19 research outputs found

    (k,q)-Compressed Sensing for dMRI with Joint Spatial-Angular Sparsity Prior

    Full text link
    Advanced diffusion magnetic resonance imaging (dMRI) techniques, like diffusion spectrum imaging (DSI) and high angular resolution diffusion imaging (HARDI), remain underutilized compared to diffusion tensor imaging because the scan times needed to produce accurate estimations of fiber orientation are significantly longer. To accelerate DSI and HARDI, recent methods from compressed sensing (CS) exploit a sparse underlying representation of the data in the spatial and angular domains to undersample in the respective k- and q-spaces. State-of-the-art frameworks, however, impose sparsity in the spatial and angular domains separately and involve the sum of the corresponding sparse regularizers. In contrast, we propose a unified (k,q)-CS formulation which imposes sparsity jointly in the spatial-angular domain to further increase sparsity of dMRI signals and reduce the required subsampling rate. To efficiently solve this large-scale global reconstruction problem, we introduce a novel adaptation of the FISTA algorithm that exploits dictionary separability. We show on phantom and real HARDI data that our approach achieves significantly more accurate signal reconstructions than the state of the art while sampling only 2-4% of the (k,q)-space, allowing for the potential of new levels of dMRI acceleration.Comment: To be published in the 2017 Computational Diffusion MRI Workshop of MICCA

    Variable Splitting as a Key to Efficient Image Reconstruction

    Get PDF
    The problem of reconstruction of digital images from their degraded measurements has always been a problem of central importance in numerous applications of imaging sciences. In real life, acquired imaging data is typically contaminated by various types of degradation phenomena which are usually related to the imperfections of image acquisition devices and/or environmental effects. Accordingly, given the degraded measurements of an image of interest, the fundamental goal of image reconstruction is to recover its close approximation, thereby "reversing" the effect of image degradation. Moreover, the massive production and proliferation of digital data across different fields of applied sciences creates the need for methods of image restoration which would be both accurate and computationally efficient. Developing such methods, however, has never been a trivial task, as improving the accuracy of image reconstruction is generally achieved at the expense of an elevated computational burden. Accordingly, the main goal of this thesis has been to develop an analytical framework which allows one to tackle a wide scope of image reconstruction problems in a computationally efficient manner. To this end, we generalize the concept of variable splitting, as a tool for simplifying complex reconstruction problems through their replacement by a sequence of simpler and therefore easily solvable ones. Moreover, we consider two different types of variable splitting and demonstrate their connection to a number of existing approaches which are currently used to solve various inverse problems. In particular, we refer to the first type of variable splitting as Bregman Type Splitting (BTS) and demonstrate its applicability to the solution of complex reconstruction problems with composite, cross-domain constraints. As specific applications of practical importance, we consider the problem of reconstruction of diffusion MRI signals from sub-critically sampled, incomplete data as well as the problem of blind deconvolution of medical ultrasound images. Further, we refer to the second type of variable splitting as Fuzzy Clustering Splitting (FCS) and show its application to the problem of image denoising. Specifically, we demonstrate how this splitting technique allows us to generalize the concept of neighbourhood operation as well as to derive a unifying approach to denoising of imaging data under a variety of different noise scenarios

    Spatially Regularized Spherical Reconstruction: A Cross-Domain Filtering Approach for HARDI Signals

