ph.D.
Institut Systemarchitektur Institut d’informatique
Technische Universität Dresden Université de Neuchâtel

Tag der Verteidigung: 10. Mai 2010

Dresden, den 7. Juli 2010

Gedruckt mit Unterstützung des Deutschen Akademischen Austauschdienstes

Declaration

I hereby declare that this submission is my own work and that, to the best of my knowledge,
it contains no material previously published or written by another person nor material that to a
substantial extent has been accepted for the award of any other degree or diploma of the university
or other institute of higher education, except where due acknowledgment has been made in the
text.

Dresden, March 23, 2010

Andrey Brito

iv

Abstract

Event stream processing (ESP) applications enable the real-time processing of continuous flows
of data. Algorithmic trading, network monitoring, and processing data from sensor networks are
good examples of applications that traditionally rely upon ESP systems. In addition, technological
advances are resulting in an increasing number of devices that are network enabled, producing
information that can be automatically collected and processed. This increasing availability of
on-line data motivates the development of new and more sophisticated applications that require
low-latency processing of large volumes of data.

ESP applications are composed of an acyclic graph of operators that is traversed by the data.
Inside each operator, the events can be transformed, aggregated, enriched, or filtered out. Some
of these operations depend only on the current input events, such operations are called stateless.
Other operations, however, depend not only on the current event, but also on a state built during
the processing of previous events. Such operations are, therefore, named stateful.

As the number of ESP applications grows, there are increasingly strong requirements, which
are often difficult to satisfy. In this dissertation, we address two challenges created by the use of
stateful operations in a ESP application: (i) stateful operators can be bottlenecks because they
are sensitive to the order of events and cannot be trivially parallelized by replication; and (ii), if
failures are to be tolerated, the accumulated state of an stateful operator needs to be saved, saving
this state traditionally imposes considerable performance costs.

Our approach is to evaluate the use of speculation to address these two issues. For handling
ordering and parallelization issues in a stateful operator, we propose a speculative approach
that both reduces latency when the operator must wait for the correct ordering of the events and
improves throughput when the operation in hand is parallelizable. In addition, our approach
does not require that user understand concurrent programming or that he or she needs to consider
out-of-order execution when writing the operations.

For fault-tolerant applications, traditional approaches have imposed prohibitive performance
costs due to pessimistic schemes. We extend such approaches, using speculation to mask the cost
of fault tolerance.

v

vi

Acknowledgments

First, I am indebted to my supervisor, Christof Fetzer, for giving me the opportunity to join such
a great group and for always keeping his door open during the last four years.

I thank all my colleagues from the Systems Engineering group: André Schmitt, André Martin,
Claudia Einer, Diogo Becker, Gert Pfeifer, Jons-Tobias Wamhoff, Karina Wauer, Marc Brünink,
Martin Süßkraut, Martin Nowack, Robert Fach, Ryan Spring, Stefan Weigert, Stephan Creutz,
Thomas Knauth, Torvald Riegel, Ute Schiffel, Zbigniew Jerzak. I thank you all for the great
atmosphere at the office and great conversations during lunch breaks.

Special thanks go to Ute, Marc, Ryan, and Diogo, for providing me uncountable suggestions
during the writing of this dissertation.

I would like to thank Pascal Felber, from the University of Neuchâtel, for reviewing this
dissertation and for all the discussions and feedback.

Some of the work in this dissertation was done in cooperation with other people. Therefore,
thanks to Heiko Sturzrehm for his help during early implementations of the event processing
engine; Stefan Weigert and Martin Süßkraut for the work with checkers for detecting software
bugs; and to Diogo Becker for the discussions about determinism.

Finally, I am specially grateful to my parents and to my wife Esther for the continuous support
and motivation and to the DAAD for the financial support.

vii

viii

Contents

1 Introduction 1
1.1 Event stream processing systems . 1
1.2 Running example . 3
1.3 Challenges and contributions . 4
1.4 Outline . 6

2 Background 7
2.1 Event stream processing . 7

2.1.1 State in operators: Windows and synopses 8
2.1.2 Types of operators . 12
2.1.3 Our prototype system . 13

2.2 Software transactional memory . 18
2.2.1 Overview . 18
2.2.2 Memory operations . 19

2.3 Fault tolerance in distributed systems . 23
2.3.1 Failure model and failure detection 23
2.3.2 Recovery semantics . 24
2.3.3 Active and passive replication . 24

2.4 Summary . 26

3 Extending event stream processing systems with speculation 27
3.1 Motivation . 27
3.2 Goals . 28
3.3 Local versus distributed speculation . 29
3.4 Models and assumptions . 29

3.4.1 Operators . 30
3.4.2 Events . 30
3.4.3 Failures . 31

4 Local speculation 33
4.1 Overview . 33
4.2 Requirements . 35

4.2.1 Order . 35

ix

x CONTENTS

4.2.2 Aborts . 37
4.2.3 Optimism control . 38
4.2.4 Notifications . 39

4.3 Applications . 40
4.3.1 Out-of-order processing . 40
4.3.2 Optimistic parallelization . 42

4.4 Extensions . 44
4.4.1 Avoiding unnecessary aborts . 44
4.4.2 Making aborts unnecessary . 45

4.5 Evaluation . 47
4.5.1 Overhead of speculation . 47
4.5.2 Cost of misspeculation . 50
4.5.3 Out-of-order and parallel processing micro benchmarks 53
4.5.4 Behavior with example operators . 57

4.6 Summary . 60

5 Distributed speculation 63
5.1 Overview . 63
5.2 Requirements . 64

5.2.1 Speculative events . 64
5.2.2 Speculative accesses . 69
5.2.3 Reliable ordered broadcast with optimistic delivery 72

5.3 Applications . 75
5.3.1 Passive replication and rollback recovery 75
5.3.2 Active replication . 80

5.4 Extensions . 82
5.4.1 Active replication and software bugs 82
5.4.2 Enabling operators to output multiple events 87

5.5 Evaluation . 87
5.5.1 Passive replication . 88
5.5.2 Active replication . 88

5.6 Summary . 93

6 Related work 95
6.1 Event stream processing engines . 95
6.2 Parallelization and optimistic computing . 97

6.2.1 Speculation . 97
6.2.2 Optimistic parallelization . 98
6.2.3 Parallelization in event processing . 99
6.2.4 Speculation in event processing . 99

6.3 Fault tolerance . 100
6.3.1 Passive replication and rollback recovery 100
6.3.2 Active replication . 101
6.3.3 Fault tolerance in event stream processing systems 103

CONTENTS xi

7 Conclusions 105
7.1 Summary of contributions . 105
7.2 Challenges and future work . 106

Appendices

Publications 107

Pseudocode for the consensus protocol 109

xii CONTENTS

List of Figures

1.1 A simple prototypical ESP application graph. 3

2.1 Possible transitions for the status of a transaction. 19
2.2 Examples of transactions using a valid (txA) and an invalid (txB) snapshot. . . . 23

4.1 In-order processing challenges. 41
4.2 Structure of an operator with out-of-order speculation. 41
4.3 Example of speculative out-of-order execution. 42
4.4 Optimistic parallelization example. 43
4.5 Mean cost of a memory access. 48
4.6 Duration of major phases for transactions with different sizes. 49
4.7 Impact of cost in the total processing time for different task sizes. 49
4.8 Impact of cost in the total processing time for different task sizes. 50
4.9 Impact of contention in the memory access time. 51
4.10 Impact of contention in the memory access time. 51
4.11 Cost of an abort/undo operation. 52
4.12 Overhead of a rollback and a reexecution. 53
4.13 Parallelization micro benchmark: 1% of the state is updated. 54
4.14 Parallelization micro benchmark: 10% of the state is updated. 54
4.15 Out-of-order micro benchmark: 1% and 10% of the state is updated. 55
4.16 Micro benchmark for the abort-driven and throughput-driven predictors. 56
4.17 Comparison between dynamic and static speculation horizons. 57
4.18 Optimistic parallelization speedups. 59
4.19 Comparison between speedups from optimistic parallelization and fine-grained

locking. 59
4.20 Latency of a system with two sources and varying event generations rates. . . . 60

5.1 Basic protocol for checkpoint-based fault-tolerance. 76
5.2 Replicated operator. 80
5.3 End-to-end latency with two operators for different logging configurations. . . . 88
5.4 End-to-end latency with different number of operators and logging times. . . . 89
5.5 Commit, rollback, and abort rates for different workloads. 89
5.6 Effectiveness of parallelization when determinism must be enforced. 90

xiii

xiv LIST OF FIGURES

5.7 Benefit of speculative events when using time to order events deterministically. 91
5.8 Effects of a failure in the generation of final events. 92
5.9 Performance comparison between a nonspeculative and a speculative execution

when using active replication in combination with checkers. 93

List of Tables

1.1 Comparison between ESP and DB systems. 2

2.1 Key elements of the STM. 20

4.1 Contention scenarios for two concurrent transactions accessing the same memory
position. 36

4.2 Set data-structure specification for generating a speculation-aware set with trans-
actional boosting. 45

4.3 Computational costs of the operators. 58
4.4 Throughput and abort rate for the stream mining operators with different conflict

predictors. 60

5.1 Contents of a middleware-level event. 65

xv

xvi LIST OF TABLES

Listings

2.1 Reservoir-based sampling using a simple list. 10
2.2 Interface of a simple list. 11
2.3 Sketch for summarizing the number of occurrences of an element in the stream. 11
2.4 Simplified specification of our example application. 15
2.5 Pseudocode for the sources. 16
2.6 Top-k operator based on a count-sketch synopsis. 16
2.7 Sample structure for join operator. 17
2.8 Writing to a memory position through the STM. 21
2.9 Reading a memory position through the STM. 22
4.1 Interface of a simple set. 44
4.2 Simple operator for micro benchmarks. 54
5.1 Updating task descriptors. 67
5.2 Speculative read. 70
5.3 Speculative write. 71
5.4 Optimistic atomic broadcast. 73
5.5 Sample operator with an out-of-bounds bug. 85
1 Consensus helpers. 109
2 Leader consensus. 110
3 Non-leader consensus. 111

xvii

xviii LISTINGS

Chapter 1

Introduction

Many modern computing systems produce vast amounts of data continuously. In some cases, data
need to be stored, but due to the high volumes, storage is impractical if not impossible. In other
cases, data need to be processed and trigger adequate response actions in (soft) real-time. In both
scenarios, a continuous high-rate flow of low-level data (e.g., individual sensor reads) need to be
processed to generate a lower-rate flow of useful information (e.g., averages). The high-relevance
information, now at a reduced rate, can then be stored or processed in a timely manner. This
task is the goal of event stream processing (ESP). In this chapter we give a summarized view of
this dissertation. We first informally define ESP systems and give an example that will be used
throughout the text. After that, we enumerate the main challenges addressed and, finally, give a
roadmap for the rest of the work.

1.1 Event stream processing systems

Event processing started as an initiative to automate actions in databases. Instead of periodically
checking whether a table was updated and then triggering an action, extensions were proposed to
allow databases to actively react to table updates. This new type of systems was named active
databases [DBB+88, Day94]. As applications got more complex, more features were proposed to
allow, for example, that actions would only be triggered when a set of specific updates occurred.
The original definition of an event was, therefore, “an update in the database”. As an example,
HiPAC [DBB+88] allowed the programming of sets of events-condition-actions (ECA) rules that
were checked each time an update event occurred in the database.

Nevertheless, the main goal of databases is to store information persistently in a way that
allows efficient subsequent accesses. There is, however, a range of applications in which the
priority is to analyze the data in real time. Persistent storage of the data is secondary (e.g., only
for archiving purposes), or even impossible due to the high-volume and continuous arrival of new
data. Recently, the development of cheap and low-latency communication and the explosion of
interconnected devices caused a rapid growth in these applications. The increase in interest led to
the development of a new research area focused more on low-latency high-throughput processing
and less on storage and indexing of data. A summarized list of key differences between these two
approaches is shown in Table 1.1.

1

2 CHAPTER 1. INTRODUCTION

Event stream oriented systems Databases

Dynamic data and static queries Static data and dynamic queries
Data stream is infinite Storage capacity is bounded
Single (or limited) look at data Data is persistent and repeatedly accessed
Latency prioritized (e.g., real time) Throughput prioritized (e.g., batching)
Approximative results predominant Exact results predominant
Often distributed processing Often centralized processing

Table 1.1: Comparison between ESP and DB systems.

In ESP systems queries are static, long lived, and the system is traversed by the data. The
arrival of a piece of data is then a potential trigger for the emission of a result. In contrast, in
databases, the queries are dynamic, short lived, and access static data on the storage. In databases,
the trigger for the emission of results is the arrival of a new query. In addition, because of the
continuous arrival of data (i.e., the stream is infinite) and the low-latency requirements, ESP
system assume that the whole stream cannot be kept and randomly accessed. As a consequence
of this limited access of events (e.g., only recent or sampled events are considered), results are
often approximations in ESP systems. Finally, because the data is flowing through the system,
an ESP application is normally composed of several intermediate computations in a pipeline.
These intermediary computations can be spread among different nodes in a distributed system
(see example below). In contrast, in conventional databases the complete processing of a query is
normally executed where the data is.

These event stream-oriented systems have been known by many different names. Commons
terms are complex event processing (CEP) [Luc01], event stream processing [Luc01], and data
stream processing [BBD+02, GO03]. Sometimes the different names reflect slight differences
in the approaches taken. For example, CEP focuses more on the search for patterns of events (a
complex event is composed by a set of regular events) than in the low-latency high-troughput
processing. However, different names often reflect only different motivating applications.

ESP applications are commonly architected in the form of an acyclic graph as exemplified
in Figure 1.1. On the extreme left side of the graph are the producers, which generate the
events. Typically, the events compose a continuous stream of low-level pieces of data. On the
extreme right are the consumers, which are interested in high-level information extracted from the
low-level data. The central part of the graph is composed by the operators. They are responsible
for transforming high-volume low-level data into a lower volume of high-level information.
The events traverse the operator graph and are processed in each node by different types of
computations. Examples of such computational tasks are: filtering, transformation/convertion,
enrichment (e.g., addition of offline information), aggregation (summarization of multiple events
in one with higher-level information, e.g., average), join (combination of events coming from
different streams to produce a single event combining information from the source events), and
union (merge of events from different streams into a single stream containing all events).

Events can be seen as messages that are not explicitly addressed and carry some information
that is relevant for the application. The transport of the events can be implemented by a publish/-

1.2. RUNNING EXAMPLE 3

STATE

Processor1

Filter

Consumer

Consumer

Distributor

Filter

Producer

Producer

Producer

Producer

STATE

Processor2

Figure 1.1: A simple prototypical ESP application graph.

subscribe system [EFGK03] or simply by having static connections between components. For
example, the producer nodes in Figure 1.1 could monitor the temperature of a set of machines.
Events could be generated either at fixed intervals or when there is a temperature change. The
operators in this case could analyze the measurements to achieve goals as simple as detecting
overheating and shutting down machines, or as complex as predicting failures and generating
early alarms. In general, ESP systems are very popular in monitoring applications. Further appli-
cations that increasingly rely on ESP systems are process control, algorithmic trading, network
monitoring, and sensor networks.

It is also often the case that ESP systems are structured as a tree, with many producers being
distributed over a larger area and events being successively processed by less operators until the
final information is used by a few consumers. In closed loop control systems, the consumers
can then command distributed actuators that will initiate actions that feedback the distributed
application.

Finally, as previously mentioned, the stream of events is assumed to be infinite. This assump-
tion applies even in some cases where the stream may be finite. For example, when the data in the
stream can not be fit in the memory available in the system or when the length of the stream (i.e.,
its duration) is such that it is undesirable that operations wait to see the complete stream before
producing outputs. As a consequence, operations in an ESP application need to be designed to
work with bounded subsets of the events in the stream.

In a summary, ESP systems address the problem of producers generating large amounts of
raw data that, without processing, are useless to humans. Therefore, the goal of an ESP system
is to process and analyze the data, producing models and detecting behavior of interest in an
automated way.

1.2 Running example

In order to help identifying the issues and illustrate our contributions, we will make use of a
running example. This example application consists of an algorithmic trading system. Although
the requirements for the algorithmic trading systems are the same as for other monitoring ap-

4 CHAPTER 1. INTRODUCTION

plications (e.g., process control, network monitoring), finance applications have been a major
motivating force to the development of event stream processing systems (e.g., [Str10, Pro10]).

A high-level view is shown in Figure 1.1. There is a number of information sources generating
data at high rates. The data is filtered and then aggregated in components, which make decisions
based on current and past events. At the end of the dataflow, consumers act based on the decisions
made.

The application comprises six stages. The first stage consists of Producer nodes. These
nodes are sensors attached to different stock exchanges and collect stock update ticks from each
of them. As an example, one sensor could be attached to the US-based NASDAQ stock exchange,
another to the German DAX, another to the Brazilian BOVESPA, and so on.

In the second stage, simple filters can reduce bandwidth by dropping events for stocks that
are not of interest. The third and fourth stages contain the core business logic for this application.
The third stage is stateful, that is, outputs depend on the state accumulated by the processing of
previous events. One such operator could be to continuously compute several moving averages
of a stock and to emit an output event when the current price exceeds these averages by certain
percentages. Another typical stateful operation would be to detect frequent events or changes
in event frequency. This could be used to select only stock quotes that, recently, have been very
often negotiated.

In the fourth stage, the output from the previous stages, now consisting of more relevant
stocks, could be analyzed by a more expensive algorithm. This algorithm decides on an action to
be taken for that stock price update (e.g., ignore, buy, sell). For example, the fourth stage could
compute the expected value of an option for that stock or decide which stocks are more promising
based on behavior of the same or similar stocks in different markets.

Finally, in the fifth stage the events are reformatted, billing information is added, and then
they are sent to the consumers. The consumers, in stage six, carry out the actions encapsulated in
the events (e.g., execute the buy or sell orders).

1.3 Challenges and contributions

The example above has several issues that should be addressed when building a high performance
and robust system. First, consider the Filter operators in the second stage. They may execute
some message format convertion, maybe including signature verification and decryption, which
are expensive operations. These are stateless operations and can be trivially parallelized by
creating multiple replicas of each. Nevertheless, one downside is that different replicas may take
slightly different times to process different events and this difference will change the ordering of
events (even for events that come from the same source). Then, if the Processor1 operator is
order sensitive, the order needs to be restored. Restoring the order requires buffering events and
waiting. Thus, it increases the end-to-end processing latency.

Second, note that the Processor1 operator is stateful. For this reason, it cannot be par-
allelized by simple replication, as we did with the filters. Parallelizing a user-defined stateful
operator is not trivial. On the one hand, parallel algorithms based on coarse-grained locking
are easier to implement, but provide little parallelism. On the other hand, algorithms based
on fine-grained locking and lock-free approaches provide high parallelism, but are difficult to

1.3. CHALLENGES AND CONTRIBUTIONS 5

implement and error prone. Specially if development time is a concern, the time to parallelize
and test the parallel algorithms by hand can be much higher than for the sequential algorithms,
making the parallelization unfeasible. Thus, automated parallelization is desired in such cases.

Another disadvantage of parallel algorithms is that the interference between threads during
execution may cause operations to be nondeterministic. Determinism is important when testing
algorithms and also important for postmortem analysis, where inputs are replayed to understand
results obtained during the original execution.

Third, fault tolerance is essential to critical applications. In our example, both Processor1
and Processor2 operators depend on an accumulated state. Their states need to be protected from
failures. Checkpoints, alone or in combination with logging can help by periodically saving the
state to a stable storage. Nevertheless, an operator needs to ensure checkpoints are stable on disk
before emitting output events, i.e., checkpoints must be synchronous. Otherwise, inconsistencies
may occur. To understand why, consider that the operator Processor1 is order-sensitive and
does not do synchronous checkpoints. The checkpoints could be even done asynchronously or
synchronously, but not for every outputted event. This operator will occasionally output events
for which the state used during computation is not yet in stable storage. If a failure occurs at such
a point, after recovery the operator will be in a state previous to the state that generated the event.
Even assuming that the event stream can be replayed, it is not possible to guarantee that events
coming from different Filter operators will be received and processed in the same order (e.g.,
because of slightly different network latencies). As a result, computations after the recovery will
be different and may even be incompatible with previous outputs. Thus, the reconstructed state
in Processor1 operator may be inconsistent with Processor2’s view of Processor1 (which
was constructed based on the outputs Processor1 generated before the failure). However, if
we consider synchronous checkpointing (or logging) before each output, considerable latency is
added to the processing time.

Finally, in case of time-critical applications, downtime can be directly or indirectly mapped
to concrete losses. For example, in our application example, missing market opportunities maps
directly to financial losses. In other applications, downtime may affect credibility or safety, which
can be then indirectly mapped to financial losses. In such situations, fault tolerance as detailed
above is not appropriate because it both adds considerable processing latency and requires a
lengthy recovery phase for restoring checkpoints and reconstructing state after a failure. Active
replication can be used to eliminate the recovery phase by using redundant computation in replica
nodes. In this case, replicas must process the same inputs in the same order and accumulate the
same state. During failure-free operation, outputs from one replica are used and the other replicas
are simply ignored. If one replica fails, the outputs of another replica can be used, masking the
failure completely.

Active replication has also some disadvantages, however. First, it requires that replicas
process events in the same order. Reliable ordered delivery normally requires coordination
among replicas. Second, it restricts the computation in the replicas by requiring deterministic
computations, which make parallelization difficult.

In this dissertation we address the issues enumerated above. We show how speculation can
be used by an operator to process events out of their normal order and also to process events
in parallel. In both cases we preserve sequential semantics, which simplifies the development

6 CHAPTER 1. INTRODUCTION

process. We also show how to use speculation in the interaction between operators and thereby
mitigate the latency costs of fault tolerance, both in checkpoint-based fault tolerance and in active
replication.

1.4 Outline

The rest of this dissertation is organized as follows. In Chapter 2, we provide basic concepts in the
various sub-areas involved in this work. We explain the basics of stream processing operations,
give the intuition behind software transactional memories, and review some important concepts
in fault tolerance in distributed systems. In Chapter 3, we refine our motivation and goals and
define our models and assumptions. After that, we divide the contributions in two chapters.
Chapter 4 addresses the first two issues from the previous section: how speculation can be used
to enable out-of-order and parallel processing within individual operators. Chapter 5 addresses
fault-tolerant ESP systems and how speculation can reduce the latency costs of fault tolerance.
The related work is detailed in Chapter 6. Finally, we conclude in Chapter 7, with a summary of
the achievements and possible topics for future work.

Chapter 2

Background

In this chapter we introduce basic concepts from the various subareas involved in this work. We
start with an overview of operators for event stream processing (ESP) applications. We discuss
their goals and their internal structure. Then, we explain software transactional memory (STM).
We finish by reviewing basic concepts of fault tolerance in distributed systems, including failure
models and failure detection.

2.1 Event stream processing

An event-driven architecture (EDA) [Luc01, CCC07] is a software architecture paradigm where
systems are built around events. In such systems, events represent state changes that are significant
to the application at hand. Because of this loose definition, events can be from messages
containing attribute-value pairs to objects in an objected-oriented language. In addition, events
are not explicitly addressed. Events are transported from producers to consumers by an event
channel. A sophisticated event channel can route events based on types or preregistered interests
(e.g., a publish-subscribe system [EFGK03]). Alternatively, simpler event channels consist in
fixed connections between components of the systems.

ESP is a set of techniques to build event-driven systems. In the previous chapter we presented
an example ESP system and illustrated this system as a graph of operators (see Figure 1.1). The
graph was composed of producers, operators, and consumers. A producer, or a source, is a
component with one or more outputs and no inputs. The sources can either produce the events
themselves or be an interface between the external world and the ESP system. In the latter case
sources can be also named input adapters. For example, an input adapter could be a component
that communicates with an external system and generates events with the received data. An
operator has at least one input and one output. It can be seen as a program that is executed each
time an event is received. Finally, a consumer, or a sink, is a component with one or more inputs,
but no outputs. Similarly to sources, sinks can also be seen as an interface between the ESP
system and the external world. In such cases, they can be also named output adapters. As an
example, an output adapter could be a component that transform events in commands that are
sent to actuators in an external system.

Components in the ESP system can be also classified as stateful or stateless. Stateful

7

8 CHAPTER 2. BACKGROUND

components keep a persistent state between events. As we will detail below, this state can be from
a single value up to a collection of events or a set of complex data structures. The outputs of a
stateful component depend not only on the current input but also on its accumulated state. On the
contrary, a stateless component keeps no state and its output depends solely on the current input
event. The state in a stateful component is private to that component. Therefore, communication
between components can happen only through events.

2.1.1 State in operators: Windows and synopses

There are several reasons for an operator to have a state. One reason is that the information
expected at its output is of a higher level than the data available at its input. Consider for example
a sensor monitoring whether a resource is busy or idle. The sensor collects a hundred samples per
second. These reads do not carry much useful information to the human user of the system, who
is not able to keep up with such a fast changing value. The information the user really cares about
is the percentage of time that the resource was busy in the last seconds. Thus, an event processing
operator that computes the mean usage of the resource will transform low-level, low-relevance
ones and zeros into a high-level useful percentage value.

Like the example above, there are many others in which the information of interest cannot be
computed based on the single, most recent input. Furthermore, in ESP systems, the only way
to allow an operator to consider previous input data is by keeping a persistent state between
executions.

Because ESP systems process raw data to produce useful information, they are often pictured
as inverted databases. In database systems the data is kept in storage while the queries are
submitted to the system and are processed to produce results. ESP systems take the opposite
approach, the set of queries is fixed, predefined, and data is submitted to the system causing
results to be emitted1. Thus, many operations that are common in databases are also expected
in ESP systems. However, another feature of ESP systems is that the stream of input events is
infinite. Having an infinite stream prevents the usage of any holistic operators in ESP queries (i.e.,
operators that consider the whole data for the computation). Take as an example the computation
of the average usage of a resource. In order to compute it, we have to consider all inputs, but
because the stream is infinite, this computation will never finish. This problem is referred to as
blocking of operators.

Besides the problem of blocking operators, having infinite streams may also require un-
bounded memory to store the state and unbounded computational time to process this state. In
addition, for some applications only the more recent events in the stream are of interest and events
that are too old can be discarded.

Event windows

Event windows [BBD+02, GO03, PS06] aim at solving the four issues discussed above, namely:
blocking operators, unbounded memory, unbounded computational time, and irrelevance of old

1Dynamic replacement of queries is also desirable for ESP systems. Nevertheless, it is an orthogonal issue that
will not be addressed in this dissertation.

2.1. EVENT STREAM PROCESSING 9

events. A window is a bounded list of past input events that is kept as state in an operator. The
operator will then consider only the events currently in its window to carry out the computation.

The boundaries of a window can be defined by time, by a counter, or by a predicate. If a
time window is used, the length of the window is defined by a fixed time interval. The time
used as reference can be either wall time, i.e., arrival time of the events, or a timestamp in the
events themselves. For example, a time window of length 6 seconds (wall time) will contain all
the events received within an interval of 6 seconds, regardless of the number of events. On the
contrary, a count window will have its length defined by a fixed number of events, regardless of
their timestamps. Thus, a count window with length 10 will contain exactly 10 events. Finally, a
landmark window is defined by a start predicate (Pw_start) and an end predicate (Pw_end): once an
event satisfies the start predicate, this event and all following events will be added to the window
until an event satisfying the end predicate is received.

In addition to the length of the event window, for time and count windows it is also necessary
to define when new windows are created. For time windows, a progression step of 1 second
indicates that a new window is created each second. Thus, for a time window with length 6
seconds and progression step 2 seconds there will be three concurrent windows (i.e., 6/2). Hence,
each event will take part in 3 windows. Once a window is closed the operator will run and
consume all events in that window.

The progression step for a count window is defined in number of events. Thus, a count window
defined with length 10 and progression step 2 implies that 5 windows will exist simultaneously
and that an event will have taken part in 5 windows before being discarded. Again, the operation
will be executed whenever the window is closed.

Synopses

Event windows addressed the problem of restricting the state of the operator by restricting the
number of events to be considered in computations. However, there are cases where the number
of events in a window still is too large. For example, in a network monitoring application we
may want to compute some metric that considers the events (e.g., headers of incoming packets)
seen by a router in the last hour. In this case, the window of events to be considered is one hour.
Nevertheless, if the router is connected to gigabit links it may be impractical to store all headers
and to consider them in a computation. For such cases, using approximations of the metric can be
more practical and still satisfactory. Thus, instead of considering all events that occurred in the
time window of one hour, the metric may consider only a synopsis of these events.

The term synopsis refers to a summarized representation of a set of events. The goal of a
synopsis is to represent a set of events in a reduced space, but still with enough information to
compute the operation in hand. Therefore, the exact type of synopsis used by an operator depends
on the operator itself. The key properties of a synopsis to be used in ESP are [AY07]: broadness
of applicability (how easy is to use the same synopsis for different operations); one-pass constraint
(the construction of the synopsis should require only one pass over the events); efficiency in
construction time and used space (be sublinear in the number of items it represents, ideally have
a fixed cost); robustness (provide error guarantees, some synopses can be optimal when globally
analyzed, but poor when estimating single points).

10 CHAPTER 2. BACKGROUND

There are many methods for summarizing events. The following are the most commonly used
ones: sampling, histograms, wavelets, and sketches.

Sampling is the simplest form of summarizing streams. A commonly used sampling approach
for streams is the reservoir-based sampling [Vit85]. This approach uses a storage with fixed size
n and adds events to this storage with a continuously changing probability in order to keep the
sample representation unbiased. The first n events seen are added with probability 1. After that,
the t-th event is added with probability n/t and, if an event is added, a random event from the
storage is removed to keep its maximum size of n. An advantage of sampling is its applicability.
Because it does not change the representation of the data, it is easy to adapt operations to use
sampling. In addition, it has provable error guarantees as events have equal probability of being
considered [AY07]. As a disavantage, it is not adequate when rare events may be very relevant as
they may not be even seen by the operator. The pseudocode for implementing such a sampling is
shown in Listing 2.1

1 list_t r;
2 int t = 0; // counts how many events were seen

4 // Initialize reservoir
5 init_reservoir() {
6 r = list_create();
7 }

9 // Update reservoir
10 insert(x) {
11 if (t++ < MAX_SIZE) add_to_list(r, x, 0);
12 else if (random() < (MAX_SIZE/t)) { // 0 < random() < 1
13 list_remove_index(r, random()*MAX_SIZE);
14 list_add(r, x, 0);
15 }
16 }

Listing 2.1: Reservoir-based sampling using a simple list (see Listing 2.2).

Histograms are also a simple representation, but they work only for simple applications (e.g.,
using static histograms) because maintaining optimal histograms requires super-linear space and
time [AY07]. Wavelets are able to keep hierarchical representations of the data. In other words, a
wavelet synopsis maintains simultaneous representations for different levels of details. However,
the one-pass requirement of event streams complicates the construction of wavelets that are both
space efficient and robust with respect to the error guarantees.

Finally, sketches are projections of a part of the stream (e.g., a large window) on a reduced
space. Some sketch structures (e.g., [CM05, CCFC04]) are able to keep a fixed-size representation
of the stream and to process updates in constant time. In this case, the error margins will depend
on the number of events considered and the amount of space. In Listing 2.3 we shown an example
of such a sketch synopsis, which we will later use in our example operators.

The sketch algorithm shown above is named count sketch [CCFC04]. The intuition for its
workings is as follows (for proofs and more details see [CCFC04]). The goal is to estimate the
number of occurrences ni of events that have the same type as ei. The sketch basically keeps

2.1. EVENT STREAM PROCESSING 11

1 // Create a new list
2 list_t list_create();

4 // Insert the element at the specified position of the list
5 list_add(list_t list, element_t element, int position);

7 // Remove the element at the specified position of the list
8 element_t list_remove_index(list_t list, int position);

10 // Retrieve the element at the specified position of the list
11 element_t list_get_element(list_t list, int position);

13 // Query the size of the list
14 int list_get_size();

Listing 2.2: Interface of a simple list.

1 int matrix[MAX_HEIGHT , MAX_WIDTH]; // Synopsis
2 int count = 0;

4 // vector of hash functions , mapping from "int" to "int"
5 int hash[MAX_HEIGHT](int);

7 // vector of hash functions , mapping from "int" to +1 or -1
8 int bin_hash[MAX_WIDTH](int);

10 // Update matrix, returning an estimate for the number of occurrences
11 count_sketch_insert(x) {
12 int i;
13 int estimates[MAX_HEIGHT];
14 for (i = 0; i < MAX_HEIGHT; i++) {
15 int column = hash[i](x) % MAX_WIDTH;
16 matrix[i, column] += bin_hash[column](x);
17 estimates[i] = matrix[i, column];
18 }
19 return median(estimates)*bin_hash(x);
20 }

Listing 2.3: Sketch for summarizing the number of occurrences of an element in the stream
[CCFC04].

12 CHAPTER 2. BACKGROUND

a counter c that is added bin_hash(ei) everytime an event ei is received, where bin_hash() is a
pair-wise independent hash function that maps from the domain of ei to +1 or −1. The main idea
is that Equation 2.1 gives an approximation for ni.

estimate = c · bin_hash(ei) (2.1)

To understand why, note that given c and estimate as shown in Equations 2.1 and 2.2, the
expected value of the estimate is given by Equation 2.3. Note also that when j = i in Equation 2.3,
the product of the two hashes will be +1. But when j , i, the product will be approximately as
many times positive and as it will be negative because the hash function is pairwise independent.
Therefore, the positive and negative values are expected to cancel themselves and the expected
value is ni, the number of occurrences of ei.

c =

m∑
j=1

n j · bin_hash(e j) (2.2)

E(estimate) = E(c · bin_hash(ei))

= E(
m∑

j=1

n j · bin_hash(e j) · bin_hash(ei)) (2.3)

= ni (2.4)

The problem with the estimation above is that the variance of the estimate is very large. To
reduce the variance, we could keep several counters and use different hash functions for each of
them and, then, when computing the estimate, take the average of these counters. Nevertheless,
very frequent types (where n j is big) would still heavily interfere with low-frequency ones. To
solve this problem, each counter can be replaced with a hash table. We now have a matrix, each
line is a hash table and each event updates only one entry in each line. Consequently, as long as
different lines use different hashes (to implement its hash table), different interferences will occur
in each line. Finally, the estimate ni is computed by computing the estimate for each line and
then taking the median of all estimates.

