102 research outputs found

    The reconstruction of a subclass of domino tilings from two projections

    Get PDF
    AbstractWe present a new way of studying the classical and still unsolved problem of the reconstruction of a domino tiling from its row and column projections. After giving a simple greedy strategy for solving the problem from one projection, we introduce the concept of degree of a domino tiling. We generalize an algorithm for the reconstruction of domino tilings of degree two from two projections, to domino tilings of degree three and four

    A jigsaw puzzle framework for homogenization of high porosity foams

    Get PDF
    An approach to homogenization of high porosity metallic foams is explored. The emphasis is on the \Alporas{} foam and its representation by means of two-dimensional wire-frame models. The guaranteed upper and lower bounds on the effective properties are derived by the first-order homogenization with the uniform and minimal kinematic boundary conditions at heart. This is combined with the method of Wang tilings to generate sufficiently large material samples along with their finite element discretization. The obtained results are compared to experimental and numerical data available in literature and the suitability of the two-dimensional setting itself is discussed.Comment: 11 pages, 7 figures, 3 table

    Fixed-point tile sets and their applications

    No full text
    v4: added references to a paper by Nicolas Ollinger and several historical commentsAn aperiodic tile set was first constructed by R. Berger while proving the undecidability of the domino problem. It turned out that aperiodic tile sets appear in many topics ranging from logic (the Entscheidungsproblem) to physics (quasicrystals). We present a new construction of an aperiodic tile set that is based on Kleene's fixed-point construction instead of geometric arguments. This construction is similar to J. von Neumann self-reproducing automata; similar ideas were also used by P. Gacs in the context of error-correcting computations. This construction it rather flexible, so it can be used in many ways: we show how it can be used to implement substitution rules, to construct strongly aperiodic tile sets (any tiling is far from any periodic tiling), to give a new proof for the undecidability of the domino problem and related results, characterize effectively closed 1D subshift it terms of 2D shifts of finite type (improvement of a result by M. Hochman), to construct a tile set which has only complex tilings, and to construct a "robust" aperiodic tile set that does not have periodic (or close to periodic) tilings even if we allow some (sparse enough) tiling errors. For the latter we develop a hierarchical classification of points in random sets into islands of different ranks. Finally, we combine and modify our tools to prove our main result: there exists a tile set such that all tilings have high Kolmogorov complexity even if (sparse enough) tiling errors are allowed

    Characterisation of the Set of Ground States of Uniformly Chaotic Finite-Range Lattice Models

    Full text link
    Chaotic dependence on temperature refers to the phenomenon of divergence of Gibbs measures as the temperature approaches a certain value. Models with chaotic behaviour near zero temperature have multiple ground states, none of which are stable. We study the class of uniformly chaotic models, that is, those in which, as the temperature goes to zero, every choice of Gibbs measures accumulates on the entire set of ground states. We characterise the possible sets of ground states of uniformly chaotic finite-range models up to computable homeomorphisms. Namely, we show that the set of ground states of every model with finite-range and rational-valued interactions is topologically closed and connected, and belongs to the class Π2\Pi_2 of the arithmetical hierarchy. Conversely, every Π2\Pi_2-computable, topologically closed and connected set of probability measures can be encoded (via a computable homeomorphism) as the set of ground states of a uniformly chaotic two-dimensional model with finite-range rational-valued interactions.Comment: 46 pages, 12 figure
    • …
    corecore