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1 Introduction

Magnetic Resonance Imaging (MRI) is a non-invasive method to measure characteris-
tics of biological tissue inside human or animal bodies with a wide range of clinical
applications as well as applications in biomedical research. There is a large number
of techniques tailored to measure and visualize various properties of and processes
occurring in biological matter.

Diffusion Weighted MRI (DW-MRI) is a measurement modality that is sensitive to diffu-
sion of water molecules inside the body. It is of particular interest in neuro-scientific
research, since it can be used to probe the fibrous structure of white matter in the brain.
White matter consists of nerve fibers, called axons, that connect neuronal cell bodies
located in the gray matter in the surface region of the brain, and transmit electrical
signals between the neurons. While single axons are much too small to be resolved
by MRI scans, they are often organized in larger fiber bundles. Inside these bundles,
water diffusion is restricted and occurs predominantly along the fibers. Therefore,
resolving directional properties of water diffusion can be used to infer the location
and orientation of fiber bundles. This information can then be used to analyze the
large-scale structure and connectedness of the brain.

DW measurements proceed by measuring a set of full MRI volumes with varying
diffusion sensitizing gradients encoding the diffusion in different directions, producing
data that is defined on a 6-dimensional space — 3 for the spatial location, 3 for diffusion
encoding. Due to constraints on measurement time coming from technical, economical
and practical considerations, it is not possible to sample this space sufficiently dense.
Instead, measured data is acquired only on a lower-dimensional subset of the total
space, and additional physical assumptions on the diffusion characteristics are used to
make up for the missing data. The most frequently employed measurement modality
is called High Angular Resolution Diffusion Imaging (HARDI). Here, data is acquired
only on a subset (2 x S* with a spatial region (2 C R? and varying the gradients only
in direction, not in magnitude. From this, one tries to reconstruct a suitable measure
for the diffusion at each spatial location. The precise quantity to be reconstructed
depends on the physical modelling assumptions, but is often a function — a so-called
orientation distribution function (ODF) — that assigns to each direction in S* a measure
of the relative strength of diffusion into that direction, separately in each voxel.

A number of physical models have been proposed. A notable feature of almost all
models is that they describe diffusion independently in each voxel. This is a natural
approach due to the separation between the typical scale of diffusion (~ 107>~10""mm)



1 Introduction

and the spatial resolution (~ 1-2 mm). Reconstruction then trivially decomposes into
a set of rather small (~ 100-dimensional) problems in each voxel. This approach,
however, disregards the observation that neighboring voxels often have quite similar
diffusion characteristics if they belong to the same fibrous structure.

Apart from their immediate utility as local descriptions of diffusion and fiber ori-
entation, ODFs are used as input in further processing steps to reconstruct global
characteristics of brain organization. For these, it is important to have accurate, co-
herent ODFs, in particular for low SNR or coarsely sampled data sets. Therefore,
it is interesting to investigate whether the prior knowledge on ODF structure and
smoothness can be used to improve the reconstruction.

There are surprisingly few approaches for using spatial regularity in DW-MRI recon-
structions. The main challenges one faces when developing such a regularization
method are, first, the fact that spatial coherence can not be assumed isotropically, but
only along the fiber bundles, while there may be sharp edges perpendicular to them.
So it is not clear a priori how to use the prior knowledge without causing artifacts
by over-smoothing these edges. Secondly, the resulting problem can become quite
large, since it can not be separated into voxels anymore and has to be solved on the
total 5-dimensional space, and therefore has to be implemented efficiently. This also
precludes the previous point from being approached by too computationally expensive
methods.

Spatial regularization was first investigated in [GLTVog], where similarity is measured
by comparing the entire ODFs in nearby voxels using anisotropic weights determined
from the data. Smoothing methods that take into account the underlying structure
of the domain (2 x S* have been suggested for example in [DF11], where linear and
non-linear diffusion filters are applied to the reconstructed ODF in a post-processing
step, and in [BTV+12], where adaptive smoothing is performed on the HARDI data
prior to reconstruction. A completely different approach is taken in [RMA+11], where
reconstruction is combined with with fiber tracking in a single step, without the
intermediate step of an ODF.

The main contribution of this thesis is the development of a reconstruction algorithm
that makes use of spatial coherence to increase noise robustness and to be able to
produce accurate, coherent images even with small amounts of data. Based on the
linear diffusion filters from [DF11], an anisotropic penalty will be introduced which
compares ODFs locally also in the orientational part, and only compares voxels along
fibers instead of isotropically. This way, smoothness information can extend for example
from single-fiber voxels into adjacent crossings despite the sudden appearance of
perpendicular structures which violate the global similarity of the respective ODFs.

Further, theoretical properties of the resulting Tikhonov-type method will be investi-
gated, and convergence will be proved for reconstructions from noisy, discrete data
under suitable smoothness assumptions. This will be achieved by studying the proper-
ties of a non-standard Sobolev-type space constructed from the anisotropic penalty.



Finally, the performance of the method for different forward models will be illustrated
numerically.

The thesis is organized as follows: In Chapter 2, basic principles of MRI and DW-
MRI are introduced, and some of the most used physical models are described and
discussed.

Chapter 3 gives an overview of basics of regularization theory, with special focus on
discretization of constrained, linear inverse problems. Under suitable smoothness
assumptions, a convergence result for Tikhonov-type regularization in that setting is
proved.

In Chapter 4, the anisotropic regularization penalty is motivated and formally defined.
Special consideration is put into examining the properties of a Sobolev-type space
defined from this penalty, in particular showing a compact embedding property. This
will allow to apply the discrete convergence result form Chapter 3.

Chapter 5 describes efficient implementation of the method and gives some estimates
on the errors of the discrete approximations.

Finally, in Chapter 6, the method is tested on simulated, phantom and in-vivo data.






2 Physical Background

2.1 The Measurement

2.1.1 Basic Principles of MRI

MRI experiments are based on the behavior of hydrogen nuclei in an external magnetic
field. Hydrogen nuclei consist of a single proton. Protons have a quantum mechanical
spin, and thereby an intrinsic magnetic moment. The total spin is 1/2, which means
that there are two distinct spin states (called up and down). Quantum mechanically,
the spin of each proton can be a superposition of these states. If there is no external
magnetic field, the energy levels of these states are degenerate, so none of them is
preferred over the other. They are therefore occupied with equal probability, and the
magnetic moments cancel. When an external magnetic field is applied, the energy
levels of the states split, and the lower energy state gets occupied with a higher proba-
bility. Averaging over sufficiently many hydrogen spins, this leads to a net magnetic
moment.

Macroscopically, the magnetic moment is described by a location- and time-dependent
magnetization density M: R x R — R?. If the hydrogen atoms are assumed to be not
moving, it can be shown that the time dependence of M in an external magnetic field
B: R?® x R — R? is described by the ODE

%M(x,t) = —yB(x,t) x M(x,1), (2.1)

where 7 is the gyro-magnetic ratio.

The magnetic field is chosen as a superposition of a strong, constant background field
along the x;-axis and a weaker time-dependent and spatially varying field:

B(x,t) = Byes + B(x, 1),

where ||B(x, t)|| « |Bj|. For this case, equation (2.1) has been extended by Bloch [Blo46]
to include relaxation effects, yielding the Bloch equation

d

EM(x, t) = —yB(x,t) x M(x,t) — T"1(M(x,t) — M®1(x)), (2.2)
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where T = diag(T,, T,, T;), T; > 0 is the longitudinal relaxation time, T, < T is the
transverse relaxation time and M®9(x) = M;q(x)e3 is the equilibrium magnetization
density.

MRI experiments go back to Hahn in 1950 [Hahso]. The basic principle is that, in
the beginning of the experiment, the magnetization vector is aligned with the strong
magnetic field B, and is then excited by a radio frequency pulse and rotated into the
x,-X,-plane, where it precesses and induces a measureable current in nearby receiver
coils. Solutions to (2.2) for the various parts of the experiment, corresponding to
different choices of B, will be described in the following.

Precession and Decay

If B = 0, the solution to (2.2) can be written as
Mi(x,t) = RSt) exp(—tT‘l) (M(x,0) — M®9(x)) + M®I(x),
where

R® —

wt

—sin(wt) cos(wt) 0
0 0 1

is the rotation matrix by angle wt around the x;-axis. The magnetization precesses
around the x;-axis with the Larmor frequency w = yBj while decaying exponentially
to M®? on a time scale given by T; and T,. In particular, the initial condition for the
MRI experiments, i.e. after switching on the background field and waiting for some
sufficiently long time, is

(cos(wt) sin(wt) O)

M(x, ty) = M®I(x).

RF Pulses

Radio frequency (RF) pulses are used to flip the magnetization vector from its equi-
librium position M®? into the x;-x,-plane. They are usually much shorter than the
relaxation times, so relaxation effects will be ignored here. The varying magnetic field
is chosen as

B(x,t) = BRFR®e,,

with BXY € R. Setting M(x, t) = Rgzt_to)M (x,t), equation (2.1) becomes

%M(x,t) = —yBRFe, x M(x, 1), (2.3)
so in the rotating coordinate frame, M precesses around the x;-axis. The solution
to (2.3) is

M(x,t) =R, RV, M (x)

w(t—tg) MU (t—tg)

10



2.1 The Measurement

with v = B, By choosing the field strength BXF and the pulse length, different flip
angles can be achieved. In the following, the flip angle is taken to be 90°, so that after
the RF pulse (which is defined to be t = 0), one has

M(x,0) = M;q(x)e1 = p(x)ey,

where p denotes the spin density and the proportionality between M®1 and p is due
to the fact that all spins are excited by the RF pulse in the same way. The constant of
proportionality was set to 1 for simplicity.

The above derivation worked because the frequency of the RF pulse was chosen identi-
cal to the Larmor frequency, so the magnetic field is “in phase” with the precessing
magnetization vector. If the RF pulses differs too much from the Larmor frequency,
different contributions add up destructively and do not lead to a flip of magnetization.

In many MRI experiments, the background field is actually not chosen as a constant,
but varies linearly along one of the coordinate axes during the RF pulse. In this case,
the RF frequency coincides with the Larmor frequency only in a slice of the volume,
and the initial condition becomes:

M(x,0) = p(x)(e1 cos(a(xy —z)) + ey sin(a(xy — z))),

where #: R — R is sharply peaked around 0 and the background field was taken to
vary along the x; axis (without loss of generality), with the RF pulse being in resonance
at x; = z. As it will be described below, the non-excited spins, i.e. those that are still
directed along e, after the RF pulse, do not contribute to the measured signal, so the
measurement is effectively restricted to the slice around x; = z. This is called slice
selection.

Gradient Field

Until now, the magnetic fields have been spatially constant. To be able to reconstruct
the spin density p as a function of space, spatially varying magnetic fields are needed.
They are chosen as gradient fields

B(x,t) = (G(t) - x)es,
where G: R — R®. Defining
M, (x,t) := M(x,t) +iM,(x,1),
equation (2.2) is equivalent to

ngx, t) = —iyBy(x, hHM, (x,1) — T;'M, (x, 1)

e (2.4)

M h = =T (M3 (x, D) = p(),

11
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and the initial conditions are
M, (x,0) = p(x)cos(a(x3 —z)), Ms(x,0) = p(x)sin(a(x; —z)).

This is solved by

M, (x,t) =M, (x,z,t) = exp(—Tiz) exp(—i’y fot B;(x,s) ds)p(x) cos(a(xy —z2))

M;(x,t) = M;(x,z,t) = (1 — exp( { ))p(x) sin(a(x; —z))

T
The rotating magnetic moment M | induces a current in receiver coils outside the object
under examination, which constitutes the measured signal. It is proportional to the
sum of all transverse magnetic moments. Define the k-vector by

t
k() := %f G(s) ds. (2.5)
0

Then the measured signal at time ¢ is

S(z,t) = f M, (x,z,t)dx

R3

= exp(—i) exp(—iwt) f p(x) cos(a(x; — z)) exp(—2mik(t) - x) dx.
T, 2

The spatially constant high-frequency precession term exp(—iwt) is rather uninter-
esting and will be ignored from here on, as it can be removed in experiments. If the
spatially dependent flip angle « is sufficiently concentrated around 0, the signal can be
approximated by

S(z,t) ~ exp(—Ti) f p(x) exp(—2rtik(t) -x)|x3:Z dx, dx, (2.6)
2/ 2o

up to a constant that only rescales the unknown density p and is therefore omitted.
The interpretation of this is that the signal is essentially given by the Fourier transform
of the spin density p(:, -, z), evaluated along a continuous trajectory t — k(t).

The exponential factor in (2.6) leads to a rapid decay of the measured signal. This is due
to local field inhomogeneities which lead to loss of coherence of the spins constituting
the macroscopic magnetization. Several techniques can be used to refocus the spins
(echo) and produce a measurable signal. In the following, we will simply omit the
exponential factor.

In practice, finitely many samples of the signal are taken at times t,,t,,...,t, and
the trajectory is chosen to cover k-space, i.e. the domain of definition of the Fourier
transform, as good as possible given the constraints on the length of measurement

12
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and the strength of the gradients G = k'. This yields the following expression for the
signal:

S(z, k) = f p(x) exp(—27tik - x)|x3:Z dx,dx,, k€K, (2.7)
R2
where K = {k(tj) :j=1,2,...,n}. Often, one chooses K L e;.

2.1.2 Parallel Imaging

Using (2.7), reconstruction of the unknown spin density p from the measured MRI
signal is straightforward if the k-space trajectory is chosen such that K is a regular
grid. In that case, the inversion can be done by using a Fast Fourier Transform (FFT).
However, data acquisition can take quite long in this case, given the number of samples
necessary to achieve the desired resolution, especially for 3-dimensional volumes or
diffusion weighted images (see Section 2.1.3). In order to improve acquisition times,
parallel imaging can be used. This technique sub-samples k-space while measuring the
signal with multiple receiver coils simultaneously. These coils usually do not cover the
full field of view, but instead have spatial sensitivity profiles c;: R?->C(=1,..,n.).
Equation (2.7) is replaced by

§j(z,k) = f ,o(x)cj(xl,xz)exp(—27tik . x)lx,j:Z dx,dx,, kek, j=1,..,n.
R2

The idea behind parallel imaging is to trade k-space information for the redundant
spatial information in the receiver coils, thus measuring data in parallel instead of
serially.

This approach is complicated by the fact that the coil profiles ¢; depend on the object
under investigation and are not known a priori. To overcome this, one generally
exploits the fact that coil profiles are very smooth. Widely used linear inversion
methods like SENSE [RR93] determine the coil profiles from reference images or a
fully sampled center of k-space to obtain low-resolution, smoothed versions of pc;
and pc,, where ¢ is the approximately constant profile of a homogeneous body coil.
From this, approximations to the ¢ can be determined up to a constant factor, and the

density p is reconstructed by inverting the linear mapping p — (SA]-);_Zl =: S using the
full (sub-sampled) k-space data.

A disadvantage of these approaches is that calibration errors in the coil profiles can
lead to serious artifacts in the reconstructed spin density, and determining the coil
profiles only from a part of the available k-space data can therefore lead to sub-optimal
results. An approach to parallel imaging addressing this problem has been developed
in [UHBFo8]. Here, the non-linear map (p,c) — S is inverted by an iterative algorithm
that is regularized to enforce the smoothness assumptions on the coil profiles, thereby
leveraging the full k-space data to reconstruct both p and c := (@)7;1.

13



2 Physical Background

2.1.3 Diffusion Weighted MRI

If the assumption of non-moving hydrogen atoms is dropped to incorporate effects of
water diffusion, the treatment in the previous sections is not valid anymore and must
be modified. One possible way to do this is to extend the Bloch equations (2.2) with
diffusion terms, yielding the Bloch-Torrey equations [Tor56]. However, this approach
incorporates the tensor model (cf. Section 2.2.1) at a very early stage and is therefore
unsuitable for models that try to extend the tensor model. This section gives a more
general, heuristic derivation of the diffusion weighted MR signal.

Consider an atom drifting along a curve x: R — R? in a time- and space-dependent
magnetic field B;: R x R® — R pointing in x,-direction. Then, generalizing (2.4) and
neglecting relaxation effects, its transversal magnetization m , satisfies

%ml(t) = —i’)/B3(X(t), t)mj_(t)l

ie.

m,(t) = exp(—i’y fot B5(x(s),s) ds)ml(O).

As above, B; is taken to be a superposition of a constant field (which is ignored again)
and a gradient. For diffusion weighted (DW) images, the Stejskal-Tanner sequence [ST65]
is used. It consists of two strong, opposite diffusion encoding gradient pulses at times
t,and t; > t,, followed by a sequence to sample k-space in the way described above.
For general choices of the diffusion gradients, it is difficult if not impossible to derive
analytical expressions for the magnetization, except under some restrictive assumptions
on the diffusion model. A tractable — albeit rather unrealistic — limiting case is the
narrow pulse approximation [Ste65], in which the pulses are taken to be Dirac delta
functions, i.e.

=T st —t) — ot — g
Glt) = == (8t = k) = 8t = 1)) + G(b),

where g € R? and the time-dependent gradient field G is used to sample k-space. For
t > t,;, we have

m, (t) = exp(—=27miq - (x(t,) — x(ty))) exp(—i’)/ fot G(s) - x(s) ds)mL(O). (2.8)

Define k(t) := (2) 'y [} G(s)ds. For t > t,, this coincides with the definition of k
in (2.5). The exponential function above depends on the complete path t — x(t) of
the particle. We would like to approximate this by an expression only involving the
initial position x(0). The intuition behind this is that the average diffusion length
during the measurement time is usually much smaller than the spatial resolution, and
therefore the atom should “appear stationary” to the k-space gradients. However, an
estimate of the modulus of the integral in (2.8) for arbitrary paths x can not be better
than proportional to [1[|G(s)||ds, which is a detail of the chosen gradient sequence and

14



2.1 The Measurement

not connected to the spatial resolution. Therefore, some assumptions on the path x are
needed.

We suggest to view it as a Wiener process, i.e. a stochastic process modelling Brownian
motion. This means that for every t, x(t) is viewed as a random variable in R3 fulfilling
certain conditions. Going into detail here would be much too lengthy; an introduction
to integration of stochastic processes can be found in [Dkso3].

The exponent in (2.8) can be rewritten as’
t t
—i'yf G(s) - x(s) ds = —2mik(t) - x(0) +2m‘f (k(s) — k(b)) - dx(s).
0 0

The integral itself is a real-valued random variable. It has zero mean value, and its
variance can be shown to be

Var(fot(k(s) — k(1)) - dx(s)> =D [[llk(s) — k() P ds
< 4Dt sup [k(s)|7,

0<s<t

(2.9)

where D is the diffusion constant of the Brownian motion. y2D! can be interpreted as
the average diffusion length during time ¢, while the maximum k-value is the inverse
of the spatial resolution. Typical diffusion coefficients in white matter are roughly
D =~ 10> mm?s™, so the square of the diffusion length during measurement time
t ~ 1s can be estimated as 2Dt ~ 2x 107> mm?. On the other hand, the typical
spatial resolution for diffusion weighted images is about 1 to 2 mm, so the variance in
equation (2.9) is approximately 10~°. Therefore, it appears reasonable to neglect this
term in (2.8), i.e.

m, () ~ exp(—=27miq - (x(t,) — x(ty)) ) exp(—27wivk(t) - x(0))m, (0).

The measured signal is again the sum of all individual phases. Let p(x) be the spin
density at x € R® and p(x, r) be the probability for a particle that is initially at x to drift
to x + r between the diffusion gradient pulses®. p is called the diffusion propagator. The
signal is

S(z, t,q) = j f px)p(x,r)exp(—2mik(t) - x) exp(—27wiq - 9] dx, dx, dr,
R3 R2
which, by sampling along a trajectory in k-space, becomes

S(z,k, q) = f j p(x)p(x,r) exp(—2mik - x) exp(—27Tiq - 9] P dx, dx, dr (2.10)
R3 R?
for k € K C R?. Diffusion weighted measurements can also be combined with parallel
imaging in the same way as described in Section 2.1.2.

'By [Dkso3, Theorem 4.1.5 (Integration by parts)], one has to assume that k has bounded variation,
which is the same as saying that G is integrable.

2 Actually, it should be the probability to drift from some point x(ty) near x = x(0) to x(t1) = x(ty) +
between the pulses, but the difference is expected to be small.

15
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2.1.4 Phase Artifacts

Due to the strong gradients employed, diffusion weighted images are in general very
sensitive to all kinds of particle motion. In particular, unavoidable effects like brain
pulsing and patient movement introduce phase artifacts into the measured data. A
simple way of formally incorporating these coherent movements into the signal equa-
tion is by translating the diffusion propagator, i.e. by replacing p(x, r) in (2.10) with
p(x,r + §(x,q)), where the translation vector ¢ depends on both the spatial position
(since e.g. brain pulsing is spatially inhomogeneous) and the diffusion gradient (since
measurements for different g occur at different times). This leads to

Sz, k,q) =f f p(x) exp(2mig(x,q))p(x, 1)
R3 R2

x exp(—27tik - x) exp(—27iq - ) - dx, dx, dr,

where ¢(x,9) = q- §(x,q).