2.1.2 Types of operators

Because ESP systems have much of its origins from the database domain, it is also common to
consider ESP operators as special versions of database operators. In ESP, operators can implement
one of the following basic functionalities.

• Filter: forwards or discards an event based on the evaluation of a predicate on that event.
A filter can be stateless or stateful. A stateless filter could be, for example, “drop event e if
e.value < 10”. Alternatively, eliminating duplicated events, for example, would require a
stateful filter. Given an input event e and a user-provided predicate P(), the output event e′

is given by:

2.1. EVENT STREAM PROCESSING 13

e′ =

{
e, if P(e) = true
∅, otherwise

(2.5)

• Map: maps one input event into one or more different output events. This family of
operators include format conversions, cryptographic signatures, and function computations
over attributes of the input events (i.e., transformation of events). As with the filters, map
operators may be stateful if the computation depends on previous events. Given an input
event e with type T and a user-provided function f : T 7−→ T ′, the output event e′ with
type T ′ is given by:

e′ = f (e) (2.6)

• Aggregate: combines information from multiple events into a single event. Typically, the
resulting output event summarizes the input events. For example, an Average operator
may output the average of a set of input events. Observe that because the stream of input
events is assumed to be infinite, these aggregates are not computed over the whole stream,
but only over a finite subset of events, namely, event windows. Defining an aggregate
requires the following parameters: an event window W containing all the events that will be
combined (all with type T), including the current input event ei; a user-provided function
f : T n 7−→ T ′ that maps n events into a single event e′ with type T ′; and a user-provided
predicate P() that evaluates to true whenever an output should be produced. The output
event e′ with type T ′ is then given by:

e′ =

{
f (e0, e1, ..., en) | e j ∈ W(0 ≤ j ≤ n), if P(W) = true
∅, otherwise

(2.7)

• Join: combines two events that come from two different streams and together satisfy a
predicate into a new event combining information from both source events. Defining a join
requires the following parameters: two windows of events W1 and W2 (for streams S 1 and
S 2, respectively) with the events that will be combined, including the current input event
ei; a user-provided function f : T S 1 × T S 2 7−→ T ′ that maps two events with type T S 1 and
T S 2, for the events arriving in streams S 1 and S 2, into a single event e′ with type T ′; and a
user-provided predicate P() that evaluates to true whenever an output should be produced.
The output event e′ with type T ′ is then given by:

e′ =

{
f (e1, e2) | e1 ∈ W1 and e2 ∈ W2, if P(e1, e2) = true
∅, otherwise

(2.8)

2.1.3 Our prototype system

We have built a prototype system to evaluate the concepts shown in this dissertation. This
prototype is a framework built in the form of a static library, which is compiled with the files
that define the application. The library contains basic functions for creating, transporting, and

14 CHAPTER 2. BACKGROUND

destroying events, helper functions for defining and connecting components, as well as accessory
functions and the speculation support that we will detail later.

In our prototype the specification of an operator is composed of three functions: an init()
function that is called on system startup and is responsible for allocating and initializing resources
for the operator; a process() function that is called for each event received by the operator; and
an exit() function that can be used to shutdown or release resources and is called during system
tear down. The functions are regular C code augmented with special library calls (e.g., for event
allocation and generation).

In Listing 2.4, we present a simplified version of the main file of our example application.
This file specifies the main() function, which will be compiled as a usual C program. The file
also includes headers containing the interfaces of the components (or implementation, detailed
below) and defines all the components by specifying the functions that should be called for
initializing the component, for processing inputs, and for shutting down the component. The
definition of components (lines 25 to 33) contains also configuration flags which may indicate
some special behavior or requirement. For example, in the listing, the Source1 component is
declared using the CP_INPUT_ADAPTER flag, which tells the framework that this component is
indeed a source. Similarly, the Processor1 component specifies the CP_ORDERED_INPUT flag,
which forces events from the same source to be delivered in order (i.e., the component is order
sensitive). At last, we specify the placement of the components. In the example, we place one of
the sources in the machine with IP 192.168.1.1.

In Listing 2.5 we exemplify the details of a source component. Different source components
can use the same or different code and will execute in different processes. In this listing, the
initialization function is used to create a connection with the middleware that transports stock
market events. Then, the processing function continually gets stock market messages and creates
the respective output events. Finally, the termination function shuts down the connection with the
stock market middleware.

In Listing 2.6 we show the details of the top-k operator. This operator is a stateful filter that
drops events that are not among the k most frequently seen events. It is based on the count-sketch
synopsis and the list interface presented earlier (see Listings 2.2 and 2.3). It works by keeping
two data-structures in its state. The first one is a count-sketch synopsis that stores a bounded
representation of the frequency of all events seen so far. The second data-structure is a list with the
top-k events seen so far. When a new event arrives, it is inserted in the count-sketch data-structure.
Next, the algorithm checks whether the event is in the top-k list. If this is the case, its frequency
counter is updated. The algorithm also keeps track of the event with the lower frequency count
that still is in the top-k list. Then, if the estimated frequency of the new event becomes high
enough and it is not yet in the top-k list, the least frequent event in the list will be removed and
the new event will be inserted. In both cases, if the event is or becomes one of the top-k events, it
is forwarded together with its frequency estimate. Otherwise, it is silently dropped. In a practical
system this operator would probably consider a window of events instead of the whole stream,
but we omit the window details here for simplicity.

If components have more than one input, the inputs streams are implicitly merged. Nev-
ertheless, join operators are still simple to implement, as shown in Listing 2.7. The example
join operator is customizable by providing three functions: (a) expired() evaluates if an event is

2.1. EVENT STREAM PROCESSING 15

1 #include <stdio.h>
2 #include <epf_component.h> /* Framework functions and macros */

4 #include "types.h" /* Definition of event types */
5 #include "source.h" /* Specification of the source interface */
6 #include "filter.h" /* Specification of the filter interface */
7 #include "processor1.h"
8 #include "processor2.h"
9 #include "distributor.h"

10 #include "sink.h"

12 /* Declare, connect and configure components */
13 int main(int argc, char **argv) {
14 component_t *source_1 , *source_2 , ...;
15 component_t *filter_1 , *filter_2;
16 component_t *processor_1 , *processor_2;
17 component_t *distribute , *sink_1, *sink_2;

19 init_epf(argc, argv); // framework processes command line arguments

21 printf(" Starting application.\n");

23 epf_set_message_level(1); // how verbose should the framework be

25 source_1 = epf_declare_component("source1", source_init , source_process ,
source_exit , CP_INPUT_ADAPTER);

26 source_2 = epf_declare_component("source2", source_init , source_process ,
source_exit , CP_INPUT_ADAPTER);

27 ... // other source definitions omitted

29 filter_1 = epf_declare_component("filter1", NULL, filter_process , NULL, 0);
30 filter_2 = epf_declare_component("filter2", NULL, filter_process , NULL, 0);

32 processor_1 = epf_declare_component("processor1", processor1_init ,
processor1_process , processor1_exit , CP_ORDERED_INPUT);

33 ... // other definitions omitted

35 epf_connect(source_1 , filter_1);
36 epf_connect(source_2 , filter_1);
37 epf_connect(filter_1 , processor_1);
38 ... // other connections omitted

40 epf_set_address(source_1, "192.168.1.1");
41 ... // other placements omitted

43 start_epf(); // start the execution

45 return 0;
46 }

Listing 2.4: Simplified specification of our example application.

16 CHAPTER 2. BACKGROUND

1 int source_init() {
2 ... // Connect to external stock communication middleware
3 return EPF_SUCCESS; // component initialization successful
4 }

6 int source_process() {
7 event_t *ev;
8 stock_message_t *msg;

10 EPF_ALLOCATE_EVENT(ev, event_t);
11 msg = get_and_parse_stock_message();

13 ev->stock_name = msg->name;
14 ev->stock_value = msg->value;
15 ...

17 EPF_GENERATE_EVENT(ev);
18 return EPF_SUCCESS;
19 }

21 void source_exit() {
22 ... // Shut down connection
23 }

Listing 2.5: Pseudocode for the sources.

1 list_t top_k_list;

3 // Filter events that are not among the top-k most frequent
4 process(ev) {
5 int estimate = count_sketch_insert(ev);
6 int i, smallest_count = MAX_INT, smallest_index;
7 for (i = 0; i < get_list_size(top_k_list); i++) {
8 if (list_get_element(i)->object == ev) {
9 list_get_element(i)->counter++;

10 EPF_GENERATE_EVENT(ev, list_get_element(i)->counter);
11 return;
12 }
13 if (list_get_element(i)->counter < smallest_count) {
14 smallest_count = list_get_element(i)->counter;
15 smallest_index = i;
16 }
17 }
18 // Not yet in the list
19 if (smallest_count < estimate) {
20 list_remove(top_k_list , smallest_index);
21 list_add(top_k_list , create_element(ev, estimate), 0);
22 EPF_GENERATE_EVENT(ev, estimate);
23 }
24 }

Listing 2.6: Top-k operator based on a count-sketch synopsis (see Listing 2.3).

2.1. EVENT STREAM PROCESSING 17

1 list_t lists[2]; // Join windows for each of the channels

3 join_init() {
4 list[0] = list_create(); // assuming two sources for the events
5 list[1] = list_create(); // one with source_id 1 and other with 0
6 }

8 remove_expired_events(list_id) {
9 event_t ev;

10 bool finished;
11 int pos;

13 while (true) {
14 pos = list_get_size(lists[list_id])-1;
15 ev = list_get_element(pos);
16 // expired() depend on the window types (e.g., time or count)
17 if (ev != NULL && expired(ev)) {
18 list_remove_index(lists[list_id], pos);
19 } else {
20 return; // all expired elements removed
21 }
22 }
23 }

25 process_join(ev1) {
26 int i;

28 remove_expired_events(0); // Remove expired events from window 0
29 remove_expired_events(1); // ... and also from window 1

31 list_add(lists[ev1.source], ev1, 0);
32 list other_list = lists[(ev1.source+1)%2];
33 for (i = 0; i < list_get_size(other_list); i++) {
34 ev2 = list_get_element(other_list , i);
35 // predicate() and generate_joined_event() are user-defined
36 if (predicate(ev1,ev2) == true) generate_joined_event(ev1,ev2);
37 }
38 }

Listing 2.7: Sample structure for join operator.

18 CHAPTER 2. BACKGROUND

already expired (e.g., it has been in the window for more than the window length); (b) predicate()
evaluates if the join condition is satisfied (e.g., ev1 and ev2 have a specific attribute value); finally,
(c) once the predicate is satisfied with events that are not expired, generate_ joined_event() selects
which attributes from the joining events will be present in the output event.

2.2 Software transactional memory

In this section, we give an overview on how a conventional STM works. This discussion is based
on TinySTM [FFR08] (version 0.7.3), which was used as a base for the implementation of our
speculation mechanism. TinySTM is an open-source STM implementation in C. Nevertheless, the
general ideas are valid for many other implementations of word-based transactional memories2.

2.2.1 Overview

STM was introduced as a synchronization mechanism that is easier to use and potentially more
scalable than locks. Consider a fragment of code that accesses shared memory. With locks, this
code is surrounded by lock acquisition and release. Thereby, it is guaranteed that only one thread
executes this critical section at a time. With STM, the fragment of code is surrounded by the start
and end delimiters of the transaction. The STM guarantees that the actions in the transaction are
executed in a way that appears to be atomic from the point of view of other transactions. One
major difference between memory transactions and critical sections protected by locks is that
transactions are typically optimistic. Threads may execute the transactions concurrently and
the STM monitors memory accesses directed at shared memory locations. If the threads indeed
access the same positions, they conflict and one of them may need to roll back and reexecute
(i.e., abort). Otherwise, if their accesses do not conflict (e.g., threads accessed different entries
of the same array) both can complete the transaction (i.e., commit). Thus, instead of having the
programmer explicitly lock individual memory locations in a conservative manner, STM provides
automated fine-grained runtime control.

The possible statuses of a transaction are shown in Figure 2.1. A transaction is idle when it is
created and becomes active when it starts processing. Then, it may be aborted or committed. If it
is aborted its actions are undone and it restarts, becoming idle again. Otherwise, if it is committed
its effects are permanently incorporated into main memory and the transaction is considered
finished.

In our case, TinySTM isolates the execution of a transaction by intercepting shared-memory
accesses (i.e., reads, writes, memory allocations and releases). Intercepting the memory accesses
is done by having a compiler pass that replaces regular memory accesses by STM accesses when
the target address is a potentially shared memory position (for TinySTM, this can be done with
Tanger [FFM+07]). At the end of the transaction, the STM validates the execution, i.e., all reads
and writes must be consistent so that the complete transaction appears to execute atomically.
If validation is successful, the transaction completes. Otherwise, it is rolled back and retried.

2Word-based transactional memories access memory with word granularity, in contrast to object-based transaction
memories, which use object granularity.

2.2. SOFTWARE TRANSACTIONAL MEMORY 19

Idle Active

Aborted

CommittedCommitted

Figure 2.1: Possible transitions for the status of a transaction.

Because only memory changes are rolled back, most STMs do not permit the execution of actions
with external effects such as I/O within a transaction.

TinySTM has two modes of operation: write-through and write-back. With the write-through
approach, memory writes are intercepted and the original values are copied before locations are
updated for the first time. Successive accesses to an updated location will directly read and update
the modified values. In case the transaction is aborted, the copied value is used to restore the
location to the original value. This approach has the drawback of exposing intermediary values
from non-committed transactions to non-transactional code.

When using a write-back STM, memory writes within a transaction are intercepted and
redirected to a private copy specific to that transaction, leaving the original values intact. Read
accesses to a previously updated locations are similarly redirected to the private copy. Later, if
the transaction commits, the original values are overwritten by the local copies. In contrast to
the write-through approach, write-back keeps the memory consistent, that is, memory position
contain only committed values. In what follows, we assume that the STM uses a write-back
approach.

2.2.2 Memory operations

In order to understand how the memory operations are implemented, and how they will be later
extended, it is important to understand the major elements of the STM. As mentioned previously,
the write accesses are redirected to a storage private to the transaction. This storage is called write
set. The write set contains the addresses of the memory positions that a transaction modified
during its execution and their new values. Similarly, when a transaction reads a position, it adds
an entry to another set, the read set. The information in the read set is used to confirm that the
transaction considered a consistent snapshot of the memory. For that purpose, each memory
position has a version number. Each time a modification to a memory position is committed, the
version number is changed to the timestamp of the transaction that last modified the position.
When a transaction reads a position, the version of that read value is stored in the read set.

For memory positions that were not modified by currently active transactions, the versions
numbers are stored in a table named lock array. Because it would be too costly in terms of space
to keep version numbers for each memory position, several memory positions share a single

20 CHAPTER 2. BACKGROUND

version counter. In order to minimize the impact of this sharing, a hash function is used to map
the position of memory words into entries in the table.

On the contrary, for memory positions that were written by a currently active transaction, the
version number for that memory position is replaced by a pointer to a lock object. The distinction
between a pointer to a lock and a version number is done by setting the least significant bit in the
written value. The least significant bit is then ignored when the pointer is referenced or when the
version number is used.

While the position is locked, the version number is moved and kept into a field in the lock.
If the transaction later aborts, this version number is moved back to the table. If the transaction
commits, the lock will be replaced by the new version number. As mentioned above, the version
is the timestamp of the transaction, which in its turn is derived from the number of (update)
transactions that have previously committed. Once the lock is replaced by a version number, the
position is unlocked.

The main elements of an STM are summarized in Table 2.1. Based on these key elements of
an STM, the pseudocode in Listing 2.8 illustrates the major steps involved in a write operation.
The first step is to check whether the destination memory position of the current write operation
is already locked. If the position is locked by the transaction itself, it simply updates the value
for that position in its write set. If the position is locked by another transaction, the current
transaction aborts and restarts the computation in the hope that the other transaction will finish
soon. Finally, if the position is not locked, a lock is created and placed in the lock array, and an
entry is added to the transaction’s write set.

Element Description
Current time Logical time representing the number of transactions committed so far.

Lock array A table containing either a lock or a version number for a memory position (in
fact, a set of positions); each memory position is mapped to an entry in this table
by a hash function.

Lock An entry in the lock array (acquired during write operations).

Read set The set of positions previously read by a transaction (with the corresponding
version numbers).

Status The current status of the transaction (idle, active, aborted, or committed).

Timestamp Logical timestamp of a transaction, computed based on the current time at the
moment of commit.

Version The timestamp of the last transaction that modified a specific memory position.

Write set The set of positions written by a transaction (with the values last written and the
original version numbers).

Table 2.1: Key elements of the STM.

The pseudocode in Listing 2.9 illustrates an STM read operation. After realizing that a
memory position is locked, the transaction checks if it owns the lock. If this is the case, it reads
the value that it has previously written. Otherwise, another transaction has the lock and the current
transaction aborts and retries. If the position was not locked, the value and the version number
of that memory position are retrieved in a single step. In addition, the transaction must check if
the version read can be used. This check consists in testing if the version number is within the

2.2. SOFTWARE TRANSACTIONAL MEMORY 21

1 stm_store(tx, addr, value) {
2 restart:
3 lock = get_lock(addr); // returns either a lock or a version
4 if (lock.locked) { // is locked?
5 if (lock.owner == tx) {
6 update_writeset(tx, addr, value); // we wrote to it before
7 } else {
8 self_abort(tx); // conflicted , let the other proceed
9 }

10 } else { // Not locked, lock now
11 lock2 = create_lock(tx, get_version(lock));
12 replace_lock(lock, lock2);
13 add_to_writeset(tx, lock2);
14 }
15 }

Listing 2.8: Writing to a memory position through the STM.

validity interval of the transaction and, if not, if the validity interval can be extended to allow the
read. The validity interval and its extension are detailed below. Finally, if the check fails, the
transaction aborts and restarts. Otherwise, an entry is created in the read set and the requested
value is retrieved.

As just mentioned, each transaction has a validity interval. The goal of this interval is to
guarantee that a transaction only sees a consistent snapshot of the memory, i.e., a collection of
values that would have indeed coexisted if the effects of transactions would really be atomic. The
validity interval is defined by start and end attributes. When starting a transaction, both fields are
assigned the current time. When a transaction reads positions in memory with versions lower
than the start of its own validity interval, the transaction is allowed to proceed. Intuitively, this
check indicates that any modification to that positions occurred before the transaction started
and, therefore, they all existed when the transaction started. However, when a transaction reads
a position for which the version is higher than the end of the interval, this means that some
other transaction modified this position while the current transaction was already running. It
becomes then necessary to check if the new version coexisted with the versions from other
positions previously read. If these other positions are still valid to the current time (i.e., they
were not updated since the transaction read it), the validation is successful and the validity of the
transaction can be extended until the current time. Otherwise, if any of these other positions have
already been updated by a concurrent transaction, validation fails and the transaction aborts.

Examples of valid and invalid snapshots are shown in Figure 2.2. Each timeline shows the
history of modifications for a memory position, with the numbered marks meaning when new
versions were installed. First, consider hat transaction txA starts in time 1 (the validity interval is
[1; 1]). It then immediately reads position pos1 from the memory, which has version 1. Then, it
reads pos2, with version 2, and must validate and extend its validity. Because at that point, pos1
was not yet modified. Validation succeeds and the validity interval is extended to [1; 2]. After
that, txA reads pos3 with version number 1, which is already inside the transaction’s validity
interval. Now consider transaction txB, which starts at time 3. It reads pos1 with version 3 and its

22 CHAPTER 2. BACKGROUND

1 stm_load(tx, addr) {
2 restart:
3 lock = get_lock(addr); // returns either a lock or a version
4 if (lock.locked) { // is locked ?
5 if (lock.owner == tx) {
6 value = get_value_from_wset(tx, addr); // tx wrote to position

before
7 return value;
8 } else {
9 self_abort(tx); // conflicted , let the other proceed

10 }
11 } else { // not locked
12 (version, value) = get_version_and_value(lock, addr);
13 }

15 if (version > tx.end) { // is tx allowed to use this version?
16 if (extend_validity(tx) == FAILED) // no, try to extend
17 self_abort(tx); // extension failed
18 }
19 add_to_readset(tx, addr, version); //yes, it is allowed, proceed
20 return value;
21 }

Listing 2.9: Reading a memory position through the STM.

validity interval is [3; 3]. It then reads pos2 with version 2, which is still lower than the validity
interval’s end. txB finally reads pos3, which has version 5, and tries to validate its previous reads
and extend its validity interval. However, this time, the value previously read for pos2 (which
had version number 2) is not anymore current (it now has version number 5). This indicates that
the version number 2 of pos2 and version number 5 of pos3 would never have coexisted if effects
of all transactions actually had taken place atomically. Transacton txB has to abort and reexecute.

When a transaction runs to its end without aborting, it tries to commit. This will succeed if,
at commit time, all positions read by the transaction form a consistent snapshot. Then, to avoid
unnecessary (and potentially long) validations, a check is made to verify if another transaction
has committed since the current one started. In our example from Figure 2.2, consider txA tries
to commit at real time t and that the (logical) current time is 3. The validity interval of txA is
[1; 2], which means a start time of 1. Then, because current time is 3 it means that some other
transaction committed changes to memory after txA started and some of its read values could had
been modified since its last validation. During the validation, the STM detects that pos1 has now
version number 3 and, thus, txA used an old version and must reexecute.

In addition to memory reads and memory writes, the STM also keeps track of memory
allocation and memory releases. Memory allocations are executed immediately and the allocated
positions are later released if the transaction aborts. Memory releases are delayed until the end of
the transaction. They are executed if the transaction commits, or discarded, if it aborts.

2.3. FAULT TOLERANCE IN DISTRIBUTED SYSTEMS 23

time

pos1

pos2

pos3

1

2

3 7

8

41

TxA TxB

0

0

0

5

5

t

Figure 2.2: Examples of transactions using a valid (txA) and an invalid (txB) snapshot.

2.3 Fault tolerance in distributed systems

Fault tolerance is a basic requirement for any system used in critical applications. The definition
of a critical application is broad and even systems used exclusively for leisure can be considered
critical if their unavailability may cause financial losses to the provider (e.g., because customers
change providers or forgo using the service). Nevertheless, a distributed system is by definition a
set of nodes that cooperate to carry out a common task; the more nodes compose the system, the
higher is the probability that at least one will fail, potentially compromising the whole system
if no special care is taken. In the next subsections, we review fundamental concepts in fault
tolerance that will be relevant in later chapters.

2.3.1 Failure model and failure detection

The first important item to be addressed when considering fault tolerance is the failure model.
In practice, there are two commonly used failure models. On the one hand, the crash-failure
model [VR01] assumes that nodes fail by halting. In addition, when recovered, nodes come back
with different ids. Thus, this is equivalent to having permanent faults. On the other hand, in the
arbitrary-failure model [VR01], nodes may behave outside their specification in arbitrary ways.
They may halt as in the crash failure model, proceed too slow or too fast (timing failure), produce
wrong results, and even produce specially-crafted wrong results that can cause other nodes to fail.

When choosing a failure model, it is important to choose the narrowest failure model possible
as this greatly reduces the complexity and cost of the system. For example, assume that nodes
can be arbitrarily slow and excessive slowness should be detected as a failure and handled. This
kind of failures clearly includes crash failures (i.e., nodes can be infinitely slow) and, thus, appear
to require a broader failure model. However, in the arbitrary-failure model, simple problems
like having distributed nodes to agree on a single value (i.e., consensus [CT96]) will require
3 · f + 1 nodes in order to tolerate f failures [LSP82]. Nevertheless, it may be possible to use
techniques to transform these timing failures into crash failures. For example, local hardware
watchdogs could be used to crash nodes that are slower than a threshold [Fet03]. Using this
transformation the crash-failure model could be used and then, f + 1 nodes suffice to solve the

24 CHAPTER 2. BACKGROUND

agreement problem stated above. Similarly, value failures caused by hardware errors (e.g., bit
flips) can be detected by encoded processing techniques [WF07] before any output is produced.
This can be used to effectively transform value failures into crashes. These two examples argue
that although simplistic, the crash-failure model is useful in many practical scenarios.

In the portion of this work that addresses fault tolerance, we assume the crash-failure model.
Then, to detect crashes we consider a failure detector based on the one proposed by Fetzer [Fet03].
The failure detector works as follows. The protocol considers a system with three nodes and
implements a failure detector that is able to detect one failure and never suspects a node that did
not fail. Consider initially the system with nodes p1, p2, and p3, each equipped with a watchdog
(either a hardware watchdog or a software watchdog as available in common Linux distributions)
and with a local clock with a bounded drift rate ρ from real time. Each watchdog is programmed
to force the local nodes to crash (or restart) if the watchdog is not reset before T · (1 + ρ) time
units passed. Besides that, nodes have to acquire a lease from at least one of the other nodes to be
allowed to reset their watchdogs. Finally, when granting or requesting leases, nodes exchange a
list of other nodes they directly granted a lease.

To illustrate how the protocol above detects failures, assume node p1 is granted a lease from
p2. If either p1 or p2 has granted node p3 a lease in the last T · (1 + 2 · ρ) time units (according
their local clocks), both p1 and p2 learn that p3 may be still alive. However, if neither p1 or p2
granted node p3 such a lease, the node crashed (or was forced to crash by its watchdog, as it did
not have a lease). This protocol can be extended to work with more than three nodes by executing
multiple concurrent 3-node instances. A node is then considered failed when all the instances
that include that node detect it as failed. On the contrary, a node is able to reset its watchdog as
long as it is able to acquire a lease in at least one of the instances.

2.3.2 Recovery semantics

A system that is able to recover from failures may offer different types of recovery, depending
on the amount of information that is guaranteed to survive a failure. In this work, we focus on
precise recovery. Precise recovery means that failures are completely masked with respect to
semantics. Results generated after a failure will be exactly the same as if no failures had occurred.
The only possible visible effect of a failure is then a slight decrease in performance.

Alternatives to precise recovery are rollback recovery and gap recovery [HBR+05]. Rollback
recovery guarantees that no input information is lost, all input events are considered, even in case
of failures. This definition implies also that accumulated state is preserved. However, in contrast
to precise recovery, the execution after a failure may follow different paths and, thus, achieve
different decisions. Finally, gap recovery accepts that inputs and accumulated states are lost due
to failures. In this case, after a failure, a system providing gap recovery is allowed to restart with
a fresh state and start processing from the latest input.

2.3.3 Active and passive replication

In later chapters, we address fault tolerant approaches for ESP systems. There are two classic
approaches for fault tolerance. The first option is to have the relevant state of the application
being periodically saved in stable storage. A stable storage is a storage that is able to survive

2.3. FAULT TOLERANCE IN DISTRIBUTED SYSTEMS 25

the failures that are expected in the system. The second option is to have multiple nodes in lock
step so that all accumulate the same state. The state will be stable as long as tolerated failures do
not affect all nodes simultaneously (i.e., nodes fail independly). These two options describe the
basic approaches for fault tolerance, namely, passive [BMST93] and active replication [Sch90],
respectively.

Choosing between passive and active replication requires considering several factors. On
the one hand, active replication deals with failures by having redundant nodes, named replicas.
Replicas repeat computations and output equivalent results. Because outputs from all replicas are
equivalent, any of these can be used and the others ignored. Therefore, failures are transparently
masked. A clear advantage is that there is no recovery phase. For the same reason, a clear
disadvantage is the amount of resources wasted in failure-free runs. Another disadvantage is that
computations need to be deterministic as in a state machine. The next state of the computation
must depend exclusively on the current state and the current input. Hence, active replication is
also known as the state machine replication approach. Requiring determinism affects several
common operations like reading wall-time clocks and the use of multithreading (if the result of
these operations may affect the state of the replica). In addition, the state transitions are likely to
depend on the order of the inputs, requiring totally ordered communication protocols (e.g., atomic
broadcast [CASD95, CT96]) to be used to ensure all replicas process the same messages in the
same sequence. Ordered broadcasts are much more expensive than simpler ones (e.g., reliable
broadcast [VR01, CT96]) as they require coordination among nodes, incurring extra resource
costs to the system.

On the other hand, passive replication [BMST93] and, similarly, rollback-recovery ap-
proaches [EAWJ02] deal with failures by having the state of the nodes being periodically check-
pointed in a stable storage. For example, if nodes are expected to fail only due to software crashes
(either from processes or from the operating system) and are expected to recover after failing (e.g.,
by having a watchdog that reboots the system if it hangs), then the local disk can be considered a
stable storage if synchronous writes are used. Alternatively, if, for example, hardware failures
may compromise nodes permanently, stable storage requires writing to a non-local storage (e.g.,
a disk or memory of a remote node).

In addition to checkpoints, passive replication can also use logging between checkpoints to
save information that is relevant for replay [EAWJ02]. When a checkpoint is taken the logs can
be cleared. For example, nodes may do periodic checkpoints of the complete state and, between
checkpoints, log the messages they process, possibly together with any nondeterministic decisions
taken, such as clock values read and scheduling decisions. On recovery, nodes restore the latest
checkpoint and then replay messages from the log.

A clear advantage of passive over active replication is that there is no redundant work being
done and, thus, less resources are used. In addition, nondeterministic decisions are allowed
as long as they can be saved to the log and enforced on replay. As disadvantage, passive
replication requires a recovery phase that restores the checkpoint and replays logs, which can
take considerable time.

26 CHAPTER 2. BACKGROUND

2.4 Summary

In this chapter, we discussed basic concepts in event processing, transactional memory, and fault
tolerance in distributed systems. We first discussed how operators are implemented and how they
keep state. After that, we looked into the internals of the STM. Understanding how operators
keep state and how the STM protects critical sections of code is the basis to understand how the
STM can be used to automatically parallelize some stateful operators.

As we will see later, using a write-back STM enables that high priority transactions quickly
abort less priority ones. In addition, a write-back STM keeps the memory consistent and, thus,
simplifies the process of checkpointing the state of operators.

We then looked at passive and active replication and the reasons to select one or the other.
In the next chapter, we discuss how we address some of the limitations in these two techniques
using a speculation that is based on STM.

Chapter 3

Extending event stream processing
systems with speculation

In this chapter, we motivate the extension of an event processing system (ESP) system with
speculation. We define the goals of speculation and discuss high-level features that a system
would have to offer to enable these benefits.

3.1 Motivation

As discussed in the previous chapters, an ESP system is a specialized distributed system. This
specialization can be seen, for example, in the communication patterns: data messages flow only
in one direction, from the so-called upstream nodes to the downstream nodes. In addition, the
computations executed in each node are simpler than general programs. Isolated operators have
reduced functionalities because it is advantageous to factor a complex computation into several
stages in order to benefit from pipelining.

ESP systems are a very useful simplification of distributed system. They are useful because
they address many applications that are increasingly common. Increasingly more electronic
devices behave like distributed data sources producing vast amounts of low-level data. For
example, cell phones transmitting their geographic coordinates allow a broad scope of applications,
from enabling friends to detect each other to modelling movement behaviors. Because of the
continuous growth in the number and sophistication of inter-networked devices, the trend is that
there will be ever more generators of low-level data. Consequently, there is a growing need for
technology that helps making sense of this data in a timely manner.

Another recent trend regards processor technology. Fundamental problems like the power
dissipation limits led to a freeze of the growth of sequential speed of processors. The micro-
processor industry has changed directions and progressively migrates from single heavy-weight
cores (with deep pipelines, prefetching, speculative execution) to multiple simpler and more
efficient, but slower cores. As a consequence of this parallel hardware, there is a growing amount
of computational power that is difficult to be harnessed (e.g., see [GN08, ABD+09, JAAS09]).

This dissertation is motivated by the growing attention received by ESP systems and the new

27

28CHAPTER 3. EXTENDING EVENT STREAM PROCESSING SYSTEMS WITH SPECULATION

trade-offs that such a new paradigm imposes on known techniques. We propose approaches that
extend traditional techniques to exploit these new opportunities. More specifically, we focus on
speculation and how it can help improving performance of distributed ESP systems.

3.2 Goals

In this work, we revisit many known ideas in speculation for computation systems, for example:
virtual time [Jef85], optimistic recovery [SY85], thread-level speculation [SCZM05], transac-
tional systems [WV01]. We extend them using software transactional memory [ST95] and
targetting multi and many-core machines [ABD+09] in order to build low-latency fault-tolerant
ESP systems. The goal is to evaluate benefits derived from the use of speculation.

We implement a foundation for speculation: (a) the ability to process events concurrently or
out-of-order and to detect whether data dependencies are violated; (b) the ability to capture writes
from the speculative processing of an event, providing low-cost rollback when necessary.

On the one hand, we improve the performance of operators through parallel and out-of-order
processing by speculating that events close to each other in time do not always have common
dependencies. On the other hand, we reduce the cost of fault tolerance in failure-free runs
by speculating that failures do not occur and using the efficient rollback mechanism to avoid
inconsistent states.

We make the following contributions:

1. Out-of-order processing: some operators require events to be processed in order and
ordering events coming from different sources requires buffering and introduces latency;
speculative out-of-order processing enables the overlapping of this waiting with useful
processing.