    Get PDF
    Despite the immense advances of science and medicine in recent years, several aspects regarding the physiology and the anatomy of the human brain are yet to be discovered and understood. A particularly challenging area in the study of human brain anatomy is that of brain connectivity, which describes the intricate means by which different regions of the brain interact with each other. The study of brain connectivity is deeply dependent on understanding the organization of white matter. The latter is predominantly comprised of bundles of myelinated axons, which serve as connecting pathways between approximately 10¹¹ neurons in the brain. Consequently, the delineation of fine anatomical details of white matter represents a highly challenging objective, and it is still an active area of research in the fields of neuroimaging and neuroscience, in general. Recent advances in medical imaging have resulted in a quantum leap in our understanding of brain anatomy and functionality. In particular, the advent of diffusion magnetic resonance imaging (dMRI) has provided researchers with a non-invasive means to infer information about the connectivity of the human brain. In a nutshell, dMRI is a set of imaging tools which aim at quantifying the process of water diffusion within the human brain to delineate the complex structural configurations of the white matter. Among the existing tools of dMRI high angular resolution diffusion imaging (HARDI) offers a desirable trade-off between its reconstruction accuracy and practical feasibility. In particular, HARDI excels in its ability to delineate complex directional patterns of the neural pathways throughout the brain, while remaining feasible for many clinical applications. Unfortunately, HARDI presents a fundamental trade-off between its ability to discriminate crossings of neural fiber tracts (i.e., its angular resolution) and the signal-to-noise ratio (SNR) of its associated images. Consequently, given that the angular resolution is of fundamental importance in the context of dMRI reconstruction, there is a need for effective algorithms for de-noising HARDI data. In this regard, the most effective de-noising approaches have been observed to be those which exploit both the angular and the spatial-domain regularity of HARDI signals. Accordingly, in this thesis, we propose a formulation of the problem of reconstruction of HARDI signals which incorporates regularization assumptions on both their angular and their spatial domains, while leading to a particularly simple numerical implementation. Experimental evidence suggests that the resulting cross-domain regularization procedure outperforms many other state of the art HARDI de-noising methods. Moreover, the proposed implementation of the algorithm supersedes the original reconstruction problem by a sequence of efficient filters which can be executed in parallel, suggesting its computational advantages over alternative implementations

    Joint Spatial-Angular Sparse Coding, Compressed Sensing, and Dictionary Learning for Diffusion MRI

    Get PDF
    Neuroimaging provides a window into the inner workings of the human brain to diagnose and prevent neurological diseases and understand biological brain function, anatomy, and psychology. Diffusion Magnetic Resonance Imaging (dMRI) is an emerging medical imaging modality used to study the anatomical network of neurons in the brain, which form cohesive bundles, or fiber tracts, that connect various parts of the brain. Since about 73% of the brain is water, measuring the flow, or diffusion of water molecules in the presence of fiber bundles, allows researchers to estimate the orientation of fiber tracts and reconstruct the internal wiring of the brain, in vivo. Diffusion MRI signals can be modeled within two domains: the spatial domain consisting of voxels in a brain volume and the diffusion or angular domain, where fiber orientation is estimated in each voxel. Researchers aim to estimate the probability distribution of fiber orientation in every voxel of a brain volume in order to trace paths of fiber tracts from voxel to voxel over the entire brain. Therefore, the traditional framework for dMRI processing and analysis has been from a voxel-wise vantage point with added spatial regularization considered post-hoc. In contrast, we propose a new joint spatial-angular representation of dMRI data which pairs signals in each voxel with the global spatial environment, jointly. This has the ability to improve many aspects of dMRI processing and analysis and re-envision the core representation of dMRI data from a local perspective to a global one. In this thesis, we propose three main contributions which take advantage of such joint spatial-angular representations to improve major machine learning tasks applied to dMRI: sparse coding, compressed sensing, and dictionary learning. First, we will show that we can achieve sparser representations of dMRI by utilizing a global spatial-angular dictionary instead of a purely voxel-wise angular dictionary. As dMRI data is very large in size, we provide a number of novel extensions to popular spare coding algorithms that perform efficient optimization on a global-scale by exploiting the separability of our dictionaries over the spatial and angular domains. Next, compressed sensing is used to accelerate signal acquisition based on an underlying sparse representation of the data. We will show that our proposed representation has the potential to push the limits of the current state of scanner acceleration within a new compressed sensing model for dMRI. Finally, sparsity can be further increased by learning dictionaries directly from datasets of interest. Prior dictionary learning for dMRI learn angular dictionaries alone. Our third contribution is to learn spatial-angular dictionaries jointly from dMRI data directly to better represent the global structure. Traditionally, the problem of dictionary learning is non-convex with no guarantees of finding a globally optimal solution. We derive the first theoretical results of global optimality for this class of dictionary learning problems. We hope the core foundation of a joint spatial-angular representation will open a new perspective on dMRI with respect to many other processing tasks and analyses. In addition, our contributions are applicable to any general signal types that can benefit from separable dictionaries. We hope the contributions in this thesis may be adopted in the larger signal processing, computer vision, and machine learning communities. dMRI signals can be modeled within two domains: the spatial domain consisting of voxels in a brain volume and the diffusion or angular domain, where fiber orientation is estimated in each voxel. Computationally speaking, researchers aim to estimate the probability distribution of fiber orientation in every voxel of a brain volume in order to trace paths of fiber tracts from voxel to voxel over the entire brain. Therefore, the traditional framework for dMRI processing and analysis is from a voxel-wise, or angular, vantage point with post-hoc consideration of their local spatial neighborhoods. In contrast, we propose a new global spatial-angular representation of dMRI data which pairs signals in each voxel with the global spatial environment, jointly, to improve many aspects of dMRI processing and analysis, including the important need for accelerating the otherwise time-consuming acquisition of advanced dMRI protocols. In this thesis, we propose three main contributions which utilize our joint spatial-angular representation to improve major machine learning tasks applied to dMRI: sparse coding, compressed sensing, and dictionary learning. We will show that sparser codes are possible by utilizing a global dictionary instead of a voxel-wise angular dictionary. This allows for a reduction of the number of measurements needed to reconstruct a dMRI signal to increase acceleration using compressed sensing. Finally, instead of learning angular dictionaries alone, we learn spatial-angular dictionaries jointly from dMRI data directly to better represent the global structure. In addition, this problem is non-convex and so we derive the first theories to guarantee convergence to a global minimum. As dMRI data is very large in size, we provide a number of novel extensions to popular algorithms that perform efficient optimization on a global-scale by exploiting the separability of our global dictionaries over the spatial and angular domains. We hope the core foundation of a joint spatial-angular representation will open a new perspective on dMRI with respect to many other processing tasks and analyses. In addition, our contributions are applicable to any separable dictionary setting which we hope may be adopted in the larger image processing, computer vision, and machine learning communities