Since very little is known about the structure and smoothness of the phase artifacts,
the most frequently employed way to handle them is to remove them by splitting the
reconstruction into two parts: At first, the spatial Fourier transform is inverted for each
diffusion gradient q separately, either by an FFT in the fully sampled case, or by one of
the algorithms for parallel imaging outlined above. Inversion of the g-space Fourier
transform is done in a separate step. Between those steps, the phase maps are removed
by taking the modulus, obtaining

S(x,q) := |p(x)|UR3p(x,r) exp(=2miq - r)dr| =: |p(x)|[p(x, 9)| (2.11)

The spin density p is real and positive, and the natural symmetry assumption p(x,r) =
p(x, —r) on the diffusion propagator leads to its Fourier transform w.r.t. r being real.
In the tensor model (see below), it is also positive; for general p, this is taken as an
additional assumption, so

S(x,q) = p(x)p(x,q). (2.12)

The collection 5(:, q) for all measured g-values is called magnitude images. Inversion of
the g-space encoding will be described in Section 2.2.

2.2 Modeling Multiple Fibers

The aim of DW-MRI is to reconstruct information about the diffusion propagator p in
equations (2.10) and (2.12). For a straight-forward Fourier inversion of (2.10), the signal
has to be sampled on a sufficiently fine grid in R®, requiring very long acquisition
times and thereby posing practical, economical as well as technical problems. As in
the case of parallel imaging, the remedy is to acquire less g-space data than needed

16



2.2 Modeling Multiple Fibers

for an inverse Fourier transform by measuring only on a subset @ C R®. Unlike that
case, this is however not compensated for by multiple receiver coils or other technical
measures. Instead, physical assumptions on the diffusion propagator are used to
extend the measured data from the subset Q to the whole g-space. In many cases, the
data is measured only on a sphere in g-space (single-shell) with the aim of achieving
high angular resolution of the diffusion propagator while neglecting information about
diffusion length. This mode of measurement is called High Angular Resolution Diffusion
Imaging (HARDI).

This section describes some of the most important models. These models generally
describe the “microscopic” diffusion process on length scales much smaller than a
voxel, and are therefore independent of the voxel variable x of the diffusion propagator

P(x/')-

2.2.1 The Tensor Model

The most widely employed model for DW-MRI is the tensor model (DTI, Diffusion
Tensor Imaging), which takes the diffusion propagator to be a Gaussian function, i.e.
p(x, 1) = exp L, (x)r), (2.13)

1
—eX
J2m)3detD ( 27

where D(x) € R¥? is the positive definite diffusion tensor and T = t, — t, is the time
between the diffusion gradient pulses. The motivation for this choice is that p(x, -) is
the solution at time t = 7 to the diffusion equation

ou(r,t)y =V, -Dx)V,u(r,t), u(r,0) =0(r).

Inserting p into (2.12) yields
S(x,q) = p(x) exp<—27r27qTD(x)q>.

The quantity b := 2712T||q||2 is called b-value and is a measure for the strength of diffu-
sion encoding sequence. In the tensor model, the narrow pulse approximation made
in derivation above can actually be dropped, leading to corrections to the definition of
the b-value for taking into account the finite gradient pulse length. In the following
however, these technical issues will be ignored. Note that in order to achieve a high
b-value, one can either use strong gradients ||g|| or a long separation time T between
the pulses.

Since D is symmetric, the tensor model has only 7 unknown parameters per voxel, so in
principle one unweighted image for the reconstruction of p and six diffusion weighted
images suffice to determine D. In practice, more images are used to increase noise
robustness, but measurement time is still only a fraction of what would be needed for
a full g-space sampling. Another advantage of this model is the clear interpretation of
the diffusion tensor, from which a number of important measures can be computed:

17



2 Physical Background

* The apparent diffusion coefficient (ADC) (D) = tr D/3, reflecting the total amount
of diffusion,

* the fractional anisotropy

3tr((D — <D>11>2)>%

FAD) = ( 2tr(D2)

reflecting the anisotropy of the diffusion by measuring the deviation from a
diagonal matrix, and

¢ the estimated fiber direction, which is taken to be the eigenvector to the largest
eigenvalue of D.

As the last point shows, the model can only estimate a single fiber direction per voxel,
which is a serious drawback since about 30 % of the voxels in white matter are expected
to contain more than one fiber. [BBJ+o07]

A considerable number of models and methods has been suggested to overcome these
limitations of DTI for HARDI data acquisitions. Some of these will be outlined in the
next sections.

2.2.2 Q-Ball Imaging

In this section, we omit the spatial variable for notational simplicity. The model
described here applies separately in each voxel.

Q-Ball imaging does not try to reconstruct the full diffusion propagator but instead
focuses on the direction of diffusion, ignoring length information. This is done by
defining the orientation distribution function (ODF)

g0 = [ ptwt'dt, neN.
0

The original Q-Ball imaging, developed by Tuch in [Tuco4], used n = 0. The mathe-
matical basis for Q-Ball reconstruction is the following observation:

Lemma 2.1. Let p € S(R?) and u € S*. Then

fp(tu) dt = f B (k) dk.

klu

Here, S(R?) is the Schwartz space of functions with rapidly decreasing derivatives of
arbitrary order. The theorem actually holds for a much larger class of functions.
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2.2 Modeling Multiple Fibers

Proof. For k L u, we have

j j p(v + tu) dt exp(—2mtik - v) dv = p(k).

vlu —oo

Fourier inversion on the two-dimensional plane perpendicular to u yields

f p(v + tu) dt = j p(k) exp(2mik - v) dk.

klu

Setting v = 0 shows the statement. O

This shows that ¢, can be computed by integrating p = S/p over planes in g-space.
Since S is only measured on S?, the integral has to be approximated in some way. Tuch
approximates it by integrating over the measured data on the sphere S? only,

Yo = Rp, (2.14)

where R: L?(S?) — L*(S?) is the Funk-Radon transform defined by

Rf ) = [ f(o)do,

S2n{ut

Despite being quite successful and easy to implement — the Funk-Radon transform
is diagonalized by Spherical Harmonics —, this variant of Q-Ball imaging has some
drawbacks:

* The choice n = 0 has unrealistic scaling behavior: if p is given by the tensor
model (2.13), larger diffusion tensors D lead to smaller ,. This has to be com-
pensated by introducing an additional scaling factor to be able to interpret it as a
probability distribution.

* The approximation of the integral above effectively assumes 5 (q) = p,(9)6(l|ql—1),
which not physically justified, not even as an approximation.

* The Funk-Radon transform is compact. While that makes the reconstruction very
robust against noise, it also leads to significant blurring of the ODFs.

Later, Acany et al. [ALS+10] proposed to use ¢, instead of 1, which can be interpreted
as a probability distribution on S? since it is automatically normalized (solid-angle Q-Ball
imaging). Motivated by the tensor model, p is extended from the measured data on S*
to all of R® by assuming

q

p@) = op( 1P 7)) (215)
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2 Physical Background

for g#0 and some D: S> — R (mono-exponential decay model). This leads to the
explicit reconstruction formula

1 1 S
=—+—AxRI —log| = |, .
¥ P Ton2 oS 08( 08<p)> (2.16)

where A, is the Laplace-Beltrami operator on S*. Since for all smooth functions f
on S?, f 52 Dgs2 f(u)du = 0, this function is automatically normalized to 1, i.e. can be
interpreted as probability distribution.

However, also assumption (2.15) is not physically realistic in general, since p in this
model is smooth at 4 = 0 if and only if it is a Gaussian. Therefore, p(r) decays only
polynomially as ||7]| — oo for general functions D.

2.2.3 Spherical Deconvolution

The spherical deconvolution model, introduced in [TCGCo4], is a heuristic model for
single-shell measurements that does not involve the Fourier relation (2.12). Instead, it
tries to reconstruct the fiber density, i.e. the number of fibers per solid angle, by using
the following assumptions (see the reference cited above for a discussion):

* All fibers are identical, irrespective of direction and location. If the measured
response of a fiber in direction u € $* is given by E,,: $* - R — where the signal
is assumed to be measured on a unit sphere in g-space without loss of generality
— and R € SO(3) is a rotation matrix, then Eg, = E,, o R™*. This implies that the
response is rotationally symmetric around the fiber direction.

¢ The measured signal of a collection of fibers is the superposition of the individual
responses, weighted by the number of spins diffusing along the fiber. This can
be justified by arguing that there is no significant exchange of hydrogen atoms
between different fiber bundles during measurement time.

¢ The number of spins diffusing along a fiber at x is proportional to p(x).

Let¢ € S? be an arbitrary, fixed vector and choose, for each direction u & S?, a rotation
matrix R,, € SO(3) such that R, = u. Then for all 1,

Eu = ERMg = Eg o R;l.

If ¢ (x, u) is the fiber density in at x € R? in direction u and p(x) is the spin density at
x, then the total signal can be written as

SGeg) = p) [ E, (@9, u) du
S2

= o(x) f Eg(Rglq)tp(x, u) du

S2
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2.2 Modeling Multiple Fibers

Since E; is rotationally symmetric around ¢, there exists a function K: [-1, 1] - R,
such that

Ez(q) = K(q-{)-
Hence,
S(x,q) = p(x) f K(g-u)yp(x,u)du. (2.17)
SZ

From this, there are two ways of treating the unknown density p: if it is available
explicitly from an unweighted magnitude image, (2.17) can be rewritten in terms of the
quotient S/p (scaled deconvolution). Otherwise, the product ¢ := p can be reconstructed
in place of ¢ to eliminate p (unscaled deconvolution). The convolution kernel K can either
be estimated from the data, or be parametrized a priori, for example as a Gaussian

K(t) = exp(—b(a + ,Btz)) (2.18)

with given b-value and fixed eigenvalues , f € R*.

Unfortunately, the Spherical Deconvolution Model also has a few unrealistic proper-
ties:

e If the kernel is positive, as in the frequently used parametrization (2.18), increasing
the fiber density ¢ leads to an increase of the measured signal. This is to be
contrasted to the tensor model, where larger diffusion tensors lead to a decreasing
signal, and which is well-established experimentally.

* The assumption of identical fibers does not seem justified. This may be par-
tially alleviated if some of the variation between the signals of different fibers is
described by different fiber densities ¢ instead of different response functions K.

2.2.4 Multi-shell deconvolution

If data is measured on more than one shell with varying b-values, Q C U’_, \/b—iSz, the
convolution model can be extended by using varying single-fiber response functions
{Ki}.

i=1/

S¢o,q) = p(o) [ K(q-wpee,wydu, gl =b,
SZ

A simple way to obtain the response function analogously to the Gaussian setting (2.18)
is by setting
K, (t) = exp(=b;(a + Bt?)). (2.19)
Note that by extrapolation to g = 0, this would imply
p(x) = S(x,0) = p(x) [ ix,u) du, (2.20)

S2
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2 Physical Background

and therefor a scaling behavior of the fiber density ¢: presence of multiple fibers in
a voxel leads to each of them having a smaller value of . While this can be seen as
sensible given that 1 is a density, this behavior is neither observed in deconvolution
reconstructions unless (2.20) is explicitly enforced, not is it desirable since it violates
smoothness assumptions of density functions along fibers.

Another option instead of (2.19) is to allow for different tensor eigenvalues on the
different shells,
K;(t) = exp(=b;(a; + B;t?)). (2.21)

Other work in this direction includes multi-shell Q-Ball imaging [ALS+10], and linear
models like [DDL+01] or [ATBog] that differ in the choice of the radial basis.

2.2.5 Discussion

For the rest of this thesis, we will focus on linear forward models that act as identity
on the spatial part,
Ty(x,q) = To(P(x,))(q),

encompassing single- and multi-shell deconvolution or more general g-space sam-
pling strategies, TucH’s Q-Ball model and the solid-angle Q-Ball model if treating
log(—1log(S/p)) as given data, and other linear models like the multi-shell models
cited above. A number of non-linear models have also been suggested, like Persis-
tent Angular Structure [JAo3] and Diffusion Orientation Transform [OSV+06]. No model
currently in use seems to fulfill all requirements regarding physical justification and
numerical tractability.

Note that in most cases, DW-MRI reconstructions are carried out in a voxel-by-voxel
way, splitting the 5-dimensional problem on R? x S? into a series of independent
problems on S?. Since the main aim of this thesis is to develop a spatial regularization
strategy which takes into account the spatial coherence of the resulting ODFs or fiber
densities, this approach will not be possible anymore. This justifies restricting to linear
forward models in order to avoid excessive computational complexity.

® will from now on be called ODF even when talking about fiber densities. If no
confusion arises, the spatial variable will sometimes be omitted.

2.2.6 Generalized scalar measures
The ADC and FA measures for diffusion tensors introduced above can be generalized

to the multi-fiber case. This was first introduced by Tuch in [Tuco4]. Given an ODF
¥: S - R, its generalized ADC is simply its mean value,

=L
() = 4n5f2 W (u) du.
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2.2 Modeling Multiple Fibers

The generalized FA is then defined as

1

Joo (Pp(u) — (P))? du)i
Jor ()2 du '

In general, an ODF for Gaussian diffusion with diffusion tensor D fulfills (¢) # (D)

and GFA(y) # FA(D). These measures are therefore only conceptually related, not
strict generalizations.

GFA(I,D) = (
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3 Elements from Regularization
Theory

This chapter gives an outline of some results from regularization theory, starting with
some general terminology and known results on linear inverse problems in Section 3.1.
Particular focus is put on Tikhonov regularization for linear ill-posed problems, as this
is the framework employed in the following chapters. In Section 3.2, a convergence
result is proved for Tikhonov regularization with a convex constraint and including
discretization of the forward operator.

3.1 Linear Inverse Problems

Let X and Y be Hilbert spaces and T: X — Y a linear bounded operator. Giveny € Y,
we are interested in determining x € X such that

Tx =y. (3.1)
The problem of determining x is called well-posed in the sense of Hadamard if
¢ there exists a solution
¢ which is unique and
¢ which depends continuously on the data.

In more abstract terms, this is the case if and only if N(T) = {0}, y € R(T) and R(T)
is closed.

In applications, often some or all of these criteria are not met, in which case the problem
is called ill-posed. Existence and uniqueness may fail, for example, due to missing
data, such that N (T)#{0}, or due to data perturbed by inevitable measurement errors,
such that y& R(T). The latter case also poses difficulties for solving the problem if
x does not depend continuously on y, since measurement errors may be arbitrarily
amplified. In all these cases, it is desirable to extend the notion of a solution of (3.1).
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3 Elements from Regularization Theory

Definition 3.1. x € X is called a least-squares solution of (3.1) if
ITx — )l = inf | Tz — .
It is called best approximate solution if

llx|| = inf {||z|| : z is a least-squares solution}.

It can be shown (see for example [EHN96]) that best approximate solutions exist if and
only if y € R(T) + R(T)* =: D(T"), defining a linear operator T*: D(T") —» N'(T)*,
the Moore-Penrose pseudo-inverse of T. Throughout this chapter, it is assumed that
a best approximate solution

xt =Ty (3.2)

to (3.1) in this sense exists.

T' is bounded if and only if R(T) is closed (cf. [EHNg6, Prop. 2.4]). Therefore, given
noisy data y° close to y in the sense that ||y —y°|| < §, x° given by (3.2) with y replaced by
y° may not be a good approximation to the true solution x*. A regularization method
is essentially an approximation R =~ T" such that |[Ry’ — x| is small. More precisely:

Definition 3.2. Let T: X — Y be a bounded linear operator, and (R,) ., withR,: Y — X a
family of continuous (possibly non-linear) operators parametrized by a set A. A parameter
choice rule is a map &: (0,00) x Y — A, and the pair (R, &) is called a regularization
method for T if

limsup {[[Res,0y° —x': y° € Y, |ITx" — || < 6}
0-0
forall x* € N(T)*.

Convergence of regularization methods can be investigated in terms of the worst case
error
A(T,R,M, §) := sup {||Ry‘S —xl:xteM, ey, |Tx -y < (5}, (3.3)

where M C X is a subset reflecting some prior knowledge on the solution x*. In the
general setting however, convergence of regularization methods for ill-posed problems
can be arbitrarily slow:

Theorem 3.3. Assume there exists a reqularization method (R, &) and a continuous function
@: R* - R* with ¢(0) = 0 such that

A(T,Rys.y, M, 6) < 9(0) (3-4)

with
M = {x € N(T)": ||Tx|| < 1}.

Then T is continuous.
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3.1 Linear Inverse Problems

Proof. Let (y,,)
Then

C D(T") be a sequence with ||y, || < 1andy,, -y € D(T") asn — oo.

neN

Ty, — Ty < Ty, = Rasy Yl + IRas g, ¥ — Tl

Both terms can be estimated using assumption (3.4), the first one by putting x" = T'y,
and y° = y,, in (3.3), the second one by putting x = T"y and y° = y,,, yielding

Iy, = Tyl < 29(1ly. — yI).
This shows that T'y, — T'y. O
Thus, in order to obtain convergence rates, the set of solutions M has to be restricted in
some way. The most frequently used way to do this is by employing source conditions.
Definition 3.4. A spectral source condition is a condition of the form
F=e(T'Mw, weX, |w|<p (3-5)

for some p > 0 and an index function ¢: [0,||T|*] —» R, i.e. @ is continuous, strictly
increasing and ¢(0) = 0. The corresponding source set is

M, () :={x = p(T'Thw: w € X, | < p}.

Since T is usually a smoothing operator, source conditions can be interpreted as abstract
smoothness conditions on the solution. A widely used choice for ¢ — and the only
one we will be interested in — are the Holder type source conditions, where

p\) = @, (A) = A¥, (3.6)
and y > 0 is called the Holder exponent.

It is interesting to see if lower bounds on the worst case error can be given in order to
assess the optimality of a given regularization method. For Hoélder source conditions,
it is known that the best attainable convergence rate is

2u 1
. 2u+1 el
infA(T, R, M,(¢,), &) < &, o7

for a series 6, — 0. Regularization methods fulfilling this bound are called optimal,
while those fulfilling

1

2¢ 1
A(T, Ris.r Mp(%,), (5) < Co2+ 20T,

for some C > 1 are said to be of optimal order.
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3 Elements from Regularization Theory
3.1.1 Tikhonov Regularization

A frequently employed method is Tikhonov regularization. To motivate it, remember
that by Definition 3.1, the best approximate solution minimizes the functional x —
|ITx — y°|*. The idea is to replace this functional by

Jo () = [ITx — y°II* + alx|?, (3-7)
for o > 0, i.e. to define the regularization operator by

Ry’ = argminJ, (x).

xeX
The additional term in ], disfavors solutions that are too large.

Due to the following lemma, the method is well-defined.

Lemma 3.5. For every y° € Y and a > 0, ], has a unique minimizer x2. It is given by
Xp =Ry’ = (T'T +a) ' Ty’ (3-8)

x? depends continuously on y°.

Proof. Uniqueness and the expression (3.8) are shown in [EHNg6, Theorem 5.1]. Bound-
edness of (T*T + a)~! follows from the Lax-Milgram lemma. O

Tikhonov regularization belongs to a class of regularization methods that can be studied
using spectral theory, since (3.8) can be written as

Ry’ =t (T*T)T*y°
witht, (A) = (A + a)~ L. Using this, it can be shown that
IR = Royll = It (T" DT (v = )l < a1y’ ~ y|
and that under a Holder source condition with exponent y <1
IR, Tx" — x| = |(1 =t (T*T)T*T)(T*T)"w| < ca*
for some c > 0. Hence

24

0 _2n
||Ray5 _ x’f|| < cpzxﬂ + ﬁ = (9(52;“1)

2
if & ~ 621, In particular, Tikhonov regularization is of optimal order for u < 1.
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3.2 Discretization of Linear Inverse Problems
3.1.2 Constrained Tikhonov Regularization

In some cases, one knows in advance that that the true solution x' lies in some convex
subset C C X. In those cases, the result can often be improved by replacing the
Tikhonov functional ], in (3.7) with

Jx () = |ITx = y|? + allx[l® + xc (x),

where
0, xeg(,

oo, otherwise

Xc(x) = {

is the indicator function of the set C. Thus, one solves

R, cy’ = argmin], (x).
xeC

If C is closed and convex, a minimizer of ¢ exists and is uniquely determined (see for
example [EHN9g6, Theorem 5.15]). Since R, . is non-linear, spectral theory can not be

employed in the convergence analysis. Convergence of order V6 for this method was
shown in [Neu88] under the projected source condition

x"' = P-(T*w) forsomew €Y, (3.9)

where P-: X — X is the metric projection onto C. This condition is similar to a Holder
source condition x* € R((T*T)"?) = R(T*) with exponent %, but can be significantly
weaker depending on the constraint set C.

3.2 Discretization of Linear Inverse Problems

In practice, the problem (3.1) can only be solved in finite dimensions. Therefore, the
continuous formulation has to be discretized. This is done by introducing orthogonal
projections P, € L(X) and Q,, € L(Y) with finite dimensional range. Here, 1 > 0 is a
discretization parameter. Then (3.1) is replaced by

Thx:= QTPyx = Quy.