2. Optimistic parallelization: some types of operations are parallelizable, but still, devel-
oping parallel operators is expensive and error-prone; speculative parallelization allows
parallelism to be discovered and explored at runtime while requiring no modifications to
the original sequential code; furthermore, our parallelization does not introduce nondeter-
minism in the execution, in other words, it preserves sequential semantics, which helps
developing, testing, and debugging applications.

3. Speculation in passive replication: passive replication and rollback recovery require
operators to record changes in the state before each output and waiting these recordings
to finish adds considerable delays; we show how to build an efficient rollback mechanism
based on speculation and how it enables operators to use asynchronous logging; nodes can,
therefore, output results before the recording of state changes reaches the disk.

4. Early processing in active replication: active replication requires that replicas use mes-
sage ordering protocols that are costly; we use speculative events to allow replicas to
start processing using an optimistic delivery that happens much earlier than the ordered
delivery; in addition, we also allow results to be propagated earlier as speculative, enabling
downstream nodes to also start early.

3.3. LOCAL VERSUS DISTRIBUTED SPECULATION 29

5. Multithreading in active replication: active replication does not usually supports multi-
threaded operators because of determinism; we enable multithreading by exploiting the
atomic behavior of the speculation mechanism to mask nondetermism caused by multi-
threading.

3.3 Local versus distributed speculation

In order to enable low-latency ESP systems, we make use of local and distributed speculation.
Local speculation refers to the use of speculation within a single component (i.e., the optimistic
assumption is made on a local hypothesis). Optimistic parallelization is implemented through
local speculation, for example. Distributed speculation refers to the case in which an operator
makes an assumption on a statement being evaluated at another node. For instance, an operator
starts a checkpoint asynchronously, but forwards results speculating that no failures will occur;
downstream nodes use these results in speculative computations.

On the one hand, when using local speculation, we assume that inputs and outputs of an
operator are not speculative. We also require that no output reflects information from incorrect
speculations. These requirements establish that no result that was produced by an optimistic
computation has any difference to the result that would be produced in the conservative case. In
other words, when using out-of-order processing or optimistic parallelization, no speculation is
visible outside the operator and the history of modifications to the state is exactly the same as in a
sequential operator.

Nevertheless, we can achieve parallelism. Consider the concurrent processing of two events
e1 and e2 in a stateful operator. If the processing of e1 does not consider any memory position
that was modified by e2, e1 and e2 can be processed in parallel. Similarly, for out-of-order
processing, we reduce latency as follows. Consider that events e1 and e2 have timestamps 1 and
2, respectively, and that events should be processed in the order of their timestamps. If event
e2 is already available for processing, but event e1 not, e2 can be processed before e1 as long as
processing event e2 does not read (or write to) any memory position that will be written (or read)
by the processing of e1.

Distributed speculation is more flexible than local speculation. It allows operators that still
have pending optimistic assumptions to output speculative results to downstream operators. As a
consequence, as long as sink operators do not expose speculative results to consumers outside
the ESP application, the speculative results can be used to advance computations also in the
downstream operators.

3.4 Models and assumptions

In the following sections, we discuss some assumptions we make about the operators, events, and
failures.

30CHAPTER 3. EXTENDING EVENT STREAM PROCESSING SYSTEMS WITH SPECULATION

3.4.1 Operators

When adding speculation capabilities to an operator it becomes necessary to change its model
and the assumptions about its behavior. The first aspect to be observed is that the memory
operations (read, write, allocate and release) are done through the STM. Similar to conventional
STMs, this can be accomplished by a compiler pass that replaces the original accesses with STM
wrappers [FFM+07, CCD+10]. Nevertheless, for that to be possible, source code for the complete
operator, including used libraries, has to be available. The development of this transactifying
compiler is an issue that is orthogonal to the problems addressed in this dissertation. In the current
prototype of the speculation infrastructure, the instrumentation of the memory accesses is done
manually and implemented through macros that translate either to the original memory access or
to the call to the STM wrapper.

We also do not consider binary instrumentation (like in [Wam08]). Therefore, if libraries for
which no source code is available are used and calls to functions in these libraries may cause
side effects, it is important to consider these calls to be external actions. An external action is
an action that causes side effects that cannot be automatically rolled back by the speculation
infrastructure (i.e., the STM). For example, a call to a library function for which no source code
is available, but that may modify some state within the operating system’s kernel or a file on disk
is an external action. External actions require special treatment and providing as less restrictions
as possible to them is also a challenging problem. In this work, we provide means to enable users
to provide custom actions to handle external actions.

Due to the nature of speculation, operators may see values in memory that they would never
have seen in a nonspeculative execution. For example, in a given application an event may
represent a connection being closed. Due to out-of-order processing, it may be the case that this
event is processed before the event that represents the connection being open is processed. As
a consequence, arbitrary operators may get into inconsistent states that cause problems such as
infinite loops, segmentation faults, and state corruption. This requires recovery actions to be
programmed around the operators in order to catch such exceptions.

Misbehaviors that cause state corruption are not a problem because computations that corrupt
the state will be undone. For other problems, we require the usage of mechanisms that can
interrupt the operator (e.g., when the operator executes an infinite loop) and trigger a rollback
(e.g., after a segmentation fault). Therefore, a signaling mechanism like Linux signals [BC02]
must be available for the speculation infrastructure. Linux signals can be used to catch exceptions
and interrupt computations.

3.4.2 Events

An event is a representation of something that happened in the system. Events have unique
identifiers that enable distinguishing between two similar, but distinct, phenomenons. However,
due to the nature of speculation an event may not be an accurate representation for the phenomenon
it refers to. In that case, we classify events as speculative. Speculative events were generated by
speculative operations and there are some not-yet-confirmed optimistic assumptions that were
used to generate them. Because the underlying assumptions may be wrong, speculative events
may be reviewed and corrected. Therefore, speculative events share a common id (as they refer

3.4. MODELS AND ASSUMPTIONS 31

to the same phenomenon), but have distinct versions. A version is a counter that represents
how many times the event was reviewed. A higher version of an event can be seen as being
less speculative than an earlier version as it was reviewed more times and there are maybe less
pending optimistic assumptions.

Events can be also classified as final. Final events have the usual meaning. The data in such
an event is not going to be later corrected or review. In addition, a final event is the last version
for all speculative events with the same id.

Regarding the transport of events, in our system, connections between operators (i.e., the
event channels) are static. These are defined in the source files for the event processing application
(see Chapter 2.1).

3.4.3 Failures

During our investigation of out-of-order processing and optimistic parallelization in Chapter 4,
we assume that no failures occur. Later, in Chapter 5 we allow crash failures and evaluate the
use of speculation in passive and active replication. Finally, we show how our system can be
extended to consider active replication with a failure model that allows crash and value failures
caused by certain classes of common software bugs. We consider only benign software faults.
Benign software faults include faults that are caused by software bugs that can be detected by
a runtime checking approach such as bounds checking [RL04]. We do not address hardware
failures and do not consider malicious attacks, in which inputs or operators can be specially
crafted to compromise the system. In addition, we assume that there is always one available
replica that is able to detect the software fault to be tolerated.

When handling failures, we aim at precise recovery. Precise recovery requires that outputs in
case of failures are the same as outputs produced if the failure had not occurred (see Chapter 2.3.2).
Although some applications can cope with less strict recovery models (e.g., results after after a
failure may be inconsistent with results produced before the failure), many applications require
precise recovery either because their critical importance (e.g., algorithmic trading) or because
high user requirements.

32CHAPTER 3. EXTENDING EVENT STREAM PROCESSING SYSTEMS WITH SPECULATION

Chapter 4

Local speculation: parallel and
out-of-order processing

In this chapter we present and evaluate the use of speculation in the scope of a single operator in
a distributed event stream processing (ESP) system. Thus, speculation is not visible outside an
operator. Still, speculation is used internally to process events optimistically in parallel or out of
their normal order.

4.1 Overview

The graph of operators that composes an ESP application may contain many different types of
computations. Some of these processing tasks will need only short stateless computations, others
will require persistent state and costly computations. In addition, some of these tasks will be
standard operations (e.g., computing a simple moving average, where the only parameters are
the type and size of the window), but others will need some custom code (e.g., to aggregate or
summarize events according to a custom algorithm).

When operations with high computational costs are used, operators need to be optimized or
parallelized in order to allow good system throughput and low processing latency. Parallelizing
stateless operators is a trivial task. It can be achieved simply by creating several instances of the
same operator and letting them process events in parallel. However, stateful operators are not
trivial to parallelize. Basically, the operator designer needs to make sure that the parallel instances
will access the shared state in a coordinated form that is in accordance with the operator’s
specification.

There are many difficulties in parallelizing stateful operators. First, it may not be possible
to parallelize an operator in a cost-effective way. Second, the lack of repeatability of parallel
programs makes development and testing considerably more difficult.

Manually parallelizing an operator can be costly. If one uses lock-based approaches to
synchronize threads, coarse-grained locks (e.g., protecting a complete phase of the algorithm
or a data structure, such as a hashmap, with a single lock) are relatively easy to implement,
but contribute with little parallelism. However, using fine-grained locking is difficult, because:

33

34 CHAPTER 4. LOCAL SPECULATION

(i) locks should be acquired only when strictly needed; (ii) they should be released as soon as
possible; and, (iii) the same lock should not be used to protect independent pieces of the state
(e.g., two positions that are not always accessed together).

The eagerness to minimize the code area protected by a lock leads to many bugs in software.
Consider, for example, two bank accounts in a transfer operation. If all the accounts are protected
by the same lock (i.e., coarse locking), no parallelism is available. However, if each account is
protected by a different lock and only one account is locked at a time, it is possible that during a
transfer from one account to the other, another running thread computes the balances and sees a
snapshot where the money is in none of the accounts (i.e., a program invariant could have been
broken). Finally, if accounts are protected by different locks and a transfer operations needs to
get both locks before executing the operation, two threads that acquire the same locks in different
orders may deadlock.

Although the example above is simple and solutions may be intuitive, similar problems
become quickly non-trivial if, for example, the invariants are complex or if it is not straightforward
to decide the correct order for lock acquisition (e.g., the second lock to be acquired depends
on some information learned after the acquisition of the first). In addition to bugs being more
frequent in parallel code, this type of code is also more difficult to test and debug. According to a
survey among expert developers inside Microsoft [GN08], 75% of the developers interviewed
consider concurrency bugs hard or very hard to reproduce. The respondents also stated that they
would strongly benefit from better libraries with prepackaged concurrency mechanisms. In a
summary, developing a parallel version of an operator may require much more resources then
developing a sequencial one.

The other issue with parallelization of operators is the repeatability and ordering of opera-
tions. In many domains it is desired that executions are repeatable. For example, in algorithmic
trading systems, it is a common requirement that decisions can be later replayed for postmortem
analysis [ScZ05]. This is difficult to achieve if the arbitrary interleavings of threads may influ-
ence the results. In fact, the difficulty to write, test, and debug parallel code is largely due to
nondeterminism in concurrency [BAAS09]. Nevertheless, locks carry no ordering information
and, thus, runtime scheduling decisions may cause order inversion in a multithreaded operator.

Repeatability and in-order processing (i.e., events are processed in the order of a physical or
logical timestamp) are closely related. In-order processing can be used to provide repeatability.
For example, if there are many events at the input of an operator, repeatability requires that this
operator processes the events according to some predefined order (like according a timestamp
attribute in the event). Using the arrival order would not suffice, because in different executions
events from different sources can suffer slightly different communication delays and arrive in
different orders. Another reason for in-order processing is when the semantic of the computation
depends on a timestamp of the event. As an example, events could represent requests for a resource
and the resource should be allocated to requests with lower timestamps. Also in this case, different
communication delays suffered by two events could lead to an event with a higher timestamp
being received shortly before the event with the lower timestamp. The need for repeatability and
in-order processing implies that deterministic execution is required, in combination or not with
parallelization.

Because of the above reasons, for standard operations to be implemented as part of a library,

4.2. REQUIREMENTS 35

it may still be reasonable to pay the extra development costs to provide code with fine-grained
locking that preserves ordering when necessary. However, especially when development time
is critical, algorithms change frequently, or cost-effective solutions are desired (concurrent
programming also requires more experienced programmers), automated parallelization techniques
for user-defined operations are needed.

In this chapter, we propose the usage of speculation to allow both automated parallelization
and an out-of-order preprocessing that still guarantees in-order, sequential semantics. This
is achieved by encapsulating the processing of the events in transactions. Transactions have
timestamps derived from the desired processing order (e.g., a timestamp or id attribute from
the event) and will be executed using a Software Transaction Memory (STM) that intercepts
memory accesses directed at the operator’s state. At the end of a transaction, there will be two
sets containing all the memory positions that were read or written during the processing of the
event. These sets are named read and write set, respectively. When two events are processed
out of their normal order, in-order semantics is ensured by asserting that the reads and writes of
the two transactions do not intersect. Further, if multiple CPUs are available, parallelization can
be achieved by executing two transactions in parallel. In this case, sequential semantics is also
ensured by guaranteeing that the read and write sets do not intersect. Optimistic parallelization
and out-of-order processing are based on the same mechanisms and can be used in separate or
combined.

In the following sections, we first introduce the functionalities required from the speculation
infrastructure and how they are implemented. After that, we discuss applications, possible
extensions, and results.

4.2 Requirements

4.2.1 Order

Ordered transactions is not a native feature in most STMs. In order to provide this, we need
three basic mechanisms: (i) ordered commits, (ii) priority transactions, and (iii) interruptible
transactions. Having ordered transactions implies that the effects of the processing of events obey
the predefined order. In addition, TinySTM’s concurrency mechanism requires that transactions
are sequentially committed. This combination provides not only partial ordering, but a total
ordering among transactions. For simplicity, we assume initially that timestamps in events (and,
consequently, in the transactions that process them) are unique and gapless logical timestamps.
We later show how to drop this assumption and consider timestamps in which duplicates and gaps
are possible (like with physical timestamps).

First, with the regular TinySTM, write accesses are redirected to the write set of the transaction
and just exposed after the commit. Consider a transactions txt, created to process the input event
with timestamp t. The ordered-commit requirement forces that the effects of this transaction can
only be made visible after the effects of all transaction with timestamps lower than t are visible. In
addition, it is also required that txt considers the latest versions (at time t) of all memory addresses
it has read.

Second, the priority transactions requirement aims at having transactions for events that

36 CHAPTER 4. LOCAL SPECULATION

are already in-order to have their executions minimally disturbed by transactions processing
out-of-order events. The highest-priority transaction is the next-to-commit transaction. Because
of the total ordering, there is at most one transaction timestamp that is allowed to commit at any
time. Ideally, the next-to-commit transaction should not be delayed by lower-priority transactions.
Active transactions interfere with each other when they contend for memory positions. Consider
two transactions tx1 and tx2 that execute concurrently. Both transactions access the same memory
position and the timestamp of tx1 is lower than the timestamp of tx2. Thus, tx1 has a higher
priority. The possible interference patterns are shown in Table 4.1.

Case Contention type Impact on tx1 Impact on tx2

1 tx1 reads before tx2 has read None None
2 tx1 reads after tx2 has read None None
3 tx1 reads before tx2 has written None None
4 tx1 reads after tx2 has written None None
5 tx1 writes before tx2 has read None Aborts on read
6 tx1 writes after tx2 has read None Validation eventually fails
7 tx1 writes before tx2 has written None Aborts on write
8 tx1 writes after tx2 has written Forces tx2 abort Aborts on next operation

Table 4.1: Contention scenarios for two concurrent transactions accessing the same memory
position.

As shown in Table 4.1, for two concurrent reads (cases 1 and 2) there is no interference.
Multiple transactions can read from the same positions concurrently. Then, in cases 3 and 4, if tx2
had modified the position, because we use a write-back approach, the value in memory is still the
original and can be read by tx1. In case 3, the version number of the value read from tx1, which
is needed later for validation, can be retrieved either from the lock array. In case 4, the version
number can be retrieved from the write-set of tx2 (recall that tx2 moves the version number from
the lock array to its write-set descriptor when it writes, and consequently, locks, a position).

Cases 5 and 6 handle scenarios where tx1 writes to a position that is read by tx2. In case 5,
tx2 aborts as soon as it learns that tx1 has the lock to the position. As we will detail later, tx2 then
waits until tx1 commits before retrying. In case 6, tx2 will have already read the value and will
realize it did not use the latest version only during a later validation (e.g., during its commit). It
will then abort and reexecute using the updated value.

Finally, in case 7, tx1 locks a positions and later, similarly to case 5, tx2 tries to access that
position and aborts when it sees the lock. In case 8, tx1 finds a position locked by tx2 and replaces
the lock by its own. In addition, tx1 has to set a flag in tx2’s transaction descriptor (which is
obtained through the lock) to force tx2 to abort. Note that tx1 needs to force tx2’s abort because a
read from tx2 after tx1’s commit would not see that tx2 itself wrote to that position previously.

The third and last needed mechanism is the ability to pause transactions (i.e., interruptable
transactions). Normally, a transaction that executes until its end is allowed to commit. In addition,
an aborted transaction restarts immediately after being aborted. The ordering constraint detailed
above requires that a finished transaction waits until it becomes the next-to-commit transaction.
When the transaction becomes the next-to-commit, it revalidates and commits. Similarly, a
transaction is aborted because it conflicts with a transaction that has higher priority. Thus, it is

4.2. REQUIREMENTS 37

normally not advantageous to reexecute an aborted transaction until the conflicting high-priority
transaction commits. These paused transactions are kept in a priority queue, named wait queue.
The wait queue uses as ordering key the timestamp that needs to be reached before this transaction
is tried again. This timestamp used as ordering key can then be the transaction’s own timestamp
when it is simply waiting to become the next-to-commit. Alternatively, the timestamp can be
the next immediate timestamp after the commit time of the conflicting transaction (with higher
priority). Once the time used in this ordering is reached, the transaction is allowed to commit or
reexecute.

4.2.2 Aborts

A transaction may abort for four reasons:

i) It is about to read from a memory position that does not form a consistent snapshot with
previously read values (i.e., the value that is about to be read would have never coexisted
with previous reads if all transactions were really atomic).

ii) It is about to read from or write to a memory position that is locked by a transaction with
lower timestamp (cases 5 and 7 in Table 4.1).

iii) It realizes it did not used the latest version of a position it has read (case 6 in Table 4.1).

iv) It holds a lock for a position that is to be modified by a transaction with lower timestamp
(case 8 in the table).

For reasons i to iii, the transaction itself realizes it has to abort and reexecute. Then, it first
releases all the locks it holds in the lock array and frees all memory allocations executed inside
the transaction. After that, it creates a new transaction descriptor and inserts it in the wait queue.
It then eventually restarts the execution using this new descriptor.

The old transaction descriptor contains the write-set entries that were created in the previous
execution and have to be preserved because some other transaction may have gotten a reference
to such an entry during a conflict. As an example, assume tx2 wrote to memory position p, which
led to the acquisition of lock lp in the lock array. If before tx2 aborts, another transaction tx1 tries
to access that position, tx1 will recover the pointer to tx2’s descriptors and examine it to decide
which transaction has priority. If the descriptor would have been recycled or freed, it could be the
case that the memory pointer is suddenly invalid. Therefore, a quiescence-based garbage collector
is used: a transaction descriptor tx is kept alive until all transactions that are currently active were
born after tx was aborted or successfully committed and, thus, could not have obtained a pointer
to tx.

The last reason for an abort (reason iv) is that the required abort is not detected by the
transaction itself, but by another transaction that has priority over the current one. The priority
transaction forces the other transaction to abort by setting a flag in the transaction descriptor. The
next time that the to-be-aborted transaction initiates a memory operation through the STM, it will
see the flag and abort itself.

38 CHAPTER 4. LOCAL SPECULATION

Regarding reexecution, whenever the abort was caused by the direct interference between two
transactions (reasons ii and iv), the current transaction is put aside in an ordered queue, the wait
queue, as detailed in the previous section. Next, it waits for the conflicting transaction to commit.
If the interference was indirect (reasons i and iii), the transaction reexecutes immediately after
the abort.

4.2.3 Optimism control

During speculative processing, too much optimism can be counterproductive. Bad speculations
can waste computational resources and delay, directly (e.g., by contending for the same memory
addresses) or indirectly (e.g., by consuming memory bandwidth), more promising computations.

There are two basic ways of restricting speculation: (i) limit the amount of CPU resources used
by speculation and (ii) limit the amount of optimism. Our speculation mechanism implements the
first option by restricting the amounts of threads that can process events. In this case, speculative
processing will be carried out as long as there are available inputs and one of the threads is idle.
A thread is idle if previous speculations finished processing, even if they are not committed yet
(as discussed in the previous sections, in our system transactions may be put aside while waiting
for commit).

Controlling speculation by limiting the level of optimism is based on the fact that events have
timestamps and should be committed in the order of these timestamps. In this case, as a matter of
fact, lower timestamps have a higher chance of success than higher timestamps. Consider, for
example, two events et and et′ , with timestamps t and t′, respectively. In general, if t < t′, then
there are less transactions that will eventually commit before the transaction processing et than
transactions that will eventually commit before the transaction for et′ . As a consequence, the
chance that the processing of et will conflict with a transaction with higher priority (which would
render the computation of et useless) is lower than for et′ . When considering this approach, a
user specifies the maximum distance in clock ticks away from the next-to-commit transaction
that the timestamp of an event must have in order for the event to be speculatively processed. We
call this maximum distance speculation horizon.

The two simple approaches above are static. In order to maximize the speculation efficiency
for a new operator, the user has either to experiment or to have a good enough understanding
of the operator’s algorithm to set the speculation approach and its parameters. In addition, if
the opportunities for parallel processing in the operator vary with the workload (e.g., the mix of
events that cause the operator’s state to be only read and the events that cause updates varies), a
static adjustment is both nontrivial and unlikely to be optimal.

To solve this configuration problem, we propose two straightforward controllers. We name
these controller modules conflict predictors as, ideally, they would regulate the amount of spec-
ulation by predicting how likely future transactions are to have conflicts with each other. For
both controllers, we enable the adjustment of the maximum number of threads to be used by
speculation. Assuming the processing nodes are dedicated, this number can be the number
of hardware threads1 in the machine (as it is counter-productive to have context switches in

1Some processors, like the Intel Xeon, have one single thread per core. Others, like the Sun UltraSPARC T1 may
execute several threads in parallel at the same core with a total performance that is higher than if only one thread was

4.2. REQUIREMENTS 39

CPU-bound computations). In addition, both conflict predictors (or simply “predictors”) actuate
by dynamically regulating the speculation horizon.

The first predictor uses an abort-driven approach as follows: (i) the predictor periodically
(e.g., for each 100 committed transactions) checks the number of transactions that aborted because
of a conflict; (ii) if this number exceeds a certain threshold, the speculation horizon is reduced,
reducing the amount of speculative computations; (iii) otherwise, if the number is below the
threshold, the speculation horizon is increased, enabling more speculative work.

The threshold for increasing or reduce speculation in an abort-driven conflict predictor is
specified by the user and is a hint of how much processing resources can be wasted by speculation.
If during the dynamic adjustments, the speculation horizon reaches 1 (i.e., no speculation), it
is periodically set to 2 (i.e., besides the next-to-commit event, one more event is speculatively
processed). This enables the system to continuously keep track of the conflicts and quickly
detect when parallelism becomes available. A possible optimizations for such cases is to turn off

speculation (reducing processing delays by avoiding STM overheads) and only periodically turn
it back on to check if parallelism has become available.

The second dynamic predictor uses a throughput-driven approach. As with the abort-driven
predictor, it runs periodically. At each execution, it measures the throughput of committed
transactions. Then, it compares the current thoughput with the throughput measured in the
previous execution. In addition, it also records if it has increased or decreased the speculation
horizon in the previous execution. After that, it updates the speculation horizon as follows: (i)
if the throughput has increased between the last and the current execution, it repeats the same
action it took previously; for example, if it increased the speculation horizon, it will increase it
again; (ii) otherwise, if the throughput has decreased, it takes the opposite action; for example, if
it has previously increased the speculation horizon, it will now decrease it. Finally, because of
small variations in the throughput (in two time intervals it is unlikely that the exact same number
of transactions are committed), once it reaches the upper or lower limit for speculation, it will
still oscillate and continuously increase and decrease the speculation horizon. As a consequence,
it will quickly discover when the amount of parallelism varies.

4.2.4 Notifications

Low-level occurrences in a transaction can be monitored through transaction hooks. Transaction
hooks give the application programmer the opportunity to get notified about relevant status
changes in transactions. The main motivations for having such constructs are to enable external
accesses from within a transaction and for collecting statistics. An external access consists of
an access to any resource that is stateful and that is not instrumented by the STM. For example,
if a file is created by code inside a transaction, it is also desired that this file is deleted if the
transaction aborts. Another example is the use of special approaches for concurrent data structures
(such as transaction boosting [HK08]). These data structures are not instrumented by the STM,
but instead, they handle concurrency themselves. In this section, only the transaction hooks are
detailed, examples of uses for building special data structures are detailed in Section 4.4.

The hooks are implemented through callbacks. The framework provides the following hooks:

being executed.

40 CHAPTER 4. LOCAL SPECULATION

• on-abort: This is called when the transaction aborts. The transaction will be reexecuted
at the earliest after returning from this call.

• on-commit: This is called after the final validation during commit, but before the new
versions of modified memory positions are installed and the next-to-commit timestamp
is advanced. At this stage all the consistency checks were been performed and only an
explicit request (e.g., by having code that calls abort()) can cause an abort.

• on-post-commit: This is called after the transaction is committed and the timestamp is
advanced.

It is important to note that the execution of the on-commit hook is totally ordered with respect
to other transactions and no other transaction can commit while an on-commit hook is being
executed. If total order is not necessary, the on-post-commit hook should be used as it does not
block other transactions from committing. However, for the same reason, there is no guarantee
that the on-post-commit callback for one transaction will be executed before the one for a later
transaction.

4.3 Applications

In this section we detail the use of the features previously discussed to provide out-of-order
processing and optimistic parallelization.

4.3.1 Out-of-order processing

The general problem can be formulated as follows. Recall our running example: one scenario
where out-of-order processing is often important is in the interaction between the Filter opera-
tors and the Processor1 operator. As highlighted in Figure 4.1(a), under normal conditions (i.e.,
the system is not overloaded), it can be the case that, during some interval, events from only one
channel are received. However, if in-order processing has to be guaranteed, either because the
application semantics requires it or because the operator should behave in a deterministic way,
the Processor1 operator cannot process the events received until it learns whether the upper
Filter will emit an event with a lower timestamp (which needs to be processed first). For the
case of two sources, events from one channel node will wait, on average, half of the mean period
of the events from the other channel (i.e., on the worst case, they wait a whole period, and on the
best case, not at all).

Nevertheless, note that even for an operator with a single input channel, order may still be
a problem. Consider, for example, that an event format needs to be converted (e.g., from XML
to simple key-value pairs). This operation is stateless and reasonably costly, but can be simply
parallelized by replicating the stateless operators as in Figure 4.1(b). However, different converter
replicas will take different times to process events and the stream can become unordered.

Now consider the more detailed view of operator Processor1 in Figure 4.2. The operator is
single-threaded and stateful and its core is the process() function. This function takes events
from the input queues and puts resulting events in the output queue. In the figure, the operator’s

4.3. APPLICATIONS 41

STATE

Processor1
e1

Filter

Filter

e2

(a)

STATE

Processor1

Filter

Filter

Filter

(b)

Figure 4.1: In-order processing challenges: (a) multiple input streams and (b) out-of-order
streams.

state is composed of 6 entities (e.g., a vector with 6 positions). Besides that, the process()
function is currently processing the event with timestamp 11. Also shown in the figure is the wait
queue for transactions that are still not able to commit, and the NEXT counter, which keeps track
of the next-to-commit transaction. Note that although event 9 was already committed, because
the next timestamp from the upper channel is not known, the next-to-commit transaction cannot
be updated.

process()

NEXT = 9

11

79 8

Operator’s state Next-to-commit timestamp

Wait queue

Timestamp being

processed

1217 15

Figure 4.2: Structure of an operator with out-of-order speculation.

The main idea of the proposed approach is to process events speculatively out-of-order
and keep the transaction open until the correct order is established. As soon as the order is
established, the speculations can be validated and committed or reprocessed. An example is
shown in Figure 4.3.

The example in Figure 4.3 runs as follows: (a) because the upper input queue is empty, after
committing (the transaction processing) event 9 the operator does not know which event is the
next to be committed and the NEXT field is not updated; (b) the operator decides to process event
11 speculatively; during this processing, one position of the operator’s state is accessed; (c) when
the processing of event 11 is finished, the associated transaction is put on the wait queue and
the operator starts processing event 13 speculatively; right after that, event 12 arrives; (d) with
the new event from the upper channel (12), the NEXT field can be updated and event 11 can be
committed; (e) event 12 can be processed and committed, and event 15 is processed speculatively;

42 CHAPTER 4. LOCAL SPECULATION

process()

NEXT = 9

79 8

1115 13

(a)

process()

NEXT = 9

11

11

1315

79 8

(b)

process()

NEXT = 9

13

11

13

15

12

79 8

11

(c)

process()

NEXT = 12

12 13

15

811 9

13

12

(d)

process()

NEXT = 12

15 13

912 11

13

15

(e)

process()

NEXT = 12

15 13

912 11

13 15

(f)

Figure 4.3: Example of speculative out-of-order execution.

finally, in (f), all queues are empty and the operator waits for information that allows it to commit
pending transactions.

Note that, in the example above, because events 11 and 13 were already processed when
event 12 arrived, waiting time was overlapped with useful computation. Note also that event 15
accessed the same part of the state as event 12. Therefore, as discussed in Table 4.1, depending on
the access types (read or write), if event 12 had arrived after event 15 was processed, the operator
could had to abort and reprocess event 15.

In addition, timestamps may have gaps. For instance, there was no event 10. As long as we
can compute the next-to-commit timestamp and the timestamps are unique, the proposed approach
will work. In this example, we assume each channel is ordered. Between two channels, the next
timestamp can be computed by picking the lowest timestamp in the two queues. Moreover, to
make timestamps unique, we can apply a bitwise shift on the original timestamp and insert the
number of the channel (or the id of the source) in the lowest bits.

Finally, as can be inferred from the example, the success rate of out-of-order execution will
depend on the available parallelism in the workload-operator combination. Later, in Section 4.5,
we evaluate how effective speculation is for common operators.

4.3.2 Optimistic parallelization

The problem of optimistic parallelization is very similar to the out-of-order processing problem:
given idle processors, is it possible to process events other than the next-to-commit event while still
preserving sequential semantics? In practice, the real benefits of the speculative parallelization are
that: (i) the operator code does not need to be parallelized by hand, which is a potentially long and

4.3. APPLICATIONS 43

error-prone procedure; (ii) the main difficulty of concurrent programming is the nondeterminism
(reasoning about correctness includes data races, deadlocks, memory models, etc.). Enforcing
deterministic semantics simplifies composing, porting, debugging, and testing of parallel software
[GN08, ABD+09, JAAS09]. Therefore, by having sequential semantics and information about
the hot spots in the code, it is much easier to reason about how to extend sequential algorithms
to perform better under speculative parallelization. Extracting the hot spots in the code with the
STM requires simply enabling it to log which memory accesses caused the most aborts.

Processor 1

Processor 2

NEXT = 10

79 81012 11

(a)

Processor 1

Processor 2

NEXT = 10

10

79 81214 13

11

(b)

Processor 1

Processor 2

NEXT = 10

10

11

79 81214 13

11

(c)

Processor 1

Processor 2

NEXT = 10

10

11

10

79 813 14

11

12

(d)

Processor 1

Processor 2

NEXT = 11

13

11

810 914

11

12

(e)

Processor 1

Processor 2

NEXT = 12

13

12

911 10

12

14

(f)

Figure 4.4: Optimistic parallelization example.

Similarly to the example in the previous section, the example in Figure 4.4 illustrates a
concurrent execution in a speculative operator. It runs as follows: (a) two processors are available
for processing events for the stateful operator; because the stream is ordered, the next-to-commit
timestamp is known (alternatively, the events could have logical timestamps, which carry this
information implicitly); (b) each processor takes an event from the input queue; (c) the processor
with event 11 makes progress first and finishes processing; because timestamp 11 is not the
next-to-commit, the associated transaction is put in the wait queue until the NEXT counter
reaches its timestamp; (d) the processor with event 10 makes progress and modifies a position in
memory different than the one used by event 11; (e) the processing of event 10 is committed, the
modification is incorporated into the state, and the result is outputted; (f) now the transaction
for event 11 is the next-to-commit and its modification to the state is incorporated and the result
outputted.

44 CHAPTER 4. LOCAL SPECULATION

4.4 Extensions

One problem with STM is that some data structures are not speculation friendly. In such cases,
transactions are (sometimes) unnecessarily aborted and, as a consequence, parallelism is not
explored. Therefore, considering this issue is important to achieve good parallelization levels. In
this section we consider two simple, but common, examples representing two very distinct cases.
In the first case, which considers a set data structure, a transaction aborts when it reads a memory
position (in fact, a pointer) that another transaction modified, even if this modification is not
relevant. In the second case, which considers a single (shared) counter, concurrent transactions
are aborted because there is indeed a dependency. We show how our framework can be used to
provide better exploitation of parallelism in the presence of these two cases.

4.4.1 Avoiding unnecessary aborts

Consider a set data structure that is implemented with a sorted linked list. The interface of this set
is shown in Listing 4.1. To understand under which circumstances an unnecessary abort occurs,
consider two concurrent transactions tx1 and tx2 that add elements to the set. If the transactions
add distinct elements, the operations should not interfere. Nevertheless, a word-based STM looks
for reads and writes to memory positions. In addition, when adding a element, a transaction
reads elements from the list until finding the correct position for the new element. One of the two
elements will be inserted in an earlier position of the list and a pointer of an existing element will
be modified during this insertion. However, the modified pointer was read by the other transaction,
which inserted its element in a later position. Therefore, the two transactions do not successfully
execute in parallel.

1 // Create a new set
2 set_t set_create();

4 // Insert the element in the set, duplicates are not allowed
5 // (returns true if element is added and false otherwise)
6 boolean set_add(set_t list, element_t element);

8 // Remove the element from the set
9 // (returns true if element was removed and false if it was not present)

10 boolean set_remove(set_t set);

12 // Query if an element is present on the set
13 boolean set_contains(set_t set, element_t element);

Listing 4.1: Interface of a simple set.

One simple and effective solution is to have the event processing framework provide a set data
structure that is internally implemented with a hash table, which is a much more parallelizable
data structure as it does not suffer from the aforementioned problem. Nevertheless, there are cases
(specially for complex data structures) where the user has an efficient version of the data structure
(e.g., lock-free, wait-free). In this case, we would want to enable reuse of the existing code.

4.4. EXTENSIONS 45

An approach for transforming concurrent data structures in transactional ones is transactional
boosting [HK08]. Transactional boosting considers that the original code of the data structure
will not be instrumented by the STM, instead, wrappers will be added to the interface functions
to provide the transactional features. Boosting is based on the idea that some of the operations on
the data structure at hand are commutative. In addition, it assumes that interface operations have
an inverse. On the one hand, knowing the commutativity relations is needed in order to determine
which operations can be executed in parallel. On the other hand, knowing the inverse operations
is needed for the case that the transaction aborts and the operation on the data structure have to be
undone.

For a simple set, the inverses and the commutativity relations are defined in Table 4.2. The
table on the left defines, for instance, that the inverse of an add(x) operation that returns true
is the remove(x) operation. Further, no inverse (i.e., no undo action) is needed if it returns
f alse (because no element was actually inserted). As another example, the contains() method
requires no inverse because it is a read-only operation. In addition, the table on the right side
defines which operations are commutative with each other.

Operation Inverse
insert(x)/false no-op()
insert(x)/true remove(x)
remove(x)/false no-op()
remove(x)/true insert(x)
contains(x)/- no-op(x)

Commutativity
Op. 1 Op. 2 Condition
insert(x)/- insert(y)/- x , y
remove(x)/- remove(y)/- x , y
insert(x)/- remove(y)/- x , y
insert(x)/- contains(y)/- x , y
insert(x)/false contains(y)/- (always)
remove(x)/- contains(y)/- x , y
remove(x)/false contains(y)/- (always)

Table 4.2: Set data-structure specification for generating a speculation-aware set with transactional
boosting (from [HK08]).

Based on the tables above, wrappers can be either manually or automatically generated for
the data-structure interface functions. The wrapper should ensure that two operations that do
not commute will not be executed concurrently. In [HK08] this is done by acquiring an abstract
lock that is released when a transaction commits or aborts. Having an array of locks and a hash
function mapping operations to locks would suffice. For instance, insert operations would get
a lock that depends on the hash of the object being inserted. Thus, two insert operations with
the same object would always map to the same lock and be mutually exclusive. The wrapper
also adds the inverse operation to the on-abort hook, so that the effects can be undone if the
transaction aborts.

4.4.2 Making aborts unnecessary

A common piece of code in stream operators is the increment of a single shared counter. For
instance, the counter could be incremented for every event and used as a unique identifier. In
other cases, it could be necessary for the operator to know how many events have already been

46 CHAPTER 4. LOCAL SPECULATION

processed. Having such a counter is a problem for speculative parallelization. There will be a
single point where all concurrent transactions conflict and only the highest priority one will be
able to finish successfully. Thus, even for a very parallelizable type of operator, the achieved
parallelism would be compromised.

To handle this problem, the counter operator (e.g., a count++ operation in C) could be
replaced by a library call. For cases where simply a unique identifier is needed, the statement
could be replaced by a atomic increment operation that is not instrumented by the STM. In this
case, the counter would be incremented for each execution of the transaction, even the ones that
end up in aborts. Nevertheless, because the counter is still strictly monotonic, the desired goal
would still be achieved without compromising parallelization.

Similar to the case above is when an approximate counter is needed. For example, in the
traditional reservoir approach for keeping non-biased samples of a stream (e.g., [Vit85]), the
probability of a new event being added to the sample should be proportional to the number of
events already seen. In this case, the above counter implementation would suffice. If a strictly
monotonic counter value is not required, an even better approximation is to atomically increment
the value during the execution and remember to decrement it if the transaction aborts.

Finally, it could still be needed to have a precise counter. One way to achieve this is to use an
approach based on predictive log-synchronization (PLS [SS06]). PLS was originally proposed as
a replacement for STM in some applications. Here, it can be used to improve STM efficiency
in cases where one of many statements in an operator causes most of the conflicts. The original
idea is that instead of modifying the shared object, threads would atomically log their requests.
Then, they would use a base version of the object in conjunction with the log to derive how the
object would look like if the threads really had executed the intended operation. The original
assumption is that appending the request to the log is faster than executing the original operation.

In our case, appending the request to the log is not faster than incrementing a shared variable,
but logging does not cause the complete transactions to abort and execute sequentially. Thus,
the consequently available parallelism can overcome the added overhead. The idea works as
follows. Instead of reading and updating the counter, when an operator thread wants to increment
the counter it:

i) logs its request to increment the counter; the log entry also contains the timestamp of the
transaction;

ii) the thread predicts the counter value by looking to the base value of the counter and
simulating all the requests already in the log (it disregards log entries from transaction with
higher timestamps);

iii) the predicted value is returned to be used by the transaction, but before that, the thread adds
an action to the on-commit hook, so that the value is rechecked during commit; similarly,
it adds an action to the on-abort hook to decrement the counter in case the transaction
aborts;

iv) later, during the execution of the on-commit hook, which is serialized with respect to all
other threads, it can compute the value it should have originally seen (i.e., all transaction

4.5. EVALUATION 47

with lower timestamps will have already committed and will not add entries to the log
anymore); if this check succeeds, it commits, otherwise, it aborts and reexecutes;

v) finally, periodically one of the threads locks both the counter and the log and apply the
logged modifications, truncating the log.

In a summary, replacing the incrementing counter statement by a more parallel approach is
feasible. In addition, if the user does not use one of the special calls, the transactifying compiler
can automatically replace the original increment statement by the precise approach (PLS). Further,
PLS can also be applied to other data structures in a similar way and although it has obvious
overheads, it achieves very high performance in several cases (see [SS06] for details).

4.5 Evaluation

In this section we first evaluate the overheads introduced by the speculation infrastructure. Then,
we show the cost of a misspeculation (caused, for example, by a conflict) and the real cost of the
reexecution of an aborted task. After that, we show how optimistic parallelization, out-of-order
processing, and the conflict predictors perform in simple micro benchmarks. We then finally
evaluate speculation with two common ESP operators.

The experiments in this section were executed in two machines. The first is an Intel machine
equipped two Xeon processors and 4 GBytes of RAM. In this machine, the total number of cores
is 8 (2 chips with 4 hardware cores each) and they run at 2 GHz. Each 2 cores share a L2 cache
of 6 MBytes (L1 is private to each core and has 32 KB for instruction and 32 KB for data). The
second machine is a SUN T1000 machine equipped with a UltraSPARC T1 (Niagara) processor
and 16 GBytes of RAM. This machine has 8 cores in a single chip running at 1 GHz and has
four hardware threads per core. The four hardware threads in each core share the L1 cache (16
KB instruction; 8KB data) and the 8 cores share the L2 cache (3 MB). The Sun machine is an
example of use of many simple and efficient processors, which is expected to be an increasingly
more common approach. Both machines run Linux Ubuntu version 8.04.

4.5.1 Overhead of speculation

For the next experiments, we consider an operator with 512 Mbyte of state and we execute batches
of 100 operations (unless otherwise noted). The duration of each batch is measured with the
timestamp counter (TSC) in the Intel machine and the tick counter in the Sun machine. In both
cases, the counters offer good precision for time measurement as they count the number of clock
cycles and the machines have clocks in the order of gigahertz. We then consider the arithmetic
mean of these measurements.

We start our evaluation with an experiment that illustrates the mean cost of a single memory
access. The experiment is set up as follows. The operator reads or increments (i.e., a read plus
write) several positions of this state. Two cases are considered. In the first case, the accesses are
always directed to the same position. This increases the likelihood that the destination position is
already cached. In the second case, the reads are directed to random positions, which significantly
reduces cache hits. The experiment is done for both read and write accesses and considers several

48 CHAPTER 4. LOCAL SPECULATION

synchronization methods for protecting the state: no synchronization at all (NS YNC), atomic
operations (ATOMIC), mutex locks (MLOCK); spin locks (S LOCK); and the STM (S T M).
The results are depicted in Figure 4.5. In this experiment, only a single thread is running and,
thus, there is no contention for the accesses.

 0

 50

 100

 150

 200

 250

 300

 350

NSYNC ATOMIC SLOCK MLOCK STM

C
os

t o
f a

cc
es

s
(n

an
os

ec
on

ds
)

Synchronization method

Same pos. - Read
Rand. pos. - Read
Same pos. - Write
Rand. pos. - Write

(a) Intel Xeon

 0

 200

 400

 600

 800

 1000

 1200

 1400

NSYNC ATOMIC SLOCK MLOCK STM

C
os

t o
f a

cc
es

s
(n

an
os

ec
on

ds
)

Synchronization method

Same pos. - Read
Rand. pos. - Read
Same pos. - Write
Rand. pos. - Write

(b) Sun Niagara

Figure 4.5: Mean cost of a memory access.

As expected, the results show a considerable overhead introduced when accessing memory
positions through the STM. The overheads are specially high for random accesses. In this case,
not only accessing the destination memory position is costly, but the entry in the STM’s lock
array monitoring this position is likely not in cache either.

The previous experiment considers only the mean cost of a single memory access. It does not
consider the costs of creating and committing the surrounding transactions. Although the time
for a single memory access is the most important factor when considering expensive operators,
for operators with few accesses the costs for setting up and committing the transaction may be
dominant. In the following experiment, we decompose the duration of a transaction considering
different numbers of accesses to the operator state. The results are shown in Figure 4.6. The
left-hand side figures show the decomposition of the mean transaction duration in microseconds.
On the right-hand side of the figure, the phases of the transaction are normalized to the total
duration of the transaction. The high overhead for the creation is mainly due to several memory
allocations (e.g., transaction descriptor, read and write sets) and the cost of periodic garbage
collection.

In the next experiment, we contextualize the costs of memory accesses by evaluating their
impact in processing tasks with different sizes. The size of a task is defined in terms of busy-
waiting time. This busy-waiting represents a local computation that does processing and accesses
local variables, but does not require shared memory accesses. The results when considering only
a few write accesses to the state (5) are shown in Figure 4.7. The results for a greater number
of accesses (100) are shown in Figure 4.8. The figures show the slowdown introduced by the
synchronization methods in comparison to the non-synchronized option (i.e., the bare access, no
lock, no atomic operation, no transaction). The accesses are writes and are directed to random
positions in the operator’s state.

Although the impact of the other synchronization approaches is small, for very short transac-

4.5. EVALUATION 49

 0

 5

 10

 15

 20

 25

 30

1 5 10 50 100

D
ur

at
io

n
(m

ic
ro

se
co

nd
s)

Number of write acceses

Create
Process
Commit

(a) Intel Xeon

 0

 20

 40

 60

 80

 100

1 5 10 50 100

%
 o

f t
ot

al

Number of write acceses

(b) Intel Xeon

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 5 10 50 100

D
ur

at
io

n
(m

ic
ro

se
co

nd
s)

Number of write acceses

Create
Process
Commit

(c) Sun Niagara

 0

 20

 40

 60

 80

 100

1 5 10 50 100

%
 o

f t
ot

al

Number of write acceses

(d) Sun Niagara

Figure 4.6: Duration of major phases for transactions with different sizes.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

1 5 10 20 50 100 500

S
lo

w
do

w
n

Local processing time (microseconds)

ATOMIC
MLOCK
SLOCK

STM

(a) Intel Xeon

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

1 5 10 20 50 100 500

S
lo

w
do

w
n

Local processing time (microseconds)

ATOMIC
MLOCK
SLOCK

STM

(b) Sun Niagara

Figure 4.7: Impact of cost in the total processing time for different task sizes (i.e., processing
times) and 5 shared memory accesses per task.

50 CHAPTER 4. LOCAL SPECULATION

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

1 5 10 20 50 100 500

S
lo

w
do

w
n

Local processing time (microseconds)

ATOMIC
MLOCK
SLOCK

STM

(a) Intel Xeon

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

1 5 10 20 50 100 500

S
lo

w
do

w
n

Local processing time (microseconds)

ATOMIC
MLOCK
SLOCK

STM

(b) Sun Niagara

Figure 4.8: Impact of cost in the total processing time for different task sizes (i.e., processing
times) and 100 shared memory accesses per task.

tions the impact of the STM is very large. This is mostly due to the large overhead for creating
transactions in our prototype (see also Figure 4.6). The impact of using transactions becomes
smaller when there are enough local computations to be carried.

Finally, in the last experiment of the section, we show the effect of contention in the cost of
memory accesses. In this experiment we consider two threads. The first thread either reads or
writes to a set of memory positions. This thread then blocks and a second thread may modify the
exact same set of positions. Finally, the first thread runs again and re-reads or re-writes the same
set of addresses. Four interference patterns are considered in the Intel machine: (i) No interference,
this is the only case in which the second thread does not write to the memory positions accessed
by the first thread (this is the base reference case); (ii) Shared L2 cache, the two threads run in
cores that share the L2 cache; (iii) Same chip, the two threads run in cores in the same chip (they
do not share the L2 cache); (iv) Different chip, the two threads run in cores located in different
chips. For the Sun machine (single chip), we consider three patterns: (i) No interference, as
with the Intel machine; (ii) Same core, the two threads run in two hardware threads in the same
core; (iii) Same chip, the two threads run in different cores (shared L2 cache). The costs of write
accesses from the first thread are depicted on the left-hand side of Figures 4.9 and 4.10. The cost
for reads is shown in the right-hand side of the same figures. The goal of the experiment is to
evaluate the effect of contention on the metadata used for synchronization of a single memory
access. The numbers do not consider the creation and commit of the surrounding transactions
in the STM case. In some cases, the STM accesses are faster because they involve only atomic
operations; no locks need to be acquired.

4.5.2 Cost of misspeculation

In the next step, we consider the cost of an undo operation and how this reflects on the speculation
process. Computations are undone due to incorrect speculation and, thus, these computations need
to be redone. The cost of an undo operation is illustrated in Figure 4.11. Because we consider a
write-back STM approach for implementing our speculation, the undo operation simply consists

4.5. EVALUATION 51

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

ATOMIC SLOCK MLOCK STM

C
os

t o
f a

 w
rit

e
ac

ce
ss

 (
na

no
se

co
nd

s)

Synchronization method

No interference
Shared L2 cache

Same chip
Different chip

 0

 50

 100

 150

 200

 250

 300

 350

ATOMIC SLOCK MLOCK STM
C

os
t o

f a
 r

ea
d

ac
ce

ss
 (

na
no

se
co

nd
s)

Synchronization method

Figure 4.9: Impact of contention in the memory access time (Intel Xeon).

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

ATOMIC SLOCK MLOCK STM

C
os

t o
f a

 w
rit

e
ac

ce
ss

 (
na

no
se

co
nd

s)

Synchronization method

No interference
Same core
Same chip

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

ATOMIC SLOCK MLOCK STM

C
os

t o
f a

 r
ea

d
ac

ce
ss

 (
na

no
se

co
nd

s)

Synchronization method

Figure 4.10: Impact of contention in the memory access time (Sun Niagara).

52 CHAPTER 4. LOCAL SPECULATION

of aborting the current task. As shown in the figure, the undo cost depends on the number of
distinct write accesses executed by the task. This is due to the atomic write operation executed
on the global lock array. For the read cases no entry in the lock array needs to be released. For
writes directed at the same positions only a single release must be done.

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250

A
bo

rt
 d

ur
at

io
n

(in
 m

ic
ro

se
co

nd
s)

Number of acceses

Random read
Random write

Same read
Same write

(a) Intel Xeon

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250

A
bo

rt
 d

ur
at

io
n

(in
 m

ic
ro

se
co

nd
s)

Number of acceses

Random read
Random write

Same read
Same write

(b) Sun Niagara

Figure 4.11: Cost of an abort/undo operation.

Although a misspeculation requires a task to be completely reexecuted in order to consider
updated values, a reexecution can also be faster than the first execution as some data will be in
cache. The next experiment illustrates this effect. In this experiment, a task executes a number of
memory reads directed to the state of the operator. Then, the processing is aborted due to one or
more positions being modified by a concurrent transaction with higher priority. The processing
overhead is then given by the total time of an execution followed by an abort and a reexecution,
in comparison to the duration of the first execution. This can be expressed as:

Ttotal = T f irst + Tabort + Treexecution (4.1)

Overhead = (Ttotal − T f irst)/T f irst (4.2)

where Ttotal is the total duration time, T f irst is the duration of the first execution, Tabort duration
of an abort (undo), and Treexecution is the duration of the re-execution.

The results of the experiment are shown in Figure 4.12. The experiment also considers
tasks with different amounts of positions that actually changed between the first and the second
execution (either 1 or 100 positions conflict). The amount of resources wasted by a misspeculation
depends on the number of positions that indeed changed, referred to as conflicts. In the Intel
machine, for cases where just one position changed, misspeculation has only moderate additional
costs (i.e., much less than the intuitive 100%). In this machine, we consider the two opposite
cases where the two threads either share the L2 cache (i.e., they are in neighbor cores) or they are
in different chips.

In the Sun machine (right hand side of Figure 4.12), we consider the cases where the threads
either run in hardware threads sharing the same core or they are in different cores. In addition,
differently from the Intel machine and from the read-write case, the proportional overhead for
write-write interferences is higher when only one address is changed by the interfering thread.

4.5. EVALUATION 53

This effect is caused by two factors. First, the Sun machine has very small L1 caches, so the
reexecution of a transaction does not benefit from a previous execution. Second, in the case that
all addresses of the current transaction were used by the other transaction, the locks were stolen
and the current transaction does not need to release them anymore. By not having to release
addresses during the rollback, transactions save time (e.g., costly compare-and-swap operations).
Therefore, the difference between the all-conflict and the one-conflict executions is due to the
cost of the rollback.

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

Read/Write Write/Write

O
ve

rh
ea

d
of

 th
e

re
do

Conflict type

One conf., shared
All conf., shared

One conf., non-shared
All conf., non-shared

(a) Intel Xeon

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

Read/Write Write/Write

O
ve

rh
ea

d
of

 th
e

re
do

Conflict type

(b) Sun Niagara

Figure 4.12: Overhead of a rollback and a reexecution.

4.5.3 Out-of-order and parallel processing micro benchmarks

In this section we consider a micro benchmark that uses the simple operator depicted in Listing 4.2.
This operator works as follows. For each input event the operator modify one entry of its local
state. The entry to be modified depends on value field in the event, which is set to a random integer
by the event generator. Then, if we want to simulate a longer task, we simply do some busy-
waiting for the desired amount of time. Therefore, the two base parameters of this benchmark
are: (i) the size of the state (the bigger the state is, the lower the chance that two speculations
conflict); and, (ii) the amount of local work to be done (the longer the work, the lower will be the
impact of the transaction creation and commit overheads). In the following experiments, we use
this operator to evaluate the optimistic parallelization, out-of-order execution, and the optimism
control.

The first experiment is shown in Figures 4.13 and 4.14. The x-axis represents the varying
simulated work. For the former figure, the state size is set to 100. For the latter, the state size is
set to 10. As shown in the figures, the achieved parallelization depends on the amount of local
processing done and on the probability of conflicts. We consider that the operator uses up to 6
threads in the Intel machine2 and up to 8 threads in the Sun machine.

Next, the experiment for the out-of-order is set up as follows. The operator receives events
from two sources and processes them according to their timestamps (as detailed in Section 4.3.1).

2If 8 threads were used, there would be competion between the event-processing threads, other threads from the
framework, and system processes.

54 CHAPTER 4. LOCAL SPECULATION

1 long *local_state; // Operator state

3 int operator_init() {
4 local_state = calloc(state_size , sizeof(long)); // Allocate state
5 if (local_state == NULL) return EPF_FAILURE;
6 return EPF_SUCCESS;
7 }

9 int operator_process(void *input) {
10 Event_t *in = input;
11 in->result = READ(local_state[in->value % state_size]); // Read an entry
12 INC(local_state[in->value % state_size]); // Modify an entry
13 if (simulate_work > 0) tsc_sleep(simulate_work);
14 return EPF_FORWARD;
15 }

Listing 4.2: Simple operator for micro benchmarks.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 25 50 75 100 125 150 175 200

S
pe

ed
up

Task size (microseconds)

2 threads
4 threads
6 threads

(a) Intel Xeon

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 25 50 75 100 125 150 175 200

S
pe

ed
up

Task size (microseconds)

2 threads
4 threads
6 threads
8 threads

(b) Sun Niagara

Figure 4.13: Parallelization micro benchmark: 1% of the state is updated.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 25 50 75 100 125 150 175 200

S
pe

ed
up

Task size (microseconds)

2 threads
4 threads
6 threads

(a) Intel Xeon

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 25 50 75 100 125 150 175 200

S
pe

ed
up

Task size (microseconds)

2 threads
4 threads
6 threads
8 threads

(b) Sun Niagara

Figure 4.14: Parallelization micro benchmark: 10% of the state is updated.

4.5. EVALUATION 55

Thus, the main parameter is the difference in the generation rate of the two sources: if one
source emits far less events, the operator will have to block longer in order to ensure events are
indeed being processed in the correct order. Nevertheless, because the suitability to out-of-order
processing also depends on the available parallelism in the combination workload-operator, we
again consider two different state sizes (10 and 100). We set one source to emit events in a fixed
frequency (mean of 1000 events per second, with a random interval between events) and the other
to emit events with decreasing frequencies (also with random intervals between events). The
x-axis show the difference in the rates, for 0% both sources produce events in the same frequency.
Similarly, for 200% the faster source produces three times more events. The amount of simulated
work is set to slightly less than half of the period of the fastest source, so that the operators are
able to keep up with the events stream when the sources are in the maximum frequency. The
results are shown in Figure 4.15. In this experiment, we consider only a single thread in the
operator and results are similar in both machines.

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200

E
nd

-t
o-

en
d

la
te

nc
y

(in
 m

ic
ro

se
co

nd
s)

Difference in source frequency (in %)

Non-speculative
Speculative

(a) 10%

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200

E
nd

-t
o-

en
d

la
te

nc
y

(in
 m

ic
ro

se
co

nd
s)

Difference in source frequency (in %)

Non-speculative
Speculative

(b) 1%

Figure 4.15: Out-of-order micro benchmark: 1% and 10% of the state is updated (Intel Xeon).

As seen in Figure 4.15, there is a peak in latency when sources produce events in the same
rate. This is due to the fact that in this case the operator is busy almost 100% of the time. Thus, an
arriving event is likely to not be processed immediately, even if the event has a suitable timestamp.
For example, consider that the sources are almost perfectly synchronized. Now consider that
the operator receives an event et0 (with timestamp t0) from Source1. Then, soon after that it
receives an event et1 from Source2. Because et0 < et1 , the operator is now able to process et0 .
One period later, the operator receives et2 from Source1, which unblocks et1 , and shortly after
that, et3 from Source2, which unblocks et2 . Nevertheless, the operator is still busy processing et1
and et2 suffers an unnecessary delay. When the operator is mostly busy, it is not possible to mask
this latency (even with speculation as there is no time available for speculation). On the contrary,
when the slower source produces far less events, an arriving event will encounter an idle operator
and may be processed immediately.

In the last experiments of this section we evaluate the conflict predictors as an approach to
make speculation more efficient. In this experiment we try many possible state sizes by making
the state size vary with a sinusoid. The goal is to show how the system reacts to a workload in
which the available parallelism varies. Nevertheless, even when the available parallelism of a

56 CHAPTER 4. LOCAL SPECULATION

workload-operator combination does not vary, we still need to estimate a good speculation level
for a new operator. The additional experiment parameters are the following: events have logical
timestamps (i.e., fixed distance between the timestamps); a single source produces all events; the
operator is allowed to use 6 threads; and the simulated work is 100 µs.

We try two different conflict predictors: the abort-driven and the throughput-driven predictors.
In Figure 4.16, we plot the state size, the percentage of reexecuted transactions, and the total
throughput of the operator. As mentioned above, the state size varies with a sinusoid (with a
period of 100 seconds) and the larger the value, the more parallelism is available. In the sinusoid
maximum, the state has 20 positions and, in the minimum, only 1 (i.e., no space for speculation).
As expected, when there is no parallelism left there are many aborts, even for the abort-driven
predictor. This happens because it repeatedly tries to find speculation opportunities. Similarly,
the throughput predictor is able to achieve higher throughput as it does not care for wasted
speculations as long as they do not reduce throughput.

 5

 10

 15

 20

 25

 30

T
hr

ou
gh

pu
t (

x1
03)

 1

 10

 100

R
ee

xe
c.

 (
%

)

 0
 5

 10
 15

 0 20 40 60 80 100 120 140 160 180 200

S
ta

te
 s

iz
e

Time (seconds)

(a) Abort-driven control

 5

 10

 15

 20

 25

 30

 35

 40

T
hr

ou
gh

pu
t (

x1
03)

 1

 10

 100

R
ee

xe
c.

 (
%

)

 0
 5

 10
 15

 0 20 40 60 80 100 120 140 160 180 200

S
ta

te
 s

iz
e

Time (seconds)

(b) Throughput-driven control

Figure 4.16: Micro benchmark for the abort-driven and throughput-driven predictors (Intel Xeon).

Then, in Figure 4.17 we compare the two conflict predictors, which use a dynamic speculation
horizon, with statically-set speculation horizons. The static predictors are referred to as Static 5
and Static 10 for horizons of 5 and 10, respectively. The dynamic predictors are referred to as
Dyn. A for the abort-driven and Dyn. T for the throughput-driven. We use the same (sinusoidal)
set up as in the previous experiment. On the one hand, the abort-driven predictor has the
lowest number of reexecution, as expected. On the other hand, the throughput-driven predictor
has throughput very close to the static predictors, but with lower conflict rates, confirming its
usefulness.

4.5. EVALUATION 57

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140 160 180 200

R
ee

xe
cu

tio
ns

 (
%

)

Time (seconds)

Static 5
Static 10

Dyn. A
Dyn. T

(a) Re-executions

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140 160 180 200

T
hr

ou
gh

pu
t (

x1
03 e

v/
s)

Time (seconds)

(b) Throughput

Figure 4.17: Comparison between dynamic and static speculation horizons (Intel Xeon).

4.5.4 Behavior with example operators

In this section, we evaluate the speculation support with two example operators. The first is the
top-k operator discussed in Chapter 2.1. The second is a nearest neighbors operator.

The nearest neighbors problem [Ary95] is a fundamental problem in computational geometry
and is very commonly applied in classification and pattern recognition. Given a set of points S
and a query point p, the goal is to find a point in S that is the neareast neighbor to p. In practice,
instead of the single nearest neighbor, a few points are retrieved in order to handle noise (e.g., p’s
classification will be done based on the average of the n nearest neighbors). Solving the nearest
neighbor problem in a space with few dimensions (e.g., in a bidimensional or a tridimensional
space) is a simple problem (in contrast to much larger dimension numbers, where the distribution
of the distance between two points tend to be more homogeneous [Ary95]). The trivial algorithm
would be to put all points in a list and for each input event, compute the distance to all other
points and select the n closest points. This is very innefficient, however. An improved version
is the bucketing algorithm [Wel71]. In this case, the space is divided in equally-sized buckets
and the points stored in these buckets. When a new point is added, it is added to a single bucket.
Then, to compute the nearest neighbors of a new point p, we can compute the distance of p to
other points in the same bucket and after that look into neighbor buckets.

In our experiments, we configure our top-k to return the 5 most frequent occurrences of a
certain integer attribute in the events. This attribute could represent, for example, a hash of a more
complex object. For the nearest neighbors, the events contain a bidimensional coordinate and
we want to query for the 3 nearest neighbors. In addition, we divided our space in a 100 × 100
grid and keep up to 10 points in each bucket. Limiting the number of points kept enables us
to keep the space and computational costs bounded and uniform among buckets. With these
configurations, we obtained two reasonably different operator profiles. The top-k has a short to
medium computation and some, but not much available parallelism. The nearest neighbors is a
longer, very parallelizable (because of the grid) computation.

Shown in Table 4.3 are the processing costs of the operators with different configurations.
The original cost in a nonspeculative, sequential execution is listed in the lines marked as Seq.

58 CHAPTER 4. LOCAL SPECULATION

For speculative executions, we consider 2, 6, and 8 threads (2 and 6 in the Intel and 2 and 8 in the
Sun) and also list the percentage of aborts. The overhead caused by the speculation support can
be seen by comparing the computational costs of the multithreaded executions and the sequential
ones. Node, however, that speculative executions may put events aside when these are processed,
but cannot be committed yet. The processing time in the table considers the total time between the
dequeueing of the event until its commit. Therefore, putting events aside increase the measured
values.

Operation Machine # threads Proc. time (µs) Conflict rate

Seq. 12.42 -

Intel 2 25.69 1.25%

6 144.81 16.46%

Seq. 77.20 -
Top-k

Sun 2 120.99 1.30%

8 328.57 14.76%

Seq 26.68 -

Intel 2 49.72 0.06%

Nearest 6 159.27 0.64%

Neighbors Seq. 732.54 -

Sun 2 902.35 0.05%

8 1155.89 0.36%

Table 4.3: Computational costs of the operators (multithreaded executions use speculation).

In the next experiment we measure the throughput gained by using speculation for optimistic
parallelization. In Figure 4.18, we plot the speedup of the parallel version in relation to the
sequential (nonspeculative) version. Note that if only one thread is used the overhead of the
speculation reduces the total throughput. Nevertheless, already with two threads we surpass the
initial deficit and achieve some speedup for both operators.

Next, we compare the speedup of the speculation with the one achieved with fine-grained
locking (with pthread mutexes). In the locking version of the top-k operator, there is a lock for
each counter in the count sketch synopsis and a lock for the 5-position array that keeps the top-5
elements. For the nearest neighbors, there is a lock for each bucket. The results are shown in
Figure 4.19. As shown in the figure, for the top-k, there is a clear advantage for the lock-based
version. Nevertheless, our approach still have the advantages that it both does not require any
concurrent programming knowledge and still is deterministic. The quick drop in performance
with 6 threads in the lock-based version also shows that selecting the correct amount of threads
for the fine-grained locking may not be straightforward.

On the right-hand side of Figure 4.19 we have the comparison between the performance of
the lock-based and speculation-based versions for the nearest neighbor operator. The computation
of the nearest neighbor operators is both long enough to mask the creation and commit overheads
and has a low conflict rate, which allows more transactions to successfully run in parallel. As a

4.5. EVALUATION 59

 0

 0.5

 1

 1.5

 2

 2.5

Topk Nearest neighbors

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Operator

Sequential
1t spec.
2t spec.
4t spec.
6t spec.

(a) Intel Xeon

 0

 1

 2

 3

 4

 5

Topk Nearest neighbors

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Operator

Sequential
1t spec.
2t spec.
4t spec.
6t spec.
8t spec.

(b) Sun Niagara

Figure 4.18: Optimistic parallelization speedups for commons stream mining operators (base:
sequential nonspeculative execution).

result, both approaches achieve a similar gain.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

Topk

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Operator

2t spec.
4t spec.
6t spec.
2t locks
4t locks
6t locks

(a) Top-k (Intel Xeon)

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

Nearest neighbors

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Operator

2t spec.
4t spec.
6t spec.
8t spec.
2t locks
4t locks
6t locks
8t locks

(b) Nearest Neighbors (Sun Niagara)

Figure 4.19: Comparison between speedups from optimistic parallelization and fine-grained
locking for two common stream mining operators (base: sequential nonspeculative execution).

Next, we evaluate the out-of-order processing. On the left-hand side of Figure 4.20, we
show a single-threaded execution of the top-k operator. In this case, the speculation overhead
in comparison to the computation cost of the operator masks the gain of the early processing.
Because we do not forward speculative results, the speculative version can process event in
advance, but has to wait to be able to commit the computations. Nevertheless, on the right-hand
side of Figure 4.20, with the nearest neighbor operator in the Sun machine, the overhead is
proportionally lower and we see results similar to the micro benchmarks in the previous section.

Finally, in our last experiment, we compare the performance of our conflict predictors with an
statically set speculation horizon. Results are shown in Table 4.4. The results show that having a
dynamic conflict predictor helps to stay close to optimal points, but it is not a deciding factor.

60 CHAPTER 4. LOCAL SPECULATION

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200

E
nd

-t
o-

en
d

la
te

nc
y

(in
 m

ic
ro

se
co

nd
s)

Difference in source frequency (in %)

Non-speculative
Speculative

(a) Top-k (Intel Xeon)

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 0 50 100 150 200

E
nd

-t
o-

en
d

la
te

nc
y

(in
 m

ic
ro

se
co

nd
s)

Difference in source frequency (in %)

Non-speculative
Speculative

(b) Nearest Neighbors (Sun Niagara)

Figure 4.20: Latency of a system with two sources and varying event generations rates.

Operation Metric (mean) Dynamic (A) Dynamic (T) Static (5) Static (10)

Aborts 2.23% 9.05% 7.08% 16.37%Top-k
Throughput (ev/s) 61379 75640 78300 73439

Nearest Aborts 1.58% 0.92% 0.30% 0.67%

Neighbors Throughput (ev/s) 58237 57148 57141 55975

Table 4.4: Throughput and abort rate for the stream mining operators with different conflict
predictors (Intel).

4.6 Summary

In this chapter we discussed the usage of speculation inside an event stream processing operator.
In order to make an operator speculative, we surround it with a modified software transactional
memory and instrument its operations directed at the state. In comparison to conventional STMs,
ours needs several added features, being ordered commits, transaction pausing, and optimism
control, the most important. Our goal was to provide an easy way to parallelize operators
(increasing their throughput) and to enable them to preprocess events out of the normal timestamp
order (reducing their latency).

Optimistic parallelization provides an easy way to improve parallelism in a stateful operator.
Producing parallel code is known to be a difficult problem and it is easy for the programmer to
make wrong assumptions about synchronization safety [GN08, ABD+09, JAAS09]. Optimistic
parallelization is safe for the beginner programmer: it preserves sequential semantics and is
independent of the number of cores. For expert programmers, it allows them to quickly have
a parallel version and then, if necessary, increase parallelism by, for example, replacing data
structures with more speculation-friendly implementations. The determinism enabled by the
sequential semantics also helps: according to a survey among expert developers inside Microsoft
[GN08], 75% of the interviewed consider concurrency bugs hard or very hard to reproduce.

In addition, as shown by Porter et al. [PHW07], even code that is highly optimized for
fine-grained locking, like recent Linux kernels, still show opportunities for optimistic concurrency.

4.6. SUMMARY 61

Our optimistic parallelization also supports incremental refinement of implementations. The STM
can be used in a profile mode, in which it outputs where most of the conflicts were caused. Then,
a user could detect whether there are structures that are unfriendly to speculation and decide
about the next improvement. As a simple example, consider a counter that is incremented for
every input event. This counter will cause all optimistically processed events to abort as they all
contend for the counter. Nevertheless, as shown in Section 4.4, this problem can be mitigated by
using approaches such as predictive log-synchronization [SS06]. Further, the counter may not
be essential to the computation. Then, by receiving the feedback from the STM stating that the
counter causes too much aborts, the programmer may decide to simply remove it.

Regarding our evaluation, we have seen that although individual memory accesses through
the STM are very expensive, the impact of these costs is amortized if the transactions include
considerable processing that accesses only local-scope variables. We have also shown that this
happens for two common ESP operators (top-k and nearest neighbors). Then, by having parallel
executions of the operator we can mitigate the overhead and still achieve parallelism. Moreover,
when considering the amount of computational resources used versus the achieved speedup, a
speedup linear in the number of cores is not the only metric. For example, one approach is to
consider the speedup, the relative gain in throughput, versus the costup, the relative increment
in hardware cost (i.e., the cost of adding the extra cores) [WH95]3: whenever the ratio between
speedup and costup is greater than one, parallelization is a meaningful and cost-effective approach.
In our case, in the Intel Xeon machine and using 4 cores, we achieved a mean speedup of 1.67 for
the top-k and 1.96 for the nearest neighbors. For the Sun Ultrasparc T1 we achieved speedups of
1.91 and 2.76 for the top-k and nearest neighbors, respectively. In all cases, the extra hardware
costs when moving from a single core to a 4-core processor are clearly lower than the speedups
achieved. Nevertheless, we still have an advantage not considered in [WH95]: we require no
additional development cost.

Finally, we have seen that local speculation (specially the out-of-order processing) may not
be advantageous in computationally cheap operators because the commit is still delayed until
the speculation conditions are learned (e.g., ordering). Then, if the commit and the original
(nonspeculative) computations have similar costs, there will be no profit even with low conflict
rates. In the next chapter, we show that in distributed scenarios, speculation is interesting even for
computationally cheap operators. We will also detail why the lack of determinism in lock-based
parallelization is a serious problem for fault-tolerant distributed ESP systems.

3The costup metric was initially proposed to consider the cost of multiprocessors from the perspective of the
memory costs. Nevertheless, the idea of evaluating the added benefit of a system in relation to the added cost is clearly
widely applicable.

62 CHAPTER 4. LOCAL SPECULATION

Chapter 5

Distributed speculation: low-latency
fault-tolerance

In this chapter, we investigate the use of distributed speculation to build distributed fault-tolerant
event stream processing (ESP) systems. The goal is to minimize the performance impact of
common fault-tolerance techniques. We present speculative approaches for techniques based both
on checkpoints and on redundant computations. In contrast with the previous chapter, where gain
was a function on parallelism available in the workload, available parallelism plays a smaller role
here. In this chapter, gain is achieved when failures are rare.

5.1 Overview

ESP systems have attracted significant attention in recent years and have being used in a growing
number of applications. Besides throughput and processing latency, availability becomes a
major requirement as the use of ESP becomes widespread. An ESP system typically runs on a
network of computers. According to studies on the availability and failure rates in large computer
clusters, one can expect that several computers crash every day. Nevertheless, only recently
have researchers started to design and implement fault-tolerant distributed ESP systems [SHB04,
HBR+05, HCZ08, BBMS08].

High availability is obtained through fault tolerance. Fault tolerance is a non-trivial require-
ment, especially for systems that require precise recovery. With precise recovery the results in
case of failure should not be semantically different from the results that would be obtained in the
failure-free case. Adding precise recovery to an ESP system can add considerable latency costs
for the failure-free runs. This is a consequence of requiring that any nondeterministic information
used by an operator be saved to enable later recovery.

In this chapter, the optimistic assumption is that failures are rare. Speculation can then help to
minimize the latency costs of fault tolerance in ESP systems. Assuming the crash-failure model,
in order to enable precise-recovery nondeterministic decisions that influence a computation (e.g.,
arrival order of events, scheduling decisions) must be secured on disk (as in rollback recovery) or
by informing them to a remote node that replicates the computations (as in active replication).

63

64 CHAPTER 5. DISTRIBUTED SPECULATION

In both cases, the operator needs to wait for an acknowledgement that the information is stable
before outputting any result events. Not waiting for the acknowledgement may lead to output
events that depend on a state that cannot be reconstructed during recovery. If downstream nodes
consume these outputs, the system may end up in a inconsistent state after a recovery. Our
speculation mechanism helps by optimistically assuming no failures occur and, thus, not waiting
for the acknowledgments. Nevertheless, the speculation mechanism still enables operators to be
efficiently rolled back when this assumption of no failures is wrong.

The optimistic approach above requires additional features from the speculation mechanism.
It is still desirable that an operator processes events as soon as possible, but now it should delay
commits until it learns that also remote optimistic assumptions behind used events have been
confirmed. When events are made visible outside the scope of the operator while still having
unconfirmed optimistic assumptions, we name them speculative events. In addition, because
failures are not expected to occur frequently, we also allow that later transactions use the results
of earlier transactions that finished processing. We name this feature speculative accesses.

Finally, one limitation of many failure models, including the crash-failure model, is that
failures of different components are assumed to be independent. This is not the case if, for
example, failures are caused by software bugs. Therefore, we show how to extend a replicated
operator to handle software faults caused by common bugs. This approach also uses speculation
to reduce performance impacts introduced by fault tolerance.

In the following sections, we discuss the additional features needed in our event processing
systems. After that, we show how these features can be used to implement low-latency fault
tolerant ESP systems.

5.2 Requirements

In order to hide the costs of fault tolerance in a distributed ESP application, we need to be able
extend speculation to other nodes. Therefore, we need to enable that speculative results are send
and need to ensure that these speculative computations will only be committed after all pending
speculations have been confirmed.

In this section we first show how to support speculative events. After that, we consider
an optimization that consider that distributed speculation is normally correct and, thus, enables
transactions to read values from other transactions. We name such operations speculative accesses.
Finally, we discuss a basic requirement for active replication, reliable ordered broadcast, and
show how it needs to be extended to make use of speculation.

5.2.1 Speculative events

In general, speculative events are events that were produced based on some optimistic assumption
that may later be proven wrong. In addition, a speculative event is not guaranteed to be replayable.
Thus, as before, an event represents something that happened in the system, but a speculative
event will contain information that may be changed. Speculative events have two extra fields:
the version attribute enables deciding which, between two speculative events, is the most recent

5.2. REQUIREMENTS 65

update; and, a f inal flag, which indicates that no speculative assumptions were made by the
processing that generated this event.

Enabling stateful operators to support speculative input events requires special features from
the speculation infrastructure:

i) When an operator carries out a computation that uses data from a speculative event, this
computation cannot be committed; even if this is the next event to be committed.

ii) When an operator receives an speculative event it has to derive a timestamp for the transac-
tion that will process this event.

iii) When an operator receives an speculative event with a version that is higher than the version
used in previous computations, the previous event is overwritten with the new one. During
this overwrite, the system should detect if any memory position that was previously read
was modified. If that is the case, the computation should be reexecuted.

iii) When an operator receives an older version of an event it has already seen, this event should
be discarded.

Generating speculative events

Discussing fault tolerance and the handling of speculative events requires additional detail of the
internals of the events. The contents of a speculative event are summarized in Table 5.1.

Field name Type Description

txid integer id of the upstream transaction (i.e., the transaction timestamp) that
generated the event;

id integer id unique among the events generated by the same transaction in the
same execution (e.g., a counter).

oid integer id of the operator that produced the event.

rid integer id of the replica that produced the event.

seq integer Unique event sequence number for that incarnation of the operator.

ts integer Physical timestamp for the event.

version integer Version number for the event. Concatenation of the incarnation and
the number of aborts of the transaction that generated that event.

final boolean f alse: event is speculative; true: event is stable.

app_evt buffer Application-level event.

Table 5.1: Contents of a middleware-level event.

Once a computation is finished in a speculation-enabled operator there are two possibilities.
If the computation can be committed, the output events can be sent as final (i.e., the f inal
attribute flag is set). Otherwise, if the computation cannot be committed, the events will be sent
as speculative. When sending events as speculative, the version field is a concatenation of the
reincarnation of the operator (i.e., how many times it has failed and recovered) and the number

66 CHAPTER 5. DISTRIBUTED SPECULATION

of aborts for the computation that generated that event. For example, the version number is a
integer where the higher bits represent the reincarnation and the lower ones represent the number
of aborts. This scheme guarantees that version numbers are strictly monotonic.

Speculative events (or final events that update a previous speculative event) carry an id for the
transaction that generated the event. For the cases that the transaction generates multiple events,
it carries an additional id field to identify itself among the other events generated. We initially
assume that an input event generates either zero or one output event. We later show how to extend
our approach to consider multiple output events.

Finally, we include the id of the operator that produced the event and, for active replication,
the id of the operator replica. Events also carry sequence counters that are unique for the operator
that produced it. This field is useful, for example, when requesting the replay of events or
reestablishing a broken connection. In addition, in some applications events are processed in
timestamp order. Therefore, events have a physical timestamp. Timestamps can be made unique
by concatenating a timestamp that is unique within an operator with the id of the operator that
assigned that timestamp.

Generating the transaction timestamps

When a speculative event arrives in an operator, a timestamp must be created for the transaction
that processes it. This timestamp must be unique and must map different versions of the same
event to the same transaction.

Our approach is to create a mapping between the tuple (oid, txid) and a task descriptor.
When an event arrives, the system checks if there is already an entry associated with the source
operator id oid and the (upstream) transaction txid. If no such descriptor exists, one will be
created. In order to guarantee that two entries for the same (oid, txid) are not created in the case
of multithreaded operators, the procedure of creating and initializing the operator acquires a lock.
To avoid locking the whole list, an array of locks is kept, and the lock is chosen by hashing the
(oid, txid) tuple. In addition, this same lock is also acquired for other operations that read or
modify this descriptor, as it will be described below.

The creation of the descriptor consists in two steps. First, we increment a counter in order to
obtain a new unique timestamp. Second, we create a transaction with the new timestamp. This
descriptor will then contain:

i) a pointer to the newly-created transaction;

ii) the timestamp of the newly-created transaction;

iii) the version of the input event;

iv) the value of the f inal attribute of the input event;

v) a pointer to the input event;

vi) a pointer to a pending update input event (pending_event, initially empty);

vii) a pointer to the version of the pending update (pending_version, initially empty);

5.2. REQUIREMENTS 67

Note that the created transaction can be either speculative or nonspeculative (i.e., final). If
the event was marked as final, the created transaction is also marked as final. Otherwise, the
transaction is marked as speculative.

The creation of the task descriptor is also shown from lines 1 to 10 of Listing 5.1. Note that
deciding if an update is late or not requires special care. An update may be taken from the input
queue by a thread that loses the CPU for enough time that another update arrives and enables
the transaction to commit. Thus, destroying task descriptors from committed transactions relies
on the ordering of the final events and on knowing what the threads are doing. First, channels
between two operators are FIFO and updates that make a transaction final are totally ordered by
the txid field. In other words, the commit of upstream transactions is totally ordered, and thus,
the final version of the events are orderly sent. Second, in order to discard old task descriptors,
none of the threads should be holding a late update for such descriptor.

1 process_update(spec_event_t ev) {
2 task_lock = get_lock(ev.oid, ev.txid);
3 lock(task_lock);
4 task = retrieve_task_descriptor(ev.oid, ev.txid);
5 if (task == NULL) {
6 if (is_late_update(ev.oid, ev.txid))
7 discard_event(ev);
8 else
9 create_task_descriptor(list, ev); // creates also the transaction

10 } else if (ev.version < task.version) {
11 discard_event(ev);
12 } else { // ev.version > task.version
13 // update older event, restarting the transaction if necessary
14 if (ev.version < task.pending_version)
15 discard_event(ev);
16 else {
17 task.pending_version = ev.version;
18 task.pending_event = ev;
19 if (ev.final == TRUE) {
20 task.final = TRUE;
21 set_tx_flags(task, REFRESH | FINAL);
22 } else
23 set_tx_flags(task, REFRESH);
24 }
25 }
26 }
27 unlock(task_lock);
28 }

Listing 5.1: Updating task descriptors.

Handling speculative events

As explained above, in the arrival of an event for which there is no task descriptor, a new one is
created. Otherwise, if such a descriptor already exists, the descriptor and the associated transaction

68 CHAPTER 5. DISTRIBUTED SPECULATION

must be updated.
The update process has two phases. In the first phase, the system checks if the update is valid

(i.e., it is not an old, late update), updates the task descriptor, and notifies the transaction. In the
second phase, the original event is actually updated, triggering a reexecution of the transaction if
necessary.

The first phase of the updating process is done by the thread that retrieves the update event
from the input queue and is also summarized in Listing 5.1. The version of the newly arrived
event is checked against the version in the descriptor. If the version of the newly received event
is lower or the task descriptor is already marked as final, the newly received event is discarded.
This can happen, for example, when two threads retrieve two versions of the same event from the
input queue and the thread with the highest version makes progress faster.

Now assume a more recent version for a previously received timestamp arrives, that is, a
valid update. The first step is to check if the event is simply a final marker for the earlier event.
As we will see later, when using speculation to mask fault-tolerance delays, this is the most
common case. In this case, the update will mark both the transaction and the task descriptor
as nonspeculative. Note, however, that this does not necessarily mean that the transaction is
allowed to commit. It still may be the case that transactions with lower timestamps still have to
be committed.

The last possible update case is that the event is an non-final update. Then, the thread handling
this update will get the lock to the descriptor and signal that there is a pending update (by setting
the pending_version and the pending_event fields). If there is already a pending update, only the
one with the highest version needs to be kept. After that, the transaction associated with that task
descriptor is put in a REFRES H state.

The work for the first phase of the update is then finished. After that, the thread checks if
there are any paused transactions that should be continued before trying to get further events from
the input queues. A paused transaction is to be continued when it is in the wait list (i.e., the list of
transactions that are on hold) and all its dependencies have already committed (or finished).

The next step depends on the current state of the transaction. If the transaction is in the wait
list, the thread that handled the update (or any other thread) eventually gets the transaction and
proceed to the second phase of the update. Otherwise, the transaction must be running with some
other thread. In this case, the thread processing the transaction eventually executes an operation
through the STM (e.g., read or write, try to commit). At the beginning of such an operation the
thread checks the transaction state. In this case, the REFRES H flag will be set and the thread
will execute the second part of the update. If there was any relevant change during this update,
the transaction is aborted and reexecuted from the beginning.

The second phase of the update process consists in the following steps:

i) acquire the lock for the task descriptor;

ii) compare the update event with the original event;

iii) if a value is different then it is copied; the thread also checks if this position is in the read
set of the transaction; if so, the transaction is marked to be reexecuted;

5.2. REQUIREMENTS 69

iv) at the end of the compare, the version field is updated and the pending_version and
pending_event are reset;

v) the thread checks if the transaction should reexecute, commit, or go back to the wait list
(e.g., if the update did not make it final or if there are still other earlier transactions waiting
to be committed);

Instead of waiting for the a thread to execute an STM operation and check for pending updates,
it is also possible to preemptively force the thread executing the transaction to update. In Linux,
this can be done by sending a signal to the thread (pthread_signal [BC02]) and having the signal
handler to apply the update and if necessary abort the transaction (which is implemented with a
long jmp [BC02]).

One special case of an update is the empty event (NULL). An empty event is sent by the
system when a transaction that previously generated an output event aborts and, during the
reexecution, does not send any event. When updating a transaction with an empty event, the
transaction is aborted and an empty transaction is put on the wait list. When the empty transaction
becomes the next-to-commit, the next-to-commit counter is advanced and the empty transaction
destroyed. If the aborted transaction had also generated an output event, it too generates a NULL
event to be sent downstream.

5.2.2 Speculative accesses

In the speculation mechanisms presented in the previous chapter, when two transactions tx1 and
tx2 processing events e1 and e2, respectively, conflict, the transaction with higher timestamp
(say tx2) will abort and wait until the other (tx1) commits. Nevertheless, in the current scenario,
speculation is mostly about the nonoccurrence of failures. In this case transactions will be
executed mostly in correct order, but will only be able to commit much later (e.g., when a
checkpoint becomes stable in a remote node). Therefore, if tx1 already finished processing, it
would be more productive to let tx2 proceed and read (or overwrite) memory positions that were
used by tx1. Later, if tx1 commits, tx2 will be able to commit. On the contrary, if tx1 aborts, tx2
will also have to abort.

For example, consider two transactions tx1 and tx2, with timestamp 1 and 2, respectively.
Executing tx2 after tx1 has finished processing (even if it cannot commit yet) allows tx2 to use
speculative results from tx1. However, conflicting out-of-order executions still cause the priority
transactions to abort the low-priority ones. Further, if tx2 tries to read from tx1 while tx1 is still
active, tx2 aborts and waits for tx1 to finish.

Pseudocode for speculative reads and writes is shown in Listings 5.2 and 5.3. Some additional
modifications are also necessary for the abort function: when a transaction is aborted and must
release its locks, it now only releases locks that still belong to it, ignoring stolen locks.

In a summary, for a reading operation there can be up to two versions of a memory position:
the version from the last committed transaction that modified that position (i.e., the version
actually in the memory); and, the version from the last non-committed, but finished, transaction
that modified that same position (i.e., the version in the write set of the transaction holding the lock
for that position). In addition, although transactions only read values from finished transactions

70 CHAPTER 5. DISTRIBUTED SPECULATION

1 read(position_t pos) {
2 restart:
3 lock = get_lock(pos);
4 if (lock.locked) { // Some tx wrote to pos
5 if (lock.owner == this) {
6 value = get_value_from_wset(this, addr);
7 return value;
8 }
9 tx = lock.owner; // tx -> conflicting transaction

10 if (tx.timestamp < this.timestamp) {
11 if (!is_precommitted(tx)) abort();
12 // consider the modifications from the other
13 create_dependency(this, tx); // if tx abort, this one aborts too
14 value = read_from_wset(tx, pos);
15 if (get_lock(pos) != lock) goto restart; // something changed
16 update_read_set(this, pos, tx.timestamp);
17 return value;
18 }
19 }
20 // ignore the other (or there is not other), use the timestamp of the last

committed tx that modified the position
21 version = lock.version;
22 value = read_from_memory(pos);
23 if (get_lock(pos) != lock) goto restart; // something changed
24 update_read_set(this, pos, version);
25 return value;
26 }

Listing 5.2: Speculative read.

5.2. REQUIREMENTS 71

1 write(position_t pos, value_t value) {
2 restart:
3 lock = get_lock(pos);
4 if (lock.locked) {
5 // Some tx wrote to pos
6 if (lock.owner == this) {
7 update_writeset(this, addr, value); // we wrote to it before
8 return;
9 }

10 tx = lock.owner; // tx -> conflicting transaction
11 if (tx.timestamp > this.timestamp) {
12 // this one has priority
13 abort(tx); // abort other, release locks
14 if (steal_lock(pos, tx, this) != OK) goto restart; // try again
15 } else {
16 // the other has priority
17 if (!is_precommitted(tx)) abort();
18 // replace the locks atomically
19 if (steal_lock(pos, tx, this) != OK) goto restart; // try again
20 }
21 } else {
22 lock2 = create_lock(this, lock.version);
23 replace_lock(pos, lock, lock2);
24 add_to_writeset(this, lock2);
25 }
26 }

Listing 5.3: Speculative write.

72 CHAPTER 5. DISTRIBUTED SPECULATION

(i.e., intermediary values are not seen), consistent snapshots are not guaranteed anymore as there
may still be transactions older than tx1 that were not finished yet (i.e., a transaction may see a set
of values that would never have coexisted in memory as it sees both committed values and values
that are not guaranteed to be eventually committed).

5.2.3 Reliable ordered broadcast with optimistic delivery

Active replication requires that replicas process the same input events in the same order (see Sec-
tion 2.3). This can be guaranteed by a reliable ordered broadcast, also known as atomic broadcast
[CASD95, CT96]. However, to benefit from optimism we use an atomic broadcast protocol that
benefits from speculation. Such a protocol is called optimistic atomic broadcast [PS98].

Intuitively, the optimistic atomic broadcast may deliver messages multiple times. The so-
called optimistic deliveries consider an speculative ordering for the messages. The last delivery is
marked as final and consider an ordering of messages that is consistent among all nodes. Further,
the final ordering of a message does not need to match its previous optimistic orderings.

In our case, events delivered optimistically are marked as speculative and is the role of the
speculation support that, if the ordering of events are different between the optimistic and the final
deliveries, all effects visible on the state of the operator are reviewed to match the final ordering.

An atomic broadcast protocol satisfies the following properties:

1. Validity: if a correct node broadcasts a message m, then it will eventually deliver m.

2. (Global) Agreement: if a correct node delivers a message m, then all correct processes
eventually deliver m.

3. Uniform integrity: every process delivers a message m at most once and only if m was
previously broadcasted by some processes.

4. Total order: if two correct processes p and q deliver two messages m and m′, then p delivers
m before m′ if and only if q delivers m before m′.

We then slightly change this ordering property so that it does not apply to optimistically
deliveries, but only to final ones, and add a local agreement property (similar to [KPA+03]) to
ensure that a speculative processing will eventually become final.

4. Total final order: if two correct processes p and q do the final delivery of two messages m
and m′, then p does the final delivery of m before m′ if and only if q did the final delivery
of m before m′.

5. Local agreement: if a processes does an optimistic delivery of m, it also does a final delivery
of m.

We support two approaches for implementing atomic broadcast. In the first approach, we
assume that messages have unique ids and that nodes execute an agreement protocol to order the
messages. In the second approach, we assume that the event sources (or the input adapters that
receive the messages and convert them to events) have approximately synchronized clocks.

5.2. REQUIREMENTS 73

Consensus-based atomic broadcast with optimistic delivery

Pseudocode for an optimistic atomic broadcast protocol is shown in Listing 5.4. The atomic
broadcast is a service executed in all replicas of an operator. The service receives messages from
the sources by retrieving them from the input queue. The messages are appended to a list and
speculatively delivered. Then, a consensus protocol with two phases is started. In the first phase it
tries to lock a value and in the second phase it decides on that value if no failures occur. Because
the locked value has a high change of being the final ordering, it is useful to deliver this order as
speculative again. If the current leader of the consensus protocol fails, it may not be possible to
decide on the currently locked ordering proposal and another round of consensus starts.

1 atomic_broadcast() {
2 while(TRUE) {
3 while (!is_input_buffer_empty() && msg_list.size() < MAX_BATCH) {
4 msg = get_msg_from_input_buffer();
5 append_to_list(msg_list , msg);
6 }

8 optimistically_deliver(msg_list); // deliver the estimated order

10 while(!finished) {
11 decision = consensus_estimate(msg_list); // refine estimate
12 optimistically_deliver(decision);
13 finished = consensus_decide(); // decided on estimate?
14 }
15 finally_deliver(decision);
16 msg_list = remove(msg_list , decision); // remove delivered messages
17 }
18 }

Listing 5.4: Optimistic atomic broadcast.

The atomic broadcast protocol above is based on consensus, we use a leader-based consensus
protocol that rely on failure detectors that do not wrongly suspect correct processes [VR01]. A
node is elected to be leader of the consensus (the node with the lowest id) and the leader and
the other nodes run different protocols. For completeness we include the pseudocode for the
consensus in the appendixes. Because the atomic broadcast protocol above relies on consensus
for all deliveries, we refer to it as consensus-based atomic broadcast.

When using the above protocol, we use the order of delivery as the timestamp of the transac-
tions that will process the events. This approach is not optimal because it may cause unnecessary
conflicts. For example, if three events e1, e2, and e3 are delivered optimistically in this order,
but finally delivered as e2, e1, e3. Both e1 and e2 are aborted because e2 overwrites e1 and e1
overwrites e2. These abort occur even if the two events did not conflict. It is possible for the
speculation infrastructure to use the event ids (e.g., the oid and txid fields) to derive the changes
in the orderings and then use these changes to change the timestamps of transactions. In this case,
transactions would only abort when changing the timestamp of the transaction is not be possible
(e.g., because of a dependency). However, in this work, we do not consider this optimization.

74 CHAPTER 5. DISTRIBUTED SPECULATION

Time-based optimistic atomic broadcast

Our second approach to implement optimistic atomic broadcast protocols is based on research
about deterministic merge [AS00] and transparent recovery [HCZ08]. The approach is based on
four assumptions: (i) the graphs of operators is static; (ii) channels between operators are FIFO;
(iii) sources have approximately synchronized clocks; and (iv) events have unique timestamps.
Assumptions i and ii were already part of our model. Assumption iv is trivially implementable
by forcing timestamps to be unique within a node and them appending the node id in the least
significant bits. Finally, assumption iii is nontrivial, but is can be implemented in a local (or
system) area networks with NTP.

In fact, it is not strictly necessary that the sources themselves have synchronized clocks, but
only local clocks with bounded drift rates. The replicas (the nodes receiving the messages) could,
through an agreement, compute common adjustment values that all replicas apply to make the
timestamps of the events from different sources, comparable. For example, assume two sources
feed events to two replicas. If the two sources have local clocks that are ten seconds apart, the
replicas could agree to subtract ten seconds from the timestamps of the events coming from the
source with the most advanced clock. An algorithm for solving this problem was proposed by
Aguilera and Strom [AS00]. Here, we assume for simplicity that sources have synchronized
clocks.

In this approach, the replicas are completely independent as long as there are no failures
from one of the sources. Nodes keep two lists and a timestamp value: a list msg_list with the
messages that were optimistically delivered, but not finally delivered; a list upstream_sources,
which contains the list of upstream nodes that generate events to be consumed by the current
node; and a variable last_ts with the last timestamp that was finally delivered.

The failure free case in each replica runs as follows:

i) Initially, the list msg_list is empty and upstream_sources has all upstream nodes that feed
the current replica.

ii) A thread responsible for receiving and delivering messages listens to the connections with
the event sources and with the other replicas.

iii) When the thread receives a message m from a source s, it checks if s is in the upstream_node
list. If s is not in the list, it discards the message and goes back to step ii.

iv) If s is in the list, it checks if m is already in the list or if its timestamp is lower than last_ts.
If one of these conditions is true, it also discards the message and goes back to ii.

v) It delivers m optimistically and forwards m (unchanged) to the other replicas. This forward-
ing is only useful in case of failures and can be replaced by an on-demand approach. Next,
it adds the message to list msg_list.

vi) Being m.ts the timesamp of a message m, the thread checks if it has in msg_list a message
m′ from each node in upstream_sources such that m′.ts ≥ m.ts. If so, it can do the final
delivery of all messages in msg_list that have timestamp lower or equal to m.ts. The
delivery order is the order of the message timestamps.

5.3. APPLICATIONS 75

vii) It then removes all delivered messages from msg_list and set last_ts to m.ts.

In case one of the sources fails, the replicas need to execute a consensus protocol. The
consensus determines which is the last message from the failed source that needs to be considered.
After this consensus, when a replica receives this last message, it removes the failed source
from the upstream_node list. The replicas that do not have that message can simply wait (if the
messages are also being forwarded by the replicas) or request the message. If there are multiple
messages they will also be received (because of the FIFO channels). In addition, if a replica
already has the latest message, it checks its msg_list to check for messages that it can deliver now
that it does need to wait for the failed source.

The above approach provide all the guarantees needed for our optimistic atomic broadcast:

1. Validity: if a correct source sends an event e, the reliable FIFO channels (e.g., TCP)
guarantees that correct downstream replicas will receive e.

2. (Global) Agreement: if a correct downstream replica delivers an event e, then it also
forwards e to all other downstream replicas (spontaneously or on request). The Validity
property guarantees that all other replicas deliver e.

3. Uniform integrity: every process optimistically delivers a message m only the first time m
is included in the msg_list; as a consequence they also finally deliver m only once.

4. Total final order: if two correct processes p and q do the final delivery of two messages m
and m′, the delivery order is the order of the timestamps, which is totally ordered.

5. Local agreement: if a replica does an optimistic delivery of e, it will finally deliver e either
when (i) it receives events from the other upstream sources with timestamps higher than
e.ts; or (ii) it detects the failure of the other sources and learn through the consensus that it
does not need to wait anymore.

Because the above protocol relies mostly on timestamps, we refer to this protocol as time-
based atomic broadcast. When using the time-based protocol, the timestamp of the transaction
that process the event is the timestamp of the events themselves. This timestamp does not change
even if the delivery order changes. In contrast to the consensus-based atomic broadcast, the
time-based approach is naturally robust against unnecessary aborts due to slight changes in
orderings. However, as a disadvantage it may suffer from unnecessary delays when the sources
do not produce events in the same rate.

5.3 Applications

5.3.1 Passive replication and rollback recovery

Consider again our running example, in Figure 5.1 we zoom into the neighborhood of the
Processor1 operator. As discussed earlier, this operator has a local state that was constructed
based on the events received so far and we must be able to reconstruct this state in case of a

76 CHAPTER 5. DISTRIBUTED SPECULATION

failure. The reconstruction of the state is based on events received from the two sources and,
because the order of the events received from each source matters, the input events (or at least
their ids) are logged as they are received1. If speculation is used, the order of the logging is then
used to generate timestamps for the transaction that will process the event.

STATE

Processor1

2 4

5

1

Checkpoint/Logging

(storage or passive replica)

3

3'

6

7

Filter

Filter

Figure 5.1: Basic protocol for checkpoint-based fault-tolerance.

In addition to the ordering of the events, it is also possible that the computations on the operator
depend on some nondeterministic decisions. Some examples of nondeterministic decisions are
random numbers, physical time during the processing of the event, and even scheduling of
threads in a multithreaded operator (if these decisions may affect internal data structures). These
nondeterministic decisions are also logged. Furthermore, to avoid that the log grows indefinitely
the operator is also periodically checkpointed. With a checkpoint, the complete state of the
operator is saved to a stable storage and all the logs are cleaned.

Alternatively, if the operator logs only the ids of the messages, it restores the checkpoint and
requests a replay for messages since the beginning of the log. It then uses the log only to enforce
the ordering of messages from the different sources (and if needed, to replay the nondeterministic
decisions).

Note that independently if the node logs the complete messages or only the ids and sources,
the upstream nodes must still keep a buffer of messages sent but not yet acknowledged to be stable.
If whole messages are logged, the acknowledgment from the downstream node will be sent when
the log becomes stable. Otherwise, if only the ids and sources are logged, the acknowledgment is
only sent after a complete checkpoint of the operator is stable.

Conventional approach

A system implementing a conventional checkpoint-based fault-tolerance approach runs as follows:

1As with the time-based atomic broadcast, if events have timestamps, a deterministic merge of the stream could
also be applied. Nevertheless, there are scenarios where it is important to bound the maximum time that an event can
wait before being processed and, thus, logging is required to keep determinism.

5.3. APPLICATIONS 77

i) when the Processor1 receives an event from one of the upstream operators (e.g., an event
in message 1 in Figure 5.1) it logs the event (e.g., through control message 2 in the figure);

ii) next, during the actual processing of the event, other nondeterministic decisions may be
taken and they also need to be logged (e.g., through message 3);

iii) eventually, the logged input event (step i above) will be stable in the storage (as notified by
message 4) and if the complete events are logged, the operator may notify (through control
message 5) that such event will never be requested to be replayed again; the upstream node
may then remove that event from its output buffer;

iv) later, the nondeterministic decisions used during the processing will also get stable (as
notified by message 6);

v) finally, the results of the processing can be sent downstream (illustrated by the output event
in message 7).

The operator must wait until the log is stable on disk before sending outputs, otherwise events
could be processed in a different order during a replay (or use different nondeterministic decisions)
and the operator may reach a state different from the one expressed by the previous outputs. Thus,
although the new state would be also valid, the inconsistency could have critical consequences.