    Extrinsic Methods for Coding and Dictionary Learning on Grassmann Manifolds

    Get PDF
    Sparsity-based representations have recently led to notable results in various visual recognition tasks. In a separate line of research, Riemannian manifolds have been shown useful for dealing with features and models that do not lie in Euclidean spaces. With the aim of building a bridge between the two realms, we address the problem of sparse coding and dictionary learning over the space of linear subspaces, which form Riemannian structures known as Grassmann manifolds. To this end, we propose to embed Grassmann manifolds into the space of symmetric matrices by an isometric mapping. This in turn enables us to extend two sparse coding schemes to Grassmann manifolds. Furthermore, we propose closed-form solutions for learning a Grassmann dictionary, atom by atom. Lastly, to handle non-linearity in data, we extend the proposed Grassmann sparse coding and dictionary learning algorithms through embedding into Hilbert spaces. Experiments on several classification tasks (gender recognition, gesture classification, scene analysis, face recognition, action recognition and dynamic texture classification) show that the proposed approaches achieve considerable improvements in discrimination accuracy, in comparison to state-of-the-art methods such as kernelized Affine Hull Method and graph-embedding Grassmann discriminant analysis.Comment: Appearing in International Journal of Computer Visio

    Extrinsic methods for coding and dictionary learning on grassmann manifolds

    Get PDF
    Sparsity-based representations have recently led to notable results in various visual recognition tasks. In a separate line of research, Riemannian manifolds have been shown useful for dealing with features and models that do not lie in Euclidean spaces. With the aim of building a bridge between the two realms, we address the problem of sparse coding and dictionary learning in Grassmann manifolds, i.e., the space of linear subspaces. To this end, we propose to embed Grassmann manifolds into the space of symmetric matrices by an isometric mapping. This in turn enables us to extend two sparse coding schemes to Grassmann manifolds. Furthermore, we propose an algorithm for learning a Grassmann dictionary, atom by atom. Lastly, to handle non-linearity in data, we extend the proposed Grassmann sparse coding and dictionary learning algorithms through embedding into higher dimensional Hilbert spaces. Experiments on several classification tasks (gender recognition, gesture classification, scene analysis, face recognition, action recognition and dynamic texture classification) show that the proposed approaches achieve considerable improvements in discrimination accuracy, in comparison to state-of-the-art methods such as kernelized Affine Hull Method and graph-embedding Grassmann discriminant analysis
    corecore