This equation is then solved for x € R(P),) by the methods introduced in the previ-
ous sections. The aim of this section is to investigate the convergence of discretized
Tikhonov regularization under a convex constraint.

In the following, it is assumed that ||T,, — T|| = 0 as h — 0. To check this property in
concrete cases, the following lemma may be useful.
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3 Elements from Regularization Theory

Lemma 3.6. The following statements are equivalent:
1. ||[T,—T| - 0ash -0
2. [TA =Pyl - 0and |1 - Q)T| -0
3. T is compact, P;, — 1 pointwise on R(T*) and Q;, — 1 pointwise on R(T)

Proof. (1.) implies (2.) since
I = QTN < T, = QuTII + Ty = Tl < 2T, = Tll,
and similarly for ||T(1 — P,,)|. The reverse implication holds due to
1Ty =TIl < [[(1 = QTP + [T (1 = Ppy).

For the rest, note thatdue to | T(1—P,)|| = ||(1—P,,) T*|, it suffices to show the statements
for Q,,. The implication (2.) = (3.) holds since T is the limit of finite-dimensional
operators Q,, T and hence compact, and since Q,y — y for ally = Tx with x € X. To
see the reverse, assume that ||(1 — Q,)T|| - 0. Then there are ¢ > 0 and sequences
(h,),en € Rand (x,), oy C X withh, -0, |x,|| =1and

||(1 - th)T‘xn” 2 C.
By compactness, we can assume without loss of generality that Tx, — y € R(T).
Then the previous inequality implies that (1 — Q,,)y - 0. On the other hand, uniform
boundedness of (Q),),., implies that Q, — 1 pointwise also on R(T), which is a
contradiction. H

We cite the following convergence result for the discretized solution under Holder
source conditions in the unconstrained case from [PVqo].

Theorem 3.7. Let P, Q,, and T,, be as above, y € R(T) and y‘5 € Y with |ly — y5|| <.
Assume that |T — T,|| = 0as h — 0, and that the reqularization parameter a > 0 is chosen
such that

2 T(1—Py|?
voo &g ITa-POP _

" m (3-10)

as 6,h — 0 for some ¢ > 0. Denote by x € R(P,,) the discrete Tikhonov-regularized solution
fulfilling

Then

If, in addition,
xt e R((T*T)H*)
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3.2 Discretization of Linear Inverse Problems
1
for some 0 < p < 2, and

2
cix < 8% 4+ |T(1—P)|* < oo

for some c¢q, ¢, > 0, then

2
| — xT| = O(67 +|T - T,|**) (3.11)

as é6,h — 0.

Unfortunately, the proof in [PV9o] relies on spectral theory and therefore does not
generalize to the constrained setting.

To address this problem, spectral theory can be replaced by variational techniques
in regularization theory developed in the last decade. They were first introduced
in [HKPSo7] for problems with non-linear, non-smooth operators, but also turned
out useful to handle more general data fidelities and penalties as well as constrained
problems. In the following, we will prove a convergence result similar to Theorem 3.7
using these techniques.

Even though we are only interested in the Tikhonov case, the convergence theorem
will be presented in a more abstract way, for which some additional notation is needed.
Assume that we are given an ideal data fidelity functional 7 = Ty+: Y — [0,00]
with

Ty=0 = y=y,

and an empirical data fidelity functional S = Syot Y —» R U {00}, both convex, which
are connected by the error assumption

1
2T —e<SWy) - SWH <A(T () +¢) VYyey
for some A > 1 and ¢; > 0 such that ¢;, —» 0 as 6 — 0. The convex regularization

penalty is denoted by R: X — R U {co}, and the discretization error is controlled by
the assumption

%T(Tx) -1, R(x) ST (T)x) <B(T(Tx)+mn,R(x)) VxeCcCX (3.12a)
for B>1and #, > 0with #, - 0as h — 0, and where C C X is the convex constraint
set. Then (generalized) discrete constrained Tikhonov regularization consists in solving
the optimization problem

¥ € argmin (S(T,x) + a R(x)). (3.13)

xeC
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3 Elements from Regularization Theory

In the variational formalism, convergence is usually investigated in terms of the Breg-

man distance of the convex regularization penalty. It is defined as

Dy (x,xh) = DS (x,27) = R(x) — R(xt) — (&, x — 1),

where é’* e IR (x") is a fixed element in the subgradient of R at x". Note that in

general, Dy, is neither symmetric nor does it satisfy a triangle inequality.

An important part in the variational approach consists in replacing the spectral source

condition (3.5) by a condition in the form of a variational inequality.

Definition 3.8. x* € X is said to satisfy an (additive) variational smoothness assumption

if there are 5 > 0 and a concave index function : R* - R with

BDy(x,x") < R(x) —R(x") + (T (Tx)) VxeC.
Quadratic Tikhonov regularization is the special case
1 12
Tw =5y =yl
1
S = 3ly —y’I?, and
1
R(x) = 2P + e ().
In this case, assuming that x' € C, the Bregman distance at x € C is simply
1
Dy (x,x") = §||x — XM+ xe(x).
To show that (3.12) is fulfilled case with A =2, B =1 and
&=y’ —y'IP and 7, =TT,
we use the inequality |la + b||* < 2|ja|* + 2||b||* to obtain
1 1 sz _ Lo+ 52 n
STW —es<5ly—yI° =Sy =yl = S = S

and
1
Sy)-SyhH <y -y'P+ Elly‘S — Y|P <2(T (y) + e5).

The inequality (3.12a) follows from
1
T(Tyx) = E”Thx -y
<|Tx = y'|I* + I(T = T,

< | Tx —y'|P + T = Tyl flx]*
=T (Tx) + 17, R(x).
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3.2 Discretization of Linear Inverse Problems

The inequality 7 (Tx) < 7 (T, x) + 17, R(x) is obtained in the same way by exchanging
T and T,,.

Several results on the relations between spectral source conditions and variational
smoothness assumptions have been obtained (an overview is given in [Fle13]). The
following is from [HY10].

Theorem 3.9. In the quadratic Tikhonov case (3.15) and for a linear operator T: X — Y, the
Holder source con;lztzon (3.5) with ¢ = ¢, given by (3.6) for 0 < p < - implies (3.14) with
Y~ g, forv= 2]4% and B € (0,1) arbitrary.

For larger Holder exponents, this theorem can not hold. In fact, in [HY10] it is also
proved that (3.14) with ¢ ~ @, for v > 1/2 implies x" = 0. So in this sense, variational
smoothness assumptions only cover Holder source conditions with y < 1/2.

Moreover, in [FH11], equivalence between the projected source condition (3.9) and (3.14)

with () ~ +/t was shown. This serves as the main motivation to approach the discrete,
constrained problem with these methods.

To prove the convergence theorem, some basic results from convex analysis are re-
quired:

Definition 3.10. Given a convex, lower semi-continuous function f : R" — R U {co} not
constantly oo, its conjugate function f* is defined by

fr@) =sup (y'x-f(0), seR.

xeR”

If f is only defined on a subset of R", it is understood to be extended to all of it by co.
Lemma 3.11. The following statements hold:

s f+f ) 2y'x,

s fX)+f(y) =y'x = yeEIf(x) = x€If(y) and

¢ fi= (=
Proof. More general versions of these statements are shown for example in [ET76,
Chapter 1]. O

Theorem 3.12. Let the relations (3.12) hold and X be defined as the assumed to be unique

minimizer in (3.13). Assume further that x" is the unique R-minimizing solution to Tx = y'.
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3 Elements from Regularization Theory

1. Let T and R be weakly lower semi-continuous and the sets {x € X: R(x) < c} be
weakly sequentially compact for all ¢ > 0." If a is chosen such that x — 0 and

%(S(Tthr) —;rel(fES(Thx)) -0 (3.16)
as 6,h — 0, then
51}11307),{(92, xt) =0.
2. If the variational smoothness assumption (3.14) holds true, then
B Dy (%,x") < ABy(err)

with
err = (AB+ A Y RNy, + (1 + A)egg,

if w is chosen suitably (see (3.19) below).

Proof. By definition,

S(T, %) +aR(X) < S(T)x") +aR(x") (3.17)
and thus, using (3.16),
limsup R (%) < R(x"). (3.18)
6,h—0

We now show that each sequence of minimizers (¥;), ., fulfilling the requirements
with corresponding errors ¢, 7, — 0 has a subsequence that converges weakly to x'.
This then implies that ¥ — x" as 6, — 0.

Due to (3.18) and the compactness assumption on R, (X;) has a weakly convergent
subsequence ¥, — ¥ as | — oo. Then T%,;, — Tx, since every continuous linear
operator is weakly continuous. Using the weak lower semi-continuity of 7, (3.17) and
the error relations (3.12), we obtain

T (T%) < liminf7 (T%)
< ligggonfB(T(Tk(Z)ick(l)) + 17, R(x))
< iminf BT (Tiq¥iq)
< lim inf AB(S) Tk %)) = Siay (V)
< limgoanB(Sk(,)(Tk(,)x’L) = Sy W + apy (R = R(Ep))
= liminf AB(Syg) (T x") = Sk (')
< lim inf A*BT (Tyx")
< A’B*T (Tx")
=0

'Both assumptions are fulfilled in the quadratic Tikhonov case if the constraint set C is weakly closed.
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3.2 Discretization of Linear Inverse Problems

It follows that TX = y*. Uniqueness of xTand R(%) < R(x") then implies that X = xt
Therefore, as claimed, ¥ — x'. In particular, (¢', ¥ — x") — 0. Due to (3.18),

Dy (%,x") = R(x) — R(x") — (&', x—x") - 0.
This shows the first part.

For the second part, let v > 0 be arbitrary. The variational smoothness assumption,
the inequality (3.17) and the fact that ¥ € C yield

BD,(x,x") < R(E) — R(x") + (T (T%))
= (RGN =R@) + (1 + 7 (RE) = RE) + ¢(T (TX))
< YR - R&)) + 1TTv(S(Thx*) —S(T, %)) + (T (TX)).
Using (3.12), we obtain
S(Txh — S(T,%) = S(T,x") — S + S") — S(T,%)
<A(T(T)x") +¢5) — % T (T, %) + €,

<ABR(xMn, + (1 + A)es — —1B T (TX) + I R (X).
We now choose 1y such that
T
—_ ]_ =
It =7

to make R (X)-terms vanish. Note that we must have Ax > 7, for 7y to be non-negative,
which will however be ensured by the choice for a below. We arrive at

1+ err—lls_TZ T(Tx) + (T (Tx)).

By definition of the conjugate function of —, this can be estimated further by

)

Setting s := —(1 + ) (ABa)~!, the infimum of the right hand side is

,BDR(X'/ x-l-) S

ﬁDﬂif)Sl

ir<1£(—sAB err +(—)*(s)) = —(—¢)**(ABerr) = p(ABerr) < ABy(err).

Due to the second statement in Lemma 3.11, it is attained if
s € d(—y)(ABerr)
which is equivalent to
Aa € 1, + (—=BA(—9)(ABerr)) ™. (3.19)

In particular, since ¢ is strictly increasing, Aa > 7, as needed above. O
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3 Elements from Regularization Theory

Remark 3.13. 1. Intheunconstrained case, inf, .y S(T),x) = %H (1-Q;)y°||* is attained

if T,x = Q,°. Therefore, by the characterization of the best approximation as
orthogonal projection,

. 1
S(Tyx"y — ;gis(Thx) = §||QhTPthr — Qu°II?

<1Q,@° —yOIP + 1Q, T (1 — Pp)x'|?
< |y’ —y'|? + T = PIPI(L = P>

Hence, (3.16) is implied by the conditions (3.10) of Theorem 3.7.

. Since the explicit form T}, = Q,, TP, was not used anywhere but just the fact that

|IT — T,|| — O, the theorem actually gives an error estimate for more general
operator errors. These may occur for example due to uncertainties in modeling
the forward operator. Thus, the theorem can also be viewed as a way to partially
alleviate some of the modeling issues discussed in Chapter 2.

. Using the assumptions of Theorem 3.7 together with Theorem 3.9, we have shown

a convergence rate
21
| —x" = O((6+ T = T,[)>7),

which is identical to the one in (3.11) with respect to the measurement error —
both are of optimal order —, but somewhat worse with respect to the operator
error.

. Since the proof does not rely on linearity of T and T, it actually also holds in the

non-linear case. A very similar result — with almost identical proof — can be
found in [LF12, Theorem 3.1], where convergence is shown under the assumption

iy ~ sup [T(x) = T,(0)|* - 0 (3-20)

xeC

for data fidelity terms given by a Banach space norm. Compared to that result, an
error estimate of the form (3.12), despite having been introduced here merely as
a notation, has been shown to be applicable in much more general settings than
error assumptions based on norm-distances (cf. [HW13]). Moreover, (3.12) also
holds in the linear case for unbounded constraint sets C, when (3.20) is typically
not satisfied.



4 A Penalty for ODFs

4.1 Choice of the Regularization Functional

In Chapter 3, Tikhonov regularization was introduced as a way to incorporate prior
knowledge into the reconstruction, essentially by requiring that the norm of the re-
construction be sufficiently small. It is clear that in this regard the space X of possible
solutions has to be chosen appropriately in order to achieve good reconstruction results.
For example, in order to enforce smoothness of the solutions, one might take X to be
the Sobolev space H' of weakly differentiable functions.

For ODF reconstruction, this choice is usually too restrictive, since it promotes isotropic
smoothness of the reconstruction, i.e. in each spatial direction. ODFs on the other hand
can only be assumed to be smooth along the fibers, but not perpendicular to them.

In [Duios], Durrs introduced a formalism for smoothing a related class of functions,
namely functions on R?xS!, with the aim to enhance elongated and crossing structures.
The idea is to identify R? x S' with the two-dimensional Euclidean group SE(2) of
translations and rotations. The group structure then provides

* adistinct class of curves in SE(2), the exponential curves parametrized by a starting
point in SE(2) and a starting tangential vector, that can be viewed as generaliza-
tions of straight lines to SE(2) and serve as a local model for elongated structures,
and

* aset of derivatives along these curves called left-invariant derivatives.

These derivatives are then used to construct non-linear diffusion filters on SE(2) by
taking an image as initial state ¢|,_,: SE(2) — R of a diffusion equation

oy = VD[PV, 9,

where V, is the left-invariant gradient and the diffusion tensor D[]: SE(2) — R
is adapted to the local structure of the image. This equation is then solved up to
some stopping time t = 7. The resulting image |,_, can be seen as a denoised and
enhanced version of the original image. The result depends crucially on the way
D[] is constructed from 1. In general, one tries to direct diffusion along elongated
structures in order to enhance coherence, but not perpendicular to them in order to
preserve edges. Doing this relies on estimating the orientation of the local structure,
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4 A Penalty for ODFs

which is done by finding the exponential curve that locally fits best to the image, in
some appropriate sense.

In [DF11], Durrs and FRANKEN generalize their formalism to the three-dimensional case,
i.e. to functions on R*xS?, and apply this to the enhancement of HARDI reconstructions.
The main challenge here is the fact that R* x §% can not be identified with SE(3), the
latter being isomorphic to R® x SO(3). Instead, R® x 5% can only be identified with a
quotient of SE(3) by a non-normal subgroup isomorphic to SO(2) and therefore does
not inherit a group structure. To carry over concepts from the R? x S'-case, one has to
require that they are well-defined on the quotient.

The constructed diffusion filters are employed as a post-processing step, after recon-
structing the ODF from DW-MRI data. Our aim is to include concepts from this
formalism directly in the reconstruction algorithm by formulating a suitable penalty
functional that can be used in for Tikhonov regularization.

In the following, a short overview of the SE(3)-formalism, in particular of the construc-
tion of exponential curves, will be given.

Definition 4.1. The Euclidean Motion Group SE(n) in n dimensions is the semi-direct
product R" and the group SO(n) of rotations in n dimensions,

SE(n) := R" xSO(n),

ie. SE(n) = R" x SO(n) as a set, with the product between g = (b,R) and §' = (b',R")
given by g¢' = (b + RV, RR’). The unit element is e = (0,1) and the inverse of g is g™' =
(—=R7'b,R™"). SE(n) acts on R" as group of rotations and translations by gx := Rx + b
forx € R".

A matrix representation of SE(n) is given by

R b

SE(n) © (b,R) » (O 1

) c R(n+1)x(n+1)

SE(n) acts in a natural way on R" x $"~! by
(b,R)(x,u) := (Rx + b, Ru), (4.1)
i.e. by translating the spatial part and simultaneously rotating the spatial and the

orientational parts. By identifying

R" x $"' 3 (x,u) - ( x) e R

u
01

this action is given simply by matrix multiplication. Moreover, the tangent spaces to
R" x §"~! can be identified with matrices of the form

T (R"x ") = T,R" x T,§"' 5 (X,,X,) = (}é }é) € RO,



4.1 Choice of the Regularization Functional

and with this identification, the derivative of the group action in (4.1) is again simply
given by matrix multiplication.

We are particularly interested in the case n = 3. For this, it is convenient to introduce
some additional notation:

Definition 4.2. For a € R?, denote by a* € R¥? the skew-symmetric matrix that acts as
a*x = a x x, i.e. the vector product between a and x, for x € R>.

Foralla, b € R3 and R € SO(3), one has
o b =ba’ — (bTa)1,
o (@b)* =ba’ —ab” = a*b* — b*a*, and
e (Ra)* = Ra*R".

Having identified SE(n) with a subgroup of Gl(n + 1, R), one can prove the following
theorem.

Theorem 4.3. SE(n) is a Lie Group. For n = 3, its Lie Algebra se(3) consists of all matrices
of the form

a b
0 0

fora,b € R3, and the Lie bracket is given by the commutator [ X, X,] = X; X, — X, X,. More
explicitly,

s¢(3) D (b,a*) = ( ) e R¥4

[(by,a]), (by,a3)] = (a; x by + by xa,, (ay xa,)™).

se(n) is isomorphic to the space of left-invariant vector fields on SE(3), i.e. vector fields’
V € I'(TSE(3)) fulfilling V (gh) = gV (h) for all g,h € SE(3), the isomorphism being

se(n) 3 X — (g~ ¢gX) € I'(TSE(3)).
Proof. See [Bakoz]. ]

As already mentioned above, SE(3) is larger than the domain R?3 x S? on which ODFs
are defined. The two spaces are related by a projection 77;: SE(3) — R? x $* which is
constructed by choosing an arbitrary

E=(0,&) € R¥xS2

and defining
7 (x, R) = (x, R)¢ = (x,R¢y).

'T'(TSE(3)) denotes the space of smooth sections of the tangent bundle of SE(3), i.e. functions
V: SE(3) — TSE(3) such that for all g € SE(3), V() is in the tangential space TgSE(S) of SE(3) at g.
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4 A Penalty for ODFs

The kernel of this projection is the stabilizer
Se ={h€SE@B): h§ = ¢} ={(0,R) € SE(3): R, = ¢y} = SO(2).

Ttx is surjective, so R3 x S? can be identified with the coset space SE(3)/S & Note that
the stabilizer can also be written as

Se = {(0,exp(s¢y)): s € R} = {exp(s(0,85)): s € R}.

Moreover, X € se(3) fulfills X = 0if and only if X = ¢(0, ;) for some t € R.

In [DF11], a right inverse to Ttz i.€. and embedding of R3 x S? into SE(3), is constructed
using Euler angles on SO(3) and spherical coordinates on S2. Unfortunately, this
embedding is ill-defined at the coordinate poles. More generally, there is no such
(continuous) embedding: if 1;: R® x §* — SE(3) fulfilled 77, o 1;(p) = p for all p,
restricting it to {0} x S* would yield a continuous map p: S* — SO(3) such that
p(u)dy =utorallu e S?. Now take a vector 1o L &y. Then p(u) 7y L u, sou — p(u)n,
is a non-vanishing, continuous tangential vector field on S?, contradicting the hairy
ball theorem?.

An important role in the SE(3)-formalism is played by exponential curves.

Definition 4.4. Let g € SE(3) and X € se(3). The curve 7y fulfilling
Y =yHX, r0)=g

is called exponential curve through g with parameter X.

Using the matrix representation of se(3), exponential curves are simply given using
the matrix exponential as

y(t) = gexp(tX). (4.2)
The simplest way to construct exponential curves on the quotient is as follows: given
(x,u) € R®*xS?and X € s¢(3), take g € ngl (x,u), construct the exponential curve (4.2)

and project it back to R? x §* using 77;. The question is: under what circumstances
does the resulting curve not depend on the arbitrary choice of g and ¢? For this to
hold, we must have

ghexp(tX)¢ = gexp(tX)¢
forallt € R and h € S;. Writing this as

exp(—tX) exp(s(0,¢))) exp(tX)§ = ¢

for s € R, differentiating by s and ¢ and setting s = t = 0 shows that

[(0,85), X]¢ =0.