When recovering from a failure, the operator restores its latest checkpoint and replays the
messages stored in the log. Then it uses the last sequence number in the log from the lastest event
from each input channel to request upstream nodes to replay messages starting at that point. The
Processor1 operator may output duplicate events, events that had already been emitted before
the failure. Nevertheless, because any ordering or additional nondeterminism was logged before
outputs were sent, the duplicates will have the exact same information as their first instances
(including ids) and can be silently dropped by downstream receivers.

Logging events and nondeterministic decisions

The logging of information to the stable storage used in the protocol above works as follows.
Logging requests can be issued to log either events (or source-id pairs) or to log nondeterministic
decisions taken during the processing of the event. These log requests are asynchronous, they
return as soon as the request has been enqueued.

Later, when the processing of the event is finished and the resulting events are ready to be sent,
they are blocked until the logging requests have been committed to disk. The storage requests
can be handled by a set of threads that can write to different data storages in parallel in order
to maximize throughput. Thus, if the user configures N storage points (e.g., local disks, NFS
mounted disks), there will be one thread per storage point plus 1 extra thread that collects and
groups requests while the others are busy, thus, N + 1 threads are used in total. When a thread
finishes writing a set of decisions, it releases its associated storage point and hands it to the thread
that was collecting requests before taking over the role of waiting for new requests.

Eventually, when all the storage requests associated with some output event are stable, this
event may be forwarded.

78 CHAPTER 5. DISTRIBUTED SPECULATION

Speculative approach

In order to illustrate how speculation works and how the fine grained control enabled by the
STM can help, consider again our example from Figure 5.1. The approach below is based on
speculative events. Recall that computations based on speculative events cannot be committed
until a final version of this event is received.

Consider initially a first scenario in which the Filter operators do not issue speculative
events, only regular events. The system works mostly as the conventional approach detailed
previously. However, once the computation is done the outputs are immediately emitted as
speculative, without waiting for the confirmation that the logging or checkpoiting is stable (i.e.,
an speculative output event is in message 3′). Later, when logged messages are stable in the
storage, the output events are reemitted as final (in message 7).

Consider now a second scenario where the Filter operators may also generate speculative
events. This will be the case when they also need to do logging, for example. In addition,
operators that are both deterministic and stateless may process and forward all events without
distinguishing between speculative and final. Thus, it is also possible that the Filter operator
simply forwards both speculative and final events from its upstream node.

Assume that the upper filter in Figure 5.1 emits a version of an event e1, namely es
1. Then,

the other filter emits a final event e2. These two events cause transactions to be created in the
Processor1 operator. Initially, assume no conflicts occur, the two events do not access the
same part of the operators’s state. Event es

1 will be processed. Nevertheless, because event es
1 is

speculative, its computations cannot be committed, even after the logging is stable. Further, if an
output event is generated, it is also flagged as speculative. After that, event e2 is processed and an
output event is generated. Although event e2 is not speculative and did not use any state that had
been speculatively modified, it cannot commit and its outputs are marked as speculative. The
processing of e2 cannot be committed because it is ordered after e1. Nevertheless, as we will see
later, if the upper filter fails and its transactions need to be aborted, the processing of e2, as well
as its outputs, will not be affected.

In the third scenario, assume there is a conflict, more specifically event e2 has read from a part
of the state that was modified during the processing of es

1. In this case, the output event generated
by the processing of e2 will be marked as speculative and a dependency will be created between
the two transactions. In this case, a failure of the upper filter will also cause the processing of e2
to be aborted and reexecuted.

In a summary, when the Processor1 both learns that its logging operations finished and
receives a confirmation for the speculative input event (turning it into final), it too can immediately
forward an indication that the respective previous speculative output is now final. This indication
is then logged to stable storage only in order to simplify recovery.

Note that if instead of a final event confirming the speculative event, the Processor1 operator
receives a final update that somehow contradicts the previous version, the new event has to be
logged and the computations (potentially) repeated. Only after the new logging and computations
are finished, the final events can be forwarded.

5.3. APPLICATIONS 79

Dealing with failures in the speculative case

If the Processor1 operator fails, the failed operator will recover as in the nonspeculative case: it
restores the latest checkpoint and uses the log to locally replay events and reconstruct its state.
After that, the operator uses the logged sequence numbers to signal upstream nodes from which
point they should replay the stream.

However, it can be the case that the latest events on the log are still marked as speculative.
In this case, the Processor1 reprocesses the (speculative) events during the local replay and
during the replay from the upstream nodes, will either receive confirmations or updates for these
speculative events. Thus, even if the last log for an event (which confirms the speculation) was
not stable, the operator will now receive the same confirmation. As a consequence, even if it does
not know that it previously sent an event as final already, it will send the same event with the same
content. Therefore, although the downstream node will ignore this events (it knows it has already
received the final version for that event), this will cause no inconsistency as the new event has the
same content (only the version number will be different as it now considers the new incarnation).

The other possible case is that the event was indeed not final (e.g., the decisions used for the
production of an event were never stable). Therefore, it must be that no final version of it was
ever sent. In this case, a different event may be sent (i.e., a different event for the same txid).

Consider an example to illustrate this recovery. Suppose operator Processor1 receives an
(final) event from one of the upstream filters, processed it in a transaction with timestamp t, and
emitted an speculative event while waiting for the logs to get stable. Processor1 then fails
before the log becomes stable and during recovery, it restores the checkpoint and start processing
events replayed by the upstream nodes. It then assigns an input event to transaction timestamp t. It
is possible that another event (e.g., from another channel) gets that same transaction timestamp t.
Alternatively, the Processor1 operator could also had assigned the same event to the timestamp
but during the processing, it could had taken different nondeterministic decisions. In both cases,
from the viewpoint of the Processor2 operator, downstream of Processor1, a new event
containing a previously seen txid will be received. This new event triggers the procedure for
updating speculative events.

Because the version of an event incorporates the incarnation of the operator that produced it,
the new event will have a higher version. Two conditions are then possible. First, the update event
may have the same content as the previous event. This is the case, for example, when the logging
contains the ordering information and during recovery, the same ordering was used by coincidence.
The update procedure will then trigger no reexecution and as soon as the event in the input of
the Processor2 operator is final, the output event (if any) will also become final. Second, if the
content is different and this difference was relevant to the computation, the update proceedure
will cause the transaction to be aborted and reexecuted. As a consequence, all transactions that
had dependencies with this transaction will also be aborted. However, transactions with no
dependencies will not be aborted even if they have higher timestamps.

One final practical aspect to be considered is that after a failure, the recovery of a node may
take long. Therefore, instead of having the downstream node wait for the recovery and then
compare the events, all transactions from the failed node are aborted. Consequently, the node
downstream of the failed node does not block waiting for recovery and can proceed computing
events comming from another sources.

80 CHAPTER 5. DISTRIBUTED SPECULATION

5.3.2 Active replication

As with the passive replication, assume that the Processor1 operator in our running example
is to be made fault tolerant. In Figure 5.2, we show the replicated operator. We assume that the
operator is deterministic. In addition, we assume that the Processor1 operator uses an atomic
broadcast protocol as detailed earlier to deliver messages.

STATE

Processor1
Filter

Filter

STATE

Processor2

STATE

Processor1

STATE

Processor2

Figure 5.2: Replicated operator.

The most basic requirement for active replication is that replicas process the inputs in the
same order. We have previously detailed two approaches for implementing atomic broadcast,
a time-based and a consensus-based approach. When implementing active replication by the
conventional, non-speculative, approach, optimistic delivery cannot be used and is simply ignored.
Moreover, because there is no event updates, there is no need to assign unique ids for the tasks
processing the events. Therefore, the conventional approach is oblivious to the atomic broadcast
used.

In the speculative approach, events are can be optimistically delivered and the system needs
to assign unique ids (or timestamps) to the tasks (i.e., transactions) that process the events. Thus,
if the time-based atomic broadcast is used, the physical timestamps of the events will be used for
the transaction timestamps. In contrast, the consensus-based atomic broadcast requires neither
unique timestamps on the events nor approximately synchronized clocks in the sources. In this
case, the delivery order is used as transaction timestamp. If we consider only final deliveries, the
both speculative approaches behaves exactly the same as the conventional approach. Nevertheless,
with speculation-enabled operators, there are some points where speculation can reduce latency.
We discuss each case separately below.

Conventional approach

When an event is finally delivered to a non-speculative operator it can be processed an its outputs
will be final. Replicas will accumulate the same state and produce equivalent results (i.e., results
may differ only in the metadata, like the id of the replica that produced it). In addition, replicas
will generate the events in the same order. Therefore, downstream nodes can trivially eliminate

5.3. APPLICATIONS 81

duplicated events.
In case of failures of one of the replicas or one of the upstream nodes, there is no visible

impact. The atomic broadcast tolerates failures and will keep delivering messages to the surviving
replicas. Moreover, the downstream nodes will continue to receive the events from the surviving
replica and the application will keep running. During recovery, the failed replica can be recovered
by copying the state from the surviving replica.

Speculative approach with consensus-based atomic broadcast

Consider initially the case of a single-threaded operator replicated on two nodes, R1 and R2. First,
recall that the atomic broadcast is based on a leader, say R1. Thus, when the atomic broadcast
protocol running on R1 receives a set of messages it delivers these messages optimistically and
proposes its ordering to the other replicas, in this case R2. R1 cannot use this ordering as final yet.
It cannot produce final events because if it fails before R2 commits to use this ordering, R2 could
use a different ordering. As a consequence, inconsistencies could occur: the state of R2 would not
reflect the state that downstream replicas expect it to be considering the previous (final) events
from R1. Nevertheless, if R1 does not fail, its ordering will eventually become final. Therefore,
the speculative computations in R1 will probably be confirmed.

Second, the node running replica R2 receives input events and the communication protocol
delivers them optimistically. Immediately, R2 can start processing these events speculatively.
There are two scenarios where these speculations have high chance of success: (i) if the system
is under low load, the variation in the arrival time of the events on different nodes will be lower
than the inter-arrival times of the events, thus events will be naturally ordered; (ii) if the system is
under very high load, for example, during a burst of events where the inter-arrival times is lower
than the time needed to process them, the events will accumulate on the input queues; they can
then be deterministically picked2. Nevertheless, R2 will sometimes speculate incorrectly, but R2
learns the final order first (at the end of the first consensus round) and, thus, has more time to
rollback and reexecute computations.

The third impact of speculation regards speculative events sent downstream. Consider replica
R1. This replica starts processing events speculatively as soon as they arrive and, unless it
fails, this speculation will succeed. As a result of the processing, R1 may generate speculative
events. Once again, if this replica does not fail, these speculative events will have the exact
same content of the final events. Thus, if these events are forwarded downstream, the next
component can already process them (also speculatively). Later, if no failures occurs, the final
events will be identical to previously sent speculative events and will not need to be reprocessed.
An additional gain is then achieved by overlapping computation on downstream nodes with the
atomic broadcast. Thus, speculative events from replicas other than the one with the lowest id
should be either discarded by the communication infrastructure or ignored by the downstream
nodes. This optimization reduces both network load and overhead on the downstream nodes (by
allowing them to only consider speculative events that are most likely to become final).

2Deterministic ordering in this case can be implemented by having one single priority queue for all events from all
connections arriving at an operator, and ordering the events by their ids.

82 CHAPTER 5. DISTRIBUTED SPECULATION

Speculative approach with time-based atomic broadcast

In the case of the time-based atomic broadcast, replicas are allowed to start speculative processing
as soon as events are delivered optimistically. In addition, the only way in which the optimistic
order can be changed is if one or more events arrive late and are inserted among the previous
events. Nevertheless, as long as the conflict rate between transactions is small (i.e., there is
parallelism in the workload-operator combination), these new events will have a low impact on
the speculative computations.

When a replica finishes processing an event speculatively, it can send speculative output
events. Assume that this speculation has a high change of succeeding. In this case, events carry
the same timestamp as the transactions that processed them and there will be also a high change
that these events will be confirmed. Therefore, downstream nodes can profit from preprocessing
these speculative events.

Note that because the timestamps of the transactions are deterministic, if conflict rates are
small, there is a high chance that two speculative events from different sources that have the same
timestamp will also have the same contents.

Multithreaded operators

One considerable limitation of active replication is that it cannot easily support multithreaded
operators. Typically, to support multithreading, relevant scheduling decisions (e.g., lock acqui-
sition and release, or atomic operations used by lock-free algorithms) need either to be made
deterministic or to be communicated and enforced in the remote replicas. Collecting and enforcing
these scheduling decisions is costly.

In the case of our STM-based speculation, the many possible interleavings of concurrent
threads need to be neither communicated nor guessed as the STM causes executions to appear
atomic. As a consequence, all the potential scheduling interferences will be masked away by
the STM and can be uniquely determined by the ordering of the messages in the processing
sequence, exactly as in the single-threaded case. Consequently, although STMs are often not
as efficient as hand-optimized parallel code, STMs are useful because they greatly simplify the
process of developing parallel code for active replication. In addition, once the costs of collecting
and enforcing the scheduling decisions need to be considered, the relative overhead of the STM
is considerably reduced.

5.4 Extensions

5.4.1 Active replication and software bugs

Both passive and active replication approaches work well for the crash-failure model. Nevertheless,
they assume failures are not correlated. This may not be the case if, for example, software bugs
need to be considered. An operator may crash because one specific input triggered an existing
software bug. Software bugs are common in practice, specially when code needs to be developed
under high time or budget pressure.

5.4. EXTENSIONS 83

In the presence of software bugs that cause an operator to crash, conventional active and
passive replication approaches could be completely ineffective. Passive replication could handle
the recovery of the operator, reconstructing the state before the crash and then reprocessing the
same inputs. Nevertheless, the replayed execution is likely to reach the same point where the
previous failure occurred, leading to a new failure. Similarly, in active replication, all replicas
could be simultaneously affected and crash at the same time.

In this section, we provide an extension to our speculative active replication approach. The
goal of this extension is to provide an example of how speculation can also be used with broader
failure models. Here, the system provides resilience against wrong results and corruption of the
state in the operators. Speculation is then used to reduce both processing latency and expected
recovery time when using known software fault tolerance approaches (i.e., enhancing code with
runtime checks [RL04, ACCH09, NS05]).

Assumptions

For this extension we consider faults caused by sets of commons software bugs that can be detected
by the execution of additional runtime checks. In addition, we exclude incorrect operators and
inputs that are maliciously crafted in order to compromise operators. Further, operators are single
threaded and do not use optimistic delivery or out-of-order processing. Nevertheless, events are
still processed inside transactions and these transactions can only be committed when an external
commit command is received for that transaction.

With an active replication approach that only needs to tolerate crash failures, all replicas were
equal. In contrast, we now consider two different types of replicas: (i) checker replicas, running
special strengthened versions of the operator, tolerate a certain class of common software bugs;
different types of checker replicas may detect different software bugs; (ii) the original replica,
running a non-instrumented version of the operator (i.e., the original user-provided code). In
addition, we assume that there are no major bugs in the event-processing framework code (which
can be sufficiently tested), but only in the user-provided code for the operations. Because the
checker replicas execute additional computations (to detect and tolerate the failures), we consider
that they are, on average, slower than the original operators.

Operator are able to do a complete recovery. This recovery can be done by restarting the
operator and copying the most recent state from another replica or by restoring a local checkpoint
and replaying the missing events (e.g., like the traditional checkpoint-based recovery discussed
earlier).

Finally, in this model, we allow that an input event that causes a software fault is discarded
without being processed. This is necessary as the algorithm itself is likely to be unable to process
such an input and, thus, no other recovery is possible.

Detecting and notifying software faults

A traditional approach for handling the problem of bugs in software is to have a special compiler
pass or a runtime environment that inserts checks for common programming bugs. Consider for
example out-of-bound accesses, where a memory access directed at an array actually falls into a

84 CHAPTER 5. DISTRIBUTED SPECULATION

position outside the bounds of this array. Although apparently simple to deal with, out-of-bounds
accesses are responsible for major problems even in mature software [RL04, ACCH09].

In this extension, we take the code of the original operator and generate a checked version
of it. This derived operator, named checker, will execute the same algorithm, but it is equipped
with runtime checks that detect out-of-bounds accesses and allow an action to be taken before the
access is executed.

To track the bounds of buffers, allocation operations (like malloc()) are wrapped to associate
the returned pointer p with the bounds of the allocated buffer. At runtime, the checker maintains
the memory bounds of all buffers in a table. To be able to lookup the buffer bounds of a pointer,
each pointer carries the index of its associated buffer in this table. To improve performance,
we store the index in the upper 16 bits of the 64-bit pointer value (similar to [ACCH09]). The
associated bounds are propagated to new pointers derived from p by copying or pointer arithmetic.
Finally, a runtime check is inserted at every pointer dereference, which verifies that the pointer is
within its associated bounds.

The notification of an invalid access depends on the position where the invalid access actually
falls into. Faults whose effects can be rolled back by simply aborting the transaction are called
minor faults. Faults whose effects are not undone even if the current transaction rolls back are
named major faults.

Some examples of minor faults are the following:

i) while an operator is accessing the state, it executes an operation that causes an exception, for
example, a division by zero (generating a floating point exception in Linux) or a dereference
of a NULL pointer (causing a segmentation fault);

ii) while executing the code in Listing 5.5, an invalid position value in the input event causes
the operator to do an out-of-bounds access in line 11 and modify a position within the
last_update_time array instead of one in the value array;

iii) while executing the code in Listing 5.5, the operator reads an uninitialized position (using
random values could cause replicas to diverge and create inconsistencies);

iv) an unexpected value in an attribute of an input event causes an infinite loop.

In contrast, examples of major faults are:

i) while writing to the local-scope array bu f f er, an out-of-bounds access causes the operator
to corrupt the stack (as we with regular speculative operators, accesses to local variable are
not instrumented by the STM);

ii) using a nondeterministic value (e.g., a non-initialized pointer) in a jump instruction (the
checker cannot assume that execution of unknown code in a replica did not cause an
unrecoverable memory corruption).

Our failure model is, therefore, defined in terms of the checkers that are attached to the system.
The system tolerates a certain class of faults as long as one replica executes a checker that: (i)
detects that class of faults, providing an output to the framework that indicates if the fault was

5.4. EXTENSIONS 85

1 typedef struct {
2 int position , update, time;
3 } event_t;

5 static int values[VECTOR_SIZE];
6 static int last_update_times[VECTOR_SIZE];

8 // Process the events
9 process(event_t *ev) {

10 char buffer[BUFFER_SIZE];
11 values[ev->position] += ev->update;
12 last_update_times[ev->position] += ev->time;

14 ... // periodically produce an event with the changes in the values buffer
15 }

Listing 5.5: Sample operator with an out-of-bounds bug.

major or minor; and (ii), prevents that failure from compromising the replica running the checker.
In addition recovery works as follows:

i) when a checker replica detects a minor failure during the processing of event e, that replica
permanently aborts the transaction that processed e and discards the event; all other replicas
abort the transaction that processed e;

ii) similarly, when a replica detects a major failure during the processing of event e, that
replica permanently aborts the transaction that processed e and discards the event; all other
replicas restart the operator and initiate a complete recovery (e.g., by copying the state of
the surviving checker replica or by restoring a local checkpoint and during replay, ignoring
the event that caused the fault);

Conventional approach

Assume that the original replica is faster as it does not execute extensive runtime verifications.
In a system without speculation all failures are major failures. Consider, for example, a system
with two replicas. One replica is the original operator and the second replica is instrumented for
out-of-bounds checking [BWS+10]. Both replicas process the input events. When the (slower)
checker replica detects that an input event caused a minor fault, this event was already processed
by the (faster) original replica and corrupted its state. Therefore, the original operator must do a
complete recovery.

In addition, it is possible that the checker replica detected the failure after making some
modifications to the state of the operator. Because there is no support for rolling the operator state
back, the checker thread also needs to execute a complete recovery.

86 CHAPTER 5. DISTRIBUTED SPECULATION

Speculative approach

The creation and processing of transactions in this extended active replication is similar to the
crash-tolerant active replication. When an event e is delivered, a transaction with timestamp t is
created. Because only the final ordering of the atomic broadcast is used, the timestamp t for the
transaction that processes event e will be the same in all replicas. Moreover, in this case we do
not allow speculative reads. Speculative read accesses (i.e., transaction reading from finished, but
not committed, transactions) could cause invalid data to corrupt another transaction in a way that
is not necessarily the same in all replicas.

The differences between this extension and the crash-tolerant active replication are the
following. First, results of the replicas are voted. This voting is done in the downstream replicas.
When the downstream replica receives all the results for a timestamp t: (i) if at least one of
the results indicate a MAJOR fault, the voter forwards the message to all upstream replicas;
otherwise, (ii) if at least one of the results indicate a MINOR fault, the message is also forwarded
upstream; finally, (iii) only if all results do not indicate a failure, the voter sends an OKt message
that allows upstream replicas to commit values.

Second, the checker replica will, as in the non-speculative case, process its input events. It
is, however, also enhanced with speculation. Thus, it does not need a checkpoint. If during
the processing of the input event with delivery order t, the checker detects a fault, it produces a
MINORt or a MAJORt output event, according to the type of the failure detected, and permanently
aborts the transaction. When a transaction is permanently aborted, its computations are rolled
back and the input event that caused the transaction to be created is discarded. The MINORt or
MAJORt event is then sent to the downstream neighbors. If, however, no fault was detected, the
normal output events generated by the computation (or an empty event if no output is generated)
are forwarded to the downstream neighbors and the checker replica waits for response from the
downstream voter to decide if it can commit transaction t, if it should abort the transaction, or if it
should do a complete recover (e.g., if another checker detected a major fault).

Third, the original, non-checker, replica also processes its input events. However, it delays
commit of a transaction t until it learns from an OKt message that no faults were remotely detected
for this timestamp. Meanwhile, the non-checker replica forwards its results speculatively to the
downstream operator. Eventually, the non-checker replica will receive either an OKt, a MINORt,
or a MAJORt message. If it receives an OKt message, it commits transaction t. If it receives an
MINORt message, it permanently aborts transaction t. Finally, if it receives a MAJORt message,
it executes a complete recovery, retrieving state from a local checkpoint of from a remote checker.

It is also possible that a replica takes longer to process a message. This would be the case, if
reading from a invalid memory position caused a infinite loop, for example. In this case, if the
replica receives an indication that a fault was detected by a remote replica, it can immediately
abort the current transactions and execute the necessary recovery.

Last, the downstream operator can receive events from either checker or non-checker replicas.
Normally, results from non-checker replicas will arrive first as processing in these replicas has
less overhead. If this is the case, the downstream component can start processing these events
speculatively. Eventually, the downstream operator will receive an regular event, a MINORt,
or a MAJORt message from the checker replicas. If it receives an regular event (i.e., no faults
detected) from all upstream checkers, it may commit any speculative processing that was based

5.5. EVALUATION 87

on the speculative input events. Otherwise, if it receives at least a MINORt or MAJORt message,
it aborts the computations permanently. If it had produced speculative events based on this
computations, it also emit empty events as the final versions for these events, causing the rollback
of any speculative computation downstream.

5.4.2 Enabling operators to output multiple events

While presenting our approaches we assumed operators would produce either zero or one output.
This assumption simplified the explanation of our approaches and does not limit our system.
Consider for example that a transaction in an operator may issue several output events for an
input event. Because the system is statically configured, all downstream nodes will receive the
same set of events. Therefore, the only effect of combining all output events in a single one is
that events generated earlier in the transaction had to wait until the end of the transaction before
been sent.

Nevertheless, the approaches discussed earlier can also be extended for transactions that
generate multiple events. With passive replication, the timestamp of transaction that will process
an input event is created based on the oid and txid parameters. With multiple events, the creation
of the timestamp also needs to consider the id field to distinguish between updates and new events.
Later, if transaction txid in the upstream node aborts and, in a second execution, generates less
events. Some of the transactions in the current operator would be updated, but others not. Then,
during commit all transactions that were updated would be enabled to commit and all transactions
that were not updated are permanently aborted (as if they had been updated with an empty event).
However, if during the second execution, the transaction had issued more events. The exceeding
events would cause the creation of new transactions.

In active replication with time-based atomic broadcast, the extra events could be handled by
creating secondary attributes that would work as subdivisions of time. Similarly to the passive
replication, events that were not updated by the latest execution of a transactions are implicitly
updated with an empty event and extra events generate extra transactions. Finally, the active
replication with consensus-based broadcast works exactly as the passive replication. It also needs
to consider the id in addition to the oid and txid fields when creating, updating, and committing
transactions.

5.5 Evaluation

In this section, we first evaluate the benefits of speculation in passive replication. After that, we
consider active replication and, then, our extension that enables the use of strengthened replicas
to check computations.

Unless otherwise noted, the experiments in this section were executed in machines equipped
with two Intel Xeon processors (8 cores total) and 4 GBytes of RAM. In some cases, we used a
Sun T1000 machine with an UltraSPARC T1 processor (8 cores with 4 hardware threads each), 16
GBytes of RAM, and a machine with four AMD Opteron processors (16 cores total), 16 GBytes
of RAM.

88 CHAPTER 5. DISTRIBUTED SPECULATION

5.5.1 Passive replication

To evaluate the cost of the logging operations, we have first experimented with a simple system
composed of just two operators. For each event processed, the operators logs a 64-bit value, which
could represent an (oid, txid) tuple or simply an arbitrary nondeterministic decision. In Figure 5.3,
we show the impact of the logging in a nonspeculative system for different configurations. We use
three logging configurations in which the system is equipped with one, two, and three local hard
drives (referred to as 1 disk, 2 disks, and 3 disks, respectively). In addition, we have evaluated
two logging configurations where storage is simulated, in these two cases we assume that a set of
event logs can be stored in either 10 ms or 5 ms (referred to as Sim 10 and Sim 5 in the figure).

The first simulated value, 10 ms, serves the purpose of simulating multiple disks in a machine
that has enough cores for executing multiple operators but has a single disk, which would represent
a bottleneck in the experiments. The second simulated value, 5 ms is used to simulate the cost of
logging to the memory of a node in a remote location (e.g., in a different data center).

 0

 5

 10

 15

 20

 25

 30

 35

1 disk 2 disks 3 disks Sim 10 Sim 5

T
ot

al
 la

te
nc

y
(m

ill
is

ec
on

ds
)

Configuration

Non-speculative
Speculative

Figure 5.3: End-to-end latency with two operators for different logging configurations.

To evaluate the impact of speculation in a more complex application, we analyze the impact
of the checkpoint in a graph with 2 to 7 operators that need to log their decisions. This experiment
was executed in a single machine, the Sun T1000, with each operator running as a separate
process connected to its neighbors through a TCP connection. The machine has enough hardware
threads for not having contention on the processor and, to avoid bottlenecks on disk accesses, we
used simulated disk accesses with 10 ms access time.

As shown in Figure 5.4, the latency for the speculative executions is nearly constant indepen-
dently of the number of operators. In a real distributed scenario, for each remote TCP connection
there would be a latency increase from a few hundreds of microseconds in LAN settings to up to
several milliseconds in WAN settings. Nevertheless, these added latencies would still be shorter
then the delays produced by the logging and, thus, the graph would have a similar shape.

5.5.2 Active replication

In this section we evaluate the three main advantages of speculation, namely: (i) optimistic
delivery and preprocessing; (ii) multithreaded operators; (iii) early forwarding of speculative
events.

5.5. EVALUATION 89

 0

 20

 40

 60

 80

 100

 120

 140

 160

 2 3 4 5 6 7

E
nd

-t
o-

en
d

la
te

nc
y

(m
ill

is
ec

on
ds

)

Number of operators

Non-spec. 10 ms
Non-spec. 5 ms

Spec. 10 ms
Spec. 5 ms

Figure 5.4: End-to-end latency with different number of operators and logging times.

Optimistic delivery in atomic broadcast

We evaluate next our assumption that messages sent by two different sources will often arrive
at the replicas of operator in the same order. In this experiment, we consider two sources and
two replicas for the stateful operator, all in the same local area network. Each source emits
events at increasing rates from 500 to 15, 000 events/second. Furthermore, we consider a cheap
and non-parallelizable operator, which is the worst case for speculation. In this case, when a
misspeculation occurs and an event must be aborted and reprocessed, all the events that were
speculatively processed after it will also need to be aborted and reprocessed.

We then measure the rate of aborts, rollbacks, and successful commits. The commits reflect
the number of finished events. The rollbacks are the number of times that a final delivery did
not confirmed a previous optimistic delivery. Finally, when there is a rollback, if events had
been already processed according to an optimistic delivery, several computations may have to
be aborted. These measurements are shown, respectively, in the upper, middle and lower part of
Figure 5.5.

 5
 10
 15
 20
 25

C
om

m
its

/s
 x

10
3

 100
 200
 300
 400
 500

R
ol

lb
ac

ks
/s

 0
 500

 1000
 1500
 2000

 0 10 20 30 40 50 60 70 80 90 100

A
bo

rt
s/

s

Time (seconds)

Figure 5.5: Commit, rollback, and abort rates for different workloads (the lines are an approxima-
tions for the data).

As shown in the figure, the number of aborts and rollbacks is higher in the middle area

90 CHAPTER 5. DISTRIBUTED SPECULATION

around time 30. This is expected because, on the one hand, with lower input rates the variation in
communication delays is lower than the interarrival times and events arrive naturally in order. On
the other hand, with high loads the events accumulate in the input queues and allow deterministic
ordering.

Multithreading-enabled active replication

As discussed earlier, in active replication, multithreaded operators must be forced to execute
operations in a way that is repeatable in all replicas. We followed the approach proposed by Basile
et al. [BKI06] and modified our operators from the previous chapter. In the next experiment,
these operators are changed to acquire locks deterministically: (i) when a thread tries to acquire a
lock, it blocks until all threads also try to acquire a lock; (ii) when all threads are blocked, locks
are assigned deterministically. As long as there are no other sources of nondeterminism, this
algorithm is repeatable in all replicas. Our implementation of these deterministic locks uses a
pthread_barrier to block threads until all of them reach the lock acquisition function.

The speedups achieved for the top-k and nearest neighbors operators with speculation and
deterministic locks are shown in Figure 5.6. For the top-k, the overhead of synchronizing the
threads is prohibitive: the parallel versions are slower than the sequential. This is the case because
threads have to synchronize too often and the computations between synchronization points is
too small. In addition, because the threads execute in lockstep, all threads will always be on the
same line of the top-k matrix and are more likely to contend for the same locks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

Topk

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Operator

2t spec.
4t spec.
6t spec.
2t locks
4t locks
6t locks

(a) Top-k (Intel)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

Nearest neighbors

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Operator

2t spec.
4t spec.
6t spec.
8t spec.
2t locks
4t locks
6t locks
8t locks

(b) Nearest Neighbors (Sun)

Figure 5.6: Effectiveness of parallelization when determinism must be enforced (base: sequential
nonspeculative execution).

For the nearest neighbors there is much less synchronization and more computation between
these synchronization points. Therefore, greater speedups are achieved. Nevertheless, also in this
case, our approach performs much better than deterministic locking.

Advantages of speculative events

To evaluate the benefit of speculative events, we consider two scenarios. First, we revisit the
out-of-order processing from last chapter, where out-of-order processing for short computations

5.5. EVALUATION 91

did not pay off. We show that by combining out-of-order processing, time-based ordered delivery,
and speculative events, we can see considerable decrease in latencies. Second, we evaluate the
benefit of speculative events when failures occur. We show that even in the cases that atomic
broadcast does not impose high latencies, speculative events can be still be useful.

Consider now Figure 5.7(a). This figure depicts the average latency of the events from their
sources until they reach the input of the operator downstream to an operator that uses time to
deterministically order events (i.e., a time-based approach for ordered delivery). Further, in order
to factor out synchronization of clocks, we put all operators in the same node and evaluate only
the effects of different event generation rates. This experiment considers the top-k operator and
one source produces events at a mean rate of 1000 events per second. The other sources produces
events in a decreasing rate. For example, when the difference in the generation frequency between
the replicas is 0% (extreme left of the X axis), both produce around 1000 events per second each.
For a difference of 100%, the slower source produces 500 and the faster 1000 events per second.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200

E
nd

-t
o-

en
d

la
te

nc
y

(in
 m

ic
ro

se
co

nd
s)

Difference in source frequency (in %)

Non-speculative
Speculative-final

Speculative-speculative

(a) Latency with time-based event ordering

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 4.8

 0 50 100 150 200

R
ev

ok
ed

 e
ve

nt
s

(in
 %

)

Difference in source frequency (in %)

(b) Percentage of revoked speculative events

Figure 5.7: Benefit of speculative events when using time to order events deterministically.

Three curves are shown in Figure 5.7(a): (i) the processing latency when using a nonspecula-
tive operator (referred to as Non-speculative); (ii) the processing latency for final events when
using a speculative operator (referred to as Speculative-final); and (iii) the processing latency
for speculative events (referred to as Speculative-speculative). As discussed in the previous
chapter when a computation is relatively short in comparison to the commit phase of speculation,
speculative out-of-order processing offers no benefit. However, now, speculative computations
are allowed to output speculative results while still waiting for the final ordering. Finally, the
number of revoked speculative events is proportional to the abort rate in the speculative operator.
The consequence is that the downstream operator is able to see events much earlier and, at the
same time, there is only a slight chance that computations based on these events will be aborted,
as shown in Figure 5.7(b).

Active replication is usually chosen because it permits “virtually” immediate recovery from
failures. This is possible because the replacement operator is already actively producing results.
Nevertheless, failures impact the protocol indirectly, through the atomic broadcast. For example,
consider two replicas running a consensus-based atomic broadcast. If one replica fails, the
surviving replica is only allowed to unilaterally decide on a message ordering if it is sure that

92 CHAPTER 5. DISTRIBUTED SPECULATION

the other replica has failed. However, in practical distributed systems, the communication delays
in a network may vary and peak values are much larger than average values. For this reason,
time-outs for failure detection must be conservative (e.g., to avoid costly consequences of frequent
erroneous suspicions).