2The hairy ball theorem states that every continuous, tangential vector field on S? has a zero.
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4.1 Choice of the Regularization Functional

With X = (b,a™), this can be expanded as

((éoxa)xéo §0Xb)zo
0 0 ’

soa,b € span{¢,}. Now

7tz (g exp((tgy, s¢5))) = ma(gexp(t(Gy, 0))) = (x + tu, u) (4.3)

is the horizontal line, which is therefore the only well-defined exponential curve on
the quotient.

On the other hand, the construction above may have been too restrictive, since X € se(3)
and g € ngl (x,u) were chosen fixed and independent of each other. A possible way to
improve the situation is to choose the parameter X of the exponential curve depending
on the choice of g, i.e. to consider

R St gexp(tX(g))d (4-4)
for X: ngl (x,u) — se(3). For this to be well-defined, we need

ghexp(tX(gh))¢ = gexp(tX(8))¢

= hexp(EX(gh)h™'E = exp(EX(9))& 4-5)

for all h € S;. Differentiating by t and setting ¢ = 0 yields

Ad, X(gh)¢ = X(8)¢, (4.6)

where Ad, X := hXh™! is the adjoint representation. Explicitly, Ad,,(b,a*) = (Rb, (Ra)*)
for h = (0,R). In particular, Ad,, (0, ¢5) = (0,&;) forallh € S;.

Define an inner product on se¢(3) by
((by,a}), (by,a3)) :=ala, + bl b,.

Then Ad,, leaves span{(0, ¢})} and its orthogonal complement invariant. X(g) can be
uniquely decomposed as X(g) = X, (g) + ¢(g)(0,¢;) for some c: ngl(x,u) — R and
X, (g) L (0,¢5). Then equation (4.6) implies that

Ad, X, (gh) = X, (). (4.7)

Putting this back into (4.5), we obtain the requirement

exp(tX, (g) + tc(gh) (0, 5’5))6 =exp(tX,(g) + tc(g)(0, gg))g.

Differentiating twice with respect to t, setting t = 0 and using (0,¢))¢ = 0 leads to

(c(gh) — e(9))(0, &)X, ()¢ = 0.
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4 A Penalty for ODFs

Write X | as X, (§) = (b(g),a(g)™), with a(g) L ¢, by construction, and assume first

that )
(0,69X,(9)¢ = (“%’) S0 (g)> =0,

Then a(g) = 0and b(g) = b,y¢,, with b, being constant due to (4.7). Hence, in this case,
X(g) = c(§)¢5 + byly, and the projected curve (4.4) is again the horizontal line, which
does not depend on c at all. So with no loss one may take X(g) = b,¢,. If, on the other
hand, (0, g,’ox )X, (©)C #0, then ¢ has to be constant. This observation and equation (4.7)
can be summarized by requiring that, without loss of generality, X has to fulfill

Ad, X(gh) = X(g) forallh e Se (4.8)

in order for (4.4) to be well-defined.

Condition (4.8) has a nice interpretation. First, note that ngl (x,u) 3¢+~ gX(g)isa
vector field tangential to SE(3). Composing this with the differential of the projection
7 yields a function g — ¢X(¢)¢ € T, (R® x §%). Since

ghX(gh)¢ = ¢X(g)hg = gX(Q)¢,

this function is in fact constant. Therefore, every X: 7'[5_1 (x,u) — se(3) fulfilling (4.8)
determines a tangential vector 77 X € Tieuy (R? x §?). T, . 1S surjective and

N () = span{g — (0,¢;)}. Thus, the space of functions fulfilling (4.8) can be
interpreted as the tangent space T, ,,, (R> x S?) plus one additional dimension.

An inverse to 7/, - can be given explicitly: if 77 X = (V,, V), then

)
X(x,R) = (R™V,, (RT(ux V, +cu))”)

for some ¢ € R, where R € SO(3) with R¢, = u. Finally, the corresponding projected
exponential curve gexp(tX(g))¢ = (7,(t), 7, (t)) has the explicit form

(W-VIW  Wx(WxV,) . WxV,
Tt =x+ t— sin([|[WI[t) + (1 —cos([|[W]t)),
W2 WP W2
(W-u)W W x (W xu) Wxu .
Yu(t) = - cos([[W]lt) + ——=—sin([|[W]}t),
W2 W2 W]

with W = u x V, + cu if W#0, and
7t =x+V.it q,0)=u,

otherwise. The spatial part is a helix with axis W, while the orientational part performs
the corresponding rotation that keeps its components constant with respect to the
moving frame of the spatial part. In particular, the curves actually depend on ¢ €
R, so the space of exponential curves at (x,u) is larger than the tangential space
Ty (R? x 52).
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4.1 Choice of the Regularization Functional

In [Frao8], orientation estimation in SE(2) is done by introducing left-invariant deriva-
tives, which are essentially derivatives along exponential curves. Since these curves
are parametrized by elements in se(2), the left-invariant gradient V; i of a function
p: SE(2) — R can be interpreted as a map from SE(2) to the fixed space se¢(2)*. There-
fore, it is possible to take second derivatives, which is in general not possible for the
usual derivative. In particular, it is possible to compute the left-invariant Hessian matrix.
The local orientation is then taken as the (right) singular vector corresponding to the
smallest singular value.? This is motivated by the requirement that V; 1 should change
as little as possible along the exponential curve corresponding to the local orientation
X(g) atg € SE(2):

X(g) = argmm”atlezb(g’)’y(t))|t:0”' (4.9)

[Irll=1
When applying this to our case, several problems arise:

¢ There are too many exponential curves: they are parametrized by a six-dimen-
sional space, while ODFs are only defined on R? x S?. Intuitively, it seems clear
that local knowledge of an ODF can not determine a unique exponential curve.
Indeed, the left-invariant Hessian in this case is singular with left singular vector
¢y The interpretation of the corresponding right singular vector is not clear.
Moreover, numerical experiments showed frequent cases in which there is more
than one small singular value; in these cases it is not clear which singular value
is the “trivial” one and should be discarded.

* On the other hand, restricting the space of allowed curves in the most obvious
way — namely putting ¢ = 0 in the definition of W above — does not seem
reasonable: it restricts the spatial part 7, of the curve to be a helix with axis
perpendicular to the orientational part u of the starting point (x,u) € R> x $2.
In addition to being a rather arbitrary choice, it also has the undesirable effect
that it is impossible for all points in {x} x U C R? x $* with U C S? an arbitrarily
small, open set to belong to the same oriented structure except for a straight line,
W =0.

* A more sensible approach might be to restrict some intrinsic parameters of the
projected exponential curve. For example, one might assume that the spatial
part of the curve is torsion-free. The torsion of -, can be explicitly calculated
tobe T = W -V, leading to an additional indefinite quadratic constraint in the
SE(3)-version of (4.9), which is therefore more complicated and time-intensive
to solve, and may not even have a unique solution.

* In order to estimate local orientation, a (small) minimization problem like (4.9)
has to be solved at each point of a discretization of R x S*. While this may
be acceptable when solving a diffusion equation as a post-processing step, for
example by computing one low-dimensional SVD at each point for each time

3Using singular vectors instead of eigenvectors is necessary since the Hessian is in general non-
symmetric since the left-invariant derivatives are non-commutative.
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step of an explicit time-discretization, computation cost can quickly become
prohibitive when employed in an inversion algorithm.

* Finally, it is not clear how to formulate a penalty for Tikhonov regularization that
is related to the non-linear diffusion used by Duirs and FRANKEN.

Since generalization of Hessian-based non-linear diffusion to R? x $? does not seem
possible in a straight-forward way, in [DCGD11] the authors resort to two basic ap-
proaches. Firstly, they consider linear diffusion filters where diffusion predominantly
occurs along the horizontal line (4.3). In the following, we will call the derivative along
this line the horizontal derivative (see also Definition 4.8 below):

Dy P (x, 1) := 0, (x + tu,u)|,_, = u - grad (x, u)

for a smooth function ¢: R’ x $* » R, where grad is the gradient with respect to the
spatial variable x. Then linear diffusion amounts to solving

04 = Croe D+ ¢y (Ags =D )P + co2 Ngo

for some constants ¢;,,,, cg. > 0 and ¢, > 0 with ¢, > ¢, . Using the intuition above,
this amounts to assuming that, without any further knowledge of the image, the best
guess for the local orientation at (x,u) € R® x S? is simply a line in direction u, while
allowing for some curvature as controlled by the parameter cg.

As an extension to this, non-linear, adaptive diffusion is done by replacing the D, .-term
above with

ChorDhor exp(_Kthor¢|2)Dhor¢

with x > 0, thus stopping diffusion at edges, where D, . is large. The exponential
function may also be replaced by other non-negative, decreasing functions. Non-linear
diffusion of this type is related to Tikhonov regularization with penalty functionals of
the form (cf. [SGG+o09, Chapter 6])

P f D(|Dyo 0 (x, u)[?) dx du. (4.10)

R3xS2

In the following, we will focus on the linear case and use a penalty functionals of the
form

¥ = 91 + IDpoc ¢l (4.11)
and
i = [P + Dol + llgrads, |*. (4.12)

A formal justification for the inclusion of the angular derivative as well as a more
rigorous description of this penalty will be developed in the next section.
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Remark 4.5. In[RK11], Rersert and KiseLev describe a very similar method of spatial
regularization based on a penalty of the form

¢ = ”Dhorl/]”z'

Although this regularization scheme leads to good results, its theoretical properties
have not been studied yet. In particular, compactness properties, which are needed
to establish convergence of discrete approximations (Theorem 3.12), are not obvious
since the forward operator is not smoothing in the spatial part. As was observed in
the work cited above, and will also be confirmed in the numerical experiments in
Chapter 6, this spatial regularization method has characteristic weaknesses in regions
with non-straight elongated structures. The modified method (4.12) is able to to better
cope with some of these situations.

4.2 The Space H (0 x 5§%)

For the remainder of this section,

where L € R?, is a cube in R®. The simplify the notation, all function spaces will be
understood to be defined on (2 x S* unless stated otherwise.

Since the spatial part of the DW-MRI forward operator is essentially a Fourier transform
and inversion algorithms usually employ FFTs in some way or another, it is natural to
take trigonometric polynomials as spatial basis functions, and therefore use function
spaces with periodic boundary conditions. This is not a severe restriction in practice
since in many cases the support of the object under consideration does not touch the
boundary of the volume.

[ee]

Definition 4.6. The space Cg,,

restriction as

Covr = {flows2: f € CZ(R?*x ), f(- +n'L,-) = fforall n € Z*}.

of smooth, spatially periodic functions on Q) x S* is defined by

As basis functions on (2, we use trigonometric functions
.3
&) =102 [ [exp(2mil; k), ke 72, (4.13)
j=1

while on S?, Spherical Harmonics (SHs) are used. They are defined as

2l +1d=-m! Uy + iu, \™
Y,m(u)_d 47T (l+m)!Pl (u3)<|u1+iu2|>

(4-14)
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for]l € Nyand m € Z, m| < [. Here P]" are the associated Legendre functions.
For details on the SHs, see e.g. [Nédo1]. Then {7,,,},,,, with 7., := ¢, ® Y}, is an
orthonormal basis of L?.

The tangential surface gradient of a smooth functionf : $* — R is given by Grad f (u) :=
(1- uuT)Vf (u) for u € S%. Here, Vf is the gradient of an arbitrary smooth extension
of f to a neighborhood of S* C R?. It can be shown that the result does not depend on
the choice of this extension due to the projection 1 — uu’. We denote by

Grad,f := e] Gradf

the components of the gradient operator, where ¢, for i = 1,2, 3 is the standard basis of
R3.

The Laplace-Beltrami operator on S? is defined as Ag> = Div o Grad, where the diver-
gence is Div = — Grad”. Explicit expressions in spherical coordinates can be found e.g.
in [Nédo1]. Using these, it can be shown that Ag, u; = —2u;. Therefore,

Lz Grad, f (u) du = fsz (Grad u;)" Grad f (u) du
= — Lz (Ago uy)f () du =2 fsz w,f (u) du.

Hence

sz(u) Grad,; g(u) du = fsz(— Grad, f (u) + 2u,f (u))g(u) du.
So, formally, the adjoint of Grad,; is

Grad; f (u) = — Grad, f (u) + 2u,f (u). (4.15)
The adjoint Grad* = — Div relates to the components Grad} by

Grad* V(u) = Z Grad] V;(u) = — ZGradi V.(u)

for a smooth tangential vector field V on §?,i.e. V: §* -» R? with u"V(u) = 0 for all
ue S

In the following, we use the notation Grad ¢ for i € Cg,, to denote the derivative with
respect to the angular variables, while grad ¢ denotes the spatial derivative:

Definition 4.7. For ¢ € L?, define
grad ¢ := Z<4’r Miim) (grad §) ® Y,
kim

and

Grad ¢ := Z(l/J, M )G ® (Grad Yy,),

kim

if the series converge in (L?)°.
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The inner product here is to be taken in L?; from here on, this will always be case,
unless otherwise indicated. The same holds for normes, i.e.

=02 ) =00 e

Additionally, for the next definition and thereafter, it will be convenient to denote the
function Q x §* - S?, (x,u) — u simply by u.

Definition 4.8. The horizontal derivative of a function € L? is defined as

Dyorp = Z s Miim Z ® (1;Yy,),

kim
if the series converges in L?.

The horizontal space H,,, is defined as the space of all € L? for which

[$lper := 191 + IDno; ¢ I1* + |Grad ¢* < co.

Dy = @ holds if and only if

(9, 8) = (¢, Dprg)  forallg € Cg,. (4.16)

This can be seen by first noting that for g, h € Cg,, (Dhoxgs 1) = —(g, Dpo,h1), and that
Niim S C;Oer. Thus

(Dhort) 8) = Z(lP/ it ) ProrTimr &) = — (¥, Dhorg)-

klm
On the other hand, if (4.16) hold true, then

(@ Mam) = — Z @ Mo ) Tiovms Drorlkim)

K'lm
= < Z <l/)’ Uk’l’m’>Dhor;7k’l’m" ;7klm>'
K'lm
(4.16) implies that Dy, is closed, since if ¢, — ¥ and D,.¢, — @ in L?, then
<¢’ g> = %i_l:);lo<Dhorl/]n/ g> = rlzl_{?o«/)n' Dhorg> = _<l/J' Dhorg>/

SO q0 =D hor¢'
For notational purposes, we define the operator D,: Hy,,, C 12 > (12)° x (1%)° by

in order to write

120, = 19l + DI,
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4 A Penalty for ODFs

Lemma 4.9. H, . equipped with the norm |||, is a Hilbert space. It coincides with the
domain of the self-adjoint operator |Dy| := (DjD,)"/>.

Proof. The closedness of both D, . and Grad implies that D, is closed. Therefore, its
1
domain D(D,)) = H,,, is a Hilbert space with the graph norm ||:|;,,, = (-1 + ||D0-||2) 2,

Self-adjointness of DD, (initially defined for example on C*) can be established by a
Friedrichs extension (see e.g. [Tayg6, Appendix A.8]). Hence |D,| is well defined by the
functional calculus. By the polar decomposition of closed operators in Hilbert spaces
we have D(|D,|) = D(D,). O

Cper is dense in Hy,,,. This can be shown using the following lemma.

Lemma 4.10. Let H be a Hilbert space, D: D(D) C H - Hand T,: H — H be linear,
self-adjoint operators, X C H a subspace with R(T,) C X C D(D?) and assume that
T, — o for all Y € H. If there exists a subspace & C D(D?) that is dense in H such that

D?*T,p - D*¢  forallgp € @, (4.17)

then X is dense in D(D) with respect to the graph norm ||-|2, := ||Z, + |ID-|1%,-

Proof. In a first step, we show that X is dense in D(D?). Let ¢ € D(D?). Using the
pointwise convergence of T,

<DTn¢/ (P>H - <D¢/ §0>H'
and by density of @ it follows that DT, — D. Similarly, (4.17) implies that
<TnD2Tn¢I §0>H = <Tnlpr DzTn§0>H - <l/J/ D24)>H = <D2x/ ¢>H'
@ can be replaced with ¢ here by density; i.e.
IDT, ]l - Dyl

Since weak convergence and convergence of the norms imply strong convergence,
DT,y — Dy
follows. This shows that X is dense in D(D?) with respect to |- -

The general case ¢ € D(D) can be reduced to the special case above by density of
D(D?) in D(D) shown below: For ¢ € D(D) and € > 0 there exists ¢, € D(D?) such
that |l — ¢.llp < e/2and n € N such that |y, — T, ¢,lp < €/2. Hence, | — T,9.llp < e.

The density of D(D?) in D(D) can be shown by considering the spectral decomposition
(E)),er Of D. For ¢ € D(D), set

lzbn = En¢ - E—nwf ne N.
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4.2 The Space Hy,,.(Q x §?)
Then - -
1D, = [~ A*dIE I, = [*7 A*dIExE, < n*lyl,

i.e. ¢, € D(D?). Moreover, ¢, — ¢ and Dy, = E, Dy — E_, Dy — Dy. O

We can now prove the density result.

Lemma 4.11. Cg,, and span{1,,, } are dense in H,,,.

[ee]
per’

Proof. Since span{1,,,} C C..,, it suffices to consider span{r,,, }.

In the preceding lemma, take H = L%, X = @ = Cper and D = [Dy|. Note that

Ilp = Il and D(D) = D(D,) = H,,,. The operators T, are defined as

T.¢:= Z<4’r it M itms

kim

where the sum runs over all (k,[,m) with ||k|| <, || < nand |m| <I. Then R(T,) C X
and T, - ¢ in H asn — co.

Condition (4.17) follows using D? = DiD, = — As> —Dfmr from
AS2 Tngp = Tn As2 Y- AS2 P
and

3 3
D}zmrTn(P = 'Zl uiuj(Tnaxiaxjgp) - 21: uiujaxiaxjgp = D}Zmrgp’
ij= i=

where we used that Ag. ¢ and d, 8x]_(p are in H for ¢ € @, and that both spatial and
angular derivatives commute with T,. O

We will also need Sobolev spaces on (2 x S?, which can be defined as follows.

Definition 4.12. Define the operator A® by

A= Z/\ilﬂb, Hicton M Mim7

kim

where Ay = 1 + |kl> + 12, whenever the series converges in L2. The Sobolev space H® of
order s > 0 is then defined as the set of all € L?* for which

Ay e L2,
equipped with the inner product

(W, @)y := (A, A).
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4 A Penalty for ODFs

Note that the notation A° is justified, since it is indeed a power of A := A'. We will
only be interested in the spaces H® fors = 1/2 and s = 1.

Lemma 4.13. H® is a Hilbert space.
Proof. The proof is analogous to the one of Lemma 4.9. O

Using grad, ¢, = 2mik,L;'¢, and (Grad Y,,,, Grad Y,,,,) = (I + 1)6,,,,,,., it is easy to
see that ¢ € H' if and only if grad  and Grad ¢ both exist in L?, and that there is an
equivalence of norms

15 = P + llgrad -[* + [Grad -[*
Moreover, for ¢ € H', Dy, % = u - grad .

The following Lemma gives some regularity properties of the operators introduced
above and their commutators. These could be obtained easily using the formalism of
Pseudo-Differential Operators. However, for the special cases considered here, they
can also be proved directly.

Lemma 4.14. For each s € R, the operators
o grad, Grad,, Dy,,: H® —» H*' and their adjoints,
o [A7Y, u]: H® - H?,
o and [A™!, grad.], [A™', Grad,]: H® - H**!
are bounded. Here, [A, B] := AB — BA denotes the commutator.

Proof. The first statement is obvious from the definitions. For the second one,
(AT wilyp = Z Z Z(Akll A X0 Mt YUY s Y i i
Im I'm’

Since u; can be written as a linear combination of SHs of degree 1, (1,Y,,,, Y,,,,,) vanishes
if |l = I'| > 1. The non-vanishing terms in the sum have the asymptotic behaviour

NG = Agl=0(IA7)  for|l—1]<1,ask,] - oo.
Together with the estimate [(1;Y},,,, Y;,v)| < 1, the assertion follows. Similarly,

[A™!, Grad,]y = ZZZ(A ~ A W, T G, Yors Vi) it

Im I'm'

Again, (Grad,; Y}, Y},,) vanishes for |l — I'| > 1 and behaves like O(I) for I —» oo, as
can be seen from

D Grad Yy, Yy < Y IGrad, Yo Yl = Y Grad Yo

||Grad Y, 2= +1).

Together with [A™!, grad] = 0, this shows the last assertion. O

50



4.2 The Space Hy,,.(Q x §?)

We can now show the main theorem of this section, the proof of which uses techniques

related to the proof of Hormander’s theorem on hypo-elliptic operators (cf. [Hor67])
found in [NHos].

Theorem 4.15. H,,,, is a continuously embedded subspace of H'/>.

Proof. Assume first that ¢ € CJ,,. Let D, := [Grad, Dy, ]. Then, since Grad(a”-)(u) =

(1 —uu")a fora € R®, we have

hE

D,y = ) (Gradu;)grad, ¢ = (1 —uu") grad .
i=1
This implies
IDno:¢II* + ID1 I = llgrad [
and hence
A*=1+D;D, + D;D,.
Thus

1
JAY2gl? = (, AT A2p) = [ATPyIP + ) (3, ATID;Dp)
i=0
1
= |AT2gP + ) (D, A'Dyy) + (3, [A7Y, D} JAMY2ATV2D )
i=0

1
< lglP + ) _IATD gl + cligllA~ 2Dy
i=0
_ 2
< c(llgll + 1Dyl + IIA~12Dy ] )7,

where all generic constants are denoted by c for simplicity. We used that A™'/? and
[A™!, Df]JAY2 (i = 1,2) are bounded. The latter follows using the regularity properties

in Lemma 4.14, equation (4.15), and the Leibniz rule for commutators, i.e. [A, BC] =
[A, B]C + B[A4, C].

For the D,-term above, we have

3

|ATY2D, g = Z<A_1D1,i¢r Dy¢)
iz1

<

3
— |<A_1D1,il/]’ Dhor Gradi ¢>| + |<A_1D1,i¢/ Gradi Dhorl/]>|'
i=1
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4 A Penalty for ODFs

The first term of this can be estimated by

(A™'D, ¢, Dy, Grad, )|
< |<A_1D1,1D* ¥, Grad, )| + |([D;or, A_lDl,i]lp/ Grad; )|

hor
< c(ID;, o, YlliGrad; ¢ + g lIGrad; ]))
< c(llgll + Doy 1),

where where D; = —D, ., and the boundedness of A™'D, ; and [D;__, A™'D, ;] was
used. Similarly,

’(A_lDl,il/]’ Gradi Dhorlp>’
S |<A_1Dl,i Grad; lp’ Dhor¢>| + |<[Gradj, A_lDl,i]lp’ Dhorl/J>|

< c(|IGrad; $lIDpo ¢l + 1¥IDpor 1),

since [Grad;, A™'D, ;] is bounded. Using (4.15), the commutator between Grad, and
its adjoint is
[Grad,, Grad} ]y = 2(1 — u?)y.

Hence,

IGrad; ¢|* — |IGrad, y|*| = ¢, [Grad;, Grad,]y)| < 2|yl

so the second term can be estimated further by

(A™'Dy 4, Grad, Dy, )| < c(ll¢ll + [Dol))*.

Putting everything together, we obtain

”lp”Hl/Z = ||A1/2¢|| S CHIP”hor
for ¢ € C;.. Finally, Lemma 4.11 implies that the estimate also holds for arbitrary

per*

Y € Hy,- O
Corollary 4.16. H,, is compactly embedded in L?.

Proof. This follows immediately from the fact that H® is compactly embedded in L? for
any s > 0. O

4.3 Convergence Result

We conclude the theoretical analysis of our method by summarizing the results in a
convergence theorem for ODF reconstruction with H, -penalty and linear forward op-
erator T, for example the spherical convolution operator from (2.17). The main difficulty
in applying Theorem 13.12 in this setting is the convergence of the discretized forward
operator, since it is not smoothing in the spatial variable, and therefore compactness
properties are not clear. This is solved by the results of the preceding section.
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4.3 Convergence Result

Theorem 4.17. Let Y be a Hilbert space and T: L?> — Y a bounded linear operator. Denote by
11 Hy, — L? the embedding and let T, := Q, TP, for orthogonal projections P,, in Hy,., and
Q,, in Y fulfilling P,, — 1 pointwise on R((T1)*) and Q,, — 1 pointwise on R(Tt) ash — 0.
Moreover, let C C Hy,,, be a closed and convex constraint set.

Then, given noisy data y‘S e Y with ||Tl/)+ - y‘slly < 9, the discrete, Tikhonov-regularized
solution
Yo, = argrrclin(llThlﬁ — v + aliyl?,))
e

fulfills
192 50— 'lhhor = 0 as 8, -0 (4.18)
for a parameter choice rule a (6, h) satisfying
6 IT: — T,
(S/h -y, -0 d 5,]’[ -0
w(d,h) -0 A an 20 <c as

with some ¢ > 0.

Proof. Corollary 4.16 and Lemma 3.6 show that |T: — T;,|| — 0. As discussed in Re-
mark 3.13, the parameter choice rule fulfills the conditions of the first part of Theo-
rem 3.12 for X = H, . and functionals 7, S and R defined by (3.15). Therefore, the
assertion follows. O

Moreover, as in Theorem 3.12, if z/ﬁ tulfills a variational smoothness assumption, then
for suitable parameter choice rules, convergence rates in terms of the data noise 6 and
the discretization error ||T: — T),|| can be obtained. Note however that Lemma 3.6 does
not give an explicit estimate for [T — T,].
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5 Discretization and Implementation

5.1 Discretization of the spherical convolution operator

We aim to discretize the spherical convolution operator from (2.17),
T:Hyoe = L%, T = (lpa ®Ty) 0,

where i: Hp,,, (Q x §?) — L*(Q) x §?) = L*()) ® L*(S?) is the compact embedding and
Ty: L?(S%) — L*(S?) is defined by

Top(q) = [, Kig- wyp(u) du. (5.1)

(2 is again the cube

Discretization is performed by choosing basis functions (Ai)fi’(l c L?), (¢; ].Zi”l C

L?(S?) and (qk)kle C L?(S?) such that A; ® ¢; € Hy, forall i, j. P, , denotes the
orthogonal projection onto the discrete space

Xy i=span{l; ® ¢;: i =1...N,, j=1...N,} C Hy,,
and Q, , is the projection onto

Y, , =spanfl; ®7;:i=1..N,j=1..N} C L%
The discretized operator T, ,, , := Q, , TP, , is then expanded in this basis as

T, A ®@)) = Z BijiA; @ 11y,
%

with B € RNoNu j.e. the discretization does not depend on the choice of spatial basis
(A;). For notational simplicity, we will not indicate the dependence of B on the basis
functions. Moreover, if no confusion arises, we will sometimes identify B with 1 ® B,
which means that applying B to ¢ € RM~N« is understood as

(Bo)y = Z Byicyj.
j
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5 Discretization and Implementation

The projected ODF and noisy data are expanded in the discrete basis as
p A 401/] Z Cz] i ® ¢j

and

5 _ 5
Quy° = Z Zy A ® 1y
ik
Moreover, the Gramian matrices

1]1] </\ ®¢]'/\ ®¢] >hor/

and similarly for GY, are needed. With this notation, the discrete problem we want to
solve can be written as

argmin(”Ja(Bc - Z‘S)H2 + uz”\/ac”2>, (5.2)
ceC
where C is a suitable approximation of the constraint set

{CERN N ZCU Z®(pj20}.

5.1.1 Trigonometric basis in (2

As the MRI forward operator is essentially the Fourier transform, a natural choice
for the spatial discretization is the space spanned by a subset of the trigonometric
polynomials (4.13),

3
&) =102 [ Jexp(2mil; kx;), (5:3)
j=1
where k € Z3. They form an orthogonal basis in H*((2) for each s € R, and fulfill

I&lls = (1 + [Ik|*)¥/2. Discretization is performed by restricting to &, fork € K := {k €
Z3: k)| < K, i=1,2,3)} for some K € Z°. The discrete constraint set

Cp = {g € RI": ;gkgk = O}
ex

is difficult to implement in practice. We circumvent this problem by only checking the
constraint on the finite grid (xp)PeK C R?, where (xp)j = (2K]- + 1)t L]-p]-, ie.

C.={geRM:Vpek: ) &, >0}
kex
Alternatively, the Lagrange basis
|1/2

K]

Y Glx - (5-4)

kex



5.2 Linear basis function on S*

with p € K can be used. This basis has the property that A, (x,,) = §,,,, and hence the

approximated constraint set in this basis simply becomes

pp"’

Cr = {ge R"C':gzO}.

It should be noted that the convergence result in Theorem 3.12 does not cover approxi-
mating the constraint sets in this way.

5.2 Linear basis function on S?

While the choice of spatial basis functions can be seen as natural, there are different
possibilities for the basis functions on S?. We will discuss two possible choices.

One possibility is a simple linear basis with respect to a suitable triangulation. This
choice greatly simplifies the constraint, but leads to a voxel-wise non-sparse forward
operator. It is, however, still sparse on the whole space.

To define the basis functions ¢, € L?(S?), we start by choosing a suitable finite set of
points o C §?, and determine a triangulation 7,, of the boundary of the convex hull of ¢.
So each T € T, is an affine image of the standard simplex {x € R*: x >0, Y. x;, = 1},
with each vertex of T being a point in ¢. Additionally, two different elements of 7, are
either disjoint or intersect along a shared edge or a single shared vertex, and

UT, := Urer, T = d(convhull o),

where d denotes the boundary. Such a triangulation can be obtained for example using
MATLAB'’s convhulln function. We will assume that ¢ is such that the map
- p
o U T(r - 52’ = pi=—

! ST
is a homeomorphism. For each u € o, let ¢,: U T, — R be the function that is linear
on the faces of 7, and fulfills ¢, (v) = §,, for all v € ¢. Then the basis function ¢,, is
defined by

Py =Pyovs

Regarding the constraint, note that °, __f,¢, > 0if and only if f > 0.

(5-5)

The point set ¢ C S* should be as uniform as possible. We follow the approach
from [Frao8] using platonic solids, starting with an icosahedron and subdividing each
face into n? identical triangles corresponding to the vertices

{UERe’:nvEZ?’,vZO,Zvi:l} (5.6)

on the standard simplex. The resulting points are then radially projected onto S?,
resulting in point sets with 101 + 2 points.
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5 Discretization and Implementation

5.2.1 Approximation properties

We want to show that the orthogonal projection Py. , onto span{&, ® ¢, },cxueco C Hnor
tulfills Py. , 9 — @ forall ¢ € Hy, as the discretization (X, 0') is refined in a suitable way.
To investigate the approximation properties, we first need a result on approximation
on the triangulation U7,.

Lemma 5.1. For each triangle T € T, let hy be the radius of the circumscribed circle and p
the radius of the inscribed circle. Assume that

hr
sup — < K,
TeT, OT
for some x, > 0, and let h,, := sup,_, hy be sufficiently small. For functionsf: UT, - R

satisfying f|y € H*(T) for all T € T, define the interpolation operator I, by

L) =) fu),.

ueor

Then
If — Iaf”Hl(T) < Cha“f”H2(T) (5.7)

forall T € T,. The constant C depends on o only through dependence on x,,.
Proof. See [BSo2, Theorem 4.4.20]. ]

This can be translated this into an estimate on S? using transformation properties of
Sobolev norms. In general, let 7: T — S be a diffeomorphism between manifolds T
and S,and f € H 2(S). Then due to the chain rule and transformation formula, the
Sobolev semi-norms on S and T are related by

f o 1Pz, < Clidet Dy~ | gl f 2

and
f o ey, < Clidet Dy~ | (Il Bags, + MIZalf B, ),

for some constant C > 0 depending only on the dimension of S and T.

Now let T € T, be a triangle with unit normal vector n € R? oriented to point away
from the origin, i.e. such that d; := n-p > 0 for all p € T. Note that d; is a constant,
namely the distance of T from the origin. Then y,|: T — 7,(T), is invertible with
Yolpt () = dp(ny - u) " u. The derivatives are

_ Lo iy dr (o ung
Dy, lr(p) = ”p“(]l pp’) and Dy, |7 (u) = nT-u(]l )



5.2 Linear basis function on S*

Direct calculation yields

1

1D, 1 (D), =
TP =

1 B d
<4 IDY, 17t )l = ———
T

and
d2
T < L

1
detDylr () = G <
T T

Moreover, for the second derivative

(D270|T(p)v)ij = (- v) (3pp; — 0y) — Piv; — Uiﬁj)

1
(4§

we obtain

A\

ID*Y, Pl = — < —.
PR IR T A2

So as long as d; is bounded away from 0 — as should be the case for any reasonable
approximation of S* —, the estimates (5.8) yield

||8 ° 7U|;1”H1(70(T)) < C”g”Hl(T)

forg € HY(T) and
”f ° ,Y(7|T||H2(T) < C”fHHZ(%(T))
forf € Hz(’yU(T)) and some generic constant C. Hence, using (5.7), we obtain for

f € H*(S?)

Hf - IU'(f ° ,)/(7') o ’)/;1”[2_[] (52) = Z |V|7U(T) - Ia(f ° ,)/0') ° ,)/0'|]_"1||?_11<,),0(T))

TeT,
<C Y I ovelr =L o vl o,
T, (5.9)
< Ch(zf Z ”f °© ,)/‘7|T||12—12(T)
TeT,
= CIIf 117 2 52,

with C depending only on «, as long as infrey dr > dy > 0. Using this estimate,
pointwise convergence of the discretization projection in Hy,,. can be proved:

Lemma 5.2. Forn € N, let 0, C S* be such that the assumptions of Lemma 5.1 hold for each
nwith x, = x independent of nand h, — 0asn — oo, and such that infro; dr > d, for

some dy > 0. Moreover, let K,, = {k € Z°: |k| < K, i = 1,2,3} with KI' > oo asn — oo
fori=1,2,3. Then P, , — 1pointwise in Hy,,.
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5 Discretization and Implementation

Proof. Lets > 1and X* := H' () ® H*(S*) C Hy,,,- Then, by definition of the tensor
product, since {¢,},.,s form a basis in H L), ¢ € X° can be written as

= Z Gk ® 4,
kez3
with a sequence a, € H*(S?) fulfilling
[l = ) (L + kI gl g2y < o0
kez3

Moreover, ¢, < ¢l < [¢llx:- Let ¢ € X*. Then, since X,. , C X',

1Pe o —¥l2,, = jinf iy - Pl < nf = Pl

K:n Tn ’Cn Tn

= lnf{ Z Z bkugk 02 gOu l/)H b e RUC Ixloy, l}
kek,, ueo,

Inserting the expansion of 1, the norm here can be rewritten:

= inf{ Z G ® ( Z b, @, — le) Z G ® ng 1 :bhe Rllcnxlcr,,},
kex,

ueoy, kez3\Kk,

so the infimum simplifies to

= L)t |5 g - D SRR DTN

kek, ) ke Z3\K,,

<Chy S (L P a2, + 3 (1 + K)oyl o,

keIC kez3\k,

In the last line, (5.9) was used. The assumptions now show that P,. . — 1pointwise on

X% asn — co. Since Cper C X?, Lemma 4.11 implies that X? is dense in H;,,,. Therefore,

for all € H,,, one can choose ¢, € X? with || — .|| < e. Together with IPe o Il=1,
it follows that for n large enough

||PKH,(T”17[) - lp”hor S (1 + ||PKH,(TH||)||1/J - lp8||h0r + ||P/Cn,0'nlp€ - l/]£||h0r S 28

so Py, — 1pointwise on all of Hy,,. O

5.2.2 The Gramian matrix

The Gramian matrix for the Laplace-Beltrami on S operator can be computed using
its weak definition and the transformation formula,

(9, Np,) = —f Grad ¢, (w)" Grad ¢, (w) dw
S2

=y j Grad ¢, (p)T Ay (p) Grad @, (p) dp,

TeT, T
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5.2 Linear basis function on S*

where
Ar = (Dy,lr ™" o Yol ) (Dy,lr o ’)’a|T)T|detD’)’a|T|-

Using the explicit expressions above, this yields

L .
(Pur D) == ) dp f L Grad ¢, (p) ( P )Gradq)v(zﬂ)dp-
T

ST Il

which can be evaluated in a pre-computation step using e.g. Gauss-Legendre quadra-
ture on the triangles T € T,,. The Gramian matrix for the L>-norm can be computed
similarly using the transformation formula. The horizontal derivative can be computed
most easily in the Fourier basis (5.3), for which one has to evaluate

[ &-w)p, @, @) dw, ke K.

S2

When using the Fourier-Lagrange basis (5.4), Fast Fourier Transforms (FFTs) can be
used to change to the Fourier basis and back. Note that this requires two FFTs for each
point in ¢. Putting all these together yields the Gramian matrix

<§k ® Pus gk’ ® q00>hor = 5kk'GI)§uv’

with a sparse matrix G € R“™! for each k € K. If memory permits, these can
be precomputed and stored as a single large sparse matrix. Otherwise, one can just
precompute

j W W@, (W), (W) dw i,j €{1,2,3}
SZ

and perform the contractions with k;k; separately for each application of G*.

5.2.3 Basis in the codomain

The basis {1;} in the codomain poses a conceptual problem, since the most natural
way to model the DW measurement are point evaluations. From these, the coefficients
z° of the projection Q,y° have to be estimated, which can in general only be done
approximately, possible enlarging the data noise bound 8. Good estimates of z° can
be expected when choosing a basis approximating delta distributions centered at the
sampling points {g;}, effectively modelling the measured data not as a point evaluation,
but as an average over a sufficiently small region around the g;. While choosing small
regions is preferable to achieve a good approximation of the data, convergence of the
corresponding projection Q,, is slower for smaller regions, since more basis functions
are needed to effectively cover the space.

For simplicity of implementation, we will use point evaluations despite the fact that the
convergence Theorem 13.12 is not applicable to that case. This means that the coefficients
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5 Discretization and Implementation

z° are directly given by the measured data, while the convolution operator (5.1) is
implemented as a matrix
B, = f K(g; - 0)¢,(0) dv
S2

in each voxel.

5.3 The Semi-smooth Newton Method

We now present the algorithm used to solve the constrained optimization problem.
The method — the primal-dual active set method — was introduced in [BIKg9g] and
analyzed in [HIKo03] by showing that it can be interpreted as a semi-smooth Newton
method. This section follows the theoretical basis from that work, but will only describe
the finite-dimensional case, circumventing some of the more intricate parts of the
general setting.

The problem has the general form

argmin||Tx — y|?, (5.10)

x>0

where T now contains both the forward operator and the Gramian matrix from the
regularization penalty. Note in particular the simple form of the constraint due to the
choice of basis above. There exist Lagrange multipliers A € R" such that

T*Tx —A =Ty
x>0,A>0 ATx=0. (5.11a)

Conditions (5.11a) can be rewritten as
A =max(0, A —cx)

for any c > 0. Here, all inequalities and the max-operation are interpreted component-
wise. Thus (5.10) is equivalent to finding a zero of S: R** — R%",

(5.12)

S(x ) ::( T*Tx —A—T*y )

A —max(0, A — cx)

A fast algorithm for finding zeros is Newton’s method, which unfortunately is only
applicable to differentiable functions. S is not differentiable in the usual way, but
turns out to be differentiable under a modified notion of differentiability, for which the
Newton method is still applicable.
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5.3 The Semi-smooth Newton Method

Definition 5.3. Let U C R" be an open set and F: U — R™. Then f: U — R"" is called
a Newton derivative of F if, for all x € U,

lim |F(x +h) — F(x) — f[x + h]h| _ 0
h=0 7]

In comparison to the definition of the Fréchet derivative, F'[x] is replaced by f[x + h].
In general, Newton derivatives are not unique.

We are particularly interested in a Newton derivative of the map R"” 3 x —» max(0, x).
It is given by
m[x] := diag(0(x;), ..., 0(x,)),

where 6(x) = 0forx < 0and €(x) = 1 for x > 01is the Heaviside step function." Indeed,
fori=1,...,n,if x; # 0and || < |x;, then

On the other hand, if x; = 0, |max(0, i;) — 08(h;)h,| = 0 holds true for arbitrary ;. So

[|[max(0, x + h) — max(0,h) — m[x + h]h|| _0
|17 -

if ||h]|#0 is small enough.

The Semi-smooth Newton Method now is simply Newton’s method with the derivatives
replaced by a Newton derivative.

Theorem 5.4. Let U C R" be open, F: U — R™ and x* € U be a zero of F. If F has a
Newton derivative f for which ||f [x]17*|| is uniformly bounded for x in a neighborhood of x*,
then the Newton iteration

Xk+1 = Xk _f[xk]_lF(xk)

converges superlinearly to x* provided ||x, — x*|| is sufficiently small.
Proof. See [HIKo3, Theorem 1.1]. ]

It is easy to see from the definition that if f is a Newton derivative for Fand A: x —
A’x + a is an affine mapping, then x — f[Ax]A" is Newton derivative for F o A, and
x — A'f[x] is a Newton derivative for A o F. Hence, the function S defined in (5.12) has
a Newton derivative

s[x,A] = ( T —1 )

cm[A —cx] 1 —m[A — cx]

! Actually, the value of 8(0) does not matter; any value yields a Newton derivative.



5 Discretization and Implementation

Introduce the active set
A:={i: A, —cx; >0},

and its complement 7 := AS, the inactive set. Then
P, =m[A —cx]

is the projection onto the active set, and s can be written as

™T -1
s[x,/\]:(CPA Pz)'
If
0.\ (v
wn(3)-(2)
then

5, =c'Pw+ P, (P,T*TP,)"P,(v +w — c'T*TP yw),
0, =T"Téx — v,
as can be checked by direct calculation. Since T*T positive definite, ||(P,T*TP;)"| is
bounded independently of x and A, and thus so s [|s[x,A]~}|. It follows that Theorem 5.4

is applicable and the following algorithm converges superlinearly if the initial guess is
sufficiently close to the solution.