Therefore, in the second scenario we consider the case of failures. We consider an application
like our running example, where only the Processor1 operator receives messages from multiple
sources. This operator is the only operator that needs to execute protocols for ordered delivery.
Moreover, we place the operators in different nodes and use the consensus-based agreement for
ordered delivery in the replicated operator.

In such a situation, the advantage of the optimistic delivery in a single component is small
in comparison to the end-to-end delay. Nevertheless, if failures occur, speculation allows that
replicas keep producing events. The results of this experiment are shown in Figure 5.8. When a
node fails, the atomic broadcast cannot deliver final events until the failure is reliably detected.
Nevertheless, the optimistic broadcast is still able to deliver events optimistically and these events
can be processed speculatively.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 13010 13020 13030 13040 13050 13060 13070 13080 13090

La
te

nc
y

(m
ili

se
co

nd
s)

Event #

Speculative
Final

Figure 5.8: Effects of a failure in the generation of final events.

Note that for some applications, early results can be very useful event if these results are not
guaranteed. Similarly, if a the application above included an operator that was longer than the
failure detection delay, this operator would have been able to use the speculative events and the
failure would be completely masked.

Active replication with software faults

In our last set of experiments, we evaluate a scenario with our extension that enables active
replication to tolerate failures other than crash. In this case, the Processor1 operator imple-
ments a simple neural network that classifies events according to a preconfigured model. In
addition, we consider a stateful Processor2 operator that executes a top-k operation. Finally,
the Distributor operator serves only as a gateway that filters out speculative events before they
reach the consumers.

In this example, both Processor1 and Processor2 operators will be replicated and all
operators are placed in the same machine, which is equipped with four AMD Opteron processors

5.6. SUMMARY 93

and 16 cores in total. We use a checker that is able to detect out-of-bound accesses [RL04,
BWS+10].

The results of this experiment are shown in Figure 5.9. Because the operators are in the
same machine, we can measure the latency of an event from generation up to when operators
generate outputs triggered by this event. For example, the curve named Processor1*, represents
the latency of the events from their generation until they reach the output of the checked replica
for the Processor1 operator.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70 80 90 100

P
ro

ce
ss

in
g

la
te

nc
y

(m
ill

is
ec

on
ds

)

Event #

(a) Without speculation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70 80 90 100

P
ro

ce
ss

in
g

la
te

nc
y

(m
ill

is
ec

on
ds

)

Event #

Processor1
Processor1*
Processor2

Processor2*
Distribute

(b) With speculation

Figure 5.9: Performance comparison between a nonspeculative and a speculative execution when
using active replication in combination with checkers.

The benefit of speculation can be seen in Figure 5.9(b), an event reaches the output of Proces-
sor2, the non-checked replica of the Processor2 operator, much earlier than in Figure 5.9(a).
This is possible because events can be first processed by the fast version of the Processor1
operator and then by the fast version of the Processor2 operator.

In Figure 5.9(b), the time between curves Processor2 and Distribute consists mostly in
waiting for the checker versions of the operators to finish. Note that the second checker starts
executing based on the speculative result of the first non-checker replica. This is possible because
either the first checker will later confirm this result and the second checker can commit, or the
first checker detects a failure and the second checker aborts the event permanently.

5.6 Summary

In this chapter we discussed the usage of speculation between operators. We extended the
speculative support presented in the previous chapter with ability to send and process speculative
events. We used this functionality to hide the costs of making operators fault tolerant.

Our evaluation shows that when using passive replication and rollback recovery, our approach
enables that many operators are able to save their nondeterministic decisions or checkpoints
almost in parallel. In contrast, with conventional passive replication each node that saves some
information adds the complete duration of the store operation to the processing delay.

With active replication, our system is able to overlap the ordering phase of the required atomic
broadcast protocol with useful computations. Our experiments showed that if time is used to order

94 CHAPTER 5. DISTRIBUTED SPECULATION

events in a replica, out-of-order processing and speculative events can be very useful, even with
short operations, like top-k. In addition, speculative events also allow replicas to keep working in
failure scenarios when the system would be otherwise blocked until the failure is detected.

Another enhancement to active replication was the ability to use multithreaded operators.
In the previous chapter, because of the overhead, speculative parallelization achieved lower
performances than lock-based approaches. Nevertheless, once we consider active replication and
the need for deterministic scheduling, the relative performance of our approach increases. Our
evaluation results showed that our approach performs considerably better than a previously pro-
posed deterministic locking scheme. Moreover, when multiple replicas run manually-parallelized
code, even benign bugs that provide otherwise acceptable results could create inconsistency
among replicas.

Finally, we presented an extension that enables active replication to tolerate failures other
than crash failures. The basic idea is to have two types of replicas. First, replicas that are fast and
can provide results that are speculatively used in downstream nodes. Second, replicas that are
robust and perform checked executions that detect when inputs trigger software bugs. Speculation
is then used to perform recovery when only minor problems occur and to hide part of the added
latency by enabling operators to start checks use speculative results.

Chapter 6

Related work

In this chapter we review related work and highlight the main similarities and differences to our
work.

6.1 Event stream processing engines

Event processing systems (ESP) are considered a spin-off from the active database research [Day94],
but they were also greatly influenced by discrete event simulation [CM79] and signal processing
(e.g., projects like Ptolemy [UC 10]). A list of early database systems that incorporated the
concept of triggers, which enabled actions to be executed when certain events occurred, has been
compiled by Chakravarthy and Adaikkalavan [CA08].

There are many recent projects that focus on processing continuous streams of events,
some examples of research projects are: Borealis [AAB+05], CEDR [BGAH07], Gigascope
[CJSS03], GSDM [IR05a], Streamflex [SPGV07], SASE [WDR06], STREAM [ABB+04],
StreamIt [AGK+05], System S [GAW+08], TART [SDFW09]. There are also many commercial
products that address ESP, some examples are: Esper [Esp10] (open source), Progress Apama
[Pro10], StreamBase [Str10], IBM Infosphere [GAW+08] (offshoot of System S).

These projects can be classified by the types of languages used to express applications and
by their goals. Regarding the languages, there are three basic approaches: extending SQL,
extending a traditional programming language (like C or Java), and using a (custom or not) script
language. SQL-based approaches can be found in Esper, Gigascope, GSDM, SASE, STREAM,
and StreamBase. Extensions to Java can be found in StreamFlex and TART. And, finally, script
languages (or custom languages with their own compilers) are used in Borealis, CEDR, Progress
Apama, StreamIt, and System S.

Regarding the main goal, systems can be focused on processing the stream or on detecting
event patterns. On the one hand, processing the stream, or stream mining, aim at executing data
mining operators that are suitable for streams (e.g., StreamIt, GSDM, Streamflex, TART). In order
for an operator to be suitable for streams it must be consider that not all events can be kept for later
consulting (preferably each event is looked at only once) and the needed memory and processing
time are bounded [Agg07]. One example is the top-k used in our experiments [CCFC04]. It uses
an approximation of the event stream to compute the (approximate) frequency of events. Other

95

96 CHAPTER 6. RELATED WORK

examples of synopsis can be found in the work from Cormode and Muthukrishnan [CM05] and in
the survey of Aggarwal and Yu [AY07]. More general surveys on the issues in stream processing
had been done by Babock et al. [BBD+02] and Golab and Tamer [GO03]. In addition, some
works assume a data model that is closer to signal processing, the data is, for example, single
decimal numbers (e.g., StreamIt and the work from Muthukrishnan [Mut05]). Nevertheless, most
implemented systems assume a model where events are more sophisticated entities with a rich set
of user-defined (e.g., customer-id) and system-defined (e.g., source, occurrence time) attributes
(e.g., Borealis, Esper, Streamflex, TART).

On the other hand, detecting known patterns of events has a large commercial appeal and has
been commonly referred to as Business Intelligence (BI) [Luc01]. This is the focus of the CEDR,
SASE, STREAM. Detecting patterns is normally precisely computed and it bounds computation
requirements by considering only a window of events (e.g., either the last n events or the events
in the last t time units).

The prototype described in this dissertation uses C programming language augmented with
library calls and we address the general case where no specialization on the operators are assumed.
The exact operations are then implemented by the user with the help of library functions to
handle event-related (e.g., generation, discard) and fault-tolerance related tasks (e.g., logging,
checkpointing). The key distinguising features of our prototype are the support for parallelization
of stateful operators, speculative events, and out-of-order events. Parallelization of stateful
operators and support for speculative events are discussed in the next sections. Tolerating out-
of-order events has also been considered by Barga et. al [BGAH07] (for CEDR), by Li et al.
[LLD+07] (for SASE), by Hwang et al. [HCZ08] (for Borealis), and by Li et. al. [LTS+08] (for
Gigascope).

In CEDR, the authors address the case of pattern matching and assume that output events
can be emitted by an operator and later corrected (see discussion below on speculation in event
processing systems). In addition, they consider the tradeoff between blocking of an operator,
memory usage, and consistency. In order to tolerate out-of-order events and still keep high
consistency, either the operator blocks or it outputs a result, but keeps enough state that enables it
to emit a correction later. When an operator neither blocks nor keeps enough state, results become
inconsistent (i.e., if an event arrives later it is not possible to detect that an older pattern match
should have considered this event). The users have then to configure the system considering the
consistency level, state size, and the amount of blocking in a way that suits their applications
needs.

Li et al. [LLD+07] also consider pattern matching. They propose an extension for SASE
that allows the usage of a slack parameter that defines a maximum waiting time for the out-of-
order events to arrive. Finally, Hwang et al. [HCZ08] and Li et al. [LTS+08] consider general
operators and use punctuations to determine until when an order-sensitive operator should wait. A
punctuation is an special event that marks the end of a portion of the stream (i.e., a punctionation
pt states that no events with timestamp less than t will arrive in the future). After receiving
a punctuation, a windows of events is defined and the events in that window are sorted. The
operator can then process the ordered events.

In comparison to the systems above, we assume that the lack of ordering was caused by, for
example, a temporary silence in one of two input channels or by the optimistic delivery of the

6.2. PARALLELIZATION AND OPTIMISTIC COMPUTING 97

atomic broadcast protocol. Therefore, we assume the final ordering will soon be known. Our main
goal is then to use speculation to preprocess events before the final ordering is known. Our system
could be used to reduce processing latency in work of Hwang et al. [HCZ08] and Gigascope
[LTS+08] as both need to wait for the punctuation before processing. Our system could also
support the same out-of-order processing as done for SASE [LLD+07] or CEDR [BGAH07], but
because it is not optimized for pattern matching, keeping the transactions open will require more
memory. Finally, we do not address tradeoffs between consistency, blocking time, and memory
costs.

6.2 Parallelization and optimistic computing

Parallelizing programs by hand is known to be a difficult task. On the one hand, coarse-grained
locking does not provide much parallelism. On the other hand, fine-grained locking and lock-free
implementationsis are difficult and error prone. In addition, debugging, testing, and composing
parallel code is difficult [GN08, ABD+09, JAAS09].

Automated parallelization can be done statically or during runtime. Static approaches are
normally based on compilers. Parallelizing compilers have been studied for a long time, but have
limited applicability, specially for general purpose applications [SCZM05]. Basically, paralleliz-
ing compilers have problems to deal with complex memory access patterns and are pessimistic: in
order to provide parallelization they must statically prove that threads are independent. Steffan et
al. [SCZM05] proposes an approach that combines thread-level speculation (TLS) and compilers.
This approach enable compilers to generate parallel code when there is a high enough chance
that threads are parallel and uses a TLS-based approach as a safety net for when problems occur.
Nevertheless, modifying a compiler to include a new optimization is a very difficult process.
Because compilers are too complex and such a change affects many internal data structures, it is
estimated that it takes a decade for a new compiler optimization to reach a production compiler
[ABD+09]. Therefore, runtime approaches for parallelism are needed both to address problems
not suitable to parallelizing compilers and to allow rapid innovation.

In the next sections, we discuss speculation and optimistic parallelization approaches.

6.2.1 Speculation

Speculation in computer systems have being used in many different contexts. For example, hard-
ware speculation for branch prediction [Smi81] is crucial in modern processors. It speculatively
executes instructions after a branch, if it speculation is later proven wrong it discards the results.
Out-of-order execution has also been around for long time, since the IBM 360/91 [Tom67].

Closest to our work are the seminal works from Jefferson [Jef85] and Strom and Yemini
[SY85]. Jefferson’s virtual time considers the general case of speculation in a distributed system.
In this work, the author considers the case where nodes process messages in the order of their
timestamps. Moreover, when a node receives a message, instead of waiting until it is sure no
other messages with lower timestamps will arrive, it simply continues computing. The node is
then speculating that no message with a timestamp in the past will arrive. However, if a node later
receives such a message, it rollbacks to a state before that message, process the new message,

98 CHAPTER 6. RELATED WORK

and then reprocesses the other messages it has received. Strom and Yemini apply an approach
similar to virtual time to fault tolerance (see discussion about fault tolerance below).

A problem with virtual time is that a rollback in a node will cause messages from the past
to be sent again and potentially trigger further rollbacks in other nodes. Thus, in a general
distributed system it is crucial to coordinate globally which checkpoints must be kept to avoid
cascading rollbacks. In our case, we use a software transactional memory (STM) to efficiently
keep fine-grained checkpoints, but in contrast to virtual time we do not face the problem of
cascading rollbacks as ESP applications are acyclic directed graphs.

In this work, we also consider the usage of operators that are strenghtened against common
software bugs. We then use the original versions to provide faster, but less trustwhorthy, results
that are speculatively used in downstream nodes (see the discussion about fault tolerance and
active replication below). This kind of speculation is also the goal of Fast Track [KBDZ09] and
the works from Nightingale et al. [NPCF08] and Süßkraut et al. [SWK+10].

6.2.2 Optimistic parallelization

Steffan and Mowry proposed Thread Level Data Speculation (TLDS) [SM98, SCZM05] as a
way to benefit from multiprocessor computers when the programs are not designed for explicit
parallelism. They suggested that compiler support could enable activities in a sequential program
to be executed simultaneously and then committed from the less speculative activity to the
most speculative one. If some dependencies are detected the speculative activity is terminated
and restarted. More recently, Oancea et al. [OMH09] proposed SpLIP, a software thread-level
speculation algorithm based on recent STMs. Their implementation aims to be more scalable by
avoiding serial-commits and to have a lower overhead by trading in false conflicts for less locking
and memory ordering instructions.

In IPOT (Implict Parallelism with Ordered Transactions) [vPCC07], Praun et al. propose a
programming model offering constructs that allow the specification of sections of code that can
be parallelized optimistically. IPOT’s implementation is also inspired in transactional memories
and their support for isolation and atomicity. As our work, they also used ordered commits from
the less speculative to the more speculative tasks, detecting conflicts and reexecuting tasks when
needed.

Transactional memory was popularized by Herlihy and Moss [HM93] and the idea of an
all-software version was proposed by Shavit and Touitou [ST95]. Our speculative support is based
on TinySTM [FFM+07, FFR08]. Other STM implementations are McRT-STM [SATH+06], TL2
[DSS06]. Herlihy et al. proposed DSTM2 [HLM06], a framework for implementing STMs in
Java. Saha et al. [SATH+06] also provide a quantitative analysis of various STM design tradeoffs
(e.g., write through versus write back, read version versus read locking).

Performance of STMs can be greatly improved by hardware support. Because of the inherent
difficulty to exploit multicore processors, manufacturers are expected to provide increasing
support for the development of tools for concurrent programming. One such ongoing project is
AMD’s Advanced Synchronization Facility (ASF) [DH08]. Recent results have shown that the
performance of TinySTM can be greatly improved with ASF [CCD+10].

The main difference of our speculation support in comparison to conventional STMs is the
usage of the timestamp of the event as the transaction timestamp and to enforce this ordering

6.2. PARALLELIZATION AND OPTIMISTIC COMPUTING 99

during commit. Conventional time-based STMs, like TinySTM, typically use a timestamp that is
computed when the transaction tries to commit. Because of this difference, we have to provide a
set of additional capabilities, like enabling transactions to be paused, put aside, and later continued.
In addition, the enforced ordering of transactions also increases the importance of optimism
control. For this end, we have proposed an abstraction named conflict predictor.

6.2.3 Parallelization in event processing

The parallelization of costly operations in an ESP system is addressed by Flux [SHCF03] using a
partition-compute-combine approach. Ivanova and Risch [IR05b] also rely on this approach. The
main limitation of these approaches is that it only works with operators that can be processed
according to this divide and conquer pattern. Further, even in such cases, the merging phase can
be complex and limit the total speedup according Amgdahl’s law.

In some systems (e.g., Streamflex [SPGV07]) operators are assumed to be stateless and, thus,
can be parallelized by simple replication. Other systems (e.g., Borealis [TcZ07]) turn to load
shedding, instead of parallelization, to address bottleneck operators

Finally, based on the same motivations as ours, Sturzrehm et al. [SFF09] proposed modifica-
tions to DSTM2 to enable optimistic parallelization for ESP operators written in Java.

6.2.4 Speculation in event processing

The idea of using events that can later be corrected has been studied in CEDR [BGAH07] and
Borealis DPC [BBMS08]. CEDR uses a temporal model that deals with out-of-order events
by allowing results to be output and later be retracted and revised in case a relevant, late event
arrives. Nevertheless, in CEDR any event can be later corrected and the authors do not consider
how downstream nodes will support the correction events. In our system a pattern matching
operator could execute computations speculatively and emit speculative output events. However,
we require an explicit deadline for the waiting of the late events. This deadline is what allows the
commit of the pending transactions.

In Borealis DPC, the authors address consistency and responsiveness tradeoffs. For example,
assume a network failure occurs and one of two inputs of an operator becomes disconnected.
After some time (which defines the maximum tolerated delay, specified by the user), the operator
is allowed to proceed (after checkpointing its state) and produce tentative events (similar to
our speculative events). When a downstream node sees the first tentative event it executes a
checkpoint and enters in a tentative mode. In the tentative mode, operators produce only tentative
output events. Later, when the network recovers and the missing inputs arrive, the nodes restore
the checkpoints and start issuing final events for the previous tentative events.

In contrast to Borealis, our speculations bets that computations will not be revoked. For
example, we speculate that an asynchronous checkpoint in a node will complete (i.e., failures
are rare) and the speculative events will soon become final. In Borealis, the system forks into a
state that is known to be wrong, but does so in the hope that the early incorrect results can still be
useful. We then focus on fine-grained rollbacks instead of checkpoints of the whole graph. In
addition, although Borealis uses active replication of the operators, it does not consider optimistic
deliveries or addresses multithreaded operators. Finally, we provide some support for executing

100 CHAPTER 6. RELATED WORK

external actions, like writing to persistent storage. Borealis consider such operations to not be
fundamental to ESP.

6.3 Fault tolerance

In this work we consider passive and active replication. Both approaches have being extensively
studied in the context of general distributed systems. Nevertheless, the problem of highly available
distributed ESP systems is a topic that only recently has been addressed. In the next sections we
first discuss the most related work in the general case of distributed systems and then discuss the
work specific to event processing.

6.3.1 Passive replication and rollback recovery

The passive replication approach we consider is a primary-backup [BMST93] approach, as only
one node does the computation and this node checkpoints its state to stable storage. When we
assume the stable storage is local to the node, the approach is usually referred to as rollback
recovery. Elnozahy et al. [EAWJ02] present a survey on rollback recovery. The work most
closely related to ours is optimistic logging [SY85], where the authors also consider that nodes
forward results for which logs and checkpoints are not yet stable on disk. Nevertheless, for the
case of general distributed systems, optimistic logging is less attractive for three main reasons
that greatly increase its complexity.

First, garbage collection of older checkpoints (and truncating the log) requires coordination
between nodes. Garbage collection must ensure that nodes keeps enough checkpoints to be able
to recover to a consistent state. For example, consider that a node receives a message from a
remote node. If the decisions used to generate that message are still not stable on the remote
node’s disk (i.e., the equivalent of our speculative events), the current node must keep also an
older checkpoint that has the state previous to the reception of that message. In our case, a node
can always keep only the lastest checkpoint of the operator state. State modifications that were
triggered by speculative messages are not visible outside the STM.

Second, for similar reasons as for garbage collection, if a node fails, during recovery it must
negotiate which checkpoint it will restore. The node must make sure to restore a checkpoint
that keeps the system consistent (e.g., no node received a message that was never sent). Then,
when it restores a checkpoint, other nodes also may need to rollback and restore checkpoints that
preserve consistency. In our case, when a node recovers, it restores the latest checkpoint. Then,
because in ESP system events only flow from the upstream nodes to downstream nodes, as long
as upstream nodes keep a buffer of messages recently sent, upstream nodes do not have to restore
older checkpoints. After restoring the checkpoint, the recovering node starts reprocessing the
messages and producing new results. Once these new results reach the nodes downstream of
the recovering node, the STM checks if the changes between the new events and the older ones,
produced before the failure, are relevant (i.e., the changes indeed affect previous computation).
Only if the changes are relevant the pending open transactions need to be aborted.

The third and final reason is that when using optimistic logging in a general distributed system,
nodes have to coordinate before outputting results. This is necessary in order to guarantee that

6.3. FAULT TOLERANCE 101

no results that leave the system will be later revoked because of a failure. Again, coordination
requires multiple message rounds and is, therefore, an expensive procedure. In our case, also
because of the limited communication pattern of ESP systems (which are acyclic graphs), stability
is uniquely determined by the upstream nodes that sent the speculative messages. Thus, no global
agreement is necessary.

Also related is the work from Nightingale et al. [NVCF06]. This system is intended to allow
applications that rely on synchronous disk writes to proceed with computation before the writes
are stable. In this case, the overlapping between writing and processing is enabled by having the
operating system to track the dependencies and hold any externalization that is causally dependent
on the not yet stable writes.

6.3.2 Active replication

Active replication [CPR+92] and the state-machine replication approach [Sch90] have been
studied for general distributed systems for a long time. To address some of its limitations like the
inability to handle nondeterminism (multithreading being one type of nondeterminism), variations
like semi-passive [DSS98] and semi-active replication [DTT99, CPR+92] were proposed. In
semi-active replication, one replica (the leader) takes the nondeterministic decisions and forwards
these to the other replicas (the followers). Semi-active replication can be used to solve the problem
of multithreaded executions, but it requires collecting and communicating scheduling decisions
and may cause the followers to lag behind the leader. Similarly, Basile et at. [BKI06] evaluate
a mechanism to transmit all lock-acquisition decisions from the leader node to the follower
nodes. In semi-passive replication, all the relevant computations, together with any potentially
nondeterministic scheduling decisions, are done by the primary. The primary then forwards state
changes to the replicas.

Another approach is to make multithreaded replicas deterministic. Jiménez-Peris et al.
[JPPnMA00] present a deterministic scheduler that guarantees that multithreaded replicas will
execute deterministically. Nevertheless, only one thread can be active at a time. Thus, no
parallelism is indeed exploited. Basile et al. [BKI06] propose an approach that is able to
preserve some of the parallelism by dividing the execution in rounds so that the order of the lock
acquisitions is decided deterministically at the beginning of each round. In this case, threads that
try to acquire a lock will block until all other threads try to acquire any lock. Then, when all
threads are blocked waiting for locks a scheduler grants them in a deterministic order. Although
this approach enables more parallelism to be exploited, there are still considerable limitations,
specially if the processing of the different threads is unbalanced. In our case, because transactions
appear to be executed atomically and are committed in the delivery order of the events they
process, scheduling is deterministic. In addition, for workloads with low conflict rates the
overhead of speculation is small, enabling good exploitation of parallelism. Note, however, that
previous approaches do not benefit from these low conflict rates: even when the probabilily of
conflicts is small, as shown for our example operators, locks still need to be acquired for safety.

From the data point of view, optimistic replication is a very well studied concept (see the
survey from Saito and Shapuri [SS05]). Pessimistic approaches control the access to the data in a
conservative way, for example, by locking. In contrast, optimistic approaches enable updates to
proceed speculatively and eventually conciliate them in a total order. Using optimistic deliveries

102 CHAPTER 6. RELATED WORK

from an atomic broadcast protocol in order to advance computations was proposed by Pedone
and Schiper [PS98]. This idea was then extended by Kemme et al. [KPA+03].

Kemme et al. consider a system running in a local area network and exploit the fact that
in such a network messages often arrive in the same order in all nodes. In this situation, the
order of the messages as given by the optimistic delivery of an optimistic atomic broadcast (e.g.,
[PS03]) would often be the same as the final delivery after the distributed aggreement that does
the ordering. They then use this fact to speculative start database transactions based on the
optimistic delivery. This work differs from ours in several ways. First, their protocol requires
that transactions atomically acquire all needed locks before starting. Although this is feasible for
stored procedures in a database, it is not the common case for event processing operators, where
the locks will likely depend on intermediate results of the computation. In our case, the locks are
indirectly acquired during the execution (the STM handles the locking).

Moreover, in the system from Kemme et al., if a transaction is optimistically ordered after
another conflicting transaction, the second transaction can only be tried after the first commits
(i.e., after the final delivery). In our system, we allow transactions to speculatively read from the
write sets of conflicting transactions that were ordered before as long as these already finished
processing. Finally, because the cost of databases transactions, which require disk accesses, can
be much higher than the aggrement phase of the atomic broadcast in a local network, relative
gains can be small. In contrast, in our case, the agreement phase and the durations of (memory)
transactions are in the same order of magnitude. Furthermore, our approach allows speculation to
speedup computations not only in the current operator, but also in downstream operators.

Sousa et al. [SPMO02] discusses some issues that may cause optimistic delivery to not reflect
optimistic delivery, specially in wide area networks. One of the major problems, which also afects
systems in local area networks, is that messages broadcasted by a node tend to be (optimistically)
locally delivered much earlier than messages from remote nodes. This problem does not occur
in ESP, where the operator itself is not among the recipients of its events (the operator graph is
acyclic). This problem can also be solved using the bias algorithm [AS00], which was mentioned
in Chapter 5.2.3 as an optimization to the time-based atomic broadcast.

Lastly, traditional active replication is based on the assumption that nodes fail independently
and, thus, replicating nodes increases reliability. As software bugs become the main source of
failures, this assumption may not hold. To address these scenarios, we discussed the usage of
automatically generated versions of the original operators to provide diversity among the replicas.
Our work is based on the idea of n-version programming [CA95], where multiple independent
copies of the same software component are developed and executed as replicas. Further, the usage
of automatically generated versions of a component is also considered by Schneider and Zhou
[SZ05] and Cox et al. [CEF+06]. Cox et al. propose a framework to use variants and monitor
their executions to detect deviation before the system can be compromised. In the same work, the
authors describe how to generate variants that can be used with the framework. Schneider and
Zhou describe how active replication can tolerate Byzantine faults. They also consider the usage
of variants of components to reduce susceptibility to specific software faults.

Note that if n-versioning is used to provide diverse replicas, replicas may use very different
algorithms. If operators are then multithread, communicating scheduling decisison between
replicas does not solve the nondeterminism caused by multithreading. This problem does not

6.3. FAULT TOLERANCE 103

affect our approach.

6.3.3 Fault tolerance in event stream processing systems

There are examples of both active and passive replication in event processing systems. The works
from Shah et al. [SHB04], Hwang et al. [HBR+05, HCZ08], and Balazinska et al. [BBMS08] are
examples of active replication approaches. Hwang et al. [HBR+05] and Strom et al. [SDFW09]
consider passive replication.

Flux, proposed by Shah et al. [SHB04], is a pseudo-operator to be inserted between regular
operators in a event processing dataflow. It handles coordination of process pairs, for example,
managing recovery and communication for the original operators. Flux requires the original oper-
ators to provide interface functions for retrieving and restoring the internal state and guarantees
that no events will be lost or duplicated due to failures and recoveries. Nevertheless, their operator
model is restricted to deterministic single-threaded operators and the authors consider that both
replicas receive events from a single source.

Hwang et al. [HBR+05] classify operator graphs in four classes (repeatable, convergent-
capable, deterministic, and arbitrary) and present four types of recovery protocols (amnesia,
passive standby, upstream backup, and active standby). They advocate that many applications
do not require precise recovery and they classify how precise each of the recovery protocols is
for the different operator graph types. Finally, they discuss how three of the protocols could be
adapted to provide precise recovery for arbitrary operators (which is the only class that includes
nondeterminism). In the passive standby approach, based on checkpoints, the operator can only
forward checkpointed tuples downstream. The active standby approach, based (like Flux) on the
process-pair model, requires that primaries send the nondeterministic decisions to the secondaries
and then wait for the acknowledgment before sending events downstream.

In Borealis R [HCZ08], Hwang et al. acknowledge the problem of the high performance
costs of implementing active replication and propose modifications to the systems and operators
to allow them to execute independently. In essence, they add well synchronized clocks to the
sources, punctuation to the streams, and sorting of events (between punctuations) on the operators.
In fact, this time-based approach can be seen as an implementation of atomic broadcast and, as
expected, latency costs will be added as events cannot be processed as soon as they are received.
The operator must wait for the punctuation and then sort the events so that the same ordering of
events can be guaranteed among the replicas. Further, this approach does not address the use of
multithreaded operators. In our work, we also consider the usage of time to deterministically
merge streams of events, as proposed by Aguilera and Strom [AS00]. In comparison to Borealis
R, we extend its approach in order to minimize latency costs. We allow operators to speculate
while waiting for the final ordering and we provide support for multithreaded operators.

In Borealis DPC [BBMS08], Balazinska et al. consider active replication, but do not consider
multithreaded operators or optimistic delivery. Nevertheless, they address tradeoffs between
availability and consistency (see discussion above on speculation in event processing), which we
do not address.

Finally, in TART [SDFW09], Strom et al. consider passive replication. Their system consider
that operators do periodic checkpoints. Nevertheless, to avoid logging, the authors make operators
deterministic. In the case of operators with multiple inputs, they use timestamps in the events

104 CHAPTER 6. RELATED WORK

to force a deterministic ordering. Moreover, they propose techniques to minimize the waiting
time of events in input queues. These techniques try to deterministically estimate the processing
time of an event through the stream application so that an event arrives approximately when it is
expected and, thus, does not need to wait long on the queue. On the one hand, their techniques
resemble work on deterministic merge by Aguilera and Strom [AS00] and could in some cases
improve our time-based atomic broadcast. On the other hand, our deterministic parallelization
and our speculative preprocessing of out-of-order events could be used to improve their system.

Chapter 7

Conclusions

In this chapter we summarize our achievements and outline interesting directions for future work.

7.1 Summary of contributions

Using stateful operators in event stream processing (ESP) applications poses a series of nontrivial
challenges. In this dissertation we address several of them.

Out-of-order processing. Events have often to be processed in order, either because the times-
tamp of the events is relevant to the operation or because repeatability is necessary. Nevertheless,
enforcing ordering typically leads to waiting. Our speculation support permits events to be
preprocessed out-of-order while still reaching the same results as in an in-order processing engine.
Our experiments showed that in a local operator, out-of-order processing can reduce processing
latency as long as there is enough computation. We then showed that in a distributed scenario,
benefits can be seen even for smaller computations. Compared to related work, our approach
provides efficient fine-grained rollbacks and addresses general operators.

Parallelization. Manual parallelization of operators is a complex task, even for experts. Our
speculative parallelization enable users to obtain a parallel versions of operators with no additional
effort. Moreover, because the software transactional memory (STM) can provide feedback on
where the conflicts are, expert programmers can incrementally address bottlenecks and, conse-
quently, improve performance. This process is considerably facilitated because the speculation
preserves the sequential semantics. Finally, experiments have shown that for highly parallel
operators (e.g., the nearest neighbors) the speedups obtained by speculation are close to the
results obtained with fine-grained locking. Parallelization is currently a hot reaseach area and
many techniques have been proposed to facilitate parallelization, nevertheless, before this work,
optimistic techniques had not yet been applied in ESP.

Cost of passive replication. When operators need to be made fault tolerant, passive replication
is a common approach, it only requires that operators save all nondeterministic decisions in stable

105

106 CHAPTER 7. CONCLUSIONS

storage. For application that need low-latency processing, like ESP, having multiple operators
logging their decisions impose high latency costs. Our approach allows these logging operations
to be carried in parallel, practically reducing the cost of a sequence of log operations to the cost of
a single one. In addition, our techniques for event processing do not suffer from the complications
of previous techniques applied in general distributed systems (e.g., need for agreement before
recovery, garbage collection, or output).

Cost of active replication. For cases where downtime must be minimized, active replication
is more applicable than passive replication. Active replication also imposes considerable per-
formance costs as the delivery of messages and the scheduling of threads in operators must be
synchronized. Our approach enables speculative processing to overlap the high latency process
of delivering the messages. In addition, the same mechanism exempts replicas from needing
to communicate scheduling decisions or to use additional techniques to provide deterministic
scheduling. Our approach combines elements from previous works and extend them to exploit
features of ESP applications. For example, we allow speculation to speedup computations not
only in a single operator, but through the whole graph of operators.

7.2 Challenges and future work

During the development of this work, we identified many interesting challenges that are worthy
of further investigation.

STMs greatly facilitate development of concurrent code. It is therefore expected, that some
hardware support for transaction memory will be implemented in production processors. Recent
results with AMD’s Advanced Synchronization Facility (ASF) [CCD+10] show that the overhead
of an STM can be considerably reduced. Using such a support would increase the amount of
parallelism as well as broaden the spectrum of operators that can benefits from the out-of-order
processing techniques proposed in this work. It is also viable to produce easy-to-use software
tools that uses feedback from the STM to guide a nonexpert operator programmer through the
process of leveraging the parallelism achievable by speculative parallelization. External actions
from within a transaction are also an open and difficult to handle problem.