Algorithm 5.5 (Semi-smooth Newton Method)
¢ Choose xy, A, € R".

e Fork=0,1,... do:
1. Let Ap = {i: Ay —cx); >0} C {1,...,n}and I, = A;.

2. Solve
T Txg =M =Ty
xk+1|Ak =0
Ak+1|lk =0,

for (x4,1,Ar.1), or equivalently

Py T"TPp Xy = P, Ty

Xep1 = P X (5.13)
My =T Txp = Ty,

Here, the operator T*T only has to be inverted on the inactive set I,.

3. Check stopping criterion (see below).
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5.3 The Semi-smooth Newton Method

The auxiliary constant ¢ > 0 can in principle be chosen freely. Choosing ¢ = & usually
leads to good results. The operator P; T*TP;, in the first equation of the iteration
step (5.13) is positive definite; therefore, the equation can be solved efficiently using
the Conjugate Gradient (CG) method, which only requires applications of the forward
operator.

5.3.1 Duality gap as a stopping rule

In Algorithm 5.5, x,,; and A, ; only depend on x; and A, through their dependence
on A,. Since there are only finitely many possible subsets of {1, ...,n} and since the
algorithm converges, it actually converges in a finite number of steps. In principle,
one could stop the iterations once the sets A, and A, are identical and obtain an
exact solution (up to errors in solving the linear equation in each iteration). However,
the running time of the algorithm can often be greatly improved by stopping earlier
with an approximate solution. One possible way to estimate the distance to the exact
solution is to consider the difference between the Tikhonov functional and a dual
functional.

Definition 5.6. Let C C R" be a non-empty, closed and convex cone, F € R"™", y € R™,
L € R*" injective and z € R*. The primal functional is defined as

1 1
) 1= S IFx =yl + LG = DI + () (514)
for x € R", and the dual functional is
J( ) R _l” 2 l 2 _ 1 PL L*L —1F>e 2
- (p) = =3lIpI” + . y) + Slall; = SIPc(LL) T Fp + a)l,

for p € R™, where ||-||, = ||L-|| and P is the Euclidean projection onto C in that norm. The
problem

x* = argmin J (x) (5.15)
xeR”
is called primal problem, and
p* = argmaxJ,(p) (5.16)
peRm

is called the associated dual problem.

The relation between primal and dual problem is given by the following theorem.

Theorem 5.7. Problem (5.15) has a solution x*, problem (5.16) has a solution p*, and strong
duality holds, i.e. J (x*) = J,(p*). x* and p* are related by

x* = PL((L'L)"'F*p* +a),

b =y — Fx* (5.17)
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Proof. First, note that if we define the functional R by writing
1 2
Jx) = EHFX —YIIF + Rx),
then

1 * *
J.(p) = —§Ilpll2 +(p, y) — R*(F'p),

where R* is the conjugate of R as in Definition 3.10. Existence and uniqueness of the
minimizer x* is shown in [EHNg6, Theorem 5.15]. Let p := y — Fx*. Then 0 € dJ (x*) is
equivalent to F*p € d R(x"). By Lemma 3.11, this implies x* € d R*(F*p), from which

0 € —Fx* + FOR*(F*p) = a(=J.) (p)

follows. So p = p* is indeed the (unique) maximizer of .J,. The first condition in (5.17)
is the same as F*p* € d R(x"). Finally,

J&) =T ==, FEx") + R(x*) + R*(F'p*) =0
using Lemma 3.11 again. [

Definition 5.8. The duality gap G at (x,p) € R" x R™ is defined as the difference between
the primal and dual functional,

Gx,p) :=TJx) = T.(p).

Moreover, we define
G(x) := G(x,y — Fx).

Written explicitly,
1 2 1 L 2
C(x) = E”x - T(X)HL - E”r(x) - PC(T’(X))”L,
r(x) := (L*L)"'F*(y — Fx) +a.

Due to Theorem 5.7, G is always non-negative, and G(x*) = 0. In addition, G(x) can be
used to estimate the distance of x to the solution of (5.15) in terms of the norm ||-||; .

Theorem 5.9. Forallx € Cand p € R™.
IL(x = x| < 26(x,p)

In particular, |IL(x — x*)|* < 2G(x).

Proof. If x & C, the statement is obvious since J (x) = oo. For x € C, the optimality
condition for the primal problem implies that

(F*(Fx —y) + L*(Lx —a), x —x*) >0
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5.3 The Semi-smooth Newton Method

Thus
() = T () = 2FGe =¥ + lLx = )
+ (F*(Fx —y) + L*(Lx —a), x — x*)
> 2L - 2P
Since J (x*) > J,(p) for all p € R™ by Theorem 5.7, the assertion follows. [

This leads to the following stopping criterion for Algorithm 5.5:

3. Stop the iteration if A,,; = Ay, or if G(P-x;,;) < € for some small ¢ > 0.
Return Prx; ;.

P is the projection onto the constraint set. We use P-x; ., instead of x,, , since the
latter will in often violate the constraint, and thus the duality gap may be infinite at
X;,1- This would make the stopping criterion fail even in cases where x,; is close to
x*.

To apply this stopping rule to problem (5.2), in principle we could take

F=VGYB, y=VG¥Z’, L=+VaGX, a=0 (5.18)

and C = {x € R¥»®Nu: x > 0}. One would then have to evaluate the projection onto C
in the GX-norm, the computation of which may itself not be straightforward.

To overcome this problem, we write G* as
aG* = B1 + D*D.

nxn

for some sufficiently small 8 >0and D € R
GX is positive definite. If we now put

(5) () e e

then PL = P can be evaluated cheaply. The dual functional using (5.19) is

, which can always be achieved since

L
2p

so for the evaluation of G(x) = J(x) — J,(y — Fx), only F*y = B*GYz? and

1 ,
J.(p) = —§||PH2 +(p, y) IPc(E*p)|1%,

F*F = B*G'B+ D*D = B*G'B + aG* — p1
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are required, not the auxiliary operator D. Note that (5.19), combined with Theorem 5.9
and the stopping rule, leads to

p

Sl x| <

whereas (5.18) would yield the stronger estimate
%”\/Gx(x —x%)
Since we are working in the finite dimensional setting, the norms are of course equiv-

alent; numerically, they can still differ considerably. This has to be accounted for by
choosing a smaller tolerance e.

2
<e

5.4 Spherical Harmonics basis on S*

As alternate choice of basis on 52, the SHs from (4.14),

Uy +iu, )m
luy + iu,|

[ —m)!

47 (I+m)! !

forl =1,2,...and —I < m < [ can be used. More precisely, we use a modified basis as
introduced in [DAFDo7], consisting of real-valued linear combinations of SHs of even
order I, the latter due to symmetry assumptions, the former to avoid having to handle
unphysical complex-valued ODFs. For simplicity, the basis functions are numbered by
a single index j > 1 instead of the tuple (I, m).

V2Re(Yy ), m() <0
Y]- = Y,(]-),O, m(j) =0
\/EIm(Yl(j),m(D), m(j) > 0

This basis is widely used in DW-MRI, not only for spherical deconvolution, but also
for models like Q-Ball (2.14) and solid-angle Q-Ball (2.16). The reason is that it greatly
simplifies the various forward operators. In fact, the basis diagonalizes all rotationally
invariant operators, in particular also the Laplace-Beltrami operator. Convergence of
the discretizing projection P, that is obtained from cutting off this basis at a particular
order is obvious from the definition of H,,,.

The main downside of the basis is a more complicated positivity constraint. As for
the spatial basis, the constraint is approximated by checking it only on a finite subset
{u;}7<, C S In the context of spherical deconvolution, this form of the constraint
was first suggested in [TCCoy], where the constraint is checked on more points than
there are unknown coefficients or data points, which enables super-resolution of the
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reconstructed ODFs, i.e the number of reconstructed SH coefficients is larger than the
number of data points. In the following, we will therefore always assume that the
matrix H € R"",

is injective. As for the matrix B implementing the forward operator, we will identify H
with 1 ® H if no confusion arises.

If we approach this problem along the lines of the semi-smooth Newton method used
above, we have to solve problem of the general form

argmin || Tx — y||*. (5.20)
Hx>0

Lagrange multipliers for this problem exist if the constraint is feasible, which clearly is
the case since Y|,; > 0. Proceeding similar to the case above, this leads to the iteration

Ak = {l (Ak - Cka)i > 0}, Ik = A;,
T T g — H*Ak+1 =Ty
HxXpql4, =0

/\k+1|zk =0,

In contrast to the iteration in Algorithm 5.5, the linear system can not be simplified
by restricting to the inactive set and eliminating A. So one has to resort to solving the
complete system, which may be significantly larger. Furthermore, it is not positive
definite, making other solvers like GMRES or BiCGSTAB instead of CG necessary.
Finally, depending on the inactive set, the system may not even be uniquely solvable
if H is not surjective. Numerical experiments using GMRES indeed showed poor
convergence.

An alternative route is taken in [TCCoy], where the constraint is only implemented
approximately but in a way that can be computed much easier. Given x;, let the negative
set NV be defined by N := {i: (Hx;), < 0}. Then the iteration consists in solving

argmin(”Tx —y|* + 0'||PNka||2), oc>0 (5.21)

xeR”

i.e. the constraint is implemented by penalizing the solution on points where the
previous iterate violated it. The iterations are stopped at the first k for which N} =

Nk—l'

In [TCCoy], the method is suggested on an ad-hoc basis. It can, however, be interpreted
as Moreau-Yosida regularization of the constraint Hx > 0. Moreau-Yosida regulariza-
tion proceeds by replacing the indicator function ., (Hx) that is implicit in (5.20) with
its Moreau envelope

inf (xso(Hx —w) + olw|?),

weR"c
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leading to the relaxed problem

argmin (|| Tx — y|* + o[w|?), (5.22)

Hx>w

where minimization is now performed over both x and the auxiliary variable w. The
necessary and sufficient first order optimality conditions for (5.22) can be written as
T*"Tx —H*'A=T"y
cw+A=0 (5.23)
A =max(0, A — o (Hx —w)),

which is the same as
T*Tx + cH*min(0, Hx) = Ty

w=—0c '\

A semi-smooth Newton step for the first equation consists in solving
T"Tx+ cH'P,\ Hx =T"y,
which is just the optimality condition for (5.21).

Convergence of the Moreau-Yosida regularization for ¢ — co has been investigated
in [IKoo]. We will use this algorithm even though it yields only an approximation to
the original problem, since this allows for comparison of the regularized method with
the constrained spherical deconvolution method from [TCCo7] — which is included
as the case « = 0 —, and since it can be implemented easily and efficiently.

Finally, the Gramian matrix can be computed similarly to Section 5.2 by numerical
quadrature on S?, simply replacing the functions ¢, with Y;. Quadrature points and
weights can be obtained for example by using linear interpolation as described above.
Since this is all done in a precomputation step, the number of points can be chosen as
high as needed to achieve the desired accuracy.

5.4.1 Duality gap

As above, we would like to use the duality gap to stop the iterations earlier with an
approximate solution. For this, split G* as

aG* = BH*H + D*D.

We then write the functional in (5.22) as (5.14) using the definitions

(5 0) v () (B 8 e

0 0 0 el
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and C = {(x,w): Hx > w}, and have to compute an expressions of the form

r .
LPé(é) = Largmm(ﬁHH(x — ) + cllw — r2||2)

Hx>w

0 .
) (Jog JE) argmin(Bllo — Hr [ + cfw — ro|P).

vER(H)

This is difficult to solve explicitly due to the range condition v € R(H), but can
be computed numerically using Dykstra’s algorithm [Dyk83], which calculates the
projection P - x of a point x onto the intersection of two closed, convex sets C; and
C, by applying P and P, only. The algorithm is

Algorithm 5.10 (Dykstra’s Algorithm)
* Setx,=x,a,="0,=0.

e Fork=1,2,...,set

Y = Pe (g + a_4)
A = X1 + A1 — Yie
X = Pe, (Wi + br_y)
b = Yi + by — X

It was shown in [Dyk83, Theorem 3.1] that if C; and C, are closed, convex cones with
non-empty intersection, then x, converges to P, x ask — co. In fact, the algorithm
is known to converge in much more general cases.

So to evaluate the projection, we only have to project onto R (H) and evaluate expres-
sions of the form
argmin(B|jv — vy|* + cllw — wy|?).

v>w

The i-th components of the minimizer (v, w) are explicitly given by
= Wy, if vy, = w,
and

_ Pog,; + cwy,

3 otherwise.
c

i = W;
Dykstra’s algorithm is a first-order method, so convergence can be rather slow and
require a large number of steps. In that case, even simple operations like the ones
above can lead to computation times that are too large for a stopping criterion. Note

however that all of the steps above can be trivially parallelized, voxel-wise for the range
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projection and pointwise for the inequality constraint. Moreover, a parallel version of
Dykstra’s algorithm is available [Comog]. Therefore, it should be possible to implement
computation of the duality gap as fast as needed.

Finally, the error can be estimated from the duality gap as

2 1 x —x \|P X
<3l (aze )] =<la)

where w can be computed using (5.23) as w = min(0, Hx). Since the SHs are orthonor-
mal, the discretized matrix H should be close to an isometry if the points {u,} are chosen
properly, possibly after inclusion of appropriate non-negative quadrature weights, so
the inequality above can be read as an approximate bound for |lx — x*|.

g”H(x—x*)
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6 Numerical Experiments

In this chapter, the methods developed in the preceding chapters will be tested on
simulated, phantom and in-vivo data. We will compare the performance of purely
L*-regularized reconstructions with the L?+D,, ., penalty (4.11) and the L*+ D, . +Grad
penalty (4.12), as well as the two choices of basis on S introduced in Sections 5.2
and 5.4.

One of the main problems in ODF reconstruction is that there is neither a canonical
measure of the quality of an ODF, nor of the distance between two ODFs, that accurately
captures the features that a “good” ODF reconstruction should have. Therefore, in
most parts of this chapter, only graphical depictions of reconstructed images will be
shown. Assessing the performance of the various methods under investigation then
has to be performed in a more qualitative fashion by visual inspection. Moreover, for
the phantom data, where the ground truth of the fiber tracks is known, some tracking
results will be shown to highlight the effect of both smoothing and artifacts introduced
by the spatial regularization.

ODF reconstructions will be depicted by displaying, for each voxel of a 2-dimensional
slice of the reconstruction, a glyph constructed by deforming a sphere according to the
value of the ODF in the respective direction. So in voxel x, the surface

{w(x,u)u: u € $?}

is displayed. The main diffusion directions can be read of by the “spikes” of the
resulting glyph. The background of the images will show the corresponding GFA
maps.

6.1 Convergence of the projections

We first numerically test the convergence of the discretizing projections P, in H, .. Let
i: Hy,,, — L? be the embedding. Then we want to investigate the norm convergence
ltoP, - il > 0ash — 0. The problem here is that for ¢y € H, ., one needs to
quantify i — P, i.e. its component outside of the discrete subspace. We will do this
approximately by choosing a sufficiently fine discretization X, C H,,,, in place of the
tull infinite-dimensional space, and consider a sequence X;, C X, of coarser discrete
spaces approaching the fine space.
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Figure 6.1: Convergence of the projection P, viewed as a map H,,,, — L? (¢ is the
embedding) plotted against the spatial cutoff frequency for even SH orders 10 <
L, < 20. (Solid): Including the angular regularization term (4.12) (the curves are
almost indistinguishable). (Dashed): Without the angular regularization term (4.11);
SH order is increasing from bottom up.

The linear basis functions as introduced in Chapter 5 would pose a problem in this
setting, since the discrete space constructed for a coarse set of points on S? is not
generally a subspace of the discrete space for a refined point set. This would lead to
additional technical difficulties that are not present in the continuous setting we try to
approximate.

Therefore, we only investigate projections for SH basis functions of the form ¢, ® Y;,, as
defined in Chapter 5, and choose a discrete space of the form X, := span{{,®Y,,: [kl <
K,, I < L,}. The fine discretization X|, is defined similarly, for sufficiently large cutoff
parameters K, L,. Then P;, and the norm above can be evaluated numerically by taking
advantage of the fact that the Gramian matrices G, and G, of X, and X, decouple with
respect to the spatial part {; of the basis functions. The projection has the explicit form
P, = GGy, while the norm ||z o P, — (|| = 0 can be computed by a power iteration.

In Figure 6.1, the results for various L, are plotted against the spatial frequency cutoff K;,
for norms with the additional Laplace-Beltrami operator, clearly showing convergence
almost independently of the chosen L. The figure also shows the results of the same
numerical test when omitting the Laplace-Beltrami penalty. While these also decrease
for large enough K, the effect becomes weaker as the SH order L, increases. This
can likely be attributed to the fact that the finite SH order L, itself provides some
angular smoothness (i.e. “regularization by discretization”). Therefore, for fixed L,
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convergence of P, = P, to P, . as K, — oo is possible, but the convergence speed
deteriorates with increasing L,, such that the combined limith - 0 < K, L, - o
does not exist. This may also explain why in practice, when choosing a fixed and not
too large L,,, satisfactory reconstructions can also be obtained without explicit angular
regularization.

6.2 Reconstructions of phantom data and comparison of
bases

In this section, we compare reconstructions performed on phantom data® using various
choices of the regularization parameters and for both choices of bases described in
Chapter 5.

Construction of the phantom and details on the acquisition are described in more
detail in [FDG+11]. The data was sampled on a 64 x 64 x 3 spatial grid with 3mm
isotropic voxel spacing, using 64 gradient directions and b = 1500 s/mm?, with each
gradient being measured twice to reduce noise. The structure of the phantom is shown
in Figure 6.2, together with three regions of interest — a 90 degree crossing, a ~ 70
degree crossing and a curved structure. Reconstructions were performed on the whole
data, without employing a mask.

As forward model, the spherical unscaled convolution model (2.17) was used, with
convolution kernel parametrized by SHs. This makes the forward operator in the
SH basis particularly simple. The coefficients of the convolution kernel up to order
8 were estimated from the data using the MRtrix software package* — higher order
coefficients turned out to be small enough to be neglected. The estimation proceeds
essentially by averaging the data over all voxels in which a DTI reconstruction shows
an FA value exceeding a given threshold — since these are assumed to contain only a
single fiber each — and accounting for rotation of the data as indicated by the main
diffusion direction obtained from the diffusion tensor.

For the SH basis, the ODF was reconstructed in SHs up to order 12, i.e. with 91 unknown
coefficients in each voxel. This means that SH coefficients of order 10 and 12 are
determined solely by the regularization penalty and the non-negativity constraint. The
constraint was checked on a set of 246 points constructed as n = 7 subdivision of the
icosahedron as in in (5.6), using only half of the resulting symmetric point set since
the other half is redundant due to the symmetry of the SH basis.

'Mechanical conception and data acquisition of the hardware phantom were performed by Cyril
Poupon, Laurent Laribiére, Grégory Tournier, Denis Fournier, Jérémy Bernard and Irina Kezele for
the MICCALI conference 2009. The data were obtained from the Laboratoire de Neuro-imagerie
Assisté par Ordinateur (LNAQO). See also http://www.lnao.fr/spip.php?rubrique79.

?Available at http://www.brain.org.au/software/. Developed at Brain Research Institute, Mel-
bourne, Australia. Further information can also be found in in [TCC12].
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Figure 6.2: Structure of the physical phantom (b = 0 image) with three regions of
interest. ODF reconstructions of these regions are in Figures 6.3 and 6.4.

For the linear basis, the same point set on the half-sphere was chosen. Symmetry of
the ODFs was enforced by constructing the basis functions ¢,, in (5.5) for the full point
set and using a basis of the form {¢, + ¢_,} in the implementation. Note that the SH
reconstruction has fewer unknown coefficients than the linear case. This is due to
better approximation properties of the SHs.

Results are shown in Figures 6.3 and 6.4 using three regularization penalties: a pure
L?-penalty, an additional spatial D, -penalty, and finally including the angular deriva-
tive Grad that was crucial in obtaining the convergence result (4.18). Regularization
parameters were chosen identically for corresponding reconstructions in SH and linear
basis. Running times for reconstructions in the linear basis were typically slower by a
factor of ~ 3.

For the crossing regions, the spatial penalty clearly improves coherence and resolution
of the crossings compared to the L? reconstruction, in particular for the more noisy
70 degree crossing. For the curved structure, the spatial penalty causes some visible
artifacts tangential to the structure. These are reduced somewhat by the additional
angular penalty, essentially by blurring the spurious crossings. This of course also
limits the achievable angular resolution. Therefore, the corresponding regularization
parameter should not be chosen too large. Effects of these artifacts on fiber tracking
performed on the reconstructed ODFs will also be discussed in the next section.

Concerning the choice of basis, both result in visually very similar reconstructions. For
the L? + Dy, case, the linear basis seems a little more susceptible to noise, in particular
in the edge areas of the crossings. This may be due to the implicit smoothness of the
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SH basis already mentioned in the previous section. Moreover, the corresponding
GFA maps show some GFA “leaking” into areas outside of the phantom by prolonging
elongated structures a bit too far. This effect is also more pronounced in the linear
basis.