Using events timestamps to make processing deterministic greatly simplifies the develop-
ment of ESP applications. Deterministic systems can be better understood by simulation and
postmortem analysis. In addition, determinism simplifies both passive and active replications.
Nevertheless, time-based approaches have their problems too. When different sources of events
emit events in different frequencies or the events from different sources suffer different varia-
tions in communication delays, operators have to wait. Adaptive techniques that could regulate
speculation, silence propagation (when one of the sources do not emit events), and unbalanced
communication delays could considerably reduce latency when using time-based determinism.

Finally, using plugable checkers to increase the domain of faults that can be tolerated by
active replication is an interesting concept. It is still an open issue to determine how much of the
overhead of checking can be masked by speculation, especially if out-of-order processing and
multithreading are allowed.

Publications

[BWS+10] Andrey Brito, Stefan Weigert, Martin Süßkraut, Christof Fetzer, and Pascal Fel-
ber. Handling crash and software faults efficiently in distributed event stream processing.
Accepted for publication in the Third International Conference on Dependability, 2010.

[FBFJ10] Christof Fetzer, Andrey Brito, Robert Fach, and Zbigniew Jerzak. Streammine. In
Annika Hinze and Alex Buchmann (editors), Principles and Applications of Distributed
Event-based Systems. Information Science Publishing, ISBN 1605666971, Hershey, PA,
US, 2010.

[BFF09b] Andrey Brito, Christof Fetzer, and Pascal Felber. Multithreading-Enabled Active
Replication for Event Stream Processing Operators. In Proceedings of the 28th International
Symposium on Reliable Distributed Systems (SRDS 2009), 2009.

[BFF09a] Andrey Brito, Christof Fetzer, and Pascal Felber. Minimizing Latency in Fault-
Tolerant Distributed Stream Processing Systems. In Proceedings of the 29th International
Conference on Distributed Computing Systems (ICDCS 2009), 2009.

[Bri08] Andrey Brito. Optimistic parallelization support for event stream processing systems. In
Proceedings of the 5th Middleware doctoral symposium (MDS 2008), 2008.

[BFSF08] Andrey Brito, Christof Fetzer, Heiko Sturzrehm, and Pascal Felber. Speculative
Out-Of-Order Event Processing with Software Transactional Memory. In Proceedings of
the 2nd Conference on Distributed Event-Based Systems (DEBS 2008), 2008.

[BF07] Andrey Brito and Christof Fetzer. Improved event processing performance through paral-
lel event transformation. In Proceedings of the 2nd International Workshop on Event-driven
Architecture, Processing and Systems (EDA-PS’07) at the 33rd International Conference
on Very Large Data Bases (VLDB 2007), Vienna, Austria, 2007. (Short paper.)

107

108 PUBLICATIONS

Pseudocode for the consensus protocol

Active replication requires ordered delivery of messages in all nodes. In Chapter 5, we discuss
two approach to achieve such ordered delivery. One of these approaches is based on a consensus
protocol. In this appendix, we detail how such a consensus protocol can be implemented.

The pseudocode for the interface of the consensus-related functions is shown in Listing 1.
It is based on the leader-based consensus protocol for failure detectors that do not wrongly
suspects correct processes by Verissimo and Rodrigues [VR01]. In function consensus_decide,
the leader can already decide in the locked value, but the other nodes must wait for the final
acknowledgement from the leader.

1 integer my_id, leader_id;
2 integer consensus_id;

4 consensus_estimate(list_t l) {
5 proposal_t p = {my_id, l}; // proposal_t = {id, value}
6 if (my_id == leader_id) return leader_consensus(p);
7 else return nonleader_consensus_estimate(p).;
8 }

10 consensus_decide() {
11 if (my_id == leader_id) return TRUE;
12 else return nonleader_consensus_decide();
13 }

15 /* Retrieves a message (from the network buffer) with the given type (e.g.,
PROPOSE) from the given node (id) for the given consensus instance (
consensus_id), blocking until such message arrives or the failure of the
given node is detected (in which case it returns NULL). */

16 wait_consensus_msg(id, consensus_id , type);

Listing 1: Consensus helpers.

The consensus algorithm for the leader node is shown in Listing 2. The leader proposes a
value and wait for the acknowledgement from all correct nodes. If all correct nodes acknowledge
(ACK message is received), the value is locked and the leader broadcasts a decision. If some
nodes reply with a non-acknowledgment (NACK), it means that this node knows from a value
that was proposed from a previous leader that crashed. Because we want optimistic deliveries to
be correct as often as possible, we favor older proposals. The leader then restarts the consensus

109

110 PSEUDOCODE FOR THE CONSENSUS PROTOCOL

and proposes the oldest known value.

1 leader_consensus(proposal_t p) {
2 boolean restart = FALSE;

4 start:
5 // propose
6 broadcast({leader_id , PROPOSE, p, consensus_id});

8 // wait replies or failure notification for all nodes
9 for (id = 0; id < N; id++) {

10 // reply = {type, p}
11 reply = wait_consensus_msg(id, consensus_id , ACK | NACK);
12 if (reply == NULL)
13 continue; // this one is failed
14 if (reply.type == NACK && reply.p.id < p.id) {
15 // Some node has an better decision
16 p = reply.p;
17 restart = TRUE;
18 }
19 }

21 if (restart)
22 goto start; // restart with the better decision

24 // value locked, no opposition
25 broadcast({leader_id , DECISION, p, consensus_id);
26 consensus_id++;

28 return p;
29 }

Listing 2: Leader consensus.

Finally, the pseudocode for the consensus protocol running on the nodes other than the leader
is shown in Listing 3. In the first phase the nodes wait from a proposal from the leader and check
if this proposal is better than the one they have. As discussed above, proposals originated from
a previous leader that failed are better than newer ones. If the proposal received is good, nodes
acknowledge. Otherwise, they send non-acknowledgements (NACK) together with the better
proposal. Then, in the second phase, the algorithm waits for a decision and indicates the end of
consensus (by returning TRUE) or, if the leader failed, indicates the need for restart (by returning
FALS E).

111

1 nonleader_consensus_estimate(proposal_t p) {
2 proposal_t p_l;

4 start:
5 // Phase 1: wait for proposal from leader
6 p_l = wait_consensus_msg(leader_id , consensus_id , PROPOSE);
7 if (p_l == NULL) {
8 // Nothing received (leader failure detected), change leader
9 leader_id = (leader_id + 1) % NUM_NODES;

10 if (leader_id == my_id) {
11 return p;
12 }
13 goto start; // try again with new leader
14 }

16 // Proposal received from the leader
17 if (p_l.id > p.id) {
18 // Node knows a proposal that may be already in optimistic use
19 send(leader_id , {NACK, p, consensus_id});
20 } else {
21 p = p_l; // adopt proposal from leader
22 send(leader_id , {ACK, p_l, consensus_id});
23 }

25 return p;
26 }

28 nonleader_consensus_decide() {
29 // Phase 2: wait for decision
30 p_l = wait_consensus_msg(leader_id , consensus_id , DECISION);

32 // nothing received (leader failed)
33 if (p_l == NULL) {
34 return FALSE;
35 }
36 return TRUE;
37 }

Listing 3: Non-leader consensus.

112 PSEUDOCODE FOR THE CONSENSUS PROTOCOL

Bibliography

[AAB+05] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel, Mitch Cherniack,
Jeong H. Hwang, Wolfgang Lindner, Anurag S. Maskey, Alexander Rasin, Esther Ryvkina,
Nesime Tatbul, Ying Xing, and Stan Zdonik. The design of the borealis stream processing
engine. In 2nd Biennial Conference on Innovative Data Systems Research (CIDR’05),
pages 277–289, 2005.

[ABB+04] Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz, Mayur Datar, Keith Ito,
Rajeev Motwani, Utkarsh Srivastava, and Jennifer Widom. STREAM: The Stanford Data
Stream Management System, 2004.

[ABD+09] Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny, Kurt Keutzer, John
Kubiatowicz, Nelson Morgan, David Patterson, Koushik Sen, John Wawrzynek, David
Wessel, and Katherine Yelick. A view of the parallel computing landscape. Communications
of the ACM, 52(10):56–67, 2009.

[ACCH09] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. Baggy bounds checking:
An efficient and backwards-compatible defense against out-of-bounds errors. In Proceedings
of the 18th USENIX Security Symposium, Montreal, Canada, August 2009.

[Agg07] Charu Aggarwal, editor. Data Streams: Models and Algorithms. Springer, New York, NY,
USA, 1 edition, 2007.

[AGK+05] Saman Amarasinghe, Michael I. Gordon, Michal Karczmarek, Jasper Lin, David Maze,
Rodric M. Rabbah, and William Thies. Language and compiler design for streaming
applications. International Journal of Parallel Programming, 33(2):261—-278, 2005.

[Ary95] Sunil Arya. Nearest neighbor searching and applications. Phd thesis, University of
Maryland at College Park, 1995.

[AS00] Marcos Kawazoe Aguilera and Robert E. Strom. Efficient atomic broadcast using deter-
ministic merge. In PODC ’00: Proceedings of the nineteenth annual ACM symposium on
Principles of distributed computing, pages 209–218, New York, NY, USA, 2000. ACM.

[AY07] Charu C. Aggarwal and Philip S. Yu. A survey of synopsis construction in data streams.
In Charu Aggarwal, editor, Data Streams: Models and Algorithms, Advances in Database
Systems, chapter 9, pages 169–208. Springer, 2007.

[BAAS09] R. Bocchino, V. Adve, S. Adve, and M. Snir. Parallel programming must be deterministic
by default. In First USENIX Workshop on Hot Topics in Parallelism, 2009.

113

114 BIBLIOGRAPHY

[BBD+02] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom. Models
and issues in data stream systems. In Symposium on Principles of Database Systems, pages
1—-16, New York, NY, USA, 2002. ACM.

[BBMS08] Magdalena Balazinska, Hari Balakrishnan, Samuel R. Madden, and Michael Stonebraker.
Fault-tolerance in the borealis distributed stream processing system. ACM Trans. Database
Syst., 33(1):1–44, 2008.

[BC02] Daniel Bovet and Marco Cesati. Understanding the linux kernel. O’Reilly \& Associates,
Inc., Sebastopol, CA, USA, 2 edition, 2002.

[BF07] Andrey Brito and Christof Fetzer. Improved event processing performance through parallel
event transformation. In Proceedings of The Second International Workshop on Event-driven
Architecture, Processing and Systems (EDA-PS’07) at the 33rd International Conference on
Very Large Data Bases (VLDB 2007), Vienna, Austria, 2007. (Short paper).

[BFF09a] Andrey Brito, Christof Fetzer, and Pascal Felber. Minimizing latency in fault-tolerant dis-
tributed stream processing systems. In The 29th Int’l Conference on Distributed Computing
Systems (ICDCS 2009), Los Alamitos, CA, USA, June 2009. IEEE Computer Society.

[BFF09b] Andrey Brito, Christof Fetzer, and Pascal Felber. Multithreading-enabled active replication
for event stream processing operators. In The 28th International Symposium on Reliable
Distributed Systems, pages 22–31, Los Alamitos, CA, USA, September 2009. IEEE
Computer Society.

[BFSF08] Andrey Brito, Christof Fetzer, Heiko Sturzrehm, and Pascal Felber. Speculative out-of-order
event processing with software transaction memory. In DEBS ’08: Proceedings of the
second international conference on Distributed event-based systems, pages 265–275, New
York, NY, USA, 2008. ACM.

[BGAH07] R. Barga, J. Goldstein, M. Ali, and M. Hong. Consistent streaming through time: a vision
for event stream processing. In Proceedings of the third biennial conference on Innovative
data systems research (CIDR’07), Asilomar, USA, January 2007.

[BKI06] Claudio Basile, Zbigniew Kalbarczyk, and Ravishankar K. Iyer. Active replication of
multithreaded applications. IEEE Trans. Parallel Distrib. Syst., 17(5):448–465, 2006.

[BMST93] Navin Budhiraja, Keith Marzullo, Fred B. Schneider, and Sam Toueg. The primary-backup
approach. In Distributed systems (2nd Ed.), pages 199–216. ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, 1993.

[Bri08] Andrey Brito. Optimistic parallelization support for event stream processing systems. In
MDS ’08: Proceedings of the 5th Middleware doctoral symposium, pages 7–12, New York,
NY, USA, 2008. ACM.

[BWS+10] Andrey Brito, Stefan Weigert, Martin Süßkraut, Christof Fetzer, and Pascal Felber. Handling
crash and software faults efficiently in distributed event stream processing. Submitted to
the Third International Conference on Dependability (DEPEND’10), 2010.

[CA95] Liming Chen and A. Avizienis. N-version programming: a fault-tolerance approach
to reliabiliy of software operation. Fault-Tolerant Computing, 1995, ’ Highlights from
Twenty-Five Years’., Twenty-Fifth International Symposium on, pages 113–119, Jun 1995.

BIBLIOGRAPHY 115

[CA08] Sharma Chakravarthy and Raman Adaikkalavan. Events and streams: harnessing and
unleashing their synergy! In DEBS ’08: Proceedings of the second international conference
on Distributed event-based systems, pages 1—-12, New York, NY, USA, 2008. ACM.

[CASD95] Flaviu Cristian, Houtan Aghili, Ray Strong, and Danny Dolev. Atomic broadcast: From sim-
ple message diffusion to byzantine agreement. Information and Computation, 118(1):158 –
179, 1995.

[CCC07] K. Mani Chandy, Michel. Charpentier, and Agostino Capponi. Towards a theory of events.
In ACM International Conference Proceeding Series; Vol. 233, pages 180—-187, New
York, NY, USA, 2007. ACM.

[CCD+10] Dave Christie, Jae-Woong Chung, Stephan Diestelhorst, Michael Hohmuth, Martin Pohlack,
Christof Fetzer, Martin Nowack, Torvald Riegel, Pascal Felber, Patrick Marlier, and Etienne
Riviere. Evaluation of amd’s advanced synchronization facility within a complete transac-
tional memory stack. In EuroSys ’10: Proceedings of the 5th ACM European conference on
Computer systems, 2010.

[CCFC04] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data
streams. Theoretical Computer Science, 312(1):3–15, 2004.

[CEF+06] Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill, Wei Hu, Jack Davidson,
John Knight, Anh Nguyen-Tuong, and Jason Hiser. N-variant systems: a secretless frame-
work for security through diversity. In USENIX-SS’06: Proceedings of the 15th conference
on USENIX Security Symposium, Berkeley, CA, USA, 2006. USENIX Association.

[CJSS03] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav Shkapenyuk. Gi-
gascope: a stream database for network applications. In International Conference on
Management of Data, pages 647—-651, New York, NY, USA, 2003. ACM.

[CM79] K. Mani Chandy and Jayadev Misra. Distributed Simulation: A Case Study in Design
and Verification of Distributed Programs. IEEE Transactions on Software Engineering,
5(5):440—-452, 1979.

[CM05] Graham Cormode and S. Muthukrishnan. An improved data stream summary: The count-
min sketch and its applications. Journal of Algorithms, 55:58–75, 2005.

[CPR+92] M. Chereque, D. Powell, P. Reynier, J.-L. Richier, and J. Voiron. Active replication in
delta-4. In Fault-Tolerant Computing, 1992. FTCS-22. Digest of Papers., Twenty-Second
International Symposium on, pages 28–37, Jul 1992.

[CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225–267, 1996.

[Day94] Umeshwar Dayal. Active Database Systems: Triggers and Rules for Advanced Database
Processing. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1994.

[DBB+88] Umeshwar Dayal, Barbara Blaustein, Alejandro Buchmann, Upen Chakravarthy, Meichun
Hsu, R. Ledin., Dennis McCarthy, Arnon Rosenthal, Sunil K. Sarin, Michael J. Carey,
Miron Livny, and Rajiv Jauhari. The HiPAC project: combining active databases and timing
constraints. ACM SIGMOD Record, 17(1), 1988.

116 BIBLIOGRAPHY

[DH08] Stephan Diestelhorst and Michael Hohmuth. Hardware acceleration for lock-free data
structures and software-transactional memory. In Proceedings of the 2008 Workshop on
Exploiting Parallelism with Transactional Memory and other Hardware Assisted Methods,
April 2008.

[DSS98] X. Défago, A. Schiper, and N. Sergent. Semi-passive replication. In SRDS ’98: Proceedings
of the 17th IEEE Symposium on Reliable Distributed Systems, page 43, Los Alamitos, CA,
USA, 1998. IEEE Computer Society.

[DSS06] Dave Dice, Ori Shalev, and Nir Shavit. Distributed Computing. In International Symposium
on Distributed Computing, volume 4167 of Lecture Notes in Computer Science, pages
194–208, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[DTT99] A. M. Déplanche, P. Y. Théaudière, and Y. Trinquet. Implementing a semi-active replication
strategy in chorus/classix, a distributed real-time executive. In SRDS ’99: Proceedings
of the 18th IEEE Symposium on Reliable Distributed Systems, page 90, Washington, DC,
USA, 1999. IEEE Computer Society.

[EAWJ02] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. A
survey of rollback-recovery protocols in message-passing systems. ACM Comput. Surv.,
34(3):375–408, 2002.

[EFGK03] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. The
many faces of publish/subscribe. ACM Computing Surveys (CSUR), 35(2):114—-131,
2003.

[Esp10] EsperTech Inc. Esper complex event processing website. http://esper.codehaus.
org/, March 2010.

[FBFJ10] Christof Fetzer, Andrey Brito, Robert Fach, and Zbigniew Jerzak. Streammine. In Annika
Hinze and Alex Buchmann, editors, Principles and Applications of Distributed Event-based
Systems. Information Science Publishing, Hershey, PA, US, 2010.

[Fet03] Christof Fetzer. Perfect failure detection in timed asynchronous systems. IEEE Transactions
of Computers, 52:99–112, Feb 2003.

[FFM+07] Pascal Felber, Christof Fetzer, Ulrich Müller, Torvald Riegel, Martin Süßkraut, and Heiko
Sturzrehm. Transactifying applications using an open compiler framework. In TRANSACT,
August 2007.

[FFR08] Pascal Felber, Christof Fetzer, and Torvald Riegel. Dynamic performance tuning of
word-based software transactional memory. In Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP), 2008.

[GAW+08] Bugra Gedik, Henrique Andrade, Kun-Lung Wu, Philip S. Yu, and Myungcheol Doo.
SPADE: the system s declarative stream processing engine. In International Conference on
Management of Data, pages 1123—-1134, New York, NY, USA, 2008. ACM.

[GN08] P. Godefroind and N. Nagappan. Concurrency at microsoft - an exploratory survey, 2008.
EC2 - Exploiting Concurrency Efficiently and Correctly (in conjunction with the 8th Inter-
national Conference on Computer Aided Verification), 2008.

http://esper.codehaus.org/
http://esper.codehaus.org/

BIBLIOGRAPHY 117

[GO03] Lukasz Golab and M. Tamer Özsu. Issues in data stream management. ACM SIGMOD
Record, 32(2):5—-14, 2003.

[HBR+05] Jeong-Hyon Hwang, Magdalena Balazinska, Alexander Rasin, Ugur Cetintemel, Michael
Stonebraker, and Stan Zdonik. High-availability algorithms for distributed stream process-
ing. In ICDE 2005: Proceedings of the 21st International Conference on Data Engineering,
pages 779–790, Washington, DC, USA, 2005. IEEE Computer Society.

[HCZ08] Jeong-Hyon Hwang, U. Cetintemel, and S. Zdonik. Fast and highly-available stream
processing over wide area networks. In ICDE 2008: Proceedings of the 24th International
Conference on Data Engineering, pages 804–813, Washington, DC, USA, April 2008. IEEE
Computer Society.

[HK08] Maurice Herlihy and Eric Koskinen. Transactional boosting: a methodology for highly-
concurrent transactional objects. In PPoPP ’08: Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel programming, pages 207–216, New York,
NY, USA, 2008. ACM.

[HLM06] Maurice Herlihy, Victor Luchangco, and Mark Moir. A flexible framework for implementing
software transactional memory. ACM SIGPLAN Notices, 41(10):253—-262, 2006.

[HM93] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural support for
lock-free data structures. ACM SIGARCH Computer Architecture News, 21(2):289 – 300,
1993.

[IR05a] Milena Ivanova and Tore Risch. Customizable parallel execution of scientific stream queries.
In Very Large Data Bases, pages 157—-168. VLDB Endowment, 2005.

[IR05b] Milena Ivanova and Tore Risch. Customizable parallel execution of scientific stream queries.
In VLDB ’05: Proceedings of the 31st international conference on Very large data bases,
pages 157–168. VLDB Endowment, 2005.

[JAAS09] Robert L. Bocchino Jr., Vikram S. Adve, Sarita V. Adve, and Marc Snir. Parallel
programming must be deterministic by default. In Proceedings of the First USENIX
Workshop on Hot Topics in Parallelism (HotPar’09), Berkeley, CA, USA, March 2009.

[Jef85] David R. Jefferson. Virtual time. ACM Transactions on Programming Languages and
Systems (TOPLAS), 7(3):404–425, 1985.

[JPPnMA00] R. Jiménez-Peris, M. Patiño Martínez, and S. Arévalo. Deterministic scheduling for
transactional multithreaded replicas. In Reliable Distributed Systems, 2000. SRDS-2000.
Proceedings The 19th IEEE Symposium on, pages 164–173, 2000.

[KBDZ09] Kirk Kelsey, Tongxin Bai, Chen Ding, and Chengliang Zhang. Fast track: A software
system for speculative program optimization. In CGO ’09: Proceedings of the seventh
annual IEEE/ACM international symposium on Code generation and optimization, New
York, NY, USA, 2009. ACM.

[KPA+03] B. Kemme, F. Pedone, G. Alonso, A. Schiper, and M. Wiesmann. Using optimistic atomic
broadcast in transaction processing systems. Knowledge and Data Engineering, IEEE
Transactions on, 15(4):1018–1032, July-Aug. 2003.

118 BIBLIOGRAPHY

[LLD+07] Ming Li, Mo Liu, Luping Ding, Elke A. Rundensteiner, and Murali Mani. Event stream
processing with out-of-order data arrival. In ICDCSW ’07: Proceedings of the 27th Inter-
national Conference on Distributed Computing Systems Workshops, page 67, Washington,
DC, USA, 2007. IEEE Computer Society.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem.
ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[LTS+08] Jin Li, Kristin Tufte, Vladislav Shkapenyuk, Vassilis Papadimos, Theodore Johnson, and
David Maier. Out-of-order processing: a new architecture for high-performance stream
systems. In Proceedings of the VLDB Endowment, volume 1, pages 274—-288. VLDB
Endowment, 2008.

[Luc01] David C. Luckham. The Power of Events: An Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2001.

[Mut05] S. Muthukrishnan. Data Streams: Algorithms and Applications. now Publishers Inc.,
Hanover, Ma, USA, 1 edition, 2005.

[NPCF08] Edmund B. Nightingale, Daniel Peek, Peter M. Chen, and Jason Flinn. Parallelizing
security checks on commodity hardware. SIGARCH Comput. Archit. News, 36(1):308–318,
2008.

[NS05] James Newsome and Dawn Song. Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. In Proceedings of the Network
and Distributed System Security Symposium (NDSS 2005), 2005.

[NVCF06] Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M. Chen, and Jason Flinn. Rethink
the sync. In Operating Systems Design and Implementation, Berkeley, CA, USA, 2006.
USENIX Association.

[OMH09] Cosmin E. Oancea, Alan Mycroft, and Tim Harris. A lightweight in-place implementation
for software thread-level speculation. In SPAA ’09: Proceedings of the twenty-first annual
symposium on Parallelism in algorithms and architectures, pages 223–232, New York, NY,
USA, 2009. ACM.

[PHW07] Donald E. Porter, Owen S. Hofmann, and Emmett Witchel. Is the optimism in optimistic
concurrency warranted? In HOTOS’07: Proceedings of the 11th USENIX workshop on Hot
topics in operating systems, pages 1–6, Berkeley, CA, USA, 2007. USENIX Association.

[Pro10] Progress Software Corporation. Website. http://www.apama.com/, March 2010.

[PS98] Fernando Pedone and André Schiper. Optimistic atomic broadcast. In DISC ’98: Pro-
ceedings of the 12th International Symposium on Distributed Computing, pages 318–332,
London, UK, 1998. Springer-Verlag.

[PS03] F. Pedone and A. Schiper. Optimistic atomic broadcast: a pragmatic viewpoint. Theoretical
Computer Science (Elsevier), 291(1):79–101, 2003.

[PS06] Kostas Patroumpas and Timos Sellis. Window Specification over Data Streams, volume
4254 of Lecture Notes in Computer Science, pages 445–464. Springer Berlin Heidelberg,
2006.

http://www.apama.com/

BIBLIOGRAPHY 119

[RL04] Olatunji Ruwase and Monica S. Lam. A practical dynamic buffer overflow detector. In
In Proceedings of the 11th Annual Network and Distributed System Security Symposium,
pages 159–169, 2004.

[SATH+06] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh, and Benjamin
Hertzberg. McRT-STM: a high performance software transactional memory system for a
multi-core runtime. In Principles and Practice of Parallel Programming, pages 187—-197,
New York, NY, USA, 2006. ACM.

[Sch90] Fred B. Schneider. Implementing fault-tolerant services using the state machine approach:
A tutorial. ACM Computing Surveys, 22:299–319, 1990.

[ScZ05] Michael Stonebraker, Uǧur Çetintemel, and Stan Zdonik. The 8 requirements of real-time
stream processing. SIGMOD Rec., 34(4):42–47, 2005.

[SCZM05] J. Gregory Steffan, Christopher Colohan, Antonia Zhai, and Todd C. Mowry. The STAM-
Pede approach to thread-level speculation. ACM Transactions on Computer Systems (TOCS),
23(3):253—-300, 2005.

[SDFW09] R. Strom, C. Dorai, T.H. Feng, and Zheng Wei. Deterministic Replay for Transparent
Recovery in Component-Oriented Middleware. In 2009 29th IEEE International Conference
on Distributed Computing Systems, pages 615–622, Washington, DC, USA, 2009. IEEE
Computer Society.

[SFF09] Heiko Sturzrehm, Pascal Felber, and Christof Fetzer. TM-Stream: An STM framework
for distributed event stream processing. In Proceedings of the 2009 IEEE International
Symposium on Parallel \& Distributed Processing, pages 1—-8, Washington, DC, USA,
2009. IEEE Computer Society.

[SHB04] Mehul A. Shah, Joseph M. Hellerstein, and Eric Brewer. Highly available, fault-tolerant,
parallel dataflows. In SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD international
conference on Management of data, pages 827–838, New York, NY, USA, 2004. ACM.

[SHCF03] Mehul A. Shah, Joseph M. Hellerstein, Sirish Chandrasekaran, and Michael J. Franklin.
Flux: An adaptive partitioning operator for continuous query systems. In Proceeding of the
19th Internationsal Conference on Data Engineering, pages 25–36, 2003.

[SM98] J. Steffan and T Mowry. The potential for using thread-level data speculation to facilitate
automatic parallelization. In HPCA ’98: Proceedings of the 4th International Symposium
on High-Performance Computer Architecture, page 2, Washington, DC, USA, 1998. IEEE
Computer Society.

[Smi81] James E. Smith. A study of branch prediction strategies. In ISCA ’81: Proceedings of the
8th annual symposium on Computer Architecture, pages 135–148, Los Alamitos, CA, USA,
1981. IEEE Computer Society Press.

[SPGV07] Jesper H. Spring, Jean Privat, Rachid Guerraoui, and Jan Vitek. Streamflex: high-throughput
stream programming in java. In Proceedings of the 22nd annual ACM SIGPLAN conference
on Object oriented programming systems and applications, pages 211–228. ACM Press,
New York, NY, October 2007.

120 BIBLIOGRAPHY

[SPMO02] A. Sousa, J. Pereira, F. Moura, and R. Oliveira. Optimistic total order in wide area networks.
In 21st IEEE Symposium on Reliable Distributed Systems, 2002. Proceedings., pages
190–199. IEEE Comput. Soc, 2002.

[SS05] Yasushi Saito and Marc Shapiro. Optimistic replication. ACM Comput. Surv., 37(1):42–81,
2005.

[SS06] Ori Shalev and Nir Shavit. Predictive log-synchronization. ACM SIGOPS Operating
Systems Review, 40(4), 2006.

[ST95] Nir Shavit and Dan Touitou. Software transactional memory. In Symposium on Principles
of Distributed Computing, pages 204–213, 1995.

[Str10] StreamBase Systems Inc. Website. http://www.streambase.com/, March 2010.

[SWK+10] Martin Süßkraut, Stefan Weigert, Thomas Knauth, Ute Schiffel, Martin Meinhold, and
Christof Fetzer. Prospect: A compiler framework for speculative parallelization. In
Proceedings of The Eighth International Symposium on Code Generation and Optimization
(CGO), April 2010.

[SY85] Rob Strom and Shaula Yemini. Optimistic recovery in distributed systems. ACM Trans.
Comput. Syst., 3(3):204–226, 1985.

[SZ05] Fred B. Schneider and Lidong Zhou. Implementing trustworthy services using replicated
state machines. IEEE Security and Privacy, 3(5):34–43, 2005.

[TcZ07] Nesime Tatbul, Uǧur Çetintemel, and Stan Zdonik. Staying fit: efficient load shedding
techniques for distributed stream processing. In VLDB ’07: Proceedings of the 33rd
international conference on Very large data bases, pages 159–170. VLDB Endowment,
2007.

[Tom67] R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units. IBM
Journal of Research and Development, 11(1):25–33, 1967.

[UC 10] UC Berkeley EECS Dept. The ptolemy project website. http://ptolemy.eecs.
berkeley.edu/, March 2010.

[Vit85] Jeffrey S. Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical
Software (TOMS), 11(1):37—-57, 1985.

[vPCC07] Christoph von Praun, Luis Ceze, and Calin Caşcaval. Implicit parallelism with ordered
transactions. In PPoPP ’07: Proceedings of the 12th ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages 79–89, New York, NY, USA, 2007.
ACM.

[VR01] Paulo Verissimo and Luis Rodrigues. Distributed Systems for System Architects. Kluwer
Academic Publishers, Norwell, MA, USA, 2001.

[Wam08] Jons-Tobias Wamhoff. Gibraltar binary transactification tool. Master’s thesis, Dresden
University of Technology, 2008.

[WDR06] Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-performance complex event processing
over streams. In International Conference on Management of Data, pages 407—-418, New
York, NY, USA, 2006. ACM.

http://www.streambase.com/
http://ptolemy.eecs.berkeley.edu/
http://ptolemy.eecs.berkeley.edu/

BIBLIOGRAPHY 121

[Wel71] T. A. Welch. Bounds on information retrieval efficiency in static file structures. Technical
report, Massachusetts Institute of Technology, Cambridge, MA, USA, 1971.

[WF07] Ute Wappler and Christof Fetzer. Software encoded processing: Building dependable
systems with commodity hardware. In Lecture Notes in Computer Science on Computer
Safety, Reliability and Security (SafeComp 2007), 2007.

[WH95] David A. Wood and Mark D. Hill. Cost-effective parallel computing. Computer, 28(2):69–
72, 1995.

[WV01] Gerhard Weikum and Gottfried Vossen. Transactional information systems: theory, algo-
rithms, and the practice of concurrency control and recovery. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2001.

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Event stream processing systems
	1.2 Running example
	1.3 Challenges and contributions
	1.4 Outline

	2 Background
	2.1 Event stream processing
	2.1.1 State in operators: Windows and synopses
	2.1.2 Types of operators
	2.1.3 Our prototype system

	2.2 Software transactional memory
	2.2.1 Overview
	2.2.2 Memory operations

	2.3 Fault tolerance in distributed systems
	2.3.1 Failure model and failure detection
	2.3.2 Recovery semantics
	2.3.3 Active and passive replication

	2.4 Summary

	3 Extending event stream processing systems with speculation
	3.1 Motivation
	3.2 Goals
	3.3 Local versus distributed speculation
	3.4 Models and assumptions
	3.4.1 Operators
	3.4.2 Events
	3.4.3 Failures

	4 Local speculation
	4.1 Overview
	4.2 Requirements
	4.2.1 Order
	4.2.2 Aborts
	4.2.3 Optimism control
	4.2.4 Notifications

	4.3 Applications
	4.3.1 Out-of-order processing
	4.3.2 Optimistic parallelization

	4.4 Extensions
	4.4.1 Avoiding unnecessary aborts
	4.4.2 Making aborts unnecessary

	4.5 Evaluation
	4.5.1 Overhead of speculation
	4.5.2 Cost of misspeculation
	4.5.3 Out-of-order and parallel processing micro benchmarks
	4.5.4 Behavior with example operators

	4.6 Summary

	5 Distributed speculation
	5.1 Overview
	5.2 Requirements
	5.2.1 Speculative events
	5.2.2 Speculative accesses
	5.2.3 Reliable ordered broadcast with optimistic delivery

	5.3 Applications
	5.3.1 Passive replication and rollback recovery
	5.3.2 Active replication

	5.4 Extensions
	5.4.1 Active replication and software bugs
	5.4.2 Enabling operators to output multiple events

	5.5 Evaluation
	5.5.1 Passive replication
	5.5.2 Active replication

	5.6 Summary

	6 Related work
	6.1 Event stream processing engines
	6.2 Parallelization and optimistic computing
	6.2.1 Speculation
	6.2.2 Optimistic parallelization
	6.2.3 Parallelization in event processing
	6.2.4 Speculation in event processing

	6.3 Fault tolerance
	6.3.1 Passive replication and rollback recovery
	6.3.2 Active replication
	6.3.3 Fault tolerance in event stream processing systems

	7 Conclusions
	7.1 Summary of contributions
	7.2 Challenges and future work

	Publications
	Pseudocode for the consensus protocol
	Bibliography