Maxima of ODFs in crossing areas appear smaller than in single-fiber voxels in both
bases for not entirely clear reasons, and therefore are susceptible to over-blurring by
the angular regularization. A possible explanation for this are scaling issues associated
to ¢ being a density, similar to what was discussed below (2.20). It may also be due
to the fact that we actually reconstruct the product py in the unscaled version of the
convolution (2.17), and the unweighted image p (Figure 6.2) shows a visibly decreased
intensity in crossing areas. This is likely an effect specific to this particular phantom,
since the presence of more fibers in these areas leads to a measurable decrease in water
density. Another possible explanation is the unrealistic monotonic behavior of the
spherical convolution as noted in the remark at the end of Section 2.2.3. Note also that
the in-vivo images below (Figures 6.12 and 6.13) show similar scaling behavior. This
is especially problematic since it contradicts the smoothness assumptions used in the
design of the horizontal penalty term.

6.2.1 Artifacts and tracking

To illustrate the performance of the regularization penalty and highlight the effect of
the introduced artifacts, Figures 6.5 and 6.6 show some tracking results on the same
reconstructions as above. The algorithm was developed by HeLeNn ScHOMBURG [Sch15]
and is a variant of the classic FACT algorithm [XZC+99] for tracking nerve fibers from
DTI reconstructions, adapted to the more complex setting of ODF reconstructions. The
plots were produced using only the most basic variant of the algorithm. Here, a track is
computed as a sequence of positions (x;) € (2 and orientations (1;) € S? as follows:

Algorithm 6.1 (Simple Tracking)
* Pick a step length A > 0 and an angle v > 0.

e Start at a seed point x, € (2 that is likely to contain a single fiber, and choose
the maximum u,, of the ODF at that point, u, = argmax¢(x, ), as starting
direction.

¢ In each step (x, 1), estimate ¢ (x;, u) by trilinearly interpolating z/)(x;'(, u) from
the surrounding grid points {xl"(}f=1 for each for u € S* separately.

e Letu,, =argmax_, ., P(x;, 1),
b Let xk+1 = xk + /\uk+1.

 Stop if entering a region that has been predetermined to not contain any fibers
(for example based on the GFA value or on prior knowledge).

77



6 Numerical Experiments

LZ

ook ok

%'
é:“
;ix:r,c
L L e i
i
TATA T
/***%

cn,og® s }(J‘ o B g e \\\\
s se Aode A A e el )rivlr\\
%l”‘:‘(’(’(‘*;\‘xs& - - \
+x*><»e3‘.‘{\\9‘x* x \\\\\
\n*x%%\\\-»-* « \\\\*
+X‘--+X"\"X*3f.x \\\\\
A s/ SN/ s -
N\NN s SSS S
NANNxorSS s s s N A
NN xR Arr B
e X b XX X - X X s

C L XX X % - X X

S X NN XN\
s NN s X NN\
VA aa " AN A -~ NN \\
P Y oo N N\ »~\\\\
/// N NN - BV AN
& - ~ SIEIEEE \ 2R
R A N oL\
..s“§“‘\\\ $ o \ -\
e D D =
o s\"t+x L SR
¢x>(*: !f{* 1 O
*¢4+,”’,X:~x 2 ox x =
e LS ) L e, e b x
e oo e o SR
i e S - x PP 00 5o e wm ot 4w o &
— X+ e w x x ok ox X#—%%+++.¥

Figure 6.3: ODF reconstructions for the highlighted regions of the phantom in Fig-
ure 6.2 using the spherical convolution model in the linear basis, for various choices
of regularizing penalties. The top row shows the GFA map.
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regularizing penalties. The top row shows the GFA map.
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More advanced versions of this algorithm of course lead to better result and are able
to track successfully through all of the highlighted regions. However, that is outside
the scope of this thesis.

While the results in all cases are good for the 9o degree crossing, the algorithm is
often not able to track through the non-perpendicular crossing for the reconstruction
without spatial penalty, since the poor SNR in that region leads to too much spatial
incoherence. An additional D, . -penalty leads to significant improvements in this
area, i.e. for straight fibers. On the other hand, it shows characteristic weaknesses in
the curved region. While these are improved by the additional Grad-penalty, this also
leads to some tracks taking the wrong turn in straight crossings, in particular for the
obtuse angle. Still, the number of stopping tracks is significantly reduced.

Confirming the visual impression above, the SH reconstruction is slightly smoother,
leading to better results in the curved structure without Grad-penalty while at the
same time causing more tracks to deviate in the straight crossings.

6.2.2 Non-negativity constraint

In Figure 6.7, unconstrained reconstructions of the same data as above using the SH
basis are displayed to investigate the necessity of the non-negativity constraint. For
L*-regularization, the constrained significantly improves the results, but if other types
of regularization are included, the advantage almost vanishes. With D, -penalty,
differences are almost only visible in the GFA map, while with additional Grad-penalty,
there is hardly any visually noticeable difference. Reconstruction with only L2- and
Grad-penalties, which were omitted for brevity’s sake, show similarly satisfactory
results without the constraint, so the effect does not necessarily depend on spatial
regularization, but on sufficient suppression of the noise. For situation where fast
reconstructions are required, it may therefore be possible to omit the constraint, trading
off some accuracy for computational time.

6.3 Simulated data

To test convergence of the method, we simulated ODFs as depicted in Figure 6.8 — a
straight crossing and a curved structure — using a multi-tensor model on a 50 x 50 x 3
spatial grid. Corresponding data was simulated using the spherical convolution model,
with kernel taken from the phantom model above for simplicity, using 64 gradient
directions. The data was subsequently perturbed by Gaussian noise with noise level
varying between 1% and 20%, i.e. the standard deviation of the noise was chosen as the
given percentage of the standard deviation of the simulated data. Then reconstructions
were performed from the noisy data using SHs up to order 10 as basis, for various
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6.3 Simulated data

1, (right) at the bottom left edge.

structions in the linear basis shown in Figure 6.3. The seed regions are: (left) at the
(center) at the top right corne

Figure 6.5: Tracking results using Algorithm 6.1 for the spherical deconvolution recon-
left edge,
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Figure 6.6: Tracking results using Algorithm 6.1 for the spherical deconvolution recon-
structions in the SH basis shown in Figure 6.4. The seed regions are: (left) at the left
edge, (center) at the top right corner, (right) at the bottom left edge.
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Figure 6.8: Structure of the simulated ODFs for the numerical convergence tests shown
in Figures 6.9 and 6.10.

choices of regularization penalty and parameter «. The resulting relative reconstruction
errors with respect to the L?>-norm are shown in Figures 6.9 and 6.10.

In all cases, the error shows the balancing between data noise for small « and approxi-
mation error for large « that is typical of ill-posed problems, as well as improvement of
the reconstructions with decreasing data noise. Also depicted are the optimal relative
errors with respect to the noise level for the various penalties, i.e. the best attainable
result if there was a method to determine the optimal regularization parameter a* for
the given method. In both cases, the spatially regularized methods perform better than
pure L? regularization, although the advantage for the curved structure is rather small.
A notable effect is that for the straight crossing, the L? + D, penalty performs better
than the one with additional angular regularization Grad due to over-blurring caused
by the latter, while for the curved structure the opposite holds true. This can again be
attributed to tangential artifacts as discussed above.

6.4 Reconstructions of in vivo data and comparison of
forward models

In this section, we test the algorithm on an in-vivo data set for various choices of the
forward operator. The data was taken from the Human Connectome Project (HCP)
database? and consists of each go diffusion weighted images for b-values 1000, 2000

3See https://ida.loni.usc.edu. The HCP project is supported by the National Institute of Dental
and Craniofacial Research (NIDCR), the National Institute of Mental Health (NIMH) and the National
Institute of Neurological Disorders and Stroke (NINDS). HCP is the result of efforts of co-investigators
from the University of Southern California, Martinos Center for Biomedical Imaging at Massachusetts
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Figure 6.9: Relative errors for reconstructions from simulated data for the cross struc-
ture in Figure 6.8 using spherical deconvolution in the SH basis, for various regular-
ization penalties and levels of Gaussian noise as shown in the legends. The norm
on the vertical axis is the L>-norm. The bottom right shows shows the errors for the
regularization parameter a, that minimizes the respective errors in the other plots,
i.e. the best attainable relative error for given noise level and regularization method.
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Figure 6.10: Relative errors for reconstructions from simulated data for the circle struc-
ture in Figure 6.8 using spherical deconvolution in the SH basis, for various regular-
ization penalties and levels of Gaussian noise as shown in the legends. The norm
on the vertical axis is the L? norm. The bottom right shows shows the errors for the
regularization parameter a, that minimizes the respective errors in the other plots,
i.e. the best attainable relative error for given noise level and regularization method.
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and 3000 s/mm?, together with 18 unweighted images, which were averaged to obtain a
single base-line image. It should be noted that this is an unusually large data set, which
additionally features a good signal-to-noise ratio. The reason is that it is primarily
intended for brain research, not for the evaluation of ODF reconstruction and tracking
methods. To make the situation more realistic, only a subset of the data will be used.
Still, it is interesting to test the performance the method on this data set, in particular
to see how well the geometric assumption of locally straight fibers is fulfilled in a
realistic situation. Therefore, the spatial regularization parameter was deliberately
chosen rather large to highlight some of its strengths and shortcomings.

6.4.1 Convolution model

For the convolution model, the kernel was parametrized as a Gaussian with a rotation-
ally symmetric diffusion tensor directed along the x;-axis,

The eigenvalues A; and A, were estimated from the data itself using a straight-forward
DTI reconstruction as follows:

* For each voxel x and each g in set of diffusion gradients Q, set

y(x,q) := —log(S(x,q)/p(x)),

where S are the DW weighted images and p is the unweighted image. Points
where this expression is undefined are discarded.

e Set D(x) := argmin, quQWTDq —y(x, q)|2, where the minimum is taken over all
symmetric 3 x 3 matrices, and D(x) := max(0, D(x)) in the sense of functional
calculus, i.e. truncate negative eigenvalues.

¢ Discard voxels with FA(D(x)) < T for some fixed threshold 7. The remaining
voxels are assumed to contain only a single fiber each. For the HCP data set, we
used a value of T = 0.6, which was chosen by manual adjustment.

o Let (/N\i)?:1 be the averages of the sorted eigenvalues of the D (x) over the remaining
voxels x. Then A, = M%Az and A, = A,.

Better DTI reconstruction techniques are of course available, but this simple and fast
approach already lead to good results. The forward operator parametrized by the
diffusion tensor above is

Ty(x,q) = f exp(=b(A; — Ay — Ay) (g - 1)) p(x, u) du.

52

General Hospital (MGH), Washington University, and the University of Minnesota.
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Note that the first term in the exponential only leads to an irrelevant normalization
constant in this setting.

Reconstructions were performed on a 30 x 30 x 35 voxel subset of the volume around
the area shown in Figure 6.11, using only a subset of 40 of the diffusion weighted
images and the unscaled version of the forward operator (cf. 2.17), i.e. also ignoring
the unweighted images. Only reconstructions using the SH basis will be shown for
simplicity. Due to the smaller number of data points, the SH order was reduced to
10. Results for b-values 1000 s/mm? and 2000 s/mm? are depicted in Figure 6.12. The
3000 s/mm? reconstruction did not differ much from the 2000 s/mm? version and will
not be shown.

Since the signal usually decays with increasing b-value, the SNR of the 1000 s/mm?
data is the higher, which leads to a better GFA contrast. On the other hand, region
(A) shows that the data at smaller b-values tends to contain less information on the
crossing structures and to appear more blurred. The intuition behind this is that the
shorter time between the diffusion sensitizing gradient pulses gives the particles less
opportunity to probe the micro-structure of the tissue. Region (A) in also highlight the
strength of the D, . penalty, which significantly improves the coherence of the crossing
elongated structures in this area.

Region (B) shows a white matter structure extending into a gray matter area, which may
or may not be an artifact due to the general tendency of the penalty to prolong elongated
structures. In cases like these, validation based on other sources of knowledge about
the local structures is necessary.

Regions (C) and (D) show two opposing effects: region (D) shows spurious crossings
introduced into a bending structure similar to what was observed on the phantom data,
while in region (C) presumably crossing structures are smoothed out. Note however
that the fiber geometry of the region is very complex, with bending, crossing and
merging areas very close together. In these situations, it will be very difficult to decide
algorithmically which of the solutions is correct based on locally available information,
and without knowledge on the specifics of brain anatomy. Therefore, manually guiding
the reconstruction may be required, for example by using predetermined, spatially
varying regularization parameters.

Another notable feature of the regularized reconstructions is the significantly improved
GFA contrast between gray and white matter even without the Laplace-Beltrami penalty.
This shows that the spatial penalty is able to distinguish between noise and oriented
structures using the fact that the former are not coherent with their surroundings.

6.4.2 Multi-shell deconvolution

As discussed in Section 2.2.4, the convolution model can be extended to the multi-shell
setting if convolution kernels for the different shells are known. An easy way to obtain
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Figure 6.11: Slice of the in-vivo data set from the Human Connectome Project (HCP).
The highlights region is the sub-region on which reconstructions were performed
(Figures 6.12 to 6.15). The image shows FA color coded by main diffusion direction:
(red) left-right, (green) forward-backward, (blue) up-down.

these kernels is to use the DTI-based method described above, either by estimating a
single tensor from data on all shells as in (2.19), or by using the method multiple times
to estimate one tensor per shell as in (2.21). Choosing each 20 gradient directions for
the b = 1000 s/mm? and 2000 s/mm? shells, we obtain tensor eigenvalues (0.41,1.44) x
1073 mm?/s for the 1000 s/mm? shell and (0.34,1.13) x 1073 mm?/s for the 1000 s/mm?
shell. Using all data to estimate a single tensor leads to eigenvalues (0.35,1.19) x
1073 mm?/s, so the estimates are rather similar, with the 1000 s/mm? shell showing
a stronger isotropic part as expected. This suggests that at least for these b-values,
the Gaussian model can be a satisfactory description of the radial behavior of the
data.* Moreover, choosing between (2.19) and (2.21) does not play a significant role.
Figure 6.13 shows results using the same parameters as for the single-shell case above,
for the kernel (2.21). As expected, the reconstruction quality is somewhere in the
middle between the 1000 and 2000 s/mm? single-shell reconstructions.

6.4.3 Q-Ball model

The Q-Ball method (2.16),

1 1 S
= — +——AuRlog[ —log(2) |, :
4 4 * 16772 As 10g< log<p)> (61)

4For larger b-values, more complicated effects like diffraction peaks are known to occur [ATBog], so
the model would break down.
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6 Numerical Experiments

for the region highlighted in Figure 6.11 from 40 gradient directions and varying
b-values and penalties. See the text for a discussion of the highlights regions.

Figure 6.12: Spherical deconvolution reconstructions of the HCP data in the SH basis
90
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Multi-shell spherical deconvolution reconstructions of the HCP data with
each 20 gradient directions for b = 1000 and 2000 mm?/s using the SH basis for the
region highlighted in Figure 6.11 with the same parameters as for the single-shell

reconstruction Figure 6.12.

Figure 6.13
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was also tested on the HCP data. This method is most easily implemented in the SH
basis, since the linear part Ag: R of the forward operator is rotationally invariant and
therefore diagonalized by SHs. As shown in [DAFDo7], the spectral coefficients of the
Funk-Radon transform R are given by the expression

where P, is the Legendre polynomial of order I. Explicitly,

0 [ odd,
PO=1 Cqyelid - )

Writing this using the I'-function, the asymptotic expansion

P;(0) = (—1)1/2\‘2771 + (9(%) asl - oo, even

can be shown. So the operator Ag, R is unbounded, which necessitates a rather low
choice for the SH order to avoid instability due to noise. Reconstruction is performed
along the lines of [ALS+10] by first computing the double logarithm in the expression

above,
y :10g<—10g<§)), (6.2)

dropping points where this is undefined. The result is then expanded in SHs, optionally
including a regularizing penalty for additional stability,

l even.

argmin(||Yc — y|* + a||Lc|?). (6.3)

Here, Y the SH matrix and L implements /— A, i.e. a diagonal matrix with entries
vI(I +1). Results using SHs of order 6 and all b = 20005s/ mm? points are shown in
Figure 6.14. Compared to the results shown above, the reconstructions are of noticeably
lower quality. Some of the crossings are resolved nicely, but interestingly, the ODFs in
single-fiber voxels seem to be much more noisy than above. As before, GFA contrast is
improved by Laplace-Beltrami regularization by reducing noise in isotropic areas. The
unfavorable result may be due to incorrect modelling assumptions or lack of proper
regularization. Therefore, it is interesting to see how the Q-Ball model performs when
including the spatial penalty and non-negativity constraint.

To do this, we first formulate (6.1) as an inverse problem,
1
16m* (A R) lp=y—— | vy, .
6 (B2 R) " =y 47Tfy (6-4)
where ¢ = ¥—(471)~'. Note that Ag. R : Hg/z(Sz) — L3(S?) is bijective, where L3 (5?) :=

{peL*(S*): [f=0,feven}, andHS’/2(SZ) := H*?(S*)NL§(5?). So the inverse above
makes sense when restricting ¢ to L3(S?) in each voxel.
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Figure 6.14: Solid-angle Q-Ball reconstructions of HCP data for the region highlighted
in Figure 6.11 using the explicit expression (6.1) for 90 gradient directions. (Left): SH
coefficients of data determined without regularizationin (6.3). (Right): SH coefficients
determined with additional Laplace-Beltrami regularization.

Problem (6.4) can actually be viewed as a deconvolution problem, with the convolution
kernel given in SHs by the the spectral coefficients of (Ag. R)~'. Therefore, almost
the same implementation as above can be used. A few points have to be taken into
account:

e There is an additional side condition [, ¢ = 0 to be implemented. This can be
done easily by omitting the order 0 SH coefficient of ¢ during reconstruction.

¢ The constant shift between ¢ and ¥ has to be accounted for in the lower bound.
In the Moreau-Yosida regularized method, this can be done by replacing (5.22)
with
argmin (|| Tx — y|* + c|w — a|*),

Hx>w

where 7 is the lower bound, and otherwise following the same steps as above.

¢ The double logarithm (6.2) changes the noise statistics, so that a quadratic data
penalty is likely not an optimal choice. To be precise, even for the deconvolution
model, the noise is not Gaussian due to using magnitude data in equation (2.11)
(the resulting noise usually follows is a Rice distribution, cf. [GPg5], but is even
more complicated for parallel imaging). On the other hand, inverting the dou-
ble logarithm would lead to a non-linear inverse problem involving a double
exponential, which is likely to lead to poor convergence even for Newton-type
methods. For the sake of simplicity, we will still use a quadratic data penalty, but
this is a problem that should be handled more thoroughly.
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6 Numerical Experiments

Reconstructions are shown in Figure 6.15. The L? and L? + D, + Grad are comparable
to the unregularized and regularized versions above, respectively, while the purely
spatially regularized reconstruction achieves good coherence without the over-blurring
introduced by the Laplace-Beltrami operator. In all cases, a notable effect of the model
is that the requirement [, 1 = 1leads to comparably large ODFs in regions with no or
only isotropic diffusion, which makes it difficult to locally distinguish between these
and for example the large oriented structure in the lower part of the images. This is of
course inherent in the choice of the solid-angle ODF @ = 1, in (2.16). Altogether, the
Q-Ball model appears to be an inferior choice compared to the Gaussian convolution
model, at least for this data set.
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6.4 Reconstructions of in vivo data and comparison of forward models

L?.

L? + Dy, + Grad

Figure 6.15: Solid-angle Q-Ball reconstructions of HCP data for the region highlighted
in Figure 6.11 for 90 gradient directions, obtained by writing the Q-Ball operator as

regularized spherical deconvolution in the SH basis as described in the text, and
using various regularization penalties.
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7 Summary

The aim of this thesis was to investigate the possibilities for enhancing the spatial coher-
ence of ODF reconstructions from coarsely sampled, low SNR data, where in contrast to
pre- or post-processing approaches, reconstruction and smoothing were carried outin a
single step. Motivated by existing results on diffusion filters on SE(3) /SO (2) = R3xS?,
we introduced a penalty for smoothing ODFs that compares ODFs in neighboring
voxels locally in the orientational part, comparing each orientational component only
along the corresponding spatial direction.

The Tikhonov-type regularization method using this penalty is naturally defined on a
non-standard Sobolev space, which was thoroughly analyzed, in particular proving a
theorem on compact embedding into L?. As a variation of a known result on general-
ized Tikhonov regularization with approximate operator, we proved convergence of
reconstructions from discrete data for compact forward operators, if the discretization
is performed appropriately and the exact solution fulfills a variational smoothness
assumption. Combining this with the embedding theorem, we were able to obtain
convergence of our regularization strategy for discrete, noisy data and linear forward
operators.

We described efficient implementation of our regularization strategy as a projection
method and analyzed the approximation properties of the corresponding discrete
spaces, showing that the projections in the domain fulfill the properties required by the
convergence result. For the codomain, our implementation deviates from the precise
requirements due to details of the physical measurement, but we expect the difference
not to play a major role in practice — an expectation that is also confirmed by our
numerical experiments.

We described two possible solvers for the resulting constrained optimization problem.
The first one — the primal-dual active set method — is known have good convergence
properties, and is further accelerated by the duality-gap based stopping rule. We also
used an ad-hoc minimization algorithm that is known from constrained voxel-wise
reconstructions of DW data using Spherical Harmonics, and were able to justify the algo-
rithm by identifying it as a form of Moreau-Yosida regularization of the non-negativity
constraint.

In the final chapter, we numerically verified convergence of the discretizing projections
with respect to refinement of the discretization. This part also illustrated the need to
enforce some angular smoothness of the reconstructions in order to obtain convergence.
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7 Summary

Further, we tested convergence of the regularization method with respect to the noise
level on simulated data, and, in a more qualitative fashion, analyzed the performance
of the method on phantom and in-vivo data, including some simple fiber tracking
results for the phantom. This showed significant improvements in spatial coherence
and noise reduction compared to voxel-wise approaches, but also highlighted the
main shortcoming of the method, i.e. the introduction of artifacts in regions containing
fibers with high curvature. We showed that these can be reduced by mild angular
regularization, but since this also limits the achievable resolution in crossing areas,
it is necessary to balance the penalties appropriately. Until now, this has to be done
manually. Due to complex geometry of nerve fibers in the brain, it is likely that some
level of manual intervention is unavoidable.

As a perspective, there are several possible extensions to our method to address this
problem. One way may be to make use of the convergence with respect to spatial
discretization to reconstruct the ODFs on a grid finer than the one on which the data
is given, thereby effectively reducing the curvature of non-straight structures and
making them conform better to the smoothness assumptions. Another option would
be to adaptively choose the regularization parameters and in particular the relative
balance between spatial and angular derivatives, depending on the local structure;
unfortunately, it is not entirely clear how to approach this, since SE(3)-based orientation
estimation turned out not give reliable results. A third option would be to use non-linear
versions of the penalty, as in (4.10), to incorporate ideas from non-linear diffusion filters.
All of these approaches will, however, lead to a considerable increase in computational
complexity.



Bibliography

[ALS+10]

[ATBoo9]

[Bakoz2]
[BBJ+o7]

[BIK99]

[Blo46]
[BSoz]

[BTV+12]

[Comog]

[DAFDo7]

[DCGD11]

I. Aganj, C. Lenglet, G. Sapiro, et al. “Reconstruction of the orientation
distribution function in single- and multiple-shell g-ball imaging within
constant solid angle”. In: Magn. Reson. Med. 64.2 (2010), pp. 554—566. por:
10.1002/mrm. 22365.

H.-E. Assemlal, D. Tschumperlé, and L. Brun. “Efficient and robust com-
putation of PDF features from diffusion MR signal”. In: Med. Image Anal.
13.5 (2009), pp. 715—729. por: 10.1016/j .media.2009.06.004.

A. Baker. Matrix groups: An introduction to Lie theory. Springer, 2002.

T. E.]. Behrens, H. J. Berg, S. Jbabdi, et al. “Probabilistic diffusion tractog-
raphy with multiple fibre orientations: What can we gain?” In: Neurolmage
34.1 (2007), pp- 144-155. por: 10.1016/j .neuroimage.2006.09.018.

M. Bergounioux, K. Ito, and K. Kunisch. “Primal-Dual Strategy for Con-
strained Optimal Control Problems”. In: SIAM ]. Control Optim. 37.4 (1999),
pp. 1176-1194. por: 10.1137/50363012997328609.

F. Bloch. “Nuclear Induction”. In: Phys. Rev. 70.7-8 (1946), pp. 460—474.
por: 10.1103/physrev.70.460.

S. C. Brenner and L. R. Scott. The mathematical theory of finite element methods.
2nd ed. Texts in Applied Mathematics 15. Springer, 2002.

S. Becker, K. Tabelow., H. U. Voss, et al. “Position-orientation adaptive
smoothing of diffusion weighted magnetic resonance data (POAS)”. In:
Med. Imag. Anal. 16.6 (2012), pp. 1142-1155. por: 10.1016/j .media.2012.
05.007.

P. L. Combettes. “Iterative construction of the resolvent of a sum of maxi-
mal monotone operators”. In: J. Convex. Anal. 16 (2009), pp. 727-728.

M. Descoteaux, E. Angelino, S. Fitzgibbons, and R. Deriche. “Regularized,
fast and robust analytical Q-Ball imaging”. In: Magn. Reson. Med. 58.3
(2007), pp. 497-510. por: 10.1002/mrm.21277.

R. Duits, E. Creusen, A. Ghosh, and T. Dela Haije. Diffusion, convection
and erosion on SE(3)/({0} x SO(2)) and their application to the enhancement
of crossing fibers. 2011. arXiv: 1103.0656v5 [math.AP].

99


http://dx.doi.org/10.1002/mrm.22365
http://dx.doi.org/10.1016/j.media.2009.06.004
http://dx.doi.org/10.1016/j.neuroimage.2006.09.018
http://dx.doi.org/10.1137/S0363012997328609
http://dx.doi.org/10.1103/physrev.70.460
http://dx.doi.org/10.1016/j.media.2012.05.007
http://dx.doi.org/10.1016/j.media.2012.05.007
http://dx.doi.org/10.1002/mrm.21277
http://arxiv.org/abs/1103.0656v5

Bibliography

[DDL+01] M. Descoteaux, R. Deriche, D. Le Bihan, et al. “Multiple g-shell diffusion
propagator imaging”. In: Med. Image Anal. 15.4 (2001), pp. 603—621. DOIL:
10.1016/j.media.2010.07.001.

[DF11] R. Duits and E. Franken. “Left-invariant diffusions on the space of posi-
tions and orientations and their application to crossing-preserving smooth-
ing of HARDI images”. In: Int. ]. Comput. Vis 92.3 (2011), pp. 231—-264. DOI:
10.1007/511263-010-0332-z.

[Duios] R. Duits. “Perceptual organization in image analysis”. PhD thesis. Eind-
hoven University of Technology, Department of Biomedical Engineering,
2005.

[Dyk83] R. L. Dykstra. “An algorithm for restricted least squares regression”. In: J.
Am. Stat. Assoc. 78.384 (1983), pp. 837-842. por: 10.1080/01621459.1983.
10477029.

[EHNg6] H. Engl, M. Hanke, and A. Neubauer. Regularization of inverse problems.
Mathematics and Its Applications. Kluwer Academic Press, 1996.

[ET76] I. Ekeland and R. Temam. Convex analysis and variational problems. North-
Holland, 1976.

[FDG+11] P Fillard, A. Descoteaux M. Goh, S. Gouttard, et al. “Quantitative evalua-
tion of 10 tractography algorithms on a realistic diffusion MR phantom”.
In: Neuroimage 56.1 (2011), pp. 220-234. por: 10.1016/j .neuroimage.2011.
01.032.

[FH11] J. Flemming and B. Hofmann. “Convergence rates in constrained Tikhonov
regularization: equivalence of projected source conditions and variational
inequalities”. In: Inverse Probl. 27.8 (2011), p. 085001. por: 10.1088/0266-
5611/27/8/085001.

[Fle13] J. Flemming. “Variational smoothness assumptions in convergence rate
theory — an overview”. In: J. Inverse Ill-Posed Probl. 21.3 (2013), pp. 395-409.
por: 10.1515/3jip-2013-0001.

[Frao8] E. Franken. “Enhancement of crossing elongated structures in images”.
PhD thesis. Eindhoven University of Technology, 2008.

[GLTVo9] A.Goh, C. Lenglet, P. M. Thompson, and R. Vidal. “Estimating orientation
distribution functions with probability density constraints and spatial
regularity”. In: Medical Image Computing and Computer-Assisted Intervention
2009. Ed. by G.-Z. Yang, D. Hawkes, D. Rueckert, et al. Vol. 5761. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2009, pp. 877-885.
por: 10.1007/978-3-642-04268-3_108.

[GPo5] H. Gudbjartsson and S. Patz. “The Rician distribution of noisy MRI data”.
In: Magn. Reson. Med. 34.6 (1995), pp- 910—914. por: 10.1002/mrm. 1910340618.

[Hahso]  E. L. Hahn. “Nuclear induction due to free Larmor precession”. In: Phys.
Rev. 77.2 (1950), pp. 297—298. por: 10.1103/physrev.77.297.2.

100


http://dx.doi.org/10.1016/j.media.2010.07.001
http://dx.doi.org/10.1007/s11263-010-0332-z
http://dx.doi.org/10.1080/01621459.1983.10477029
http://dx.doi.org/10.1080/01621459.1983.10477029
http://dx.doi.org/10.1016/j.neuroimage.2011.01.032
http://dx.doi.org/10.1016/j.neuroimage.2011.01.032
http://dx.doi.org/10.1088/0266-5611/27/8/085001
http://dx.doi.org/10.1088/0266-5611/27/8/085001
http://dx.doi.org/10.1515/jip-2013-0001
http://dx.doi.org/10.1007/978-3-642-04268-3_108
http://dx.doi.org/10.1002/mrm.1910340618
http://dx.doi.org/10.1103/physrev.77.297.2

Bibliography

[HIKo3] M. Hintermiiller, K. Ito, and K. Kunisch. “The primal-dual active set strat-
egy as a semismooth Newton method”. In: SIAM ]. Optim. 13.3 (2003),
pp- 865-888. por: 10.1137/51052623401383558.

[HKPSo7] B. Hofmann, B. Kaltenbacher, C. Poschl, and O. Scherzer. “A convergence
rates result for Tikhonov regularization in Banach spaces with non-smooth
operators”. In: Inverse Probl. 23.3 (2007), pp. 987-1010. por: 10.1088/0266-
5611/23/3/009.

[Hor67] L. Hormander. “Hypoelliptic second order differential equations”. In: Acta
Mathematica 119.1 (1967), pp. 147-171. por: 10.1007/bf02392081.

[HR14] T. Hohage and C. Riigge. A coherence enhancing penalty for Diffusion MRI:
reqularizing property and discrete approximation. 2014. arXiv: 1412 . 1439
[math.AP]. Submitted.

[HW13] T. Hohage and F. Werner. “Iteratively regularized Newton-type methods
for general data misfit functionals and applications to Poisson data”. In:
Numer. Math. 123.4 (2013), pp. 745—779. bor: 10.1007/s00211-012-0499-z.

[HY10] B. Hofmann and M. Yamamoto. “On the interplay of source conditions
and variational inequalities for nonlinear ill-posed problems”. In: Appl.
Anal. 89.11 (2010), pp. 1705-1727. por: 10.1080/00036810903208148.

[IKoo] K. Ito and K. Kunisch. “Augmented Lagrangian methods for nonsmooth,
convex optimization in Hilbert Spaces”. In: Nonlinear Anal. 41 (2000),
pPP- 591-616. por: 10.1016/50362-546X(98) 00299-5.

[JAo3] K. Jansons and D. Alexander. “Persistent angular structure: new insights
from diffusion magnetic resonance imaging data”. In: Inverse Probl. 19.5
(2003), pp- 1031-1046. por: 10.1088/0266-5611/19/5/303.

[LF12] S. Lu and J. Flemming. “Convergence rate analysis of Tikhonov regular-
ization for nonlinear ill-posed problems with noisy operators”. In: Inverse
Probl. 28.10 (2012), p. 104003. por: 10.1088/0266-5611/28/10/104003.

[Nédo1] J. Nédélec. Acoustic and electromagnetic equations. Springer, 2001.

[Neu88] A. Neubauer. “Tikhonov-regularization of ill-posed linear operator equa-
tions on closed convex sets”. In: J. Approx. Theory 53.3 (1988), pp. 304—320.
por: 10.1016/0021-9045 (88)90025-1.

[NHos] F. Nier and B. Helffer. Hypoelliptic estimates and spectral theory for Fokker-
Planck operators and Witten Laplacians. Lecture Notes in Mathematics. Springer,
2005. por: 10.1007/b104762.

[Dkso3] B. K. Oksendal. Stochastic differential equations: An introduction with applica-
tions. Springer, 2003.

[OSV+06] E.Ozarslan, T. M. Shepherd, B. C. Vemuri, et al. “Resolution of complex
tissue microarchitecture using the diffusion orientation transform (DOT)”.

In: Neurolmage 31.3 (2006), pp. 1086—-1103. por: 10.1016/j .neuroimage .
2006.01.024.

101


http://dx.doi.org/10.1137/S1052623401383558
http://dx.doi.org/10.1088/0266-5611/23/3/009
http://dx.doi.org/10.1088/0266-5611/23/3/009
http://dx.doi.org/10.1007/bf02392081
http://arxiv.org/abs/1412.1439
http://arxiv.org/abs/1412.1439
http://dx.doi.org/10.1007/s00211-012-0499-z
http://dx.doi.org/10.1080/00036810903208148
http://dx.doi.org/10.1016/S0362-546X(98)00299-5
http://dx.doi.org/10.1088/0266-5611/19/5/303
http://dx.doi.org/10.1088/0266-5611/28/10/104003
http://dx.doi.org/10.1016/0021-9045(88)90025-1
http://dx.doi.org/10.1007/b104762
http://dx.doi.org/10.1016/j.neuroimage.2006.01.024
http://dx.doi.org/10.1016/j.neuroimage.2006.01.024

Bibliography

[PV9go]

[RK11]

[RMA+11]

[RR93]

[Sch1s]

[SGG+09]

[ST65]

[Ste65]

[Tay96]
[TCCo7]

[TCC12]

[TCGCoa]

[Tors6]

[Tuco4]

102

R. Plato and G. Vainikko. “On the regularization of projection methods
for solving ill-posed problems”. In: Numer. Math. 57.1 (1990), pp. 63—79.
por: 10.1007/b£01386397.

M. Reisert and V. G. Kiselev. “Fiber continuity: an anisotropic prior for
ODF estimation”. In: IEEE Trans. Med. Imaging 30.6 (2011), pp. 1274-1283.
por: 10.1109/TMI.2011.2112769.

M. Reisert, I. Mader, C. Anastasopoulos, et al. “Global fiber reconstruction
becomes practical”. In: Neurolmage 54.2 (2011), pp. 955-962. por: 10.1016/
j.neuroimage.2010.09.016.

J. B.Ra and C. Y. Rim. “Fast imaging using subencoding data sets from
multiple detectors”. In: Magn. Reson. Med. 30.1 (1993), pp. 142—145. DOL
10.1002/mrm.1910300123.

H. Schomburg. “Semi-local tractography strategies using neighborhood
information”. 2015. In preparation.

O. Scherzer, M Grasmair, H Grossauer, et al. Variational methods in imaging.
Applied Mathematical Sciences. Springer, 2009. por: 10.1007/978-0-387-
69277-7.

E. O. Stejskal and J. E. Tanner. “Spin diffusion measurements: Spin echoes
in the presence of a time-dependent field gradient”. In: J. Chem. Phys. 42.1
(1965), pp. 288—292. por: 10.1063/1.1695690.

E. O. Stejskal. “Use of spin echoes in a pulsed magnetic-field gradient to
study anisotropic, restricted diffusion and flow”. In: J. Chem. Phys. 43.10
(1965), pp- 3597-3603. por: 10.1063/1.1696526.

M. Taylor. Partial differential equations: Basic theory. Springer, 1996.

J. Tournier, F. Calamante, and A. Connelly. “Robust determination of
the fibre orientation distribution in diffusion MRI: Non-negativity con-
strained super-resolved spherical deconvolution”. In: Neurolmage 35.4
(2007), pp. 1459—1472. por: 10.1016/j .neuroimage.2007.02.016.

J. Tournier, F. Calamante, and A. Connelly. “MRtrix: Diffusion tractography
in crossing fiber regions”. In: Int. J. Imag. Syst. Tech. 22.1 (2012), pp. 53-66.
por: 10.1002/ima.22005.

J. Tournier, F. Calamante, D. G. Gadian, and A. Connelly. “Direct estimation
of the fiber orientation density function from diffusion-weighted MRI data
using spherical deconvolution”. In: Neurolmage 23.3 (2004), pp. 1176-1185.
por: 10.1016/j .neuroimage.2004.07.037.

H. C. Torrey. “Bloch equations with diffusion terms”. In: Phys. Rev. 104.3
(1956), pp. 563-565. por: 10.1103/physrev.104.563.

D. Tuch. “Q-ball imaging”. In: Magn. Reson. Med. 52.6 (2004), pp. 1358—
1372. por: 10.1002/mrm.20279.


http://dx.doi.org/10.1007/bf01386397
http://dx.doi.org/10.1109/TMI.2011.2112769
http://dx.doi.org/10.1016/j.neuroimage.2010.09.016
http://dx.doi.org/10.1016/j.neuroimage.2010.09.016
http://dx.doi.org/10.1002/mrm.1910300123
http://dx.doi.org/10.1007/978-0-387-69277-7
http://dx.doi.org/10.1007/978-0-387-69277-7
http://dx.doi.org/10.1063/1.1695690
http://dx.doi.org/10.1063/1.1696526
http://dx.doi.org/10.1016/j.neuroimage.2007.02.016
http://dx.doi.org/10.1002/ima.22005
http://dx.doi.org/10.1016/j.neuroimage.2004.07.037
http://dx.doi.org/10.1103/physrev.104.563
http://dx.doi.org/10.1002/mrm.20279

[UHBFo8]

[XZC+99]

Bibliography

M. Uecker, T. Hohage, K. Block, and J. Frahm. “Image reconstruction
by regularized nonlinear inversion — Joint estimation of coil sensitivities
and image content”. In: Magn. Reson. Med. 60.3 (2008), pp. 674-682. por:
10.1002/mrm.21691.

R. Xue, P. C. M. van Zijl, B. J. Crain, et al. “In vivo three-dimensional
reconstruction of rat brain axonal projections by diffusion tensor imaging”.
In: Magn. Reson. Med. 42.6 (1999), pp. 1123-1127. por: 10.1002/ (SICI) 1522~
2594(199912)42:6<1123: :AID-MRM17>3.0.C0; 2-H.

103


http://dx.doi.org/10.1002/mrm.21691
http://dx.doi.org/10.1002/(SICI)1522-2594(199912)42:6<1123::AID-MRM17>3.0.CO;2-H
http://dx.doi.org/10.1002/(SICI)1522-2594(199912)42:6<1123::AID-MRM17>3.0.CO;2-H




Danksagung

Zum Schluss mochte ich mich bei allen Menschen bedanken, die dieses Projekt ermdg-
licht und mich unterstiitzt haben. Zunachst bei meinem Betreuer Professor Thorsten
Hohage fiir die Aufnahme als Promotions-Student, fiir Diskussionen, Ratschldge und
Motivation, und bei meinem Zweit-Betreuer Professor Jens Frahm und seiner Arbeits-
gruppe, darunter insbesondere Sabine Hofer, fiir Zusammenarbeit, Erklarungen und
Unterstiitzung beim nicht-mathematischen Teil des Projekts.

Danke an all die Mitglieder der Arbeitsgruppe Inverse Probleme, die ich im Laufe der
Zeit kennenlernen durfte, allen voran meinem ehemaligen Biironachbarn Frank fiir
seine Kombination aus Hilfsbereitschaft und umfangreichem mathematischen Wissen,
Robert fiir ausfiihrliche Gespréche iiber Mathematisches und Nicht-Mathematisches,
und Helen fiir die enge Zusammenarbeit und fiir den Tracking-Algorithmus.

Mein Dank gilt auch dem Graduiertenkolleg 1023 ,Identifikation in mathematischen
Modellen” fiir finanzielle Unterstiitzung durch das Stipendium und fiir die Moglichkeit
zu hilfreichen Austausch mit den anderen KollegiatInnen.

Auch ausser-universitdr haben viele Menschen zum Gelingen des Projekts beigetragen.
Besonderer Dank geht an meine Eltern fiir Unterstiitzung und Riickhalt iiber all die
Jahre, und an Melanie, ohne die vor allem die Endphase des Projekts schwer zu bewdl-
tigen gewesen ware. Am Schluss danke ich allen, die die Zeit wiahrend der Promotion
durch ihre Gesellschaft bereichert haben: Aleks, Boris, Fabian, Felix, Marie, Marléne,
Moritz, Petra, Thomas, und, zu guter Letzt, der Ki.

Zum Teufel mit Flanders.



	Introduction
	Physical Background
	The Measurement
	Modeling Multiple Fibers

	Elements from Regularization Theory
	Linear Inverse Problems
	Discretization of Linear Inverse Problems

	A Penalty for ODFs
	Choice of the Regularization Functional
	The Space (to.)to.
	Convergence Result

	Discretization and Implementation
	Discretization of the spherical convolution operator
	Linear basis function on S2
	The Semi-smooth Newton Method
	Spherical Harmonics basis on S2

	Numerical Experiments
	Convergence of the projections
	Reconstructions of phantom data and comparison of bases
	Simulated data
	Reconstructions of in vivo data and comparison of forward models

	Summary
	Bibliography